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PREFACE 

The California Energy Commission’s Energy Research and Development Division supports 

energy research and development programs to spur innovation in energy efficiency, renewable 

energy and advanced clean generation, energy-related environmental protection, energy 

transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California Public 

Utilities Commission to fund public investments in research to create and advance new energy 

solutions, foster regional innovation and bring ideas from the lab to the marketplace. The 

California Energy Commission and the state’s three largest investor-owned utilities—Pacific Gas 

and Electric Company, San Diego Gas & Electric Company and Southern California Edison 

Company—were selected to administer the EPIC funds and advance novel technologies, tools, 

and strategies that provide benefits to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 

development programs that promote greater reliability, lower costs, and increase safety for the 

California electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible 

cost. 

• Supporting California’s loading order to meet energy needs first with energy 

efficiency and demand response, next with renewable energy (distributed 

generation and utility scale), and finally with clean, conventional electricity 

supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

Optimizing Radiant Systems for Energy Efficiency and Comfort is the final report for the EPIC 

Radiant project (Contract Number: EPC-14-009) conducted by Center for the Built Environment, 

University of California, Berkeley; Taylor Engineering; New Buildings Institute; and TRC. The 

information from this project contributes to the Energy Research and Development Division’s 

EPIC Program. 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 

  

file:///C:/Users/eluk/Desktop/www.energy.ca.gov/research/
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ABSTRACT 

Radiant cooling and heating systems provide an opportunity to achieve significant energy 

savings, peak demand reduction, load shifting, and thermal comfort improvements compared 

to conventional all-air systems. As a result, application of these systems has increased in recent 

years, particularly in zero-net-energy (ZNE) and other advanced low-energy buildings. Despite 

this growth, completed installations to date have demonstrated that controls and operation of 

radiant systems can be challenging due to a lack of familiarity within the heating, ventilation, 

and air-conditioning (HVAC) design and operations professions, often involving new concepts 

(particularly related to the slow response in high thermal mass radiant systems). To achieve the 

significant reductions in building energy use proposed by California Public Utilities 

Commission’s (CPUC’s) Energy Efficiency Strategic Plan that all new non-residential buildings be 

ZNE by 2030, it is critical that new technologies that will play a major role in reaching this goal 

be applied in an effective manner. 

This final report describes the results of a comprehensive multi-faceted research project that 

was undertaken to address these needed enhancements to radiant technology by developing 

the following: (1) sizing and operation tools (currently unavailable on the market) to provide 

reliable methods to take full advantage of the radiant systems to provide improved energy 

performance while maintaining comfortable conditions, (2) energy, cost, and occupant comfort 

data to provide real world examples of energy efficient, affordable, and comfortable buildings 

using radiant systems, and (3) Title-24 and ASHRAE Standards advancements to enhance the 

building industry’s ability to achieve significant energy efficiency goals in California with 

radiant systems. The research team used a combination of full-scale fundamental laboratory 

experiments, whole-building energy simulations and simplified tool development, and detailed 

field studies and control demonstrations to assemble the new information, guidance and tools 

necessary to help the building industry achieve significant energy efficiency goals for radiant 

systems in California. 

 

Keywords: Radiant cooling and heating systems, thermally activated building systems, building 

system controls, sequences of operation, building energy use, cooling loads, thermal comfort, 

acoustic quality, design tool, building costs, codes and standards, laboratory studies, field studies, 

building performance simulation  
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EXECUTIVE SUMMARY  

Introduction  

Radiant cooling and heating systems provide an opportunity to achieve significant energy 

savings, peak demand reduction, load shifting, and thermal comfort improvements compared 

to conventional all-air systems. As a result, application of these systems has increased in recent 

years, particularly in zero-net-energy (ZNE) and other advanced low-energy buildings. Despite 

this growth, completed installations to date have demonstrated that controls and operation of 

radiant systems can be challenging due to a lack of familiarity within the heating, ventilation, 

and air-conditioning (HVAC) design and operations professions, often involving new concepts 

(particularly related to the slow response in high thermal mass slab designs). Furthermore, 

recent research from Center for the Built Environment (CBE) has shown that the fundamental 

differences between radiant and all-air systems require new and/or revised definitions and 

methods for the design, sizing, and control of successful and effective radiant cooling and 

heating systems. These differences have created a situation where radiant systems are being 

designed, installed, and operated with only limited guidance and often inappropriate tools to 

assist the designer and building operator. To achieve the significant reductions in building 

energy use proposed by California Public Utilities Commission’s (CPUC’s) Energy Efficiency 

Strategic Plan that all new non-residential buildings be ZNE by 2030, it is critical that new 

technologies that will play a major role in reaching this goal be applied in an effective manner. 

The most cost effective and energy efficient radiant systems are high thermal mass systems, in 

which plastic tubing (PEX) is embedded in a layer of concrete in the building. There are two 

types of high thermal mass radiant systems: (1) structural slabs (floor or ceiling) with 

embedded tubing for new construction (thermally activated building systems, TABS), and (2) for 

retrofit or new construction, thinner concrete floor layers (e.g., topping slabs) containing 

embedded PEX tubing that are isolated (insulated) from the building structure (embedded 

surface system, ESS). The third type is suspended metal ceiling panels with copper tubing 

attached to the top surface (radiant ceiling panel, RCP), also for retrofit or new construction. 

Figure 1 shows schematic diagrams of the three main types of radiant systems. Due to their 

high response time, TABS and ESS have proven to be the most difficult to design and control, 

particularly when designers and operators are unfamiliar with the system. In this project, we 

intended to provide improved fundamental and practical understanding and guidelines that 

will apply to all types of radiant systems, but the specific simplified design and operations tool 

that has been developed focuses on the more promising and challenging high thermal mass 

radiant systems, TABS and ESS. 
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Figure 1: Three main types of radiant systems  

 

 

In terms of cooling in California climates, radiant slab systems can take advantage of the high 

thermal mass of the slab to significantly reduce peak cooling loads and allow structural pre-

cooling strategies to be implemented during nighttime hours when both utility rates are lower 

and ‘free cooling’ can be achieved due to lower outside dry and wet-bulb temperatures. Overall, 

this can substantially reduce the required size of system components.  

Lastly, the goal of any HVAC system is to provide occupants with a healthy and comfortable 

environment. Occupant thermal comfort in buildings depends highly on air and mean radiant 

temperatures. All-air systems can directly control only air temperature, but as radiant systems 

are always coupled with a separate ventilation system, they can control both parameters. 

Moreover, these systems can compensate for the negative radiant effect – that is usually 

unaccounted for - of perimeter walls and windows (cold in winter and warm in summer). Thus, 

radiant systems have the potential to improve thermal comfort. However, there are few human 

subject-based studies that show radiant systems provide higher comfort.  

The building industry is interested, but poorly positioned to assimilate results and lessons 

learned from completed radiant projects as these projects are done by individual companies, 

and rarely are details of the design methods and control strategies made available to others. In 

addition, funding agencies other than EPIC simply do not support applied research on this scale 

within our field. For a project of this scope to be successful in assisting California and its 

ratepayers to meet their challenging sustainability goals, all of the tasks described below are 

needed to be completed simultaneously – from theoretical and laboratory research; to 

measured energy, comfort, and cost performance in a population of real buildings; and finally 

to new standards and codes.  
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Project Purpose 

The overall goal of this project was to address these needed enhancements to radiant 

technology by developing the following: (1) simplified sizing and operation tools (currently 

available methods require time and expertise) to serve as reliable methods for taking full 

advantage of high thermal mass radiant systems to provide improved energy performance 

while maintaining comfortable conditions, (2) energy and occupant satisfaction data, as well as 

cost comparison analysis, to provide real world examples of energy efficient, affordable, and 

comfortable buildings using radiant systems, and (3) Title-24 and ASHRAE Standards 

advancements to enhance the building industry’s ability to achieve significant energy efficiency 

goals in California with radiant systems. 

The objectives of this project were to:  

• Conduct fundamental full-scale laboratory experiments investigating: 

o Impact of suspended acoustical panels and air movement on chilled ceiling 

cooling performance; 

o Side-by-side comparison of zone cooling loads for radiant vs. air systems for 

different heat sources and control strategies including night cooling;  

o Impact of solar gain on radiant slab cooling capacity; and 

o Impact of zone valve type and control method on performance. 

• Provide background on the state-of-the-art with current radiant design practice by 

conducting interviews with expert designers. 

• Develop a simplified control method and a combined simplified web-based design and 

operation tool for high thermal mass radiant systems. 

• Conduct detailed field studies of three buildings with radiant slab systems, including 

demonstration and further evaluation of the new simplified control and operations tool. 

• Collect empirical evidence and document the energy performance and occupant 

perception of the indoor environment in buildings with installed radiant systems. 

• Conduct a cost comparison study between radiant and all-air buildings. 

• Propose changes to Title 24 to support improved modeling capabilities and ensure 

efficient performance of radiant systems in California. 

• Propose changes, as needed, to relevant ASHRAE Standards, Handbooks, and Guidelines 

to provide new information and guidance on radiant systems. 

Project Approach  

This comprehensive research project to address needed enhancements to radiant systems technology was 

performed by a team of organizations and experts who have collectively been at the forefront of recent 

research on radiant systems and zero-net-energy buildings, as well as highly engaged in implementing 

changes related to research findings on advanced HVAC technologies to codes and standards. CBE and 

the major subcontractors, Taylor Engineering and TRC, have a long history of collaborating together, 

including several CEC/PIER- and EPIC-sponsored field studies and a significant ASHRAE research 

project on advanced HVAC controls and comfort. Taylor Engineering, in particular, has played a major 

role for many years in successfully updating Title-24 and ASHRAE Standard 90.1.  

The technical approach for the project consisted of the following coordinated tasks. 

1. Laboratory experiments: The research team completed six full-scale laboratory 

experiments to provide a thorough understanding of the fundamental principles of 

radiant systems. The experiments were performed in two world-class test facilities: (1) 



 

4 

 

Hydronic Systems Test Chamber at Price Industries in Winnipeg, and (2) FLEXLAB at 

Lawrence Berkeley National Laboratory. The results from these experiments provided 

new knowledge on practical applications like the use of acoustical panels and the effect 

of solar radiation on floor cooling capacity, the use of lower cost two-position valves 

instead of modulating valves on control performance, as well as verifying key 

differences between radiant and all-air systems.   

2. Simplified design and operation tool: Representing one of the most significant products 

of the project, in this task the research team developed a simplified design and 

operation tool for high thermal mass radiant systems. The approach used to develop the 

tool involved performing over 2.5 million EnergyPlus simulations covering a wide range 

of radiant system designs and control strategies. A regression fit to the simulation 

results provides the basis for the simplified tool to estimate peak cooling loads and 

cooling capacity using a newly developed control strategy. The strategy is simple 

enough to be programmed in a typical Building Automation System. 

3. Field studies and control demonstrations: The research team conducted detailed field 

studies in three high thermal mass radiant buildings in California. Two of the three 

buildings were used as demonstrations of the new control strategy developed in Task 2 

above. With the assistance of building operators, the new control strategy was 

implemented into the building management system and the resulting thermal comfort 

conditions were carefully monitored over several months to assess compliance with 

thermal comfort standards.  The impact of direct solar radiation on chilled radiant floor 

performance (also tested in FLEXLAB in Task 1) was investigated in the third building. 

