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Abstract
Humans must often make decisions in temporally autoregres-
sive environments (e.g., weather, stock market). Here, cur-
rent states of the environment regress on their previous states
(either across consecutive timesteps or from several timesteps
back in a patterned fashion). The current work investigates
people’s abilities to utilize previous states of autoregressive
sequences as cues to its current state. In Experiment 1 we de-
termine whether utilization of autoregressions reduces as the
temporal distance of the predictive timestep increases; and in
Experiment 2 we explore whether participants’ utilization of
previous timesteps in predictions compete such that they re-
duce utilization of one timestep when increasing utilization
of another timestep. We also fit data from both experiments
with a trial-by-trial decision model. Overall, we find that par-
ticipants significantly reduced utilization of a cue with its in-
creased temporal distance. However, we obtained less conclu-
sive results on competition among timestep cues. These results
can explain people’s predictions in sequential decision tasks
(e.g., their tendencies to perceive clumpiness in random envi-
ronments).
Keywords: decision making; autoregression; cue competition;
recency

Introduction
Many real world systems are autoregressive—that is, past
states of a system often provide important cues about its
current state. For instance, we can predict aspects of the
weather at a location (e.g., temperature) quite accurately us-
ing the weather report from the past week or even from a year
ago. The same can be said about stock markets and clothing
trends—such systems regress across consecutive timesteps
and/or a certain number of timesteps back in a patterned fash-
ion. In fact, analysts frequently use autoregressive functions
to make predictions about the states of these systems (Salisu
et al., 2022).

There is considerable work to suggest that humans both
assume that systems exhibit autoregressive characteristics
and are good at identifying and utilizing existing autore-
gressions to make predictions. For instance, Luthra and
Todd (2021b) found that when given a two-alternative forced
choice (2AFC) task, participants used a default recency
strategy—on each new trial, they chose alternatives that were
correct in recent trials, hence assuming autoregression across
consecutive trials. Further, participants altered the weight
they gave to recent trials depending on what was optimal for
the condition they were given—on conditions where previous
trials were less predictive of future ones, participants appro-
priately reduced their weighting of those trials when making

each new prediction. Other research also suggests that partic-
ipants perform well when the current state regresses on states
from a certain number of timesteps back (e.g., three timesteps
ago)—this is clear from people’s ability to quickly identify
patterns and has been demonstrated widely across the statis-
tical learning literature (Saffran et al., 1996).

A default recency strategy, described above, is effective in
dynamic autoregressive structures frequently observed in the
real world—here only a small number of previous states will
be predictive of the current state. However, research finds
that people are usually more recency driven than what is op-
timal in their environment (da Silva et al., 2017; Luthra &
Todd, 2021b). For example, Luthra and Todd (2021b) found
that participants facing three environmental structures with
varying degrees of optimal recency always responded to the
task with slightly greater recency (i.e., using fewer previ-
ous timesteps) than what was optimal for their environmental
structure. This use of greater-than-optimal recency was es-
pecially peculiar because participants were demonstrably ca-
pable of using the optimal recency values of at least some
of the environments. In the current study we investigate this
behavior more closely, exploring possible explanations for it.

We believe that greater-than-optimal recency can be ex-
plained by a declining ability to perceive and utilize autore-
gressions with older timesteps, tendencies to reduce use of
one timestep cue when another cue is used more (cue com-
petition), or a combination of both. We investigate these ex-
planations in a task where outcomes are autoregressed on one
or more previous timesteps. We will use the term validity
to refer to the actual regression coefficients of previous out-
comes on the current outcome and the term utilization to refer
to regression coefficients of previous outcomes on people’s
predictions of the current outcome. Hence, validity is the
actual autoregression of task outcomes and utilization is the
subjective autoregression used by participants. These terms
originate from Brunswik (1955) lens theory and have been
frequently used in the function and multiple cue learning lit-
erature (e.g., Speekenbrink & Shanks, 2010)

