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An unanticipated architecture of the 750 kD holoenzyme of 3-
methylcrotonyl-CoA carboxylase

Christine S. Huang1, Peng Ge2, Z. Hong Zhou2, and Liang Tong1

1Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

2Department of Microbiology, Immunology and Molecular Genetics, California NanoSystems 
Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Abstract

3-methylcrotonyl-CoA carboxylase (MCC), a member of the biotin-dependent carboxylase 

superfamily, is essential for the metabolism of leucine, and deficient mutations in this enzyme are 

linked to methylcrotonylglycinuria (MCG) and other serious diseases in humans 1–8. MCC has 

strong sequence conservation with propionyl-CoA carboxylase (PCC), and their holoenzymes are 

both 750 kD α6β6 dodecamers. Therefore the architecture of the MCC holoenzyme is expected to 

be highly similar to that of PCC 9. Here we report the crystal structures of the Pseudomonas 

aeruginosa MCC (PaMCC) holoenzyme, alone and in complex with coenzyme A. Surprisingly, 

the structures show that the architecture and overall shape of PaMCC are strikingly different when 

compared to PCC. The α subunits display trimeric association in the PaMCC holoenzyme while 

they have no contacts with each other in PCC. Moreover, the positions of the two domains in the β 

subunit in PaMCC are swapped relative to those in PCC. The structural information establishes a 

foundation for understanding the disease-causing mutations of MCC and provides new insights 

into the catalytic mechanism and evolution of biotin-dependent carboxylases. The large structural 

differences between MCC and PCC also have general implications for the relationship between 

sequence conservation and structural similarity.
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The α and β subunits of human MCC have 42% and 34% sequence identity with those of 

human PCC (Supplementary Figs. 1, 2). The α subunit contains the biotin carboxylase (BC) 

and biotin carboxyl carrier protein (BCCP) domains (Fig. 1a), and a domain that mediates 

BC-CT interactions (BT domain) 9. BC catalyzes the MgATP-dependent carboxylation of 

biotin, and then a carboxyltransferase (CT) activity, supplied by the β subunit, catalyzes the 

transfer of the carboxyl group to the acceptor. The β subunit contains two domains (Fig. 1a), 

N and C domains, with the same backbone fold, and its active site is located at the interface 

of a dimer.

Our initial interest in MCC stemmed from its distinct site of carboxylation in the substrate 

(Fig. 1b). To understand the molecular basis for this activity, we produced crystals of the 

MCCβ hexamer from Pseudomonas aeruginosa (PaMCCβ) that diffracted to 1.5 Å 

resolution (Supplementary Table 1). This bacterial enzyme is highly homologous to human 

MCC (HsMCC), with sequence identities of 47% and 65% for the α and β subunits, 

respectively. To facilitate comparisons between these highly conserved enzymes, we have 

numbered the residues in PaMCC according to their equivalents in HsMCC. In 

Pseudomonas organisms, MCC is also involved in terpenoids metabolism 10,11.

We solved the structure of PaMCCβ using PCCβ as the model 9. However, subsequent 

crystallographic analysis revealed that the positions of the N and C domains in PaMCCβ 

(Fig. 1c) are swapped relative to those in PCCβ (Fig. 1d), even though the overall shapes of 

the two β6 hexamers are similar. This distinct domain organization of PaMCCβ is primarily 

due to a different connectivity between its N and C domains, rather than a swap of these two 

domains in the primary sequence (Supplementary Fig. 3, Supplementary text). This also 

leads to a large difference in the organization of the PaMCCβ dimer compared to PCCβ 

(Figs. 1e, 1f). The closest structural homolog of PaMCCβ is the α subunit of glutaconyl-

CoA decarboxylase (GCDα) 12,13 (Supplementary Fig. 4). However, the sequence 

conservation between PaMCCβ and GCDα (27% identity) is actually lower than that 

between PaMCCβ and PCCβ (34% identity). The CoA binding sites, located in the N 

domain, are swapped between MCCβ and PCCβ as well (Figs. 1e, 1f). This may be related 

to the activity of MCC on the γ carbon of the substrate (Fig. 1b), as the activity of GCDα is 

also on the γ carbon (Supplementary text).

Most importantly, the change in domain organization of MCCβ suggests that the overall 

architecture of the MCC holoenzyme may be different as well (Supplementary text). 