4. Energy analysis, occupant surveys, and cost assessment: To provide real world examples 

of radiant buildings, the research team conducted a large outreach effort to identify and 

gain access to as many radiant buildings across the United States and Canada as 

possible. Energy use data and surveys of occupant perception of the indoor environment 

were collected from these buildings and compared to data collected from a similar set 

of buildings using conventional all-air systems, as well as accepted national benchmark 

databases. This part gave a solid answer on the energy and comfort open questions. To 

assess cost considerations for radiant systems, the team performed a design stage cost 

analysis comparing a selected radiant building against an identical building with a 

traditional VAV system. 

5. Codes and standards: To leverage the impact of this research, the research team 

recommended changes to relevant codes, handbooks, guidelines and standards. The 

primary frameworks for these changes were through the ASHRAE technical, standards 

and guidelines committees and the California Building Standards. The recommendations 

were intended to support effective coverage of high thermal mass radiant systems for 

Title 24 code compliance and to document and support best practices as uncovered by 

the research activities associated with this EPIC project. 

The most significant barrier of field study and building assessment (tasks 3 and 4 above) was to 

gain access to the buildings. CBE and the entire research team (NBI, Taylor Engineering, and 

TRC) have a proven track record of successfully conducting field studies, performing 

measurements and collect energy and occupant satisfaction data in real buildings. Even so, it 

took a concentrated 2-year effort to collect the desired data from the nearly 30 radiant 

buildings included in this study. In some cases, when suitable cooperation or data were not 

made available, the research team had to drop that particular building from the dataset and 

move forward with other available buildings. 

The technical advisory committee (TAC) for this project consisted of the 46 industry partner 

firms for the Center for the Built Environment  
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(cbe.berkeley.edu/aboutus/industrypartners.htm), representing leading building industry 

professionals. CBE met with their partners twice per year, presented research results, and 

thereby received valuable input on a regular basis throughout the project. In addition, the 

research team invited CBE partners to join a more focused Radiant Systems Technical Advisory 

Group (TAG), which was made up of a subset of CBE partners who had special interest and 

experience with radiant systems. The TAG members participated in two webinars (January and 

November 2018) during which the new online simplified radiant design and operations tool was 

demonstrated and the TAG provided feedback on its usability and features. This input was 

incorporated into the tool to improve its practicality for radiant system designers. 

Project Results  

The multi-institution research team was able to successfully complete all defined tasks in the 

work plan and to achieve the major goals of the project. The new information, simplified tools, 

real-world data and applications, and recommended revisions to codes and standards produced 

by this project are now available to aid and encourage the application of successful high 

thermal mass radiant systems by the building industry. Key project results include: 

• New knowledge and improved understanding of the fundamental differences between 

high thermal mass radiant systems and conventional all-air systems, particularly related 

to cooling performance. 

• Collection and analysis of the largest known database of energy performance and 

occupant satisfaction from commercial buildings in North America using radiant cooling 

and heating systems. 

• Energy use data from 23 radiant buildings showing that almost all outperformed peer 

buildings and national benchmarks, suggesting that radiant systems are part of the 

integrated approach that can lead to low energy consumption in commercial buildings. 

• An analysis of occupant survey data from 26 radiant buildings in comparison to 34 all-

air buildings showing that radiant and all-air spaces have equal indoor environmental 

quality, including acoustic satisfaction, with a tendency towards improved temperature 

satisfaction in radiant buildings.  

• Development of new simplified control strategy and combined simplified web-based 

design and operation tool (currently available methods require time and expertise) to 

serve as reliable methods for taking full advantage of high thermal mass radiant 

systems to provide improved energy performance while maintaining comfortable 

conditions. 

• Field study demonstration of improved comfort and energy performance in two high 

thermal mass radiant buildings using the newly developed control strategy. 

• Based on laboratory and field measurements, new practical guidance on radiant system 

applications, including: (1) use of acoustical clouds to enhance acoustical quality in 

chilled radiant ceiling systems, (2) use of fan-driven air movement to increase cooling 

capacity of both radiant ceiling and floor systems, (3) design of chilled radiant floor 

systems for increased cooling capacity under direct solar radiation, and (4) new pulsed 

flow control method for high thermal mass radiant systems that uses 2-position valves 

to provide a cost effective solution with equal or improved thermal performance 

compared to a system with modulating valves. 

• Documentation of the state-of-the-art with current radiant design practice by 

conducting interviews with expert designers. 

http://www.cbe.berkeley.edu/aboutus/industrypartners.htm
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• Assessment of cost considerations for radiant systems based on a design stage cost 

analysis comparing a selected radiant building against an identical building with a 

traditional VAV system. 

• Recommended changes to Title 24 to ensure efficient performance of radiant systems in 

California, and recommended changes, as needed, to relevant ASHRAE Standards, 

Handbooks, and Guidelines to provide new information and guidance on radiant 

systems. 

With the conclusion of this project, there are several identified future research needs to 

support the continued growth of radiant systems technology. 

• Development of a comprehensive design guide with updated information, data, and 

tools that reflect the latest knowledge on high thermal mass radiant systems.  

• Investigation and development of best practice design for high thermal mass radiant 

systems in comparison to current practice that often fails to take advantage of the 

substantial energy and demand savings available with these systems. 

• Development and field study demonstration testing of advanced control strategies for 

high thermal mass radiant systems. 

• Research and development of practical design guidance for chilled radiant floor systems 

with direct solar radiation. 

Technology/Knowledge Transfer/Market Adoption (Advancing the Research 

to Market) 

The target audience for the results of this project will primarily be building design engineers, 

architects, and contractors, but will also include manufacturers, utility companies, building 

owners, and other interest parties. During the course of this 3 ½ year project, the research team 

met twice per year with the technical advisory committee, consisting of the 46 industry partner 

firms for the Center for the Built Environment 

(cbe.berkeley.edu/aboutus/industrypartners.htm) at CBE’s semi-annual Industry Advisory Board 

Conference held at the UC Berkeley campus. The CBE partners represent many of the leading 

and most influential design firms who are actively involved with high performance, low-energy 

and sustainable building design projects that often incorporate radiant systems. Through the 

CBE Conferences, the TAC receives early access to the research findings, tools, and guidelines. 

Many members of the research team have already and will continue to present project results to 

the industry at relevant conferences, including ASHRAE, ACEEE, Building Simulation 2017, 

COBEE 2018, and PLEA 2018. Recommendations for needed updates and revisions to relevant 

codes, standards, and handbooks will be communicated to the responsible organizations by 

members of the research team, who regularly attend and participate in technical committees 

and conferences related to Title-24 and ASHRAE. These recommendations are outlined in the 

Codes and Standards Report (Chapter 5). 

At ASHRAE, the research team is heavily involved with the cognizant technical committee for 

radiant systems, TC 6.5. Over the course of the project, CBE presented research updates on this 

EPIC Radiant Project to the members of TC 6.5 at the ASHRAE Conferences held twice a year. As 

part of this collaboration, CBE organized the TC 6.5 Strategic Meeting on Future Research and 

Dissemination Needs for Radiant Heating and Cooling at the ASHRAE Winter Conference in 

Orlando on January 27, 2016. The event was co-hosted by the Technical University of Denmark 

http://www.cbe.berkeley.edu/aboutus/industrypartners.htm
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(DTU), a leading research organization on radiant systems, led by Bjarne Olesen. The meeting 

featured speakers from CBE, DTU and other leading institutions and design firms involved with 

the design and research on radiant systems. CBE has also closely coordinated with and 

exchanged information with Atila Novoselac at University of Texas, Austin, related to his 

group’s ongoing ASHRAE research project (RP-1729) to investigate cooling load differences 

between radiant and all-air (convective) systems. 

Benefits to California  

The California Public Utilities Commission strategic plan requires that all new buildings and 

50% of all existing buildings are net zero energy by 2030. More than 50% of current net zero 

energy buildings use hydronic radiant systems, despite the lack of US-based design and 

operational guidance for these systems, particularly when the radiant system also serves as the 

primary cooling system for the building. Completed installations to date have demonstrated 

that controls and operation of radiant systems can be challenging due to a lack of familiarity 

within the heating, ventilation, and air-conditioning (HVAC) design and operations professions, 

often involving new concepts (particularly related to the long response time in high thermal 

mass radiant systems). Recent studies have shown that hydronic radiant systems, when 

properly designed, can be far more efficient than even best-practice all-air systems. Depending 

on the study, values range from 34% to 67%. However, simulation studies conducted in this 

project (see Section 2.2.3) found that it’s possible that radiant buildings will consume more 

energy than best practice VAV buildings if they are not optimally designed to take full 

advantage of radiant system benefits. To achieve the significant reductions in building energy 

use proposed by California Public Utilities Commission’s (CPUC’s) Energy Efficiency Strategic 

Plan that all new non-residential buildings be ZNE by 2030, it is critical that new technologies 

that will play a major role in reaching this goal be applied in an effective manner.  

The estimated impacts and benefits of the project are: 

• 1352 million kWh per year of electricity savings 

• $192 million per year of energy cost savings (at $0.1418 per kWh) 

• 795 million pounds of CO2e emissions per year avoided (at 0.588 lbs per kWh) 

• 161 MW of avoided peak electric demand corresponding to an additional $70 million per 

year in TDV-weighted electricity costs (assuming that on average 1.5W/sf of peak 

demand is due to cooling energy, and the above assumptions regarding average costs 

during peak demand) 

• There will be significant gas savings due to higher boiler efficiencies driven by the far 

lower supply water temperatures required by hydronic radiant systems, however we 

exclude these as this proposal is funded by the Electric Program Investment Charge. 

• Additionally, radiant systems can operate with much higher temperature water for 

cooling and much lower temperature water for heating than conventional systems. This 

makes it far more feasible, cost-effective and efficient to use heat pump systems for all 

cooling and heating loads in a building. Such buildings do not require a natural gas 

supply, and can be ‘all-‘electric’, providing significant support to decarbonization efforts 

and legislation such as SB-1477 (Low-emissions buildings and sources of heat energy). 

• We have seen thermal comfort issues due to wide temperature variations in buildings 

with radiant systems. We have also encountered acoustics issues in preliminary case 

studies due to the exposed radiant slab. It is likely that this plays a role in the fact that 
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only 50% of ZNE buildings use radiant systems, as these issues (perceived, or real) deter 

the uptake of this technology in some cases. We aim to quantify these issues and 

develop approaches to mitigate them through improved design and operation guidance 

as part of this research.  

• As part of the cost comparison study, new guidance is provided to improve the 

feasibility of designing and building cost-effective radiant buildings. 