The first phenomenon we are interested in studying is the
declining ability to identify regression to previous outcomes
with their increasing temporal distance from the current pre-
diction. This could produce patterns of declining utiliza-
tion (i.e., subjective regression weight) of older outcomes.
For instance, if the outcome at every timestep t regresses on
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timesteps t − 1 and t − 2 equally, participants might display
greater utilization of timestep t −1, due to reduced ability to
identify regression to timestep t −2. This declining ability to
identify regressions to older timesteps might be why partic-
ipants frequently use recency as a decision strategy even in
environments where it is not optimal. For instance, in 2AFC
tasks where the probabilities of the presented alternatives are
unequal and stable (not autoregressed) across trials, the opti-
mal strategy is to utilize all previous trials equally, thereby al-
ways choosing the more probable outcome (probability max-
imizing). However, even in such environments, participants
utilize recent trials with greater weighting, choosing alterna-
tives that were successful in a recent window of trials (Luthra
& Todd, 2019). We investigate declining utilization with tem-
poral distance of timesteps in Experiment 1—across three
conditions, outcomes on each timestep regress on the out-
comes one, two, or three timesteps back; we analyze whether
utilization reduces as the temporal distance from the current
timestep increases.

The second phenomena of interest is cue competition
among previous timesteps––that is, reducing the utilization
of one timestep when the utilization of another timestep is
increased. Cue competition was initially reported in the mul-
tiple cue learning literature where participants must learn to
predict one variable from multiple other variables (Kruschke
& Johansen, 1999). Here, researchers often find that the in-
creased utilization of one cue detracts from the utilization of
other cues (for instance, arising due to attention limitations,
Kruschke & Johansen, 1999). In more extreme versions of
cue competition, participants have been found to make de-
cisions based on a single best cue, ignoring all others (e.g.,
take-the-best heuristic; Gigerenzer & Goldstein, 1999). In
the current study, we determine whether such cue competi-
tion effects extend to temporal cues (timesteps in a sequence).
There is some evidence in support of this—-for instance, a
win-stay-lose-shift strategy (making decisions based on a sin-
gle previous outcome, even if a larger number of them are
predictive; Worthy & Maddox, 2014) could result from tem-
poral cue competition. Further, studies frequently find that
people tend to perceive nonexistent patterns in random tem-
poral sequences (Hyman & Jenkin, 1956)—this possibly oc-
curs because people give undue importance to few temporal
cues (leading to exaggeration of patterns), instead of weigh-
ing the larger sequence equally (which will enable accurate
perception of randomness). We investigate cue competition in
Experiment 2––here each outcome regresses on two previous
outcomes, from one and two timesteps back. By varying the
validity of these two previous timesteps across three condi-
tions, we observe how participant utilization of one timestep
changes with the increased validity of another.

To study this, we used a task with three discrete mutu-
ally exclusive outcomes (a rabbit appears from one of three
holes). However, unlike a typical multi-alternative forced
choice task, participants in our task did not predict only the
actual outcome; rather they expressed their perceived prob-

abilities of the three outcomes (by placing a dog distanced
from the three holes in accordance to the predicted underly-
ing probabilities). Predictions were made in this format (i.e,
as probabilities instead of outcomes) to help us analyze how
participants combined multiple timestep cues to make predic-
tions. As mentioned earlier, in Experiment 2, the outcome on
each trial t regressed on two previous trials, t − 1 and t − 2.
If, for instance, the validity of t − 1 was 0.4 and the validity
of t − 2 was 0.2, under the forced choice task, optimal re-
sponding would entail always choosing the outcome that ap-
peared on trial t −1 and completely ignoring trial t −2—that
is, probability maximizing. If participants used this strategy,
it would impede us from investigating their abilities to com-
bine multiple cues. Hence, we created a novel task where
incentivized optimal responding would entail accurately ex-
pressing the underlying probabilities, as we describe further
in Methods below.

Methods
Participants
We had 159 and 175 participants in Experiments 1 and 2 re-
spectively, recruited on MTurk. In both experiments partici-
pants completed only one of three conditions.