Therefore, we next determined the structures of PaMCC free enzyme and CoA complex at 

2.9 and 3.5 Å resolution, respectively (Fig. 2a, Supplementary Table 1). Like PCC, the 

holoenzyme of PaMCC contains a central β6 cylindrical core, with 3 α subunits at each end 

(Fig. 2b). The overall structures of the free enzyme and CoA complex of PaMCC are 

similar, although there are also recognizable differences (Supplementary Fig. 5, 

Supplementary text).

Strikingly, the positions of the α subunits in PaMCC, especially their BC domains, are 

entirely different from those in PCC (Fig. 2c). Rather than being splayed far apart from each 

other like in PCC (Fig. 2d), the three BC domains on either end of MCC are in direct contact 

with each other (Fig. 2b), burying 640 Å2 of the surface area of each BC domain. Therefore, 
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the BC domain shows trimeric association in the MCC holoenzyme, although this trimer is 

probably unstable on its own due to the relatively small buried surface area. Overall, the 

MCC holoenzyme has the shape of a cylinder, approximately 100 Å in diameter and 200 Å 

tall, and this shape is remarkably different from that of PCC (Supplementary Fig. 6) 9.

As an independent verification for the crystal structure of PaMCC, we carried out electron 

microscopy (EM) studies on this holoenzyme and produced a reconstruction at 12 Å 

resolution (Supplementary text, Supplementary Figs. 7, 8). The crystal structure and the EM 

density are in excellent agreement with each other (Figs. 2e, 2f), confirming the large 

structural differences between the MCC and PCC holoenzymes.

Interactions between the α and β subunits in PaMCC are mediated predominantly by the BT 

domain, and by the BCCP domain when it is in the active site of the β subunit for catalysis 

(see below). Approximately 3,000 Å2 of the surface area of each α subunit is buried in the 

interface of the holoenzyme. The BT domain buries 1,500 Å2 in the interface with the β 

subunit, as well as 200 Å2 in a contact with the BC domain of a neighboring α subunit (see 

below). The BCCP domain in the active site of the β subunit contributes 700 Å2 to the 

surface area burial, primarily through residues around the biotinylated Lys681 residue 

(Supplementary Fig. 1).

The BT domain in PaMCC contains a central α-helix surrounded by a seven-stranded, 

highly-twisted anti-parallel β-sheet (Fig. 3a, Supplementary Fig. 9). The overall structure of 

this domain is similar to that in PCC, with an rms distance of 1.8 Å for their equivalent Cα 

atoms. In addition, sequence comparisons suggest that the BT domain of HsMCC and most 

other MCCs may have an eight-stranded β-barrel, which would be equivalent to that in PCC 

(Fig. 3a, Supplementary text).

However, the position of the BT domain relative to the β subunit and its interactions in the 

PaMCC holoenzyme are different compared to PCC (Fig. 3b, Supplementary Figs. 10, 11). 

The hook of the BT domain 9, connecting the central helix to the first β-strand, is crucial for 

interactions with the β subunit but has a significantly different conformation in PaMCC (Fig. 

3a). The hook interacts with both the N and C domains of the β subunit in PaMCC, and 

residues 542–544 in the hook form a parallel β-sheet with strand β1 (residues 95–100) in the 

N domain of the β subunit (Fig. 3c, Supplementary Fig. 10, Supplementary text). Consistent 

with these observations, we found that structure-based mutations in the hook could 

destabilize the PaMCC holoenzyme (Supplementary Fig. 12).

In addition to the hook, there is direct contact between the BT domain of one α subunit and 

the BC domain of a neighboring α subunit, where residues 604–608 (strand β27 of the BT 

domain) form an anti-parallel β-sheet with strand β3 of the BC domain (Fig. 3b, 

Supplementary text).

Overall, the unique interactions for the BT domain and the trimeric association of the BC 

domain in the MCC holoenzyme suggest that PCC cannot form a similar architecture, and 

therefore it is unlikely that the observed structural differences between MCC and PCC 

represent different stages of catalysis for these enzymes.
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The distance between the active sites of BC and CT is approximately 80 Å in MCC (Fig. 

4a). Therefore, the entire BCCP domain must translocate during MCC catalysis, as is the 

case with PCC 9 and pyruvate carboxylase (PC) 14–17. On the other hand, MCC is distinct 

from PCC in that while the BT domain of an α subunit contacts its closest β subunit, its 

BCCP domain is actually located in the active site of a neighboring β subunit (Fig. 4a), 

another consequence of the swapping of the N and C domains in the β subunit of MCC.