The large amount of new information, design guidelines, simplified design and operation tool, 

lessons learned and real-world data from existing radiant buildings, and recommendations for 

revisions to applicable codes, standards and handbooks is now publicly available through this 

final report. With all of this assembled information and the availability of many of the same 

research team members, the timing would be good for funding to support follow-up efforts 

aimed at developing a much needed newly updated radiant systems design guide.  
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CHAPTER 1:  
Fundamental Full-scale Laboratory Testing 

The research team conducted full-scale laboratory testing to provide a thorough understanding 

of the fundamental principles of radiant cooling systems. Previous CEC-sponsored research had 

shown that there are key differences between conventional all-air systems and radiant systems, 

particularly those involving high thermal mass (radiant slabs) (Feng et al. (2013, 2014), Bauman 

et al. 2013). As a result, the research plan called for carefully defined laboratory experiments to 

be performed during the early stages (first two years) of the project. This allowed the findings 

from these tests to inform simulation studies (Chapter 2) and field studies (Chapter 3). The 

results provided new knowledge on practical applications, as well as verifying in greater detail 

and under more realistic test conditions how radiant systems extract heat from buildings 

differently than all-air cooling systems. 

The experiments were performed in two world-class test facilities: (1) Hydronic Test Chamber at 

Price Industries in Winnipeg, Manitoba, and (2) FLEXLAB at Lawrence Berkeley National 

Laboratory, Berkeley, CA. All experiments are summarized below, along with the separate 

technical publications that were prepared and published. 

1.1. Laboratory Testing at Price Lab 

Radiant slab ceiling systems are increasingly being used in office spaces. Yet, because these 

systems use exposed concrete, sound reflections often cause poor acoustical quality in the 

space. To address this problem, CBE investigated a ceiling solution that combines a radiant 

ceiling with free-hanging acoustical canopies and fans. The purpose of the study involving the 

two experiments described below was to conduct laboratory experiments for an office room 

with varying coverage of free-hanging acoustical canopies and different fan configurations 

below a radiant chilled ceiling. 

The research team conducted two radiant ceiling cooling capacity experiments in the Hydronic 

Test Chamber at Price Industries in Winnipeg, MB. This chamber (4.27 m x 4.27 m x 3.0 m [14 ft. 

x 14 ft. x 9.8 ft.]) was equipped with radiant panels located in a suspended ceiling placed at a 

height of 2.5 m (8.2 ft.) above the floor. We modeled a typical interior zone office configuration 

using four simulated workstations and office heat loads. The chamber has no windows and the 

walls, ceiling, and floor have similar construction and are heavily insulated with an overall 

conductance of 0.135 W/m2 K. This chamber is accredited by the EN 14240 [CEN 2004] for 

chilled ceiling testing. It is located inside a large laboratory facility maintained at 21.6 °C ± 0.5 

°C (71°F ± 1°F). Figure 2 shows a photograph of the test chamber as configured for the two 

experiments. 
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Figure 2: Photograph of Hydronic Test Chamber, Price Lab 

 

 

1.1.1. Laboratory Test #1: Cooling capacity and acoustic performance of 

radiant slab systems with free-hanging acoustical clouds 

In this experiment, the research team proposed a combination of a radiant cooled ceiling with 

several configurations of free-hanging discontinuous acoustic clouds (sometimes called 

canopies). This type of sound absorber is known to have an increased acoustic performance 

compared to regular suspended ceilings due to the larger surface area exposed to sound, i.e., 

both the upper and lower surfaces, since sound has access to both sides of the cloud. As they 

are free-hanging, these clouds have an open air space above them. Air can freely circulate 

between the cloud and the ceiling allowing heat exchange by convection from the radiant 

cooled ceiling. 

The objectives of this study were to: (1) experimentally assess the effect on radiant ceiling 

system cooling capacity for various coverage areas of free-hanging acoustic clouds, and (2) 

determine the change in sound absorption for the same configurations. Different ceiling 

coverage fractions (calculated as percentage of total ceiling area: 0%, 16%, 32%, 47% and 63%) 

were tested. These tests were complemented by acoustical tests performed by Armstrong World 

Industries in their certified reverberant chamber in Lancaster, PA. The same ceiling 

configurations and percent coverages were tested in both laboratories. 
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The acoustical results showed that if the canopies covered 40-50% of the ceiling area, 

acceptable acoustic quality was achieved. The cooling experiments showed that the acoustical 

canopies caused a smaller reduction in cooling capacity than previously thought (only 11% 

reduction at 47% coverage). The combined results demonstrated a practical solution in which 

free-hanging acoustical clouds are positioned below a radiant chilled ceiling, thereby achieving 

acceptable acoustical quality without overly compromising the cooling performance of the 

radiant ceiling.  

A separate technical paper describing the experiment was prepared and published (Karmann et 

al. 2017a). Figure 3 shows the graphical abstract from the paper. The paper represents a 

deliverable for the project, Final Laboratory Test #1 Report, and is contained in Appendix A: 

Cooling Capacity and Acoustic Performance of Radiant Slab Systems with Free-Hanging 

Acoustical Clouds. 

 

Figure 3: Laboratory test of impact of acoustical clouds on cooling capacity and acoustic quality 

 

Schematic of acoustical cloud coverage; photograph of laboratory test chamber; measurement results of cooling capacity 

and reverberation time as a function of acoustical cloud coverage.  

 

1.1.2. Laboratory Test #2: Effect of acoustical clouds coverage and air 

movement on radiant chilled ceiling cooling capacity 

In the second experiment at Price Lab, the research team investigated the combined effects of 

acoustical clouds and fans on the cooling capacity for an office room. Fans were installed at 

ceiling level in the same test chamber to increase the convective heat transfer along the chilled 

ceiling. We tested two fan configurations: ceiling fan (blowing up and down between the 

canopies) and small fans (low and medium speed) hidden above the canopies (see Figure 4).  
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Figure 4: Laboratory test of effect of acoustical clouds coverage and air movement on cooling 
capacity 

Schematics of test configurations; photographs of lab set-up; measurement results of cooling capacity as a function of 

acoustical coverage for different fan configurations.  

 

The results showed that the ceiling fan increased cooling capacity by up to 22% when blowing 

upward and up to 12% when blowing downward compared to the reference case over the 

different cloud coverage ratios. For the variants with small fans, cooling capacity increased with 

coverage, up to a maximum increase of 26% . In this study, combining acoustical clouds and 

fans not only offset the modest reduction in cooling capacity from a radiant cooled ceiling 

caused by the presence of the clouds, but also provided an overall increase in cooling capacity 

compared to the reference case with no clouds and fan. This study offers a very promising and 

practical design solution regarding implementation of radiant slab ceiling systems.  

A separate technical paper describing the experiment was prepared and published (Karmann et 

al. 2018a). The paper represents a deliverable for the project, Final Laboratory Test #2 Report, 

and is contained in Appendix B: Effect of Acoustical Clouds Coverage and Air Movement on 

Radiant Chilled Ceiling Cooling Capacity. 

1.2. Laboratory Testing at FLEXLAB® 

The research team conducted a second series of experiments in FLEXLAB® 

(https://flexlab.lbl.gov/) at Lawrence Berkeley National Laboratory (LBNL). The facility had 

recently been completed at the beginning of our research project and our team performed the 

first comprehensive experiment involving radiant systems at FLEXLAB®. Figure 5 shows a 

photograph of FLEXLAB®, which consists of four large double-chamber test beds exposed to 

direct solar radiation and outdoor conditions through their exchangeable south-facing 

window/wall assemblies. Representing one of the world’s most advanced building efficiency 

testbeds, FLEXLAB® enables thorough assessment of building energy systems at a realistic 

https://flexlab.lbl.gov/
https://www.sciencedirect.com/topics/engineering/energy-building
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physical scale, with naturally occurring solar gains, and natural interaction with the 

surrounding environment. 

Figure 5: Photograph of FLEXLAB® at LBNL 

 

Credit: LBNL  

1.2.1. Laboratory Test #3: Full-scale laboratory experiment on the cooling 

capacity of a radiant floor system 

Direct solar radiation on a chilled radiant floor is known to increase its cooling capacity, but 

there is limited measured evidence of this phenomenon reported in the literature. The objective 

of this study was to measure, in a highly controlled laboratory facility with outdoor solar 

exposure, the effect on radiant floor cooling capacity of (1) direct solar radiation exposure, (2) 

elevated air movement caused by ceiling fans, and (3) presence of carpet tiles. Figure 5 shows 

photographs of the test configuration inside the FLEXLAB® test room. Each room had 57.6 m2 

(620 ft2) floor area (6.1 m (20 ft) by 9.1 m (30 ft) interior dimensions, excluding the equipment 

room) and a 3.66 m (12 ft) high ceiling, with a drop ceiling at 2.74 m (9 ft). The floor was a 

15.25 cm (0.5 ft) thick concrete slab with embedded PEX tubing. The southern wall conformed 

to ASHRAE 90.1–2010 (ASHRAE 2010). 

  

https://www.sciencedirect.com/topics/engineering/solar-gain
https://www.sciencedirect.com/topics/engineering/surrounding-environment
https://www.sciencedirect.com/science/article/pii/S0378778817334412?via%3Dihub#eqn0001
https://www.sciencedirect.com/topics/engineering/air-movement
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/slab
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Figure 6: Photographs of test room at FLEXLAB® 

  

The cooling capacity of the chilled radiant floor was measured to increase from 32 up to 

110 W/m2 (10 to 35 Btu/h-ft2) under direct solar radiation. The surface temperature region 

exposed to solar radiation reached a peak temperature of 26°C (79°F) while the unexposed areas 

were between 20 and 21°C (68-70°F) (see Figure 7). Higher air speeds along the floor created by 

ceiling fans increased the radiant slab cooling capacity by ∼12% (from 32 to 36 W/m2 [10 to 11 

Btu/h-ft2]) when the operative temperature was 24°C (75°F) and, up to ∼19% (40 W/m2 [13 Btu/h-

ft2]) when it is increased to 26°C (79°F). The presence of thin carpet tiles reduced the radiant 

floor cooling capacity by ∼5% compared to a bare floor slab. 

 

Figure 7: Measurement results of impact of direct solar radiation 

 

Measured floor surface temperatures at 3 locations: south (near window), middle and north; measured floor cooling 

capacity at 3 locations.  
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A separate technical paper describing the experiment was prepared and published (Pantelic et 

al. 2018a). The paper represents a deliverable for the project, Final Laboratory Test #3 Report, 

and is contained in Appendix C: Full-Scale Laboratory Experiment on the Cooling Capacity of a 

Radiant Floor System. 

1.2.2. Laboratory Test #4: Side-by-side laboratory comparison of space heat 

extraction rates and thermal energy use for radiant and all-air systems 

In this second experiment in FLEXLAB, the research team conducted a series of controlled tests 

in a pair of equivalent testbed buildings – one with radiant cooling and one with all-air cooling. 

For each experiment we operated the two testbeds simultaneously, imposed equivalent internal 

gains, and controlled each system to maintain equivalent operative temperatures. Figure 8 

shows a plan view of the two testbed buildings. The radiant testbed was cooled by a low 

thermal mass metal radiant ceiling panel system in the drop ceiling. The panels covered 73% of 

the floor area, as highlighted in blue in the figure. The air handler circulated air at a constant 

135 m3/hr (80 cfm), a flow rate representative of typical ventilation rates in radiant buildings. In 

the all-air testbed the air handler circulated air at a constant flow rate of 1000 m3/hr (590 cfm) 

and a proportional integral control sequence adjusted supply air temperature to control the 

operative temperature. Figure 9 compares infrared images of the two testbeds with equal 

operative temperatures being maintained in both testbeds. 

