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Cooling load forecasting-based predictive optimisation for chiller

plants

Lan Wang 

a , b , ∗, Eric Wai Ming Lee 
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a , Wei Feng 

b

a Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region
b Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

a b s t r a c t 

Extensive electric power is required to maintain indoor thermal comfort using heating, ventilation and 
air conditioning (HVAC) systems, of which, water-cooled chiller plants consume more than 50% of the 
total electric power. To improve energy efficiency, supervisory optimisation control can be adopted. The 
controlled variables are usually optimised according to instant building cooling load and ambient wet 
bulb air temperature at regular time intervals. In this way, the energy efficiency of chiller plants has been 
improved. However, with an inherent assumption that the instant building cooling load and ambient wet 
bulb temperature remain constant in the coming time interval, the energy efficiency potential has not 
been fully realised, especially when cooling loads vary suddenly and extremely. To solve this problem, 
a cooling load forecasting-based predictive optimisation method is proposed. Instead of minimising the 
instant system power according to the instant building cooling load and ambient wet bulb temperature,

the controlled variables are derived to minimise the sum of the instant system power and one-time-step- 

ahead future system power according to both instant and forecasted future building cooling loads. With 
this method, the energy efficiency potential of a chiller plant can be further improved without shortening 
the operation time interval. 80% redundant energy consumption has been reduced for the sample chiller 
plant; energy can be saved for chiller plants that work for years. The evaluation on the effect of cooling 
load forecasting accuracy turns out that the more accurate the forecasts are, the more redundant energy 
consumption can be reduced.
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. Introduction

The energy consumption of buildings comprises 20–40% of to-

al energy use in developed countries. The electric power required

o maintain indoor thermal environments with heating and venti-

ation air conditioning (HVAC) systems accounts for almost half of

hat total [1] . Water-cooled chiller plants, which mainly refer to the

ondenser water loop of an HVAC system, are made up of chillers,

ooling towers, and condenser water pumps; they comprise more

han 50% of the total energy consumptions of HVAC systems [2] .

he power used by a chiller plant can be reduced by understand-

ng the interactions between its different components in the effort

o meet the needs of time-varying building cooling loads. 

For example, lowering the temperature of the condenser water

upply temperature ( T cws ) can reduce the power used by a chiller

ompressor by reducing the lift and increase the power require-

ent of a cooling tower fan. The contradictory effects of T cws on

 chiller and a cooling tower fan’s power makes it important to
∗ Corresponding author.
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m  
nd an optimum T cws [3] . A lower condenser water mass flow rate

 M cw 

) can decrease the power used by the pump while increasing

he temperature gap between the condenser water in and out of

he chiller, which increases the chiller’s power. The contradictory

ffects of M cw 

on the energy efficiency of chillers and pumps also

akes determining an optimum M cw 

necessary [4] . 

The chiller plant system is typically controlled by a hierarchical

ontrol structure that combines local and supervisory controllers.

he local controller maintains the basic setting of each system

omponent with simple control techniques, such as proportional-

ntegral-derivative (PID) control. The supervisory controller is a

igher-level controller that releases commands, such as tempera-

ure or mass flow rate setpoints, to local controllers [5] . The set

oints of the local controllers can be kept constant or adjusted to

ccomplish some aim. For example, when the aim is to maximise

ystem energy efficiency under time-varying building cooling loads

nd weather conditions, optimum settings are calculated using so-

histicated optimisation algorithms; this is the so-called supervi-

ory optimisation control. 

Among different kinds of supervisory optimisation control

ethods, the model-based method is one of the most frequently

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.06.016&domain=pdf
mailto:lawang9-c@my.cityu.edu.hk
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Nomenclature 

C p Specific heat of water cycled through the chiller 

plant (kJ/kg ·K) 

g The gravity of earth (m/s 2 ) 

h Head of condenser water pumps (m) 

η The efficiency of condenser water pumps (%) 

R p The control signal to the condenser water pumps (–

) 

T cws The temperature of condenser water supplied by 

the cooling tower to the chiller ( °C) 

T cwr The temperature of condenser water returning from 

the chiller to the cooling tower ( °C) 

T chs The temperature of chilled water supplied by the 

chiller to the air handling unit ( °C) 

T chr The temperature of chilled water returned from the 

air handling unit to the chiller ( °C) 

T wb Ambient wet bulb temperature ( °C) 

M cw 

The mass flow rate of the condenser water (Kg/s) 

M ch The mass flow rate of the chilled water (Kg/s) 

M a The mass flow rate of air in the cooling tower fan 

(Kg/s) 

h a, o Enthalpy of the air outlet in the cooling tower fan 

(kJ/Kg) 

h a, i Enthalpy of the air inlet in the cooling tower fan 

(kJ/Kg) 
˙ P The system power (W) 
˙ P st The system power of none-predictive (static) opti- 

misation (W) 
˙ P lb Lower bound of system power (W) 
˙ P ch Chiller power (W) 
˙ P p Condenser water pump power (W) 

P ct Cooling tower power (W) 
˙ Q t Cooling load at current time t (W) 
˙ Q t+1 | t Future cooling load at time step t + 1, which is fore- 

casted at current time t (W) 
˙ P (t) System power at the current time t (W) 
˙ P ( t + 1 ) System power at future time step t + 1 (W) 

T wb, t Ambient wet bulb temperature at the current time 

t ( °C) 

T wb,t+1 | t Future ambient wet bulb temperature at time step 

t + 1, which is forecasted at current time t ( °C) 

W re Redundant energy consumption (kWh) 

discussed in terms of optimising the energy efficiency of chiller

plants [6] . This control method mainly comprises two parts: a

mathematical model that reflects the behaviour of a chiller plant,

or the so-called energy model, and an optimisation algorithm

that calculates the optimum settings for controlled variables under

time-dependent conditions. 