Task
Participants played our Catch-the-Rabbit game, repeatedly
placing their dog somewhere in a triangular carrot-patch to
prevent a rabbit from stealing their carrots (see Figure 1). On
each trial (of 150 total trials), a rabbit appeared on the com-
puter screen from one of three equally spaced holes. Prior to
the appearance of the rabbit, participants placed their dog in
between the three holes to chase away the rabbit. On each
trial, the rabbit could steal a maximum of 50 carrots and the
closer the participants placed their dog to the hole at which
the rabbit appears, the more carrots they would save on that
trial. However, the number of carrots saved did not increase
linearly with closeness of the dog to the correct hole—if that
reward mapping were used, probability maximizing would be
optimal. Rather, the rewards increased as a log function of
closeness to the correct hole. This reward structure ensured
that the participants saved the most carrots in the long term
if they placed the dog in accordance to the underlying prob-
abilities of the rabbit next appearing at the three holes. The
cross-marks for dog placement allow participants to express
their predicted probabilities for the rabbit’s next location at
0.1 intervals. For all cross-marked positions, the total proba-
bilities of the three holes added to 1. For instance, the position
of the dog in Figure 1 would be optimal if the rabbit had a 0.7
probability of appearing from Hole A, a 0.2 probability of ap-
pearing from Hole B, and a 0.1 probability of appearing from
Hole C. See Appendix for more detail on reward structure.

Participants were informed that they would earn the high-
est reward (i.e., save the most carrots) overall if they correctly
matched the underlying trial-by-trial likelihoods of rabbit po-
sitions with their dog placements. Participants played demo
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Figure 1: Snapshot of the Catch-the-Rabbit game. Partici-
pants place the dog on one of the cross-marked positions in
accordance to their judged probabilities of the rabbit’s appear-
ance from the three holes. Following placement, the rabbit
appears and participants are informed about the number of
carrots saved in the trial.

trials to help them understand the reward structure better and
match the underlying probabilities.

We ran an initial experiment (Experiment 0; 49 partici-
pants) to test whether our novel task worked to get partic-
ipants to predict the underlying probabilities through their
placement of the dog. The underlying probabilities of the
three holes was fixed at 0.6, 0.3, and 0.1 (randomly assigned
across Holes A, B, and C) throughout the game. Participants
successfully learned and expressed these underlying proba-
bilities early in the game—on average they placed the dog at
0.57, 0.28, and 0.15 closeness to the three holes (Figure 2).
These results assured us that our task can successfully enable
participants to express their probabilities of outcomes.

Figure 2: Distribution of participant’s responses in Experi-
ment 0. Participants appear to match the outcome probabili-
ties.

Autoregressive Sequences
The sequences were created using the following regression
equation:

P(outcomet) =
3

∑
n=1

vn ·outcomet−n + c (1)

where P(outcomet) is a vector of the probabilities of the three
outcomes at timestep t, outcomet−n is a vector of the out-
comes at timestep t − n (e.g., [1, 0, 0] in Figure 1), vn is
the corresponding validity (regression coefficient) of timestep
t − n, and c is a constant probability assigned to the three
holes on every trial. Coefficients vn and constant c were var-
ied between timesteps and conditions. The stimuli sequences
were created beforehand and parameter recovery was con-
ducted to ensure that the intended coefficients could be cor-
rectly recovered from the stimuli sequences.

In Experiment 1, outcomes regressed with 0.6 coefficient
on one of three previous outcomes. Therefore, across Con-
ditions 1 to 3, v1, v2, or v3 was set to 0.6 respectively while
the other coefficients were fixed at 0. Hence, on each trial,
there was a 0.4 probability of the outcome being randomly
chosen from the three holes, adding to each hole a constant
probability c of 0.133 ( 0.4

3 ) across all trials.
In Experiment 2, across all conditions, outcomes regressed

on two previous timesteps with differing coefficients. In Con-
dition 1, v1 was 0.4, v2 was 0.2 and c was 0.133; in Condition
2, v1 was 0.2, v2 was 0.4 and c was 0.133; and in Condition
3, both v1 and v2 were 0.4 and c was 0.066. These combina-
tions allowed us to study whether and how utilization of one
timstep changes with the validity (and utilization) of another
timestep, as expected through cue competition. In Experi-
ment 2, across all conditions, v3 was fixed at 0—we believe
that two previous timesteps should sufficiently answer our
questions regarding cue competition. Here input timesteps in
the regression equation (i.e., t − 1 and t − 2) were correlated
on every trial, which could impede accurate detection of re-
gression coefficients. Parameter recovery was conducted to
ensure that only appropriate sequences where multicollinear-
ity did not interfere with coefficient detection were used in
the experiment.