Figure 8: Plan view of side-by-side testbed buildings at FLEXLAB® 

 

Air handler, overhead ductwork, supply diffusers, and return registers in the all-air testbed are highlighted in orange. Low 

thermal mass metal ceiling panels in the radiant testbed are highlighted in blue. 

https://www.sciencedirect.com/topics/engineering/ventilation-rate
https://www.sciencedirect.com/topics/engineering/constant-flow-rate
https://www.sciencedirect.com/topics/engineering/integral-control
https://www.sciencedirect.com/topics/engineering/supply-air-temperature
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Figure 9: Comparison of infrared images of radiant and all-air testbeds at FLEXLAB® 

 

 

The results showed that radiant cooling must remove more heat than all-air cooling – 2% more 

in an experiment with constant internal heat gains, and 7% more with periodic scheduled 

internal heat gains. Moreover, the peak sensible space heat extraction rate for radiant cooling 

(heat transfer at the cooled surface, not the cooling plant) must be larger than the peak sensible 

space heat extraction rate for all-air systems, and it must occur earlier. The daily peak sensible 

space heat extraction rate for the radiant system was 1–10% larger than for the all air system, 

and it occurred 1–2 hours earlier. These findings have consequences for the design of radiant 

systems. In particular, this study confirmed that cooling load estimates for all-air systems will 

not represent the space heat extraction rates required for radiant systems. 

A separate technical paper describing the experiment was prepared and published (Woolley et 

al. 2018a). The paper represents a deliverable for the project, Final Laboratory Test #4 Report, 

and is contained in Appendix D: Side-by-Side Laboratory Comparison of Space Heat Extraction 

Rates and Thermal Energy Use for Radiant and All-Air Systems. 

1.2.3. Laboratory Test #5: Performance analysis of pulsed flow control 

method for radiant slab system 

While using the FLEXLAB test facility, the research team had the opportunity to conduct two 

additional experiments, which are briefly summarized in Sections 1.2.3 and 1.2.4. 

The first experiment was an experimental validation of a newly developed pulsed flow control 

method (PFM) using a two-position valve to regulate the capacity of radiant slab systems. 

Compared with previous intermittent control strategies (with on-time durations over 30 min), at 

50% part load the PFM requires 27% lower water flow rates and increases supply to return water 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/flow-control
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/slab
https://www.sciencedirect.com/topics/engineering/control-strategy
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/water-flow
https://www.sciencedirect.com/topics/engineering/temperature-water
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temperature differential. The energy performance of PFM is comparable to that of an idealized 

variable flow rate control, and significantly better than actual variable flow control (unless 

pressure-independent valves are used). Additionally, it has more accurate capacity control, 

achieves a more uniform surface temperature distribution, and reduces initial investment by 

substituting two-position for modulating valves, thus showing promise for engineering 

applications. Figure 10 shows a schematic of the pulsed flow control method, example control 

operation of the two-position valve, and comparison of cooling capacities for different control 

methods. 

Figure 10: Pulsed flow control method for high thermal mass radiant systems 

 

Schematic of pulsed flow control method; example control operation of two-position valve; comparison of cooling 

capacities for different control methods. 

A separate technical paper describing the experiment was prepared and published (Tang et al. 

2018). The paper is contained in Appendix E: Performance Analysis of Pulsed Flow Control 

Method for Radiant Slab System. As part of this work, we also developed and validated the 

world’s first three-dimensional and transient numerical model of a radiant slab system. 

1.2.4. Laboratory Test #6: Side-by-side laboratory comparison of radiant and 

all-air cooling: How natural ventilation cooling and heat gain characteristics 

impact space heat extraction rates and daily thermal energy use 

The research team also performed a series of multi-day side-by-side comparisons of radiant 

cooling and all-air cooling in the same two FLEXLAB testbed buildings, with equal heat gains, 

and maintained at equivalent comfort conditions. In a five-day experiment with mixed internal 

heat gains, solar gains, and natural ventilation night precooling, radiant cooling had to remove 

35% more heat than the all-air system in equivalent circumstances; and the peak heat extraction 

https://www.sciencedirect.com/topics/engineering/temperature-water
https://www.sciencedirect.com/topics/engineering/rate-control
https://www.sciencedirect.com/topics/engineering/capacity-control
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/surface-temperature
https://www.sciencedirect.com/topics/engineering/engineering-application
https://www.sciencedirect.com/topics/engineering/engineering-application
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rate was 20% larger (median difference on multiple days). In a similar experiment with highly 

convective internal gains the differences were smaller (26% more thermal energy, 12% larger 

peak), while in an experiment with highly radiant gains the differences were larger (40% more 

thermal energy, and 21% larger peak). The differences were much smaller in an experiment 

without natural ventilation night precooling (7% more thermal energy, 5% larger peak). These 

findings have consequences for the choice, design, and control of mechanical cooling systems, 

especially in buildings that also use passive cooling strategies such as natural ventilation night 

precooling. 

Figure 11: Five-day side-by-side comparison of radiant and all-air systems 

       

(left) Side-by-side testbeds at FLEXLAB; (right) Results from 5-day experiment with natural ventilation night precooling.  

A separate technical paper describing the experiment was prepared and submitted for 

publication (Woolley et al. In press). The paper is contained in Appendix F: Side-by-Side 

Laboratory Comparison of Radiant and All-Air Cooling: How Natural Ventilation Cooling and 

Heat Gain Characteristics Impact Space Heat Extraction Rates and Daily Thermal Energy Use. 
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CHAPTER 2: 
Simplified Tools for Design Sizing and Control of 

Radiant Systems 

The overall goal of this task was to review and assess cooling load and design sizing issues for 

radiant systems, develop new control methods for the operation of radiant systems, and make 

this information available to the public in a user-friendly format through a web-interface. 

2.1. Cooling Load and Design Sizing Research 

2.1.1. Expert interviews 

To better understand current design practices, the research team interviewed eleven prominent 

professionals with substantial experience in the design, construction and operation of radiant 

buildings in North America. These professionals collectively have designed more than 330 

radiant system buildings. The interviews focused specifically on design and control of high 

thermal mass radiant systems — referred to as thermally activated building systems (TABS). A 

TABS system has radiant tubing embedded in a structural slab. Also included are radiant 

systems with tubing embedded in topping slabs separated from structural slabs by insulation 

— referred to as embedded surface systems (ESS). 

This study documented the variety of design and control approaches currently used, 

highlighting themes and variations in common practice. The interviews revealed that there are 

many different approaches to designing and controlling buildings with these systems. The 

report also summarizes best practices as reported by these experts, noting areas where such 

expert insights will be of value to other practitioners. Interview findings are reported 

objectively, based on only the interviewee responses, and include limited commentary from the 

research team. Key findings include the following: 

• There are some consistent themes among all interview responses. These include: 
importance of a high performance building envelope and managing internal loads, 
requirement of supplemental cooling, the challenges of the slow responsiveness in 
radiant slab control, and the use of the self-regulation feature of the radiant slab in 
design.  

• Interviewees described a variety of design strategies and had unique preferences for 
their typical TABS design. These topics included: building types and space types where 
TABS should be applied, the choice and design of chilled water plants for buildings with 
radiant cooling, the design and zoning of ventilation systems, the design of 
supplemental cooling systems, the use of two-position valves, modulating valves, or 
pumps for radiant zone control, the choice of space temperature set points, and the 
control of changeover between slab heating to slab cooling. 

• In practice, though most designers were aware of the potential benefits, they omit 
significant potential energy performance improvements, such as precooling, load-
shifting, reduced plant sizes, lower cooling/higher heating water temperatures, and 
waterside economizing, due to lack of design tools, existing successful case study 
examples, availability of reliable controls to achieve the design intent, and project-
specific constraints. 



 

20 

 

A separate research report describing all details of the expert interviews was prepared by 

Paliaga et al. (2017). The report represents a deliverable for the project and is contained in 

Appendix G: TABS Radiant Cooling Design & Control in North America: Results from Expert 

Interviews. 

2.1.2. Cooling load and design sizing report 

The current standard procedure for design sizing of cooling systems is not well suited for 

design of buildings with radiant cooling. There are several reasons that the standard design 

procedure for radiant cooling systems (ASHRAE Systems & Equipment 2016 Chapter 6: Radiant 

Heating and Cooling) is flawed, including that the current standard definition of space cooling 

load (ASHRAE Fundamentals 2017 Chapter 18: Nonresidential Cooling and Heating Load 

Calculations) omits fundamental principles that are essential to the operation of radiant 

cooling. This report identified several specific shortcomings with the current standard cooling 

load definition and with the standard cooling system design sizing procedure. We explain the 

fundamental flaws with each, discuss why addressing these shortcomings is especially 

important to the optimal design and operation of radiant cooling systems, and provide general 

recommendations for how the procedures ought to be improved. The issues and 

recommendations presented in this report were informed by several research tasks conducted 

as part of this project.  In addition to identifying specific flaws with standard cooling load and 

design sizing procedures, we also discuss how each aspect of our research has provided 

evidence about or potential solutions to each issue. 

This research report was prepared by Woolley et al. (2018b). The report represents a deliverable 

for the project, Final Cooling Load and Design Sizing Report, and is contained in Appendix H: 

Cooling Load and Design Sizing Report. Many of the findings from this report informed the 

research team’s recommendations contained in the Codes and Standards Report described in 

Chapter 5. 

2.1.3. Thermal response time of radiant systems 

Radiant system design and control standards and guidebooks currently classify radiant systems 

as a function of their structure and geometry. The assumption was made that design solutions, 

testing methods, and control strategies of radiant systems can be more clearly described and 

classified based on their thermal parameters. In this study, the research team used the thermal 

response time to evaluate the dynamic thermal performance of radiant systems. Response time 

(τ 95) is defined as the time it takes for the surface temperature of a radiant system to reach 95% 

of the difference between final and initial values when a step change in control of the system is 

applied as input. The state space and thermal resistance models were used to calculate the 

response time for different radiant system types with a variety of configurations and boundary 

conditions. The team performed 56,874 simulations. Concrete thickness, pipe spacing, and 

concrete properties have significant impact on the response time of thermally activated 

building systems, while pipe diameter, room operative temperature, water temperature and 

water flow regime do not. The results showed that τ 95 < 10 min for radiant ceiling panels; 1 < τ 

95 < 9 h for embedded surface systems; 9 < τ 95 < 19 h for thermally activated building systems. 
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A preliminary radiant system classification scheme based on thermal response time is 

proposed (see Figure 12). 

Figure 12: Thermal response time for different radiant system types 

 

A separate technical paper describing the study was prepared and published (Ning et al. 2017). 

The paper is contained in Appendix I: A Novel Classification Scheme for Design and Control of 

Radiant Systems Based on Thermal Response Time. 