In Chapter 42 of ASHRAE Handbook – HVAC Applications [7] ,

the supervisory optimisation control is categorised into two types.

The first is static optimisation, which addresses the optimisation

problem at a given instant time. Typically, optimum variables are

calculated according to instant building cooling and weather con-

ditions at the current time. The second is dynamic optimisation,

which highlights the control of a building system over time. It con-

siders effects of future conditions, such as weather or utility prices,

on the present optimal control decisions. The main difference be-

tween static and dynamic optimisation is the consideration of fu-

ture conditions [8] . To stress the feature of whether allowing for

future conditions or not, static optimisation is renamed as none-

predictive optimisation and the dynamic optimisation is renamed

as predictive optimisation in this paper. 
Researchers have applied the idea of predictive optimisation

ontrol to different types of building systems [9] , such as en-

rgy minimisation through thermal storage system management

10] and the determination of an optimal start time for heating

[11] . Although studies have stressed the application of predictive

ptimisation to thermal storage systems, it has been less consid-

red in the overall optimisation control of normal chiller plants

ithout thermal storage, where none-predictive optimisation is of-

en discussed. Given the assumption that building cooling loads

nd weather conditions remain constant until the next time step,

he potential of energy efficiency has not been fully realised in

one-predictive optimisation control [12] . To fill the gap in re-

earch on applying predictive optimisation to the overall control of

hiller plants without thermal storage, this study considers cooling

oad forecasting-based predictive optimisation for chiller plants. By

uccessfully integrating accurate dynamic cooling load forecasting

nto on-line supervisory optimisation control of chiller plants, the

nergy efficiency potential can be identified and further realised to

ave more energy than with commonly used none-predictive opti-

isation. 

This paper is structured as follows. Section 2 defines and

nalyses the problem of the redundant energy consumption of

one-predictive optimisation and outlines the research objec-

ives. Section 3 reviews relevant studies on supervisory optimisa-

ion control. Section 4 thoroughly describes the proposed frame-

ork of cooling load forecasting-based predictive optimisation.

ection 5 verifies the proposed cooling load forecasting-based pre-

ictive optimisation with a case study and comparison groups.

oncluding remarks are presented in Section 6 . 

. Statement on the redundant energy consumption problem

Fig. 1 illustrates a theoretical none-predictive optimisation pro-

ess. In meeting the needs of time-varying cooling loads, the co-

fficient of performance (COP) of a chiller plant system may vary

rom around 3 (the worst scenario) to 7 (the best scenario) due to

ifferent settings of system parameters, such as T cws , chilled wa-

er supplying temperature ( T chs ), and M cw 

[13] . The corresponding

ystem power for each load scenario can be restrained within the

pper and lower bounds as described in the grey coloured area in

ig. 1 . Assuming the chiller plant system can react instantly, the

ystem power can be minimised by carrying out optimisation at

ach time step: t 0, t 1, t 2, t 3, t 4 and so on. As the optimum setting

asts until the optimisation at the next time step is carried out,

he system power may not remain at the minimum level during

he time interval, say between t 4 and t 5, due to the variation in

uilding cooling load during the time interval. The fluctuation of

he system power from the lower bound at the current time step

o the upper bound at the next time step is a conceptual schematic

iagram. It outlines an extreme condition that the system power

ill go to the upper bound until the optimisation at the next time

tep is carried out. However, in real cases, the system power does

ot necessarily to up to the upper bound, and it might go up the

/4, 1/3, or half point between the upper and lower bound at the

ext time step according to the cooling load and weather condi-

ions. 

Simply put, Fig. 1 describes system power oscillation as a ‘sys-

em power of none-predictive optimisation’. Compared with the

ystem power of ideal optimisation, which closely approaches the

ower bound of the system power, there is a redundant energy

onsumption during each time interval for the system power of the

one-predictive optimisation. 

The redundant energy consumption during each time interval

an be defined as an integration of power difference between the

ystem power of optimisation ( ̇ P ) and the lower bound ( ̇ P lb ), as

hown in Eq. (1) . For chiller plants that have been working for



Fig. 1. Analysis of system power profile of different optimisation strategies.
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ears, the summation of redundant energy consumptions can be

uge; it can be reduced by optimising the system with a higher

requency, namely a very short time interval. However, a highly

requent system resetting is less practical and may be harmful to

ystem maintenance. Consequently, it is necessary to put forward

n alternative solution to deal with the redundant energy con-

umption problem. Determining how the redundant energy con-

umption can be reduced as much as possible without shorten-

ng the optimisation time interval is the main problem discussed

n this paper. This problem has been rarely discussed in previous

tudies, neither proposed nor settled. To identify this problem and

ropose a solution, the research objectives of this paper can be

ummarised as follows: 

(1) Identify the problem of redundant energy consumptions via

a case study;

(2) Obtain a general pattern of the redundant energy consump-

tion behaviour; and

(3) Verify that the proposed optimisation method – cooling load

forecasting-based predictive optimisation – can reduce the

redundant energy consumptions without shortening the op-

timisation time interval.

W re = ∫ ( ̇ P − ˙ P lb ) dt (1)

. Previous work on supervisory optimisation control of chiller

lants

Supervisory optimisation control of chiller plants, which has

een extensively studied, can be reviewed from a perspective that

hether future cooling load and weather conditions are consid-

red; namely, a none-predictive optimisation control that consid-

rs only instant or instant and historic, and predictive optimisation

ontrol that allows for the future conditions into consideration. 