We observed the binding of both CoA and BCCP-biotin to the active site of one of the β 

subunits (Fig. 4a, Supplementary Fig. 13), and built a model for the bound conformation of 

methylcrotonyl-CoA (Fig. 4b, Supplementary Fig. 14, Supplementary text). The binding 

modes are consistent with the expected kinetic mechanism of the CT reaction 18. The N1’ 

atom of biotin is ~6 Å from the reactive γ carbon of methylcrotonyl-CoA in this model 

(Supplementary Fig. 14). There is a large conformational change for two helices in the 

active site upon CoA binding (Supplementary Fig. 15, Supplementary text).

The structure of PaMCC provides a foundation for understanding the molecular basis of its 

disease-causing mutations in HsMCC, which represent one of the most frequently observed 

inborn errors of metabolism 1–4,19–21. The missense mutations are distributed throughout the 

holoenzyme (Fig. 4c), but their effects can be interpreted based on the structure 

(Supplementary text; Supplementary Table 2). Many of the mutations are located in or near 

the BC or CT active site (for example R385S in the α subunit, A218T and V375F in the β 

subunit; Fig. 4b, Supplementary Figs. 14, 16, 17). The V375F mutation may block the 

binding of BCCP to the active site of the β subunit (Supplementary Fig. 17). A group of 

mutations are located in or near the subunit interface in the holoenzyme, such as S535F in 

the hook of the BT domain (Fig. 3c). Additional mutations are located in the hydrophobic 

core of the structure, and may disrupt folding and/or stability of the enzyme.

Our structure of the PaMCC holoenzyme also has implications for the evolution of biotin-

dependent carboxylases. The structural differences between MCC and PCC suggest that 

there may be two separate lineages of such enzymes that carboxylate CoA esters of organic 

acids. One lineage includes PCC and acetyl-CoA carboxylase (ACC), which carboxylates 

the α carbon of the acid. The other lineage targets the γ carbon of an α-β unsaturated acid 

and includes MCC, GCDα, and possibly also geranyl-CoA carboxylase (GCC, 

Supplementary Fig. 18) 10,11.

More importantly, the structures of MCC and PCC show that their strong sequence 

conservation only ensures that the backbone folds of the domains in the two enzymes are the 

same. On the other hand, the organization of these domains in the individual subunits and 

especially the architecture of the subunits in the holoenzymes are remarkably different. 

These observations may also have wide-ranging implications for the relationship between 

sequence conservation and structural similarity in general.
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Methods summary

Crystallography

The α and β subunits of PaMCC were co-expressed in E. coli, with a His-tag on the β 

subunit. The PaMCC holoenzyme was purified by nickel affinity and gel filtration 

chromatography. Crystals were obtained by the microbatch method under oil, and the 

structures were determined by the molecular replacement method.

Electron microscopy

PaMCC sample was stained with uranyl acetate and electron micrographs were recorded at 

70,000× magnification in a 200 kV electron microscope. A 12 Å resolution 3D 

reconstruction was obtained from ~12,000 particle images.

Mutagenesis and kinetic studies

Site-specific mutants were designed based on the structural information, and their effects on 

the formation of the holoenzyme were assessed by nickel affinity chromatography. The 

catalytic activity of PaMCC was determined by a coupled enzyme assay, monitoring the 

hydrolysis of ATP.

Full Methods and any associated references are available in the online version of the paper 

at www.nature.com/nature.

Methods

Protein expression and purification

Full-length PaMCCβ was subcloned into the pET28a vector (Novagen). The expression 

construct contained an N-terminal hexa-histidine tag, which was not removed for 

crystallization. The native protein was over-expressed overnight in E. coli BL21 Rosetta 

(DE3) cells (Novagen) at 20°C in the presence of 1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) (Gold Biotechnology, Inc). The soluble protein was eluted 

from nickel affinity beads (Qiagen) and was further purified by gel filtration 

chromatography with a running buffer of 25 mM Tris (pH 7.4), 250 mM NaCl, and 2 mM 

DTT. The purified protein was concentrated to 20 mg/ml, supplemented with 5 % (v/v) 

glycerol, flash-frozen with liquid nitrogen and then stored at −80 °C.