2.2. Simplified Tool for Implementing Controls of Radiant 
Slab Systems 

2.2.1. Simplified design and operation tool for radiant systems 

The CBE Rad Tool is an interactive web-based design tool for the early design of high thermal 

mass radiant systems (Figure 13). The primary aim of this design tool is to provide an interface 

for estimating the performance of high thermal mass radiant systems under steady-state 

conditions (for both heating and cooling) and transient conditions (on the cooling design day). 

The transient analysis is based on 2.5 million pre-simulated cases on a summer cooling design 

day using EnergyPlus as the dynamic simulation engine. High thermal mass radiant systems 

have a slow response time to control changes because it must heat or cool a substantial amount 

of thermal mass (e.g., building's structural slab) before any noticeable effect in the thermal 

environment of the spaces. It has been shown that it can take over two hours for embedded 
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surface radiant systems (ESS) and over nine hours for thermally activated building radiant 

systems (TABS) to change the surface temperature to a new setpoint (Ning et al. 2017). Thus, it 

is important to use transient tools, such as the CBE Rad Tool, that considers high thermal mass 

radiant systems' start time and duration of operation to properly calculate the space and 

hydronic plant heat extraction rates. The CBE Rad Tool allows designers to consider the impact 

of innovative control strategies such as nighttime cooling plant operations. See functional 

specifications (below) for full details of the tool. 

Figure 13: Image of online CBE Rad Tool 

 

The CBE Rad Tool is available online at: radiant.cbe.berkeley.edu/. 

2.2.2. Simplified design and operation tool for radiant systems functional 

specifications 

As part of the Rad Tool, the research team developed a detailed online “help” function that 

serves as the functional specifications. These specifications document the methods and 

assumptions used to develop the tool. The first section of the specifications references the 

steady-state calculations while the second section references the transient calculations. There is 

also a third section that describes how a user can request a custom radiant zone for their own 

analysis. The team also provides an example model in EnergyPlus so that designers can easily 

run their own simulations. This includes a publicly available sequence of operations for 

specifying the control strategy developed in this project (see Section 2.2.4). Lastly, the team 

http://radiant.cbe.berkeley.edu/
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provides the EnergyPlus code to simulate these control sequences in an EnergyPlus model. The 

Rad Tool functional specifications document is a deliverable for the project and is contained in 

Appendix J: Simplified Design and Operation Tool for Radiant Systems Functional 

Specifications. The document is also available online at: 

radiant.cbe.berkeley.edu/doc/rad_tool_documentation.html. 

2.2.3. Energy simulations studies report 

Summary 

This report is a deliverable for the project and summarizes energy simulation sensitivity 

studies that were conducted within Tasks 3 and 5.  EnergyPlus was used as the simulation 

engine for all studies completed. The purpose of the energy simulation research in Task 3 was 

to assess viable approaches for controlling high thermal mass radiant systems as a function of 

a range of factors, including start time and duration of system operation, other operating 

conditions such as supply water temperature, internal loads, and representative California 

climates. The results of the simulation studies have supported three key tasks within the EPIC 

Radiant project: 

• Development of a simplified design and operation tool that captures the majority of 

these design and control improvements while still remaining feasible to implement 

within existing building management systems. This online tool (CBE Rad Tool) is 

described in Sections 2.2.1 and 2.2.2. 

• The newly developed control strategies have been implemented in two of the field study 

buildings. The findings from these control intervention studies are described in the 

Field Study Reports for the SMUD East Campus Operations Center in Sacramento, CA, 

and the David Brower Center in Berkeley, CA (See Sections 3.2 and 3.3).  

• As part of the cost comparison study, energy simulations were used to compare the 

energy performance of the radiant vs. VAV building. 

Two conference papers and one research report have been written describing the results of the 

energy simulation studies. Brief descriptions of these papers are presented below. 

A new control strategy for high thermal mass radiant systems 

This paper presents a new controller for high thermal mass radiant systems that can be 

implemented within a typical Building Automation System.  We illustrate its performance using 

an EnergyPlus model representing a single zone, middle floor of an office building in 

Sacramento, California. The results of a small sensitivity analysis show that when compared to 

common practice in  the US this approach reduces electricity cost and energy consumption by 

up to 40% and 35%, respectively, while maintaining comparable comfort conditions in the zone.  

Furthermore, this design & control approach could eliminate the need for a chiller in most 

California climate zones for typical office design loads (Raftery et al. 2017). This paper is 

included in Appendix K: A New Control Strategy for High Thermal Mass Radiant Systems. 

  

http://radiant.cbe.berkeley.edu/doc/rad_tool_documentation.html
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How high can you go? Determining the highest supply water temperature for high thermal 

mass radiant cooling systems in California 

Cooling demands are a major driver of energy consumption in buildings, and is mostly 

performed using systems based on the refrigeration cycle, an energy and cost intensive process. 

To investigate the potential of eliminating the refrigeration cycle from a building design in 

Californian climates, we created a single zone EnergyPlus model that uses a high thermal mass 

radiant system as the primary conditioning system, and that meets California’s energy code 

requirements. On the cooling design day, we randomly selected the start and number of hours 

of radiant system operation, lighting and plug load power densities, and occupant density for a 

set of models to determine the supply water temperature (SWT) that maintained comfortable 

temperatures. About 67% of tested models required SWT at or above 18 °C indicating that high 

thermal mass radiant systems have a high potential to use less energy and lower cost cooling 

devices like evaporative cooling towers in most California climates (Duarte et al. 2018a). This 

paper is included in Appendix L: How High Can You Go? Determining the Highest Supply Water 

Temperature for High Thermal Mass Radiant Cooling Systems in California. 

Comparison of energy costs for radiant vs. VAV systems 

As part of the cost comparison study (Section 4.5), energy models of the two designs (radiant 

and VAV) were developed in EnergyPlus to evaluate the corresponding energy and comfort 

performance. In the VAV system model, the controls are generally based on the recently 

published ASHRAE Guideline 36 (ASHRAE, 2018), which provides high performance sequences 

of operation for VAV systems that have been widely acknowledged in the building industry. 

However, for the hybrid radiant slab and DOAS system, there are no well-established control 

sequences readily available. Some of the control approaches commonly used in the industry 

appear to be quite energy inefficient. As a result, it was expected that the energy simulation 

findings would tend to favor the VAV system.  

The annual simulation results show that the total site HVAC energy use is 16.2% higher for the 

radiant system (2.9 kBtu/ft2) than the optimized VAV design (2.5 kBtu/ft2). The VAV design has 

significantly lower cooling energy use and benefits from the opportunity for free cooling from 

the airside economizer with mild San Francisco weather. The radiant design has lower heating 

energy use but slightly higher fan energy use, compared to the VAV design. DOAS fan are 

commonly expected to use less energy than VAV fans because of the much lower design 

airflows but, in fact, the opposite is generally true due to the fact that VAV systems generally 

operate for the majority of time at lower part loads. 

A report describing all results of the study was written by Feng and Cheng (2018) and is 

included as Appendix M: Comparison of Construction and Energy Costs for Radiant vs. VAV 

Systems in the California Bay Area. The report contains further discussion of opportunities to 

improve the energy performance of radiant systems. With current design practice leaving some 

of these opportunities on the table, it is important for radiant designers to incorporate into 

their system designs many of the practical solutions described in this report.  For example, in 

mild climates, such as the Bay Area in California, radiant designs should take advantage of the 

benefits of free cooling as much as possible either with airside or waterside economizers. The 
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information contained in this Final Report and its appendixes is available to further improve 

the energy efficiency of radiant system design and operation. 

2.2.4. Sequences of operations 

The research team prepared a detailed set of sequences of operations for high thermal mass 

radiant systems. These sequences were implemented in the two field study buildings described 

in Chapter 3. These sequences are also publicly available for use by any building engineer or 

operator with a high thermal mass radiant system. The sequences have been written up as a 

deliverable for the project, Final Sequences of Operations Report and are attached as Appendix 

N: Sequences of Operations for High Thermal Mass Radiant Systems. 

The intent of these sequences of operation is to use slowly adjusted slab temperature setpoints 

to control radiant system operation to maintain comfort in the zone. The strategy operates 

based on a slab temperature measurement and uses information from the zone temperature 

during the occupied period to make minor adjustments to the slab setpoint for the next day. 

The strategy constrains the radiant system to take advantage of thermal inertia and condition 

the slab only during certain periods of time. For a given project, this allows designers to select 

for either: more efficient and cost effective operating hours (e.g., system only operates at night), 

longer operating hours to yield smaller heating or cooling plant sizes (e.g., system sized 

assuming 18 or 24-hour operation on the design day), or aim to provide a more uniform daily 

range of comfort conditions (e.g., time pre-cooling such that it approximately accounts for the 

slab time constant and the peak loads). Additionally, the sequences include selectable options 

for project- and zone-considerations, such as: on/off vs. pulse width modulated zone valve 

controls; sequences for zone supplemental heating and cooling systems; and slab temperature 

setpoint resets.  
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CHAPTER 3: 
Field Studies and Control Demonstrations in  

Radiant Slab Buildings 

The goal of this task was to conduct detailed field studies of three buildings with radiant slab 

systems to highlight issues identified in design, construction, and operation. In the first field 

study, the research team had a unique opportunity in the ARTIC building to investigate the 

impact of direct solar radiation on the performance of a chilled radiant floor system. The 

second and third field studies were more typical radiant slab office building designs and the 

team focused on demonstrating and further evaluating the newly developed control method 

(see Chapter 2) for high thermal mass radiant systems in these buildings. 

3.1. Field Study #1: Anaheim Regional Transportation 
Intermodal Center (ARTIC), Anaheim, CA  

The ARTIC building is a 67,000-ft2 (6,200-m2) bus and train station in Anaheim, California. The 

station started operation in 2014. This unique building was designed by HOK and Parsons 

Brinckerhoff. BuroHappold Engineering designed the mechanical system. In 2015 ARTIC was 

awarded LEED Platinum status and become the first station in the world to reach this status. 

ARTIC has several unique features. The tubular steel-framed structure has a compound curved 

shell covered with a 200,000-ft2 (19,000 m2) ethylene tetrafluoroethylene (ETFE) roof system. 

This transparent roof allows diffuse sunlight to illuminate the building interior. Besides light in 

the visible spectra, the transparent ETFE roof allows short and long-wave infrared radiation to 

penetrate the building (Figure 14). 

The ARTIC ETFE roof design and transparent glass walls had a critical impact on the choice of 

the HVAC system. The solar irradiance influences large areas of the floor, hence the designers 

from BuroHappold decided to implement a radiant floor cooling system (see Figure 15). The 

radiant floor extracts solar heat flux from the floor surface almost immediately. The radiant 

floor cooling system was the subject of the field study investigation. The research team 

conducted its measurements during October and November 2016. 