None-predictive supervisory optimisation control methods have

een studied by many researchers, by which the energy saving po-

ential of supervisory optimisation control has been demonstrated.

or example, with the activator of current building cooling loads,

he genetic algorithm (GA) was adopted for the optimal control of

n absorption chiller. Significant energy savings were achieved by

ptimising the mass flow rates of the condenser water and chilled

ater [14] . A model-based optimisation strategy for a condenser

ater loop was developed with a modified GA, showing that nearly

0% of the energy could be saved by optimising M cw 

and the speed

f the cooling tower fan during high load periods [15] . Tempera-

ure set points of the chilled and cooling water supplies were op-

imised with a hybrid optimisation algorithm that combined the
article swarm optimisation and Hooke-Jeeves algorithms, lead-

ng to 9.4% and 11.1% reductions in energy use in summer and

inter, respectively [16] . A hybrid optimisation algorithm combin-

ng sequential quadratic programming with a modified branch and

ound method was developed and produced a power savings of

bout 16.7% [17] . These studies not only demonstrate the benefits

f supervisory optimisation control in reducing energy consump-

ion, but also present the diversity in selecting optimised variables

s well as optimisation algorithms. 

Besides optimising the variables – M cw 

,T chs ,T cws , which have

een mentioned in above literature, many other variables are also

ncluded in optimisation, such as the sequencing of chilled water

umps and chillers [18, 19] , the pressure and temperature set point

f supplying air to the building zone [20] . This inspires this paper

o include more than one variable in optimising the chiller plant

ystem. Evolutionary algorithms are popular in supervisory opti-

isation since their advantages in finding out the global extrema

ther than local extrema, which stimulates this paper in choosing

A as the optimisation algorithm. 

Despite the great success of none-predictive supervisory opti-

isation control in reducing energy consumption, redundant en-

rgy consumptions are inevitable according to the theoretical anal-

sis presented in Section 2 . Predictive supervisory optimisation

ontrol can be an alternative solution to avoid redundant energy

onsumptions. Predictive supervisory control is not a brand-new

oncept in building automation and HVAC control area; it has been

pplied from ‘a whole building level’, ‘a zone level’ to ‘a cooling

ystem and component level’ with a variable of objective functions

21] .

On a whole building level, shading devices, the mechanical ven-

ilation and on/off of air-conditioning systems, etc. are considered

o be optimised with a predictive control. For example, a predic-

ive control manner for hybrid night ventilation to precool ther-

ally massive buildings and save energy is proposed according to

he weather forecast [22] . 

On a zone level, the setpoint of supplying air temperature to

he zone is often optimised with the aim of both saving energy

nd thermal comfort enhancement. For example, temperature set-

oint of supplying air into the room is optimised with the cost

unction of minimising fan coil energy as well as ensuring ther-

al comfort [23] . Room temperature set points and on/off deci-

ions of the HVAC units were optimised based on a prediction of

ndoor thermal comfort votes [24] . Room and hot/cold deck tem-

erature setpoints were optimised by dynamic estimates, and zone

oads and weather conditions were predicted while considering the

onstraints of providing thermal comfort [25] . The indoor heating
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setpoint is optimised to minimise energy consumption with 1 h

and 24 h ahead data-driven indoor temperature and cooling en-

ergy consumption prediction [26] . 

On the cooling system and component level, most predictive

control applications lie in the optimisation for charging periods of

the thermal storage component of a cooling system [27] . For ex-

ample, an optimal thermal storage charging strategy was derived

using a predictive optimal controller at discrete time steps over a

fixed look-ahead time window [10] . The potential of building ther-

mal storage inventory, especially the combined use of active and

passive inventory, to reduce electrical utility costs using common

time-of-use rate differentials was investigated [28] . A model-based

multi-variable controller was developed to optimise the charging

schedule of a building thermal storage system with weather con-

dition and building load predictions [29] . A new technique for solv-

ing a dynamic optimal chiller loading problem was presented for a

cooling system with multiple chillers and a thermal storage tank.

The load on each chiller and the charging period of the thermal en-

ergy storage system were optimised according to the total cooling

load at each time step [8] . A model predictive control-based super-

visory controller was designed to shift the peak load of a house to

off-peak hours by optimising the buffer tank temperature setpoints

[30] .

Seldom effort s have been made in applying predictive optimisa-

tion control in a chiller plant without thermal storage; except for

a study presented by Huang et al. [31] , in which a model predic-

tive control scheme was applied to optimise the condenser water

setpoint. Targeting at legacy chiller plant system, how the optimi-

sation starting points and frequency could be adjusted to produce

faster computational speeds was also examined [31] . Huang et al.

‘s work has shown the predictive optimisation control lead to en-

ergy reduction in legacy chiller plant system, and it indicates that

further improvements are possible when more variables are opti-

mised simultaneously. 
Fig. 2. Diagram of cooling load forecast
Numerous studies have demonstrated the energy reduction po-

ential of supervisory optimisation control compared to traditional

ontrol strategies. With all kinds of controlled variables and op-

imisation algorithms, none-predictive supervisory control meth-

ds have been extensively studied. Predictive optimisation con-

rol methods have been studied in building automation from a

hole building level to cooling system and component level, how-

ver, few attempts have been made to apply the predictive opti-

isation to chiller plants without thermal storage components. In

he cooling system and component level, the predictive optimisa-

ion has been mainly studied in terms of optimising the charging

eriod of thermal storage components and the air side of HVAC

ystems. What’s more, the benefits of predictive optimisation of

hiller plants have rarely been evaluated contrasting with a none-

redictive optimisation control. These research gaps motivated this

aper in proposing a framework of applying predictive optimisa-

ion control into chiller plants without thermal storage via opti-

ising multiple control variables. 