The PaMCC holoenzyme was over-expressed using a bi-cistronic plasmid, with PaMCCα 

(untagged) placed downstream of PaMCCβ in the pET28a vector, similar to the strategy 

used for the co-expression of the PCC holoenzyme 24. The holoenzyme was purified 

following the same protocol as that for PaMCCβ.

Protein crystallization

Crystals were obtained with the microbatch under-oil (Paraffin oil, Hampton Research) 

method at 20°C. The protein was at 20 mg/ml concentration. For PaMCCβ, the precipitant 

solution contained 100 mM Tris (pH 8.5), 0.2 M (NH4)2HPO4, and 30% (v/v) PEG 200.
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For the PaMCC holoenzyme, the protein was first incubated with 2 mM methylcrotonyl-

CoA for 30 min on ice. The precipitant solution contained 20% (w/v) PEG 3350 and 0.2 M 

sodium malonate (pH 7.0) or 0.2 M Na2SO4. Crystals with the shape of thin plates appeared 

after 10–14 days and belonged to space group P21. Most of these crystals diffracted X-rays 

poorly. CoA was observed in the active site of the β subunit based on the subsequent 

crystallographic analysis.

Under the same conditions, crystals with the shape of rhomboid blocks were observed after 

6–8 weeks, after significant evaporation of the crystallization drops. These crystals belonged 

to space group R32, and showed better X-ray diffraction. They contained the free enzyme of 

PaMCC.

The crystals were flash-frozen in liquid nitrogen for diffraction analysis and data collection 

at 100 K.

Data collection and structure determination

X-ray diffraction data sets were collected on an ADSC Q315 CCD at the X29A beamline of 

the National Synchrontron Light Source (NSLS) at Brookhaven National Laboratory. The 

diffraction images were processed using the HKL package 25. The data processing and 

refinement statistics are summarized in Supplementary Table 1.

Crystals of PaMCCβ contained one β subunit in the asymmetric unit. The structure was 

determined by the molecular replacement method with the program Phaser 26, using the 

structure of PCCβ as the model 24. Structure refinement was carried out with the programs 

CNS 27 and Refmac 28, and programs O 29 and Coot 30 were used for manual model 

rebuilding. Water molecules were located automatically with the program CNS.

Crystals of the CoA complex of PaMCC holoenzyme contained one dodecamer in the 

asymmetric unit. The structure was determined by the molecular replacement method with 

the program Phaser, using the structure of PaMCCβ hexamer and the BC domain of 

PCCα 24 as the models. One copy of the BCCP domain was also located, using the BCCP 

domain of PCC as the model. However, molecular replacement calculations with the BT 

domain of PCC were not successful, and the BT domain model was built based on the (omit) 

electron density after structure refinement.

Crystals of the free enzyme of PaMCC contained one αβ protomer in the asymmetric unit. 

The structure was determined by the molecular replacement method, using the structure of 

one αβ protomer of PaMCC CoA complex as the model. No water molecules were included 

in the atomic models of the holoenzyme due to the limited resolution.

Electron microscopy

PaMCC sample was diluted to appropriate concentrations for electron microscopy (EM) 

with a buffer containing 25 mM Tris (pH 7.4) and 250 mM NaCl. An aliquot of 2.5 µl of 

each of the diluted samples was placed onto a carbon film-coated, glow-discharged 300-

mesh copper grid. Excess sample was blotted away by filter paper after one minute. The 

sample was immediately stained with 2% uranyl acetate solution and air dried. Electron 

Huang et al. Page 6

Nature. Author manuscript; available in PMC 2012 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



micrographs were recorded in an FEI TF20 electron microscope (operated at 200 kV) on a 

TVIPS 16-megapixel CCD camera at 70,000× magnification. The sample with optimal 

particle concentration as shown in Supplementary Fig. 6 was used for extended imaging and 

in-depth 3D reconstruction analysis.

First, we picked 500 particles manually from 5 CCD images with EMAN boxer program and 

obtained a preliminary reconstruction to 22 Å resolution with EMAN 31. Approximately 

20,000 particles were subsequently picked automatically from 30 CCD images with 

SIGNATURE 32, using the previous 22 Å structure as reference. D3 symmetry was imposed 

during refinement and 3D reconstruction. Approximately 12,000 particles were selected for 

the final 3D reconstruction. The resolution of the final 3D reconstruction was assessed to be 

12 Å based on the 0.5 cutoff in the Fourier shell correlation between 3D reconstructions 

from the two half sets of the whole data set (Fig. S7). The UCSF Chimera program was used 

to create 3D graphical representations 33. The atomic model of MCC was fitted to the 

density map using the fit-model-to-map module of Chimera.