Experiment 1
Because the outcomes in this experiment regressed on only
one of three previous outcomes, the regression equation sim-
plified to the following across the three conditions with n be-
ing varied between 1 and 3:

P(outcomet) = 0.6 ·outcomet−n +0.133 (2)

The goal of this experiment was to determine whether and
how participant utilization of previous timesteps reduced as
distance to the current timestep increased. We hypothesize
that utilization of the valid timestep would be highest in Con-
dition 1 (where n is set to 1), lower in Condition 2 (n = 2),
and lowest in Condition 3 (n = 3).
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Figure 3: Distribution of participant’s regression parameters for three conditions of Experiment 1. We find that utilization of
valid timesteps is greatest for Condition 1 (where t −1 is the valid timestep), lower for Condition 2 (t −2 is the valid timestep),
and lowest for Condition 3 (t −3 is the valid timestep).

Results and Discussion
We fit a regression model to participant data that was similar
to that used for generating the data:

response weightst =
3

∑
n=1

un ·outcomet−n + c; (3)

response probt =
response weightst

∑
3
w=1 response weightsw

t
(4)

where un are participants’ utilizations (subjective regression
coefficients) and c is the constant probability participants as-
signed to the three holes across all trials. These parameters
provide us with response weightst which is a vector repre-
senting the weight given to the three outcomes on timestep
t. Luce’s choice rule was used on these weights to provide
response probt , the probabilities assigned by participants to
the three outcomes.

Therefore, four parameters were fit to participants—u1, u2,
u3, and c. The regression model was fit using MLE and we
used a multinomial distribution to determine the probability
of participant data given the estimated response probabilities.

Figure 3 shows the distribution of regression parameters
for the three conditions. We find that utilization of the valid
timestep (u1 for Condition 1, u2 for Condition 2, and u3
for Condition 3) varied across conditions—as anticipated,
utilization of the regressing timestep reduced in conditions
where it was more distant. This difference in utilization of the
valid timestep across conditions was significant (p < .001).
The reduced utilization of distant timesteps could be a result
of difficulty in detecting regressions due to declining memory
and/or failures in recollecting older outcomes during predic-
tion.

We also find that in all three conditions, participants uti-
lize recent timesteps more even if they have 0 validity—they
tend to detect spurious regressions to recent timesteps more
than to older ones (e.g., in Condition 2, u1 is significantly
greater than u3, though both have 0 validity). In fact, in Con-
dition 3, participants utilize timestep t − 1 similarly as t − 3

even though v1 is 0 and v3 is 0.6. This pattern suggests that
participants are perhaps more sensitive to similarities to pre-
vious timesteps than to dissimilarities—they appear to “re-
ward” timesteps (increase their strength) for their ability to
predict outcomes more than they tend to “punish” them (de-
crease their strength) for their inability to predict. If they re-
warded and punished them equally, we would expect that u1
would be lower than u3 in Condition 2—because of superior
memory for recent timesteps, participants would punish u1
more stringently for its inability to predict outcomes. We ver-
ify this account through our decision model in the Modelling
section.

Experiment 2
Here, each trial regressed on two previous timesteps. In Con-
dition 1, v1 was 0.4, v2 was 0.2 and c was 0.133; in Condition
2, v1 was 0.2, v2 was 0.4 and c was 0.133; and in Condition
3, both v1 and v2 were 0.4 and c was 0.066.

We anticipate that due to cue competition, the increased
validity (and utilization) of one timestep will accompany the
reduced utilization of another timestep. Hence, we expect
that utilization of t −1 should be significantly lower in Con-
dition 3 as compared to Condition 1 although v1 is the same
in both conditions and similarly, utilization of t −2 should be
significantly lower in Condition 3 as compared to Condition
2.

Results and Discussion
We used the model described in Experiment 1 to estimate par-
ticipant utilization, but truncated to only include regression
coefficients u1 and u2 and constant c. We did not fit u3 be-
cause we found that participants displayed ∼0 utilization of
t − 3 and it appeared to be irrelevant to our analyses on cue
competition.

Figure 4 reports the distribution of u1, u2, and c for the
three conditions. Utilization u2 is slightly, but significantly,
lower in Condition 3 than in Condition 2 (p < .05), consis-
tent with cue competition. However, there is no difference in
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Figure 4: Distribution of participant’s regression parameters for three conditions of Experiment 2. We find that utilization of
timestep t −2 is significantly higher in Condition 2 compared to Condition 3 (possibly due to lower competition from timestep
t −1). However, there is no significant difference in utilization of timestep t −1 between Condition 1 and 3.

u1 between Conditions 1 and 3. This might be because older
outcomes overall have less utilization, hence reducing com-
petition from t−2 to utilization of t−1 in Condition 3. These
results provide us with an inconclusive answer regarding cue
competition—we attempt to understand cue competition fur-
ther in the trial-by-trial decision model described next.