. The framework of cooling load forecasting-based predictive

ptimisation

Computer-based simulation by MATLAB is adopted in this study,

hich contains three main parts as shown in Fig. 2 , namely, the

ynamic cooling load forecasting model, the supervisory optimisa-

ion control model and the ‘real operated’ chiller plant. 

.1. Dynamic cooling load forecasting model 

The dynamic cooling load forecasting model is a predefined

odel that uses monitored historical building cooling loads, build-

ng information and ambient weather to forecast one-time-step-

head building cooling loads [32] . 
ing-based predictive optimisation.



Table 1

Description of cooling load forecasting models.

Name of forecasting models Brief description

Unbiased Random Walk model With an assumption that the load at the next time step is of equal probability either greater or less than the present

load, the future cooling load is predicted to be equal to the present one, namely ˙ Q t+1 | t = 

˙ Q t . This is a simple model 

that provides a base case against with more sophisticated forecasting models can be tested [10] .

Artificial neural network (ANN) model With 4 previous time step inputs, including cooling loads (kW), the ambient dry bulb temperature ( °C), solar

horizontal radiation(W/m 

2 ) and room temperature setpoint ( °C), a 3-layer ANN model is developed to forecast one

time step ahead building cooling load(kW) [33] .

Ensemble Approach model Two sub-forecasting models are firstly built up with historic building cooling loads and the system conditions

respectively; then, the forecasting results are combined by ensemble approach to draw the final forecasts [32] .

Assumed ideal forecasting The forecasted one-hour-ahead cooling load is assumed to be perfectly (100%) accurate. It reveals the maximum

energy reduction potential that can be obtained by the proposed optimisation strategy.
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Specifically, four forecasting models will be applied to the case

tudy to verify the framework and evaluate the effect of the fore-

asting accuracy on redundant energy consumption reduction, as

ummarised in Table 1 . 

.2. Supervisory optimisation control 

The supervisory optimisation control is made up of an en-

rgy model and an optimisation algorithm. The energy model is

escribed by a grey-box method, in which the chiller and cool-

ng tower are modelled by an ANN algorithm as black-box mod-

lling, while the pump and interaction between the components

f the chiller plant are modelled by physics-based equations,

amely white-box modelling. This grey-box method is adopted

ince white-box models are complicated by either look-up tables

r iterations for chillers and cooling towers, while straightforward

or the pump. 

Using data-driven (black-box) model to simulate the chiller and

ooling tower can simplified and speed up the modelling process

nd makes it convenient for real-time optimisation. For example,

he white-box model of TRNSYS (Type 6 6 6) for modelling a chiller

eeds pre-defined look-up tables to determine the performance. To

et up the model, the user must provide two text-based data files

n the standard TRNSYS data file format. And it does not consider

he effect of T cwr on chillers’ COP, which has been proved to affect

he efficiency of a chiller plant [4] . The procedure in manipulating

he chiller’s performance data can be simplified by simulating the
Fig. 3. Diagram of the energy m
hiller by a data-driven (black-box) model, by which the procedure

n developing the look up table is not necessary. And the effect of

 cwr can be included easily in the data-driven (black-box) model by

ncluding it as input to improve the model’s accuracy. 

The number of transfer unit (NTU) method, which contains

ssumptions and iterations, is one of the most frequently used

hysics-based models for cooling towers. The computational cost

nd the number of iterations associated with physics-based mod-

ls is a challenge for real-time optimisation, which can be avoided

y training data-driven models. 

The combination of the black-box modelling, and white-box

odelling generates the grey-box modelling of the whole chiller

lant, as illustrated in Fig. 3 . The blocks and arrows coloured in

lue indicate the condenser water loop interaction between com-

onents in the chiller plant; the grey shadowed blocks and arrows

how the modelling inputs and outputs of each component. The

ariables coloured in red are controlled variables which can be

ept at their set points by local controllers. And their set points

re derived by supervisory optimisation at each time step. 

The energy model has been proposed by the authors’ previous

ublication of [34] , in which a chiller plant with one chiller, one

ondenser pump and one cooling tower were established and ver-

fied. As shown in Figs. 4 and 5 , a 3-layer ANN(s) are set up to

odel the chiller and cooling tower; since the output of an ANN

odel with single hidden layer is in fact a superposition of numer-

us weighted sigmoid functions which has been proven to be uni-

ersal function approximator [35] . The number of hidden neurons
odel for a chiller plant.



Fig. 4. Architecture of the ANN for modeling chillers.

Fig. 5. Architecture of the ANN for modelling cooling towers.
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P  
is decided by a rule-of-thumb developed by Ward System Group

[36] . T chs , the temperature of chilled water returning to chillers

( T chr ), T cws ,M cw 

are selected as the inputs of the ANN model for the

chiller, which are the main parameters that affect the chiller effi-

ciency. The ambient wet bulb temperature ( T wb ), T cws , the tempera-

ture of condenser water returning to the cooling tower ( T cwr ) and

M cw 

, which affect the cooling tower efficiency, are the inputs of the

ANN model for the cooling tower. Among the variables that affect

both the efficiency of chillers and cooling towers, T chs , T cws , and

M cw 

are the variables that can be controlled by local controllers.