Measurements of the chilled floor slab performance were conducted on a section of a large 

second-floor balcony in front of a restaurant from October 19 - November 9, 2016. Air 

temperature sensors were placed at 3 locations, on the railing, on the wall of the shop, and on 

the pillar on the façade. We measured the operative temperature in 2 locations, on the wall of 

the shop and the pillar. The floor heat flux was measured in 3 locations with strategically 

distributing sensors on the floor areas affected by the sun at different times during the day. We 

measured solar heat flux with a pyranometer at one location in the middle of the floor. This 

location was the best estimate of the average floor exposure to the sun.  
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Figure 14: Anaheim Regional Transportation Intermodal Center (ARTIC) 

 

Credit: archdaily.com 

 

Figure 15: Interior photograph of ARTIC, Anaheim  
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Figure 16 shows heat flux measurement results for October 19-20, 2016, two consecutive warm 

sunny days. The peak solar gain on the floor measured by the pyranometer was 80 W/m2 (25 

Btu/h-ft2), matching very closely with the radiant floor peak heat extraction flux (measured by 

heat flux sensors in the solar illuminated areas) of 86 W/m2 (27 Btu/h-ft2). This indicates that 

the radiant floor effectively extracts solar heat penetrating through the ETFE roof and glass 

walls and confirms that the radiant floor is an effective system in spaces with direct solar 

exposure. The peak heat flux in the shaded regions of the floor was only 30 W/m2 (9.5 Btu/h-

ft2), matching the cooling capacity recommended by ISO-11855 (ISO 2012) for non-solar-

exposed radiant surfaces. Results from the ARTIC field study show the same trends as those 

observed in the experiment conducted in FLEXLAB (Section 1.2.1). Sun-exposed regions had 

much higher cooling capacity than the shaded regions, more than 2 ½ times greater in ARTIC. 

Figure 16: Field measurement results for ARTIC, Anaheim  

 

Radiant floor exposure and heat flux in the shaded and sun-exposed regions; Oct. 19-20, 2016. 

Full details of the field study are reported by Pantelic et al. (2018b). The report represents a 

deliverable for the project and is contained in Appendix O: Final Field Study #1 Report: 

Anaheim Regional Transportation Intermodal Center (ARTIC), Anaheim, CA. 
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3.2. Field Study #2: Sacramento Municipal Utility District 
(SMUD) East Campus Operations Center, Sacramento, CA 

The SMUD East Campus Operations Center (ECOC) is a 51-acre facility located in Sacramento, 

California. The campus includes a diverse set of building types and uses, including the study 

site: a 200,000 ft2 LEED Platinum certified office building that incorporates numerous energy 

efficient technologies and design strategies. The building, shown in Figure 17, has five above-

ground floors and one underground floor, for six stories in total.  The design team included 

architect RNL, MEP and design engineer Stantec, and general contractor Turner Construction, 

along with other subcontractors. 

Figure 17: Photograph of SMUD East Campus Operations Center, Sacramento 

 

Credit: HRGA Architecture 

The office building is part of a campus with a central plant that distributes hot and chilled 

water to the various buildings and services for space heating and cooling and hot water needs. 

The office building uses radiant as the primary heating and cooling system with a dedicated 

outdoor air system (DOAS) for ventilation, distributed through overhead mixing diffusers. 

Conference spaces have active chilled beams that simultaneously provide ventilation and 

cooling and have a faster response time than the radiant system. The active chilled beams are 

well-suited for the intermittent and potential high-density occupancy in conference rooms. 

Ventilation is demand controlled and provides heat recovery (with a thermal wheel), which can 

save energy during Sacramento’s cool winter. 

In addition to the radiant heating and cooling, the open office spaces have ceiling fans to 

provide thermal comfort and overhead air distribution (DOAS) for ventilation, as seen in Figure 

18. The DOAS system provides constant volume and constant temperature fresh air at 65 °F. 

The DOAS was not upsized to provide supplemental cooling; however, it was sized to provide 

25% more ventilation than code minimum for improved air quality with cooling as an ancillary 

benefit. 
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Figure 18: Interior photographs of SMUD East Campus Operations Center, Sacramento 

 

Left: Open office space with radiant ceiling, ceiling fans and overhead mixing diffusers for ventilation only. Right: Ceiling 

fan over open office cubicle. 

In 2018, we rewrote the Siemens PPCL control code entirely for the zone controllers and 

implemented the proposed sequences of operation developed as part of this research project. 

The earlier 2014 control improvements made by CBE were used as the baseline (Bauman et al. 

2015). The following section describes the new sequences. 

The primary zone control loop in the SMUD building uses a pulse-width modulating controller 

that controls the radiant zone manifold valve as a two position valve (on/off) to maintain the 

slab temperature at its setpoint (the baseline control operated the valves as modulating valves). 

The pulse-width modulated controller opens the valve fully for 5 minutes (approximately the 

length of time required to flush all of the water in a PEX circuit loop at the design flow rate) and 

then closes for a period determined by a proportional band. This approach allows for better 

control at low flow conditions (which is where these systems operate most of the year) than 

modulating valves and reduces pumping power (Tang et al., 2018). It would allow reduced first 

costs for both valve and wiring in a new design scenario.  A secondary cascading control loop 

uses a proportional controller to reset the slab temperature setpoint on a daily basis. The 

secondary control loop of the proposed strategy resets the slab temperature setpoint using the 

error between the maximum/minimum zone air temperature during the preceding occupied 

hours and the comfort setpoint for cooling/heating. The intent of the proposed radiant control 

strategy is to slowly adjust slab temperature setpoints based on information from the zone air 

and slab temperature, as opposed to based solely on the zone air temperatures. As part of the 

new controls, the water temperature setpoint for the radiant loops in cooling was increased 

from 58 to 62 °F. 

In addition, the radiant control strategy allows the building operator to select a time interval to 

condition the slab. The strategy constrains the radiant system to take advantage of thermal 
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inertia and condition the slab only during that period of time. The building operator can select 

for either: more efficient and cost effective operating hours (nighttime hours in cooling mode), 

longer operating hours1 to reduce the chiller or other system plant device cooling/heating load 

(greater than 16 hours), or aim to provide a more uniform daily range of comfort conditions by 

timing the conditioning of the slab such that it approximately coincides with the peak space 

heating/cooling loads, taking into account the typical lag time (e.g., 3-5 hours). In this field 

study, we chose to test and demonstrate two different options for operating hour strategies. 

More detailed information about the proposed radiant control strategy can be found in (Raftery 

et al. 2017) and in the publicly available Sequences of Operation Report described in Chapter 2. 

Option A, Daytime Lockout: Allow the TABS system to operate only during nighttime hours 

from 8 pm to 6 am, with the system locked out entirely during occupied hours. This is a full pre 

cooling and pre-heating strategy, where the radiant system never operates at the same time 

with occupancy or the operation of the DOAS system. 

Option B, Afternoon Lockout: Allow the TABS system to operate only during the early morning 

and early afternoon, from 4am to 2pm, with the system locked out from 2pm to 4am. This will 

shift cooling use from the hot afternoon (peak periods). It should provide a slightly more 

uniform comfort condition during the day. In other words, the range between the minimum and 

maximum temperature in the zone should be slightly smaller than with the existing baseline 

controls, and significantly smaller than in Option A. 

Overall, the new sequences of operation were able to maintain zone air temperatures within the 

defined comfort setpoints for significantly more hours than the existing baseline controls. 

These new sequences were able to do so using a 4 °F higher supply water temperature and while 

significantly reducing the operating time of the radiant system. Perhaps most importantly, the 

sequences allow the operator (or designer) to lockout the operation of the radiant system 

during certain periods of the day, and this field study demonstrates that the sequences 

automatically adjust to maintain comfortable conditions without requiring manual trial and 

error by the operator to identify new setpoints. This allows operators to choose the times of the 

day the radiant system performs cooling and heating, minimizing energy consumption, 

demand, and/or energy operating costs as appropriate for their building and cooling or heating 

systems. 

To assess the control sequence performance across all zones during the intervention and ability 

to reduce energy consumption, we compare the average number of minutes per day the system 

called for the valve to each zone to open. As seen in Figure 19, most zones called for cooling 

for less time under the new control strategies, which reduces operating time and has the 

potential for energy savings. 

 

 

 
1 Additionally, it is possible to stagger the operation hours of multiple zones in a building in order to spread out the 
plant loads over the daily period. This can reduce peak loads on the plant significantly. 
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Figure 19: Daily number of minutes that radiant system is ON 

 

Daily number of minutes that radiant system is actuating the manifold valve in each radiant zone to ON, during all days in 

dataset (left) and only for days when the manifold turned ON (right). 

Full details of the field study are reported by Raftery et al. (2018). The report represents a 

deliverable for the project and is contained in Appendix P: Final Field Study #2 Report: 

Sacramento Municipal Utility District (SMUD) East Campus Operations Center, Sacramento, CA. 
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3.3. Field Study #3: David Brower Center, Berkeley, CA 

The David Brower Center (DBC), shown in Figure 20, is a LEED Platinum, four-story mixed-use 

building located in downtown Berkeley, California. DBC was designed by the architecture firm 

Mithun formerly WRT/Solomon E.T.C and mechanical design firm Integral Group, formerly 

Rumsey Engineers. DBC’s program consists of offices, conference center, auditorium, 

restaurant, and gallery with a total conditioned space of 38,600 ft2 and 3,300 ft2 of 

unconditioned space. The restaurant, auditorium, and gallery are located in the first floor and 

office spaces are mainly in floors two through four. Its main tenants are nonprofit 

environmental organizations with current total building occupancy of about 150 people. 

Figure 20: Photograph of David Brower Center’s east and south facades 

 

Credit: Tim Griffith 

The heating, ventilation, and air-conditioning (HVAC) system includes a thermally activated 

building system (TABS: PEX tubing embedded in the structural slab) for the primary heating and 

cooling in the office spaces. Ventilation is provided by a 100% outside air underfloor air 

distribution (UFAD) system, as well as natural ventilation through operable windows. Carbon 

dioxide (CO2) sensors are used to provide demand control and provide minimum outdoor air 

ventilation rates in the occupied spaces. Heating and cooling in the first-floor gallery and 

meeting rooms are provided by an overhead air distribution system served by water-to-air heat 

pumps. The radiant system serves only the 2nd – 4th floors. 

Two gas condensing boilers provide hot water to the radiant system, air handling units (AHUs), 

and heat pumps. Hot water production is available 24 hours a day. DBC does not have a chiller 

for chilled water production. Instead, a cooling tower with a heat exchanger provides cooled 

water to the radiant system and AHUs. Cooling towers operate at a fraction of the energy 

consumption and cost of chillers. However, cool water production from a cooling tower is 

heavily dependent on the outdoor climate conditions. The outdoor wet-bulb temperature is an 
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important driver for the effectiveness of the cooling tower. The lower the outdoor wet-bulb 

temperature, the lower the chilled water temperature that the cooling tower can produce. The 

lowest wet-bulb temperatures are usually found during nighttime hours as shown in the 

building site climate data section below. Thus, only high thermal mass HVAC systems that are 

within suitable climates can use cooling towers to provide the cooling demand in the building. 

The research team recently demonstrated that using cooling towers coupled to TABS to provide 

cooling in the building is suitable within most California climates (Duarte et al., 2018a). 

The field study implemented a new control strategy that was introduced in all 15 zones in three 

phases over a three-month period. To assess the performance of the controls, the study team 

compared the zone dry-bulb air temperatures and system operating time to a baseline period 

from two prior years. Overall, the intervention control strategy was able to maintain zone dry-

bulb air temperatures within the defined comfort setpoints for significantly more hours 

compared to the baseline control strategy; a reduction in the total discomfort hours (hours 

outside of the comfort zone) from 8.8% to 2.9%. 