As in Experiment 1, we find an overall reduced utilization
of u2 as compared to u1. In Condition 3, u2 is significantly
lower than u1 although both have similar regression coeffi-
cients (p < .01). Further, in Condition 2, distribution of u1 is
similar to u2, even though regression on t −2 is higher.

Modelling
We used a trial-by-trial decision model to formalize the mech-
anisms participants used as they performed the task. By
comparing several versions of the model (using BIC) we at-
tempted to determine decision mechanisms (i.e., utilization
decline and cue competition) that were essential to partici-
pants’ prediction behaviors. In this section, we report model
comparison results using combined data from Experiments 1
and 2 since we expect participants to perform the same trial-
by-trial decision processes across both experiments.

Participants are modeled as using outcomes from previous
timesteps as cues for predicting the current timestep. Using
a variation of the delta rule (Busemeyer & Stout, 2002), they
estimate the weight wt, t−n they should give to timestep t − n
to predict timestep t as:

wt, t−n = (1−δ) ·wt−1, t−n +δ ·Mt−n · (1−α)n−1 (5)

where Mt−n =

{
1 i f Ot = Ot−n,

0 i f Ot ̸= Ot−n
(6)

Above, δ is the learning rate, with higher values producing
quicker learning; Mt−n is 1 if Ot (the outcome from timestep
t) and Ot−n (the outcome from timestep t − n, whose weight
wt, t−n are being currently evaluated) are the same; and α is a
decline rate multiplied to outcomes. High values of α impede

learning of regression to older timesteps, thereby implement-
ing a form of utilization decline.

In this version of the delta rule, we only reward timestep
cues for accurate prediction and we do not punish them for
incorrect prediction. We also fit data with a version of the
punishing model (described in Kelley & Busemeyer, 2008)
and obtained higher BIC values (see Appendix). This support
for a model without punishment fits with our findings on the
pattern of spurious regressions observed in Experiment 1.

We implement a specific form of cue competition (Kr-
uschke & Johansen, 1999) as follows: Once weights are
learned at timestep t, they compete for attention during pre-
diction through a softmax function. These new competitive
weights, cwt, t−n are calculated as:

cwt, t−n =
eθ·wt, t−n

∑
3
m=1 eθ·wt, t−m

(7)

where θ is the cue competition rate. In simulations we find
that θ values close to 3.5 lead competitive weights to be
roughly similar to initial input weights (i.e., no competition),
higher values produce increases in already high weight values
(i.e., positive competition), and lower values produce more
equivalent weight values (i.e., negative competition).

Finally, cwt, t−n is used to make predictions for outcome
probabilities on trial t:

pred weights =
3

∑
n=1

cwt, t−n ·Ot−n · (1−α)n−1; (8)

pred prob[i] =
eψ·pred weights[i]

∑
3
j=1 eψ·pred weights[ j]

(9)

Here, pred weights are the weights assigned to the three
outcomes and are obtained by adding weighted timestep cues.
Predicted probabilities of three outcomes, pred prob, is ob-
tained through a softmax version of Luce’s choice rule where
ψ represents amount of exploration by participants when se-
lecting probabilities of the three outcomes. This is the same
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equation used in Eqn. 7; however, it is applied to predictions
instead of regression coefficients cwt, t−n. Although explo-
ration of outcomes is not relevant directly to the topic of the
current study, it is useful to include in the model since it al-
lows for individual differences in exploratory responding.

Decline parameter α is used for suppressing older out-
comes both in Eqn. 5 (at time of learning regression) and
in Eqn. 8 (at time of prediction). Including α in Eqn. 5
leads it to interact with cue competition in Eqn. 7 such that
older timesteps might receive a smaller boost from cue com-
petition because of initial suppression. We also fit a model
where α was only used during prediction in Eqn. 8 and not in
Eqn. 5—here we obtained only a very small increase in BIC
(1.45). Overall, the current model and experiment design are
not sufficient to determine whether suppression is occurring
during learning and/or prediction.