T chr is decided by T chs , M ch and instant cooling load, as shown in

Eq. (2) ; T cwr is decided by both instant cooling load and the heat

released by the chiller, as shown in Eq. (3) . The chilled water mass

flow rate ( M ch ) is considered as constant since the chilled water

pumps are not included in the chiller plant (condenser water loop)

system. The ANN(s) of the chiller and cooling tower of the case

study are trained according to in-situ tested data and data gener-

ated by TRNSYS simulation respectively; details can be found out
Table 2

Optimisation strategies description.

Fitness function

None-predictive optimisation

(baseline)
min

T chs, T cws, Mcw
{ ̇ P (t) = 

˙ P ch (t) + 

˙ P p

Cooling load

forecasting-based

predictive optimisation
min

T chs, T cws, Mcw
{ ̇ P ( t + 1 ) + 

˙ P (

= 

˙ P ch ( t + 1 ) + 

˙ P p( t + 1 ) + 

˙ P ct

+ ̇

 P ct (t ) + 

˙ P ct (t ) }
n [34] . 

˙ 
 = M ch ∗C p ∗( T chs − T chr ) (2)

( T cwr − T cws ) ∗M cw 

∗C p = 

˙ Q + 

˙ P ch (3)

Simply put, the power of the chiller and the cooling tower can

e summarised as the following Eqs. (4a) and (4b) . 

˙ 
 ch = f ( T chs , T chr , T cws , M cw 

) (4a)

˙ 
 ct = f ( T wb , T cws , T cwr , M cw 

) (4b)

The power of the condenser water pump is calculated by the

ollowing equations. The pumps are usually operated with a vari-

ble speed drive that ensures the mass flow rate varies according

o the load. The mass flow rate of the variable speed water pump

s decided by both a rated flow rate and a control signal R p ; the

ump power is in direct proportion to the water mass flow rates

nd heads and inversely proportional to the efficiency η, as shown

n Eq. (4c) . The set points of T chs , T cws and M cw 

are the optimised

ariables. 

 cw 

= R p ∗ M cw,rated 

˙ 
 p = ( M cw 

∗ g ∗ h ) /η
(4c)

The GA [37] , which belongs to the large class of evolutionary

lgorithms, is selected as the optimisation algorithm. Inspired by

he biological process of evolution, the evolutionary algorithm out-

erforms conventional gradient-based algorithms in finding global

xtrema rather than local extrema in a bounded parametric search

pace. However, it also takes more time than gradient-based meth-

ds when the searching space is large. The GA selected in this pa-

er is one choice out of a bunch of evolutionary algorithms; other

volutionary algorithms, such as particle swarm optimisation can

lso be adopted in the supervisory optimisation control. 

As for the fitness function, the main differences between the

roposed cooling load forecasting-based predictive optimisation

ith the conventional none-predictive optimisation lie in the fit-

ess function and the activators, as shown in Table 2 . In the con-

entional none-predictive optimisation, the fitness function serves

o determine the optimum variables that minimise the current in-

tant total power according to the current instant cooling load and

et bulb temperature, as shown in Eq. (5) . However, in the pro-

osed cooling load forecasting-based predictive optimisation, the

orecasted cooling load and ambient wet bulb temperature of the

ext time step 

˙ Q t+1 | t , T wb,t+1 | t are included as activators to deter-

ine the optimum variables that minimise the summation of the

urrent power ˙ P (t) and the future power on the next time step
˙ 
 (t+ 1), as shown in Eq. (6) . Since the building cooling load is one
Activator

(t) + 

˙ P ct(t) } (5)

˙ Q t , T wb, t 

t) 

( t + 1 ) + 

˙ P ch (t) 

(6)

˙ Q t and T wb, t for ˙ P (t) ; ˙ Q t+1 | t and 

T wb,t+1 | t for ˙ P ( t + 1 ) 



Fig. 6. Profile of cooling loads and wet bulb temperatures for the case study.

Fig. 7. Profile of hourly forecasted cooling loads with a look-ahead time of one hour.
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f the most significant factors affecting the COP of a cooling sys-

em [38] and forecasting the ambient wet bulb temperature is be-

ond the scope of this paper, the future cooling load is addressed,

nd T wb,t+1 | t is assumed to be equal to T wb, t . 

.3. The ‘real operated’ chiller plant system 

Allowing for the difficulties in applying the supervisory control

o legacy chiller plants by experiments, a theoretical chiller plant

ystem that receives supervisory control signals is adopted to rep-

esent a ‘real operated’ chiller plant system. 

It can be modelled using simulation software, such as the Tran-

ient System Simulation Tool (TRNSYS), in which each component

f the chiller plant is modelled by detailed physics-based equations

39] . For simplification, it can also be represented by the energy

odel.

In this paper, the ‘real operated’ chiller plant system is repre-

ented by the energy model introduced in Section 4.2 for simplic-

ty. 

. Case study

In this section, the problem of redundant energy consumption

s identified. Analysing the profile of redundant energy consump-

ions clarifies the general behaviour pattern of the redundant en-

rgy consumptions. The proposed optimisation method – cooling

oad forecasting-based predictive optimisation – can reduce the re-

undant energy consumptions without shortening the optimisation

ime interval; the more accurate the cooling load forecasts are, the

ore redundant energy consumption can be reduced. 

.1. Case description 

The data of building cooling loads and weather conditions of

his case study are derived from a real office building located in
ong Kong. Hourly cooling loads and ambient wet bulb tempera-

ures were monitored and recorded during field research. Four typ-

cal working days (approximately from 27 to 30 October 2009) are

elected in this paper. Fig. 6 shows the variation in building cooling

oads and ambient wet bulb temperatures. 

