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ABSTRACT

Geophysical monitoring techniques offer the only noninvasive approach capable of assessing both the

spatial and temporal dynamics of subsurface fluid processes. Increasingly, permanent sensor arrays

in boreholes and on the ocean floor are being deployed to improve the repeatability and increase

the temporal sampling of monitoring surveys. Because permanent arrays require a large up-front

capital investment and are difficult (or impossible) to re-configure once installed, a premium is

placed on selecting a geometry capable of imaging the desired target at minimum cost. We present

a simple approach to optimizing downhole sensor configurations for monitoring experiments making
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use of differential seismic traveltimes. In our case, we use a design quality metric based on the

accuracy of tomographic reconstructions for a suite of imaging targets. By not requiring an explicit

singular value decomposition of the forward operator, evaluation of this objective function scales

to problems with a large number of unknowns. We also restrict the design problem by recasting

the array geometry into a low dimensional form more suitable for optimization at a reasonable

computational cost. We test two search algorithms on the design problem: the Nelder-Mead

downhill simplex method and the Multilevel Coordinate Search algorithm. The algorithm is tested

for four crosswell acquisition scenarios relevant to continuous seismic monitoring, a two parameter

array optimization, several scenarios involving four parameter length/offset optimizations, and a

comparison of optimal multi-source designs. In the last case, we also examine trade-offs between

source sparsity and the quality of tomographic reconstructions. One general observation is that

asymmetric array lengths improve localized image quality in crosswell experiments with a small

number of sources and a large number of receivers. Preliminary results also suggest that high-

quality differential images can be generated using only a small number of optimally positioned

sources.
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INTRODUCTION

Understanding the combined spatial and temporal characteristics of dynamic subsurface processes

is a challenge common to many contemporary problems in the geosciences. Examples include the

growth of bacterial communities during enhanced remediation, the dissolution of methane hydrates

during stimulated production, and the movement of CO2 during sequestration activities. These

are but three of numerous applications which require knowledge of spatio-temporal variability to

improve our fundamental understanding of relevant physical processes.

Geophysical monitoring techniques offer the only approach capable of assessing the dynamics of

these systems beyond the limited possibilities afforded by direct in situ observations. Historically,

monitoring datasets have consisted of surveys sequentially collected using acquisition geometries and

sensor platforms similar to static measurements e.g. repeated reflection seismic surveys. Unfortu-

nately, a host of logistical constraints hamper the repeatability of such surveys, such as difficulties

in exactly replicating the source/receiver geometry, changes in overburden conditions (Vesnaver

et al., 2003), and sufficiently matching the seismic processing flow (Ross and Altan, 1997).

Increasingly, permanent sensor arrays in boreholes (Blanco et al., 2006; Daley et al., 2007b) and

on the ocean floor (Smit et al., 2006; Thompson et al., 2006) are being deployed to improve the

repeatability of monitoring surveys by eliminating the need to re-position receivers. By allowing

continuous monitoring, permanently deployed sensor arrays also have the potential to improve

the temporal resolution of geophysical measurements by an order of magnitude (or more); this

increase in temporal sampling will in turn allow scientists to probe transient subsurface processes

with shorter time scales, invisible to the currently available 4D seismic monitoring methods that

typically sample on the scale of months or even years.
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Despite clear data quality advantages, permanent arrays require both substantial up-front cap-

ital investments and long-term maintenance and thus necessitate careful analysis to justify their

installation. Since permanent arrays are often difficult (or impossible) to re-configure once in-place,

their design assumes an even more important role than in the case of more traditional surveys where

mistakes can be potentially be corrected during later deployments. For permanent arrays to be

a cost-effective monitoring option, emphasis must be placed on selecting the sparsest (and hence

least expensive) possible source/receiver geometry capable of producing images of a given quality.

Smit et al. (2006) cogently presents this philosophy within the context of ocean bottom cable in-

stallations. While the cost of a given geometry is relatively simple to evaluate, the “quality” of the

resulting experiment is more difficult to quantify since it depends not only on our ability to resolve

individual geologic features but also on the monitoring questions we are attempting to answer.

Binary detection of change within a broad region should be an easier task than reconstructing

an accurate subsurface image. Designing a good survey is most difficult in cases for which we

lack experience e.g. irregular geometries, unusual spatial constraints, or a strongly heterogeneous

background, all of which can render typical “rules of thumb” invalid.

Given the central importance of survey geometry in the context of monitoring, we will consider

algorithms for the selection of an optimal (or at least improved) configuration from within the

space of possible designs. This task falls within the class of problems often referred to as optimal

experiment design, a field which has proponents in both geophysics (Maurer and Boerner, 1998;

Curtis, 1999a,b; Stummer et al., 2002; van den Berg et al., 2003; Curtis et al., 2004; Routh et al.,

2005) and the broader scientific community (Box and Lucas, 1959; John and Draper, 1975; Walter

and Pronzato, 1987; Muzic et al., 1996). When searching for an optimal experiment several con-

siderations rapidly become apparent, mainly what “optimal” means in the context of geophysical

4



measurements. Other crucial issues include the range of experimental designs to be considered, the

technique used to solve the optimization problem, and the fashion in which design constraints are

implemented.

In our approach, we use the l2 difference between a suite of reference images and the corre-

sponding tomographic reconstructions as a quality measure for a given geometry. This suite of

reference images can be selected to mimic either traditional resolution metrics (e.g. checkerboards

in our case) or directly linked to the spatial characteristics of the process being monitored. We also

adopt a reduced parameterization for describing experimental geometry; instead of allowing sources

and receivers to occupy arbitrary locations, we search for an optimal set of secondary descriptive

parameters such as array width, orientation, or center location. This approach, while lacking the

flexibility of the most general descriptions of experiment geometry, results in a more manageable

search problem. For simple cases, the global minimum of the resulting objective function can be

determined through use of a variety of search techniques. Reduced parameterizations have the

additional benefit of being physically realizable. Long cables with arbitrary sensor spacings have

the potential to be difficult to manufacture; by limiting the choice of geometries we are implicitly

adding a side constraint with possible cost benefits.

In this preliminary investigation, we use our optimal experiment design algorithm to improve the

configuration of active seismic monitoring systems within a crosswell geometry. We first consider

a two parameter array design problem and explore the characteristics of the quality metric. We