The intervention control strategy also significantly decreased the amount of time it actuated 

the radiant manifold valve to the open position when compared to the baseline control strategy. 

Perhaps most importantly, the sequences allow the operator (or designer) to lockout the 

operation of the radiant system during certain periods of the day, and this field study 

demonstrates that the sequences automatically adjust to maintain comfortable conditions 

without requiring manual trial and error by the operator to identify new setpoints. This allows 

operators to choose the times of the day the radiant system performs cooling and heating, 

minimizing energy consumption, demand, and/or energy operating costs as appropriate for 

their building and cooling or heating systems. 

In addition to the controls intervention, the research team conducted an occupant satisfaction 

survey in the Brower Center during May 2018. This was the third time that the CBE survey has 

been administered in the building (previous surveys were taken in 2010 and 2014). Figure 21 

shows the mean response scores on the 7-point satisfaction scale for the seven core categories 

and two overall satisfaction questions from the survey. Also shown for comparison is the CBE 

benchmark database for each category at the time this current survey was collected. The results 

show that DBC has consistently scored higher than the benchmark for most categories. The 

exceptions are in the acoustics category and recently in the thermal comfort category.  

The building experienced a period without a dedicated building operator during a transition in 

personnel. This coincided with the period immediately preceding and including the time when 

the most recent survey was implemented. We hypothesize that this may in part be the cause of 

the lower satisfaction with thermal comfort shown in Figure 21. The research team plans to 

administer a follow-up survey one year later to assess occupant satisfaction with the new 

control strategies that have been implemented in the building after the survey was completed 

in May 2018. 

  

https://www.zotero.org/google-docs/?CFpe6N
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Figure 21: CBE occupant satisfaction survey results at David Brower Center 

 

 

Full details of the field study are reported by Duarte et al. (2018b). The report represents a 

deliverable for the project and is contained in Appendix Q: Final Field Study #3 Report: David 

Brower Center, Berkeley, CA. 

3.4. Comparison of mean radiant and air temperatures 

Although not a deliverable for this project, during the field study activities, we assessed the 

difference between mean radiant temperature (𝑡�̅�) and air temperature (𝑡𝑎) in conditioned office 

buildings to provide guidance on whether practitioners should separately measure 𝑡�̅� or 

operative temperature to control heating and cooling systems. The results of this study are 

included below. 

We used measurements from 53 field studies in office buildings and five test conditions from a 

laboratory experiment, including both radiant and all-air spaces. Under typical office 

conditions, the median absolute difference (e.g., disregarding direction of the difference) 

between 𝑡�̅� and 𝑡𝑎 was 0.4 ℃ (with interquartile range = 0.4 ℃), and more specifically, the 

median difference shows that 𝑡�̅� was 0.4 ℃ (with interquartile range = 0.4 °C) warmer than 𝑡𝑎 in 

this dataset. In the radiant cooled laboratory tests, 𝑡�̅� was significantly (p<0.05) cooler than 𝑡𝑎 

(average difference -0.1 ℃) while in the all-air cooled laboratory tests 𝑡�̅� was significantly 

(p<0.05) warmer than 𝑡𝑎 (average difference +0.3 ℃). While these observations are significant, 

the effect sizes are negligible to small based on Cohen’s d and Spearman’s rho. These 

observations indicate that 𝑡�̅� and 𝑡𝑎 are typically closer in radiantly cooled spaces than in all-air 

cooled spaces. The results suggest that 𝑡𝑎 measurements are sufficient to estimate 𝑡�̅� under 
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typical office conditions, and that separately measuring 𝑡�̅� or operative temperature is not likely 

necessary to improve thermal comfort, especially in buildings with radiant systems. 

Furthermore, spatial and temporal variations in 𝑡𝑎 can be greater than the difference between 𝑡�̅� 

and 𝑡𝑎 at any one location in a thermal zone, thus we expect that such variations have a greater 

impact on occupant thermal comfort than the differences between 𝑡�̅� and 𝑡𝑎.  

A technical paper on the above study has been prepared by Dawe et al. (In press) and will be 

submitted for publication. Figure 22 presents the graphical abstract from the paper. 

Figure 22: Measured relative temperature difference (Dawe et al. (In press)) 
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CHAPTER 4: 
Energy Analysis, Cost Assessment, and Occupant 

Surveys 

The goal of this task was to increase empirical evidence and documentation of the a) energy 

performance, b) cost, and c) occupant perception of the indoor environment with radiant 

systems in order to compare radiant systems with other buildings, establish the basis for more 

accurate potential energy savings estimates, and provide design firms and owners real world 

project examples. The research team conducted a large outreach to identify as many buildings 

as possible having radiant systems, and gathered and analyzed data for energy performance 

and occupant satisfaction.  

As part of this task, researchers developed an expanded database of over 400 commercial 

buildings using radiant cooling and heating. All buildings from the database are displayed on 

an online interactive map located here: bit.ly/RadiantBuildingsCBEv2 (see Figure 23). A report 

was written summarizing the results and trends from this radiant map dataset, which focuses 

primarily on North America (United States and Canada) (Talami et al. 2017). The report is 

attached as Appendix R: Recent Trends in Radiant System Technology in North America. 

Figure 23: Online radiant map available at bit.ly/RadiantBuildingsCBEv2 

 

  

file:///C:/Users/fbauman/Downloads/bit.ly/RadiantBuildingsCBEv2
file:///C:/Users/fbauman/Downloads/bit.ly/RadiantBuildingsCBEv2
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4.1. Energy Performance 

Radiant systems can contribute to significant energy savings due to relatively small 

temperature differences between the room set-point and cooling/heating source, and the 

efficiency of using water rather than air for thermal distribution. High thermal mass radiant 

systems can also offer peak demand reduction with load shifting strategies. Although a radiant 

system is not the sole driver of good energy performance it can be an important part of an 

integrated approach from design and technology selection through to occupancy and 

operations that include high performance envelope components, HVAC design and control 

components, including ventilation systems, operation schedules and load management. 

The main goal of this project task was to determine the building characteristics of projects with 

radiant heating and cooling and assess their real world energy use compared to standard 

benchmarks for building energy performance. The energy use was self-reported through 

surveys and utility data and is based on whole building site energy use for a minimum of 12 

months. The research team was able to assemble and analyze the largest database of radiant 

buildings to date. Complete site energy use data was obtained from 23 commercial buildings 

using radiant cooling and heating systems in the US and Canada.  

The study found that almost all of the 23 buildings outperformed peer buildings and national 

benchmarks, suggesting that radiant systems are part of the integrated approach that can lead 

to low energy consumption in commercial buildings. Figure 24 shows the EnergyStar scores for 

all buildings in the radiant dataset. The EnergyStar score benchmarks an individual building 

against the national building stock normalized for location, type and building characteristics 

resulting in a score ranging from one (poor) to 100 (best). 67% of the radiant dataset buildings 

had EnergyStar scores above 90, which indicates that they are in the top 10% of buildings 

relative to their peers. Further, all but four buildings (81%) had EnergyStar scores at or above 

75, meaning that they qualify for EnergyStar certification. 

A separate research report describing all details of this energy performance study was prepared 

by Higgins and Carbonnier (2017). The report represents a deliverable for the project, Final 

Energy Performance Report, and is contained in Appendix S: Energy Performance of Commercial 

Buildings with Radiant Heating and Cooling. 
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Figure 24: Calculated EnergyStar scores for analyzed buildings. Scaled from 1‐100, n=21 

 

4.2. Occupant Satisfaction with Indoor Environmental 
Quality (IEQ) 

At the beginning of the project, one of the key questions was to determine if radiant systems 

provide better, equal or lower indoor environmental quality, and specifically thermal and 

acoustical comfort, than all-air systems. We performed a detailed literature review focusing on 

the thermal comfort aspect. This review identified eight conclusive studies: five studies that 

could not establish a thermal comfort preference between all-air and radiant systems and three 

studies showing a preference for radiant systems. Very few studies were based on occupant 

feedback in real buildings suggesting a significant research need. Overall, it was found that with 

only a limited number of studies available, a solid answer could not be given (Karmann et al. 

2017b) (see Figure 25). 
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Figure 25: Graphical abstract from Karmann et al. (2017b) 

 

 

To provide more relevant information to address the question on thermal comfort and other 

IEQ factors, the research team used the online Occupant Indoor Environmental Quality Survey 

administered by CBE (Zagreus et al. 2004, Frontczak et al. 2012). Following the same outreach 

activity described in Section 4.1, the team obtained acceptable occupant survey results from 20 

radiant buildings, which were merged with existing survey data from six radiant cooled 

buildings. This produced survey results of 1,645 occupants in buildings with radiant systems. 

To our knowledge, this is the largest dataset used in a comparison of occupant satisfaction in 

radiant buildings. An existing database was used to extract a subset of occupant responses 

from all-air buildings whose key characteristics match those radiant buildings. The complete 

assembled comparative database consisted of indoor environmental quality survey results from 

3,892 respondents in 60 office buildings located in North America; 34 of which used all-air 

systems and 26 of which used radiant systems as the primary conditioning system. The results 

indicated that radiant and all-air spaces have equal indoor environmental quality, including 

acoustic satisfaction, with a tendency towards improved temperature satisfaction in radiant 

buildings. Figure 26 presents a summary of the survey results comparing radiant and all-air 

buildings. 

A separate technical paper describing the survey study was prepared and published (Karmann 

et al. 2017c). The paper represents a deliverable for the project, Final Occupant Satisfaction 

Report, and is contained in Appendix T: Comparing Temperature and Acoustic Satisfaction in 

60 Radiant and All-Air Buildings. 
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Figure 26: Comparison of survey results from radiant and all-air buildings 

 

4.3. Case Study Briefs 

As part of the large database of radiant buildings compiled for the above studies, the research 

team selected and completed case studies for nine commercial buildings that demonstrate good 

performance in terms of both energy use and occupant satisfaction. Each of these radiant case 

studies are available as downloadable 4-page case study briefs, as highlighted in the October 

2017 issue of Centerline (cbe.berkeley.edu/centerline/nine-radiant-buildings-demonstrate-

energy-efficiency-and-occupant-satisfaction/). Each brief provides base information on the 

building characteristics, presents the individual building energy use compared to benchmarks, 

highlights strategies used to achieve high performance energy outcomes and, in most cases, 

includes results of the portion of the occupant survey related to thermal comfort. The nine case 

study briefs represent deliverables for the project and are included in Appendix U: Case Study 

Briefs. 

4.4. Case Studies Report 

As part of the deliverables for the project, the research team prepared a Final Case Studies 

Report that provides an overview of the Energy Performance Report and the nine Case Study 

Briefs on buildings with radiant heating and cooling systems (Carbonnier et al 2017). This 

report is contained in Appendix V: Energy Use, Occupant Surveys and Case Study Summary: 

Radiant Cooling and Heating in Commercial Buildings. 