With the selected cooling load forecasting model introduced in

able 1 , one-hour-ahead building cooling loads can be forecasted

ourly, as shown in Fig. 7 . 

The coefficient of determination is taken to evaluate the accu-

acy of the dynamic forecasted load, as shown in Eq. (7) . The R 2 of

he hourly dynamic forecasted load is 0.8249 by the Random Walk

odel, 0.8989 by the ANN model, 0.9605 by the Ensemble Ap-

roach model, as shown in Fig. 7 . 

The coefficient of determination is calculated as 

 

2 = 1 −
∑ 

(
y i − ˆ y 

)2

∑ 

( y i − ȳ ) 
2

(7) 

here y i is the measured value, ˆ y is the modelled output and 

¯
 = 

1

n 

n∑

i =1

y i 

.2. Lower bound of the system power identification 

To identify the redundant energy consumptions, ideally, the

ower bound of the system power should first be determined using

he Monte Carlo method. However, due to the heavy computational

ost of Monte Carlo simulation, the GA is adopted to determine

he lower bound instead of Monte Carlo simulation. To ensure the

uccess of the algorithm, it is verified by the Monte Carlo method

n the first place. After that, the lower bound of system power

s calculated through frequent instant optimisations of the energy

odel by GA. The energy model has been described in Section 4.2 .



Table 3

Clarification of operation strategies.

Name Description Comments

Opt. every 5 min None-predictive optimisation with fitness function (5) . The

optimisation is carried out every 5 min.

It is regarded as an ideal optimisation that approximates the lower

bound of the system power.

Hourly Opt. A None-predictive optimisation with fitness function (5) . The

optimisation is carried out every hour. It is equally to a

predictive optimisation with a Random Walk forecasting model.

It represents the commonly used none-predictive optimisation

strategy.

Hourly Opt. B Predictive optimisation with fitness function (6) . The optimisation

is carried out every hour. The forecasted one-hour-ahead cooling

load is assumed to be perfectly (100%) accurate.

It reveals the maximum energy reduction potential that can be

obtained by the proposed predictive optimisation strategy.

Hourly Opt. C Predictive optimisation with fitness function (6) . The optimisation

is carried out every hour. The forecasted one-hour-ahead cooling

loads are derived by the Ensemble Approach model (see Table 1 ),

which are of practical achievable accuracy (see Fig. 7 ).

It is the energy reduction potential that can be practically obtained

by the proposed predictive optimisation strategy.

Fig. 8. Verification of GA optimisation by Monte Carlo method.

Fig. 9. Profile of system powers calculated by different operation strategies.
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5.2.1. Verifying genetic algorithm by Monte Carlo method 

The verification is carried out based on an hourly cooling load

and T wb . With each group of cooling load and T wb , two methods

are adopted to determine the minimum system power: 

(1) Optimise the system hourly by the none-predictive optimi-

sation (denoted as Hourly Opt. A, as described in Table 3 in

Section 5.3.1 ) with the GA and

(2) Determine the power boundary at each hour using the

Monte Carlo method; the controlled variables are randomly

initialized 10,0 0 0 times in their domain of variation.

In this case study, the controlled variables are T chs , T cws and

M cw 

. 

According to the available performance data pool, T chs varies

from 5.5 °C to 7.5 °C; M cw 

varies from 95.5 to 100 Kg/s and T cws 

varies from ( T wb + 1) °C to 32 °C. 1 °C is taken as the minimum

approach between T cws and T [40] . 
wb 
As shown in Fig. 8 , the lower bounds of the Monte Carlo simu-

ation are plotted out at each hour, with 97% and 99.6% of the sam-

les covered, respectively. The hourly power optimised by Hourly

pt. A is located between the two lower bounds provided by the

onte Carlo simulations. This indicates that the GA successfully

etermines the minimum system power. 

.2.2. Calculating the lower bound of system power 

Instead of Monte Carlo method, the GA has been adopted to

nd out the lowest system power since it has been verified in

ection 5.2.1 to be capable of finding out the lowest system power.

Theoretically, the lower bound of the system power should

e a curve on which each point represents the lowest power

hat the system can be obtained under time-varying cooling load

rofiles and weather conditions. Given the time-varying cooling

oad profile and weather conditions, which are introduced in

ection 5.1 , the lowest power can be calculated through instant



Fig. 10. Profile of power difference between the ‘Hourly Opt. A’ and ‘Opt. every 5 minutes’ operation strategies.

Fig. 11. Profile of controlled variables derived from different operation strategies.
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ptimisation by GA algorithm with a high frequency, say every

 min, to closely approaching to the lowest system power pro-

le. Five minutes time interval is chosen since the time-varying

uilding cooling load profile and weather conditions are assumed

o remain the same during that period according to engineering

xperience. 

The calculations are carried out with the GA on the none-

redictive optimisation fitness function, Eq. (5) , the energy model

ntroduced in Section 4.2 , the controlled variables of T chs that

aries from 5.5 °C to 7.5 °C, M cw 

that varies from 95.5 to 100 Kg/s

nd T cws that varies from ( T wb + 1) °C to 32 °C. The activators –

nstant cooling loads and weather data of every 5 min, are drawn
rom interpolations of the known hourly cooling load and weather

ata introduced in Section 5.1 . 

All in all, the power profile calculated through a frequent (every

 min) none-predictive optimisation of the energy model is used to

pproximate the lower bound of the system power. 