Mutagenesis and kinetic studies

Site-specific mutations were introduced with the QuikChange kit (Agilent) and sequenced 

for confirmation. The mutant plasmids were transformed into E. coli, and the formation of 

the PaMCC holoenzyme was assessed by nickel affinity chromatography.

The catalytic activity of PaMCC was determined using a coupled enzyme assay, converting 

the hydrolysis of ATP to the disappearance of NADH 34,35. The reaction mixture contained 

100 mM HEPES (pH 8.0), 0.5 mM ATP, 8 mM MgCl2, 40 mM KHCO3, 0.5 mM 

methylcrotonyl-CoA or crotonyl-CoA, 0.2 mM NADH, 0.5 mM phosphoenolpyruvate, 7 

units of lactate dehydrogenase, 4.2 units of pyruvate kinase, and 200 mM KCl. The 

absorbance at 340nm was monitored for 5 min.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The domains of MCCβ are swapped compared to PCCβ

(a). Domain organization of human MCC and PCC. (b). Distinct carboxylation targets of 

MCC and PCC, indicated by the red arrow. (c). Crystal structure of the β6 hexamer of 

PaMCC. The subunit beneath β1 is omitted for clarity, and the other two subunits in the 

bottom layer are colored in green. The blue arrow indicates the swapping of the positions of 

the N and C domains relative to PCCβ. Gray lines mark the boundaries of the subunits. (d). 

Structure of Roseobacter denitrificans PCCβ 9. (e). Structure of the β2 dimer of PaMCC. The 

N and C domains of the subunit in the bottom layer (β4) are colored in magenta and green, 

respectively. (f). Structure of the β2 dimer of PCC. All the structure figures were produced 

with PyMOL (www.pymol.org) unless stated otherwise.
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Figure 2. The MCC holoenzyme has a strikingly different architecture compared to PCC
(a). Structure of the CoA complex of PaMCC holoenzyme, side view. Domains in the α and 

β subunits in the top half of the structure are colored as in Fig. 1a. The α and β subunits in 

the bottom half are colored in magenta and green, respectively. The molecular surface is 

shown in a semi-transparent rendering. (b). Structure of the PaMCC holoenzyme, top view. 

(c). Structure of the PCC holoenzyme 9, side view. (d). Structure of the PCC holoenzyme, 

top view. (e). EM reconstruction of PaMCC at 12 Å resolution, side view. The crystal 

structure of the PaMCC free enzyme can be readily fit into the EM density. (f). EM 

reconstruction of PaMCC, top view. Panels e and f were produced with Chimera 22.
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Figure 3. The BT domain mediates interactions in the MCC holoenzyme
(a). Overlay of the structure of PaMCC BT domain (in orange) with that of PCC (gray). A 

large conformational difference for the hook is visible. The exact positions of many of the β-

strands are different as well. (b). The BT domain (orange) contacts a β subunit (β1, N 

domain in cyan, C domain yellow) as well as a neighboring α subunit (α2, red) in the 

PaMCC holoenzyme. (c). Detailed interactions between the hook of the BT domain and the 

β subunit in PaMCC. Three disease-causing mutation sites near this interface are labeled in 

red. For stereo version of the panels, please see Supplementary Figs. 9, 10.
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Figure 4. Molecular basis for catalysis and disease-causing mutations in the MCC holoenzyme
(a). The BC and CT active sites (indicated with the asterisks) are separated by 80 Å in the 

PaMCC holoenzyme. Molecular surfaces of one α subunit and two β2 dimers are shown. 

The position of ADP bound to the BC subunit of E. coli acetyl-CoA carboxylase 23 indicates 

the BC active site. Helices α6-α6A are shown as a ribbon in order to make CoA visible. (b). 

Schematic drawing of the active site of the β subunit. Biotin (black) and the modeled 

conformation of methylcrotonyl-CoA (gray) are shown as stick models. Residue Ala218 is 

the site of a disease-causing mutation. For stereo version of this panel, please see 

Supplementary Fig. 14. (c). Disease-causing mutation sites are shown as spheres in the 

PaMCC structure. The mutations are distributed throughout the holoenzyme.
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