The full model described above has four parameters—
learning rate (δ), decline rate (α), competition rate (θ), and
exploration (ψ). We compared four versions of the model—
the full model, one without utilization decline, one without
cue competition, and one base model without both cue com-
petition and decline. Comparing BICs for these four models
allows us to estimate the importance of utilization decline and
cue competition in predicting participant behavior.

Table 1 shows a comparison of the four models. The full
model has lowest BIC values. However, the model without
cue competition has only a slightly higher BIC. Further, we
found that the average estimated cue competition rate cwt, t−n
in Eqn. 7 was 3.9, producing very little competition. This
corresponds with results from Experiment 2—cue competi-
tion could be a less essential aspect of participant behavior.

Table 1: BIC values of model variations.

Model Variation Mean BIC Values
Full model 1217.53
Model without utilization decline 1263.65
Model without cue competition 1225.23
Base model (without utilization decline 1274.36
and cue competition)

Discussion
The goal of the current study was to investigate how people
use previous states of a system to predict a new state. Re-
searchers have frequently studied people’s abilities to predict
systems using the states of other systems through the multi-
ple cue learning paradigm—however, in our study, previous
states of the same system serve as cues. Studies have also
used statistical learning paradigms where participants learn
fixed sequences of outcomes. Our study adds to the literature
by using probabilistic sequences where best performance can
be obtained only through identifying regression to previous
timesteps. Many real world systems behave in similar ways—

their current state is probabilistically dependent on their pre-
vious ones. We focused on two aspects of people’s behavior
in making predictions in such systems—decline in cue uti-
lization with temporal distance and cue competition between
predictive temporal cues.

Our studies found that decline in past cue utilization with
temporal distance was central to people’s behavior. Partic-
ipants’ subjective regression coefficients were significantly
lower for older timesteps in Experiment 1 (Figure 3). Further,
BIC values were considerably higher when utilization decline
was removed from the decision model. Reduction in utiliza-
tion could occur due to forgetting during learning and/or pre-
diction. In previous work, we found that such recency-based
decline was not correlated with working memory capacity
(Luthra & Todd, 2019), suggesting that individual variation
in it might not be mediated by memory limits.

Experiment 2 showed some evidence of cue competition
in participant behavior—utilization of timestep t −2 reduced
significantly when utilization of timestep t−1 was increased.
However, we did not obtain a similar decrease in utilization
of timestep t − 1 with changes in utilization of t − 2 (Figure
4). These mixed results could be because the difference in va-
lidity of the two previous timesteps in Conditions 1 and 2 was
low (only 0.2). Further, in our work the predictive timesteps
were correlated (due to temporal autoregression). This in-
escapable real-world tradeoff impacts the ability to investi-
gate cue competition, contrasting with previous studies that
found clear cue competition effects when using uncorrelated
cues (Busemeyer et al., 1993).

Additionally, our work suggests that participants tend to
reward cues for their ability to predict with a stronger weight
than they punish them for their inability to predict. This is
displayed by the greater utilization of recent timesteps even
when they have 0 regression to the current timestep (Figure
3). This finding helps explain why people frequently assume
positive autoregression (clumpiness) even when sequences
are random (Scheibehenne et al., 2011)—they are more sen-
sitive to spurious similarities with recent timesteps than with
older timesteps. This tendency of primarily learning through
positive examples has been displayed in other domains of hu-
man behavior—for instance, children successfully learn lan-
guage by exposure to correct usage (Denis, 2001). Assuming
positive autoregressions in the environment is possibly a cog-
nitive adaptation to the real world structures that organisms
encounter, which often display such characteristics.

The current work focuses on a unidirectional influence of
the environment on human behavior—we study how people’s
predictions change with changes in their autoregressive envi-
ronment. Future work should explore dynamic bi-directional
interactions between the two, for instance, by simultaneously
modelling how people’s predictions of autoregressions get re-
flected in the environment structure through the choices they
make. Identifying stable states of such systems can help ex-
plain and predict autoregressive structures of cultural envi-
ronments (e.g., fast fashion trends; Luthra & Todd, 2021a).
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Data, Code, and Appendix
Data, code (for models and plotting), and appendix
are publicly available in the GitHub repository
mahiluthra/autoregression-decisions.
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