It should be noted that the very frequent optimisation (with

 min time interval) is only adopted to approximate the lower

ound of system power. In the optimisation process of the case

tudy, the time interval of one hour is adopted, which is a reason-

ble and achievable time interval in the practical optimisation of a

hiller plant allowing for the response time of system components

41] .



Fig. 12. Comparison of system power and corresponding operated condenser mass flow rate.
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5.3. Redundant energy consumption identification 

This section identifies the problem of redundant energy con-

sumption of a chiller plant system. In Section 5.3.1 , different op-

eration strategies are designed to represent none-predictive and
redictive control with a typical cooling load forecasting model –

he Ensemble Approach model (described in Table 1 ). It is selected

ue to its high accuracy ( R 2 = 0.9605) among the four forecasting

odels in Table 1 . General patterns of the redundant energy con-

umption behaviour are obtained, and the proposed cooling load



Fig. 13. Comparison of redundant energy consumptions.
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orecasting-based predictive optimisation is verified to be capable

f reducing redundant energy consumption without shortening the

ptimisation time interval. Section 5.3.2 analyses the effect of fore-

asting accuracy on the performance of predictive optimisation. 

.3.1. Redundant energy consumption depiction with a typical cooling

oad forecasting model 

As summarised in Table 3 , Hourly Opt. A, the none-predictive

ptimisation method currently used in overall chiller plant optimi-

ation, is the baseline operation strategy adopted for comparison.

ourly Opt. B and Hourly Opt. C are the proposed predictive op-

imisation methods that integrate one-hour-ahead dynamic cool-

ng load forecasting. Hourly Opt. B and Hourly Opt. C differ in that

he former takes the real cooling load of the next hour as a fore-

ast (assumed ideal forecasting), while the one-hour-ahead load

orecasts of the latter are calculated from the available model—

he Ensemble Approach model. The results of Hourly Opt. B reveal

he maximum energy reduction potential that can be obtained by

he proposed predictive optimisation method. The results of Hourly

pt. C reveal the energy reduction potential that can be practically

btained by the proposed optimisation method. 

As shown in Fig. 9 , system powers of different operation strate-

ies overlap most of the time. However, when the cooling load

limbs rapidly, differences in system powers of the different strate-

ies become visible. System powers of the Hourly Opt. A are higher

han those of the other operations. The differences are obvious

uring 8 to 9 o’clock on 27th, 28th, 29th, and 30th October 2009,

s shown in Fig. 10 . During these periods, the optimum M cw 

(s)

alues derived from the various operation strategies are quite dif-

erent from the other periods, as shown in Fig. 11 (b). The opti-

um T chs and T cws values derived from different operation strate-

ies overlap almost all the time, as shown in Fig. 11 (a). 

To further compare these operation strategies in detail, the re-

ults are truncated with plots of typical hours. As shown in Fig. 12 ,

ower values of Hourly Opt. B and Hourly Opt. C are approximately

he same as those of the lower bound. Nevertheless, the power of

ourly Opt. A is higher than that of the lower bound. The triangle

ound by the solid red line with solid circles and the overlapped

ine is the redundant energy consumption. Similar patterns emerge

uring four periods that are included in Fig. 12 . Above results indi-

ate the existence of redundant energy consumption when none-

redictive control strategy – Hourly Opt. A is adopted. And the re-

undant energy consumption can be reduced a lot by predictive

ptimisation control strategies – Hourly Opt. B and Hourly Opt. C.

he direct reasons can be found out by observing the variation of

he M cw 

during the optimisation process. It is easy to recognise

hat during these periods, cooling loads climb rapidly and corre-
pondingly the optimum M cw 

derived from the ideal optimisation

Opt. every 5 min) varies a lot. Compared with the none-predictive

ontrol strategy – Hourly Opt. A, the optimum M cw 

(s)derived from

he predictive optimisation control – Hourly Opt. B and C are more

djacent to those of the ideal optimisation. The optimised M cw 

of

ourly Opt. A corresponds to only current cooling load, while the

ptimised M cw 

of Hourly Opt. B and C corresponds to both cur-

ent and future cooling loads. Since the optimum M cw 

derived at

he current time step actually controls the system in the coming

ime interval; the optimum M cw 

derived by predictive optimisa-

ion control which includes the future cooling load into considera-

ion would be more appropriate, especially when the cooling load

aries rapidly, say with a steep growth trend. 

The redundant energy consumptions are calculated using

q. (1) . As shown in Fig. 13 , compared with that of Hourly Opt.

, the redundant energy consumption of Hourly Opt. C decreases

s much as 86.11%. The performance of Hourly Opt. C is similar to

hat of Hourly Opt. B. With a practically achievable dynamic cool-

ng load forecasting accuracy, the proposed optimisation strategy

an be adopted to achieve satisfactory performances. 

.3.2. Effect of cooling load forecast accuracy 

Accurate short-term cooling load forecasts are fundamental to

he success of the proposed predictive control. Fig. 14 plots the

orecasting error distribution of the first three models that have

een introduced in Table 1 , Section 4.1 . 

From the error scatter plots –Fig. 14 (b), (d), (f), forecasted loads

f Random Walk model deviate a lot from the real ones; how-

ver, most of the forecasted loads of ANN model and Ensemble

pproach model are in accordance with the real ones. 