4.5. Cost Comparison Study 

The goal of this task was to perform a design stage cost analysis comparing a selected radiant 

building against an identical building with a traditional VAV system. To provide a realistic 

comparison, alternative radiant and variable air volume (VAV) HVAC designs were developed 

for an office building in California that was designed with a radiant system in real life. The 

building is 4-stories with primarily open-plan offices totaling 112,000 ft2 and is designed with 

very low internal loads with LED lighting and plug load management. The modeled building 

performance has exceptionally low site energy use intensity (EUI) of approximately 12 kBtu/ft2-

yr, far below the median 55 kBtu/ft2-yr measured performance of office buildings in the same 

http://cbe.berkeley.edu/centerline/nine-radiant-buildings-demonstrate-energy-efficiency-and-occupant-satisfaction/
http://cbe.berkeley.edu/centerline/nine-radiant-buildings-demonstrate-energy-efficiency-and-occupant-satisfaction/
http://cbe.berkeley.edu/centerline/nine-radiant-buildings-demonstrate-energy-efficiency-and-occupant-satisfaction/
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climate zone (U.S. Department of Energy, 2018). The research team suggested control and 

design measures that could improve system energy efficiency by coupling the first cost 

comparison with predicted energy costs. Key findings from the construction costs study 

include: 

• The total HVAC construction costs of a radiant design was $9.0/ft2 higher than the 

alternate VAV system.  

• The cost premium associated with the radiant system is mainly due to labor for piping, 

which itself is $9.8/ft2 higher than that for the VAV design. Figure 27 shows a detailed 

breakdown comparison between the VAV and radiant designs. 

• Piping labor costs are 44% of the total HVAC costs. Labor to install radiant slabs and the 

manifolds/changeover assemblies accounts for 46% of the total piping labor. About 13% 

of the total piping labor is associated with installing the hot and chilled water pipe 

distribution on the floors, with smaller portions attributed to the piping on the roof and 

the risers. 

• For the radiant design studied, the HVAC equipment costs account for roughly 20% of 

the overall HVAC costs and the largest equipment cost is for the radiant equipment 

(loops, mats, manifolds) which is 40% of the equipment costs. 

Figure 27: Cost breakdown comparison between VAV and radiant designs 

 

 

As expected for relatively new types of systems without large market adoptions, there is 

significant room for further cost reduction over current practice. The report identifies and 

explores many such opportunities including: 

• Utilizing large radiant zones to minimize the number of radiant manifolds and zone 

changeover assemblies.  

• Radiant mats can be used to reduce field labor cost. Labor hours to install radiant mats 

can be 35% to 200% lower than to install loops. 
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• Install radiant tube spacing at 9 inches. Dynamic simulations show that, compared to 6-

in. spacing installation (a conservative common approach), it is possible to achieve very 

similar peak cooling capacity with 9-inch and even 12-inch spacing. 

• Use multiple risers for hot water and chilled water distribution piping design instead of 

using a single set of piping risers. The latter relies on a single set of larger risers and 

long horizontal distribution runs on each floor, whereas the former employs multiple 

sets of smaller risers strategically located to minimize the overall amount of pipe 

length. The multiple risers’ approach also allows smaller copper risers to be used 

instead of larger steel risers.  

• Consider provide 4-pipe distribution to sections of the building with 2-pipe distribution 

continuing to groups of zones. This combination of four-pipe and two-pipe solution is a 

way to balance first costs with level of control – by limiting 4-pipe distribution to 

sections of the building that may need to be in different modes (heating or cooling) such 

as by orientation, or by space type and/or envelope heat transfer. 

A separate research report describing all details of the cost comparison study was prepared by 

Feng and Cheng (2018). The report also includes a section comparing the energy performance 

of the two buildings (see Section 2.2.3). The report represents a deliverable for the project, Final 

Cost Comparison Report, and is contained in Appendix M: Comparison of Construction and 

Energy Costs for Radiant vs. VAV Systems in the California Bay Area. 
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CHAPTER 5: 
Codes and Standards 

The goal of this task was to (1) propose changes to Title 24 to support improved modeling 

capabilities and help achieve significant energy efficiency goals for radiant systems in 

California, and (2) propose changes, as needed, to relevant ASHRAE Standards, Handbooks, and 

Guidelines to provide new information and guidance on radiant systems. A separate research 

report describing this work was prepared by Feng et al. (2018). Four separate deliverables, as 

originally specified in the scope of work for the project, were combined into this single report. 

These four deliverables include: Codes and Standards Enhancement Reports, Title 24 Code 

Change Report, ASHRAE Standards and Handbooks Report, and Standard Addenda. The report 

represents a deliverable for the project, Final Codes and Standards Report, and is contained in 

Appendix W: Codes and Standards Report. Selected highlights from the report are summarized 

below. 

5.1. Title 24 Code Change Report 

The current version of California Building Energy Efficiency Standards, Part 6 of the California 

Building Standards Code (Title 24) does not address factors specific to high thermal mass 

radiant systems within the body of the Standards. The alternative compliance method 

references some limited aspects relating to radiant systems but it is incomplete and not 

practically applicable, and has not yet been implemented in the associated compliance 

software. In addition, there are some modeling limitations for radiant systems in EnergyPlus, 

which is the simulation engine underlying the compliance software for the Title 24 performance 

approach. Updates to the Title 24 alternative compliance method are needed to ensure that 

modeled performance accurately reflects proposed designs, and to properly allow buildings 

with radiant systems to take appropriate credit for their performance. This study provided a 

background and roadmap of the steps needed to provide effective coverage of radiant systems 

for Title 24 compliance. 

There are two methods for demonstrating compliance with Title 24:  

• Prescriptive Method: This approach allows projects to comply by using methods known 

to be energy efficient and cost effective. To show compliance, each individual 

component of the proposed building must meet specific prescribed requirements. The 

prescriptive approach is inflexible but provides a simple path for compliance.  

• Performance Method: This approach provides more flexibility in building design by 

allowing projects to trade off different factors so long as the overall simulated 

performance meets or exceeds that of a standard reference building, which represents 

the equivalent “code-minimum” building. The Alternative Compliance Method 

establishes the modeling rules and assumptions for the proposed and standard models.  

In addition to the two compliance paths above, there are mandatory measures that apply to all 

projects. The mandatory measures specify minimum requirements for the envelope, heating, 

https://en.wikipedia.org/wiki/California_Building_Standards_Code
https://en.wikipedia.org/wiki/California_Building_Standards_Code
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ventilating and air conditioning (HVAC) and water heating equipment efficiency, and other 

components in buildings.   

Given the wide range of radiant design and control approaches and the lack of industry 

consensus on best practice, it is difficult to identify mandatory and prescriptive requirements 

that would effectively and appropriately establish minimum energy performance for all radiant 

systems. Further, radiant systems are generally employed in high performance buildings that 

aim to meet high energy efficiency targets.  

Development of radiant system modeling requirements for the ACM Manual and the associated 

compliance software should be prioritized to address the current gap in the applicability of 

Title 24 to radiant systems. 

The lack of capability to explicitly model radiant systems and lack of modeling rules for the 

associated ventilation system results in misrepresentations of the actual design, and does not 

allow buildings with radiant systems to take appropriate credit for their performance. 

Limitations in the ability of EnergyPlus to simulate certain aspects of radiant systems should be 

addressed through further program development. 

Additionally, future efforts should evaluate opportunities for adding mandatory and 

prescriptive measures specific to radiant systems.  

5.2. ASHRAE Standards and Handbooks Report 

The overall radiant research project covered a range of topics with findings reported in formal 

EPIC deliverables and academic publications. Listed below are topics that are recommended to 

be added to the ASHRAE Standards and Handbooks. 

• Provide consistent definitions for different radiant system types in ASHRAE Handbook 

System and Equipment, Chapter 6 (Radiant Heating and Cooling). 

• Provide comfort data in real radiant buildings in ASHRAE Handbook System and 

Equipment, Chapter 6 (Radiant Heating and Cooling). 

• Provide revised cooling load definitions and calculations in ASHRAE Handbook 

Fundamentals, Chapter 18 (Nonresidential Cooling and Heating Load Calculations) and 

ASHRAE Handbook Fundamentals, Chapter 19 (Energy Estimating and Modeling 

Methods). 

• Provide revisions to account for effect of night cooling for buildings conditioned by 

radiant system in ASHRAE Handbook Fundamentals, Chapter 18 (Nonresidential Cooling 

and Heating Load Calculations), ASHRAE Handbook Fundamentals, Chapter 19 (Energy 

Estimating and Modeling Methods), ASHRAE Guideline 36-2018 (High-Performance 

Sequences of Operation for HVAC Systems), and ASHRAE Handbook Systems & 

Equipment, Chapter 6 (Radiant Heating and Cooling). 

• Provide new design guidance to account for the impacts of direct solar radiation on 

chilled radiant floors in ASHRAE Handbook Applications, Chapter 54 (Radiant Heating 

and Cooling), and ASHRAE Handbook System and Equipment, Chapter 6 (Radiant 

Heating and Cooling).  

• Provide new design guidance to account for the impacts of acoustical ceiling panels and 

clouds on cooling capacity of radiant ceiling slabs in ASHRAE Handbook System and 

Equipment, Chapter 6 (Radiant Heating and Cooling). 
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• Provide new design guidance to account for the impacts of air movement from ceiling 

and other fans on cooling capacity for both radiant ceilings and floors in ASHRAE 

Handbook System and Equipment, Chapter 6 (Radiant Heating and Cooling). 

• Provide feedback on cost-sensitive aspects of radiant system design and suggest control 

and design measures to reduce costs in ASHRAE Handbook System and Equipment, 

Chapter 6 (Radiant Heating and Cooling). This would include recommending that radiant 

systems include economizers (waterside or airside) under suitable climate conditions. 

• Based on the analysis comparing mean radiant temperature (MRT) and air temperature 

in commercial spaces, we have proposed updates to the prescriptive path in ASHRAE 

Standard 55-2017 (ASHRAE 2017) to estimate MRT from air temperature measurements 

under certain circumstances, such as in spaces without exposure to the exterior 

envelope. 
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GLOSSARY 

 

Term/Acronym Definition 

ACEEE American Council for an Energy-Efficient Economy 

ANSI American National Standards Institute 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning 

Engineers, Inc. 

ARTIC Anaheim Regional Transportation Intermodal Center 

C Degrees Celsius 

CBE Center for the Built Environment 

CEC California Energy Commission 

COBEE Conference on Building Energy & Environment 

CPUC California Public Utilities Commission 

DBC David Brower Center 

DOAS Dedicated outdoor air system 

DTU Technical University of Denmark 

EPIC Electric Program Investment Charge 

ETFE Ethylene tetrafluoroethylene 

EUI Energy use intensity 

F Degrees Farenheit 

HVAC Heating, ventilating, and air-conditioning 

IEQ Indoor environmental quality 

LED Light-emitting diode 

LEED U.S. Green Building Council’s Leadership in Energy and Environmental 

Design 

MEP Mechanical, electrical, and plumbing 

NBI New Buildings Institute 

PIER California Energy Commission Public Interest Energy Research 

PLEA Passive and Low Energy Architecture 
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SMUD Sacramento Municipal Utility District 

TAC Technical advisory committee 

TAG Technical advisory group 

VAV Variable air volume 
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