From the error distribution plots—Fig. 14 (a), (c), (e), 95% fore-

asting errors of Random Walk model cover the largest range, from

302.6 kW to 301.4 kW, while Ensemble Approach model the least,

rom −125.7 kW to 155.3 kW. Considering both errors scatter and

he error distribution plots, the forecasting errors of Ensemble Ap-

roach are small and happen mostly when the real cooling loads

re high; the forecasting errors of ANN model are medium, and

ppear averagely at low load or high load scenarios; the forecast-

ng errors of Random Walk model are huge, and occur at all load

cenarios. 

With forecasts of the 3 models as well as the assumed

deal forecasts (100% accurate and R 2 = 1), the redundant energy

onsumption is calculated, and results are plotted in Fig. 15 .

he redundant energy consumption decreased a lot with the im-

rovement of forecasting accuracy. Taking the redundant energy

onsumption of Random Walk model (forecasting R 2 = 0.8249) as

00%, nearly 75% of it can be reduced when the forecasting R 2 in-

reases to 0.8989; about 85% when the forecasting R 2 increases to

.9605; 87% when the forecasting R 2 increased to 1. 

.4. Discussion 

According to the results presented in Section 5.2 , redundant

nergy consumptions exist in the none-predictive optimisation

Hourly Opt. A), especially when building cooling load climbs

apidly. In the case studied in this paper, the deviation from op-

imum M cw 

of ideal optimisation (Opt. every 5 min) results in the

edundant energy consumptions. M cw 

matters more than T chs and

 cws might because an optimum M cw 

is more sensitive than T chs to

he variation in building cooling loads, while the optimum T cws is

ore related to T wb . 

Although redundant energy consumptions exist during the

one-predictive optimisation (Hourly Opt. A), the absolute value

s small in this case: about 14 kWh of electric power for the to-

al 4 days’ operation. It is highly possible because the M cw 

, which

s sensitive to the variation of building cooling loads, varies on a



Fig. 14. Forecasting error of different models.
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small scale, from 95.5 to 100 Kg/s, which is equal to that the M cw 

is varying from 95.5% to 100% of its rated mass flow rate. This is a

very small range compared with the ranges of 40–100% [42] or 50–

100% [38] of its rated mass flow rate, which are reasonable ranges

adopted in practical operations. However, due to the limitations of

the available chiller plant system parameters, a chiller plant with

M cw 

values varying over a large range is not included in this pa-

per. As the deviation of the optimum M cw 

is the main reason for

the redundant energy consumptions, it can be reasonably inferred

that the redundant energy consumptions would be higher if the

M cw 

varies in a larger range. 

Comparing redundant energy consumptions of the none-

predictive optimisation (Hourly Opt. A) with those of the cooling
oad forecasting-based predictive optimisation (Hourly Opt. B), the

ercentage of reduction is huge. The none-predictive optimisation

ssumes that the cooling load remains constant in the coming time

nterval, while the cooling load forecasting-based predictive opti-

isation compromises the effects of sudden changes in the build-

ng cooling load. 

For a system, in which M cw 

can vary over a large range and the

ooling load varies frequently and extremely, the proposed cool-

ng load forecasting-based predictive optimisation can improve the

ystem energy efficiency a lot without shortening the operation

ime interval. 

The accuracy of forecasting model plays a key role in the per-

ormance of the predictive optimisation, the more accurate the



Fig. 15. Effect of cooling load forecast accuracy on redundant energy consumption.
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orecasts are, the more redundant energy consumption can be

educed. 

The engineering of building models and control designs in

egacy systems has been the main challenge for predictive con-

roller implementation [43] . Without shortening the operation

ime interval, the proposed cooling load forecasting based predic-

ive optimisation can be applied in practice to legacy chiller plant

ystems in combination with existing local controllers with neces-

ary information collected by sensors. With an operation time in-

erval of one hour, it is totally practical to adjust the system man-

ally with the optimised variables derived by a computer. Energy

an be saved for systems that work for years. 

. Conclusions

This paper proposes a predictive optimisation framework for

hiller plants without thermal storage systems. Advanced cool-

ng load forecasting techniques are integrated into the instant op-

imisation algorithm to reduce the redundant energy consump-

ions, which exist when none-predictive optimisation is adopted

n chiller plant optimisation with regular time intervals. The phe-

omenon of redundant energy consumption is more severe when

he building cooling load climbs rapidly. Adopting cooling load

orecasting-based predictive optimisation can reduce more than

0% of the redundant energy consumptions without shortening the

ptimisation time interval. 

The amount of redundant energy reductions is related to the

ccuracy of cooling load forecasting. The predictive optimisation

ith a high forecasting accuracy performs similarly to that of

deal forecasting accuracy. The optimum condenser mass flow rate

lays an important role in reducing redundant energy consumption

iven the variation in building cooling loads. The proposed cool-

ng load forecasting-based method makes more sense for buildings

ith cooling load profiles that vary suddenly and extremely, and

or chiller plant systems in which condenser mass flow rates can

ary over a large range. 

Compared with a control strategy without optimisation, none-

redictive optimisation of the chiller plant system can greatly im-

rove system energy efficiency, while cooling load forecasting-

ased predictive optimisation can improve it even more. It is a step

orward from none-predictive optimisation to predictive optimisa-

ion by integrating advanced cooling load forecasting techniques

nto real-time optimisation. For chiller plant systems that work for

ears, energy can be saved by adopting cooling load forecasting-

ased optimisation. 
In this paper, the application of the proposed predictive opti-

isation control framework is currently limited to a basic chiller

lant system that excludes chilled water pumps. Extending the ap-

lication of the proposed predictive optimisation control frame-

ork in the more complicated cooling systems with primary and

econdary chilled water pumps would be important future work to

he authors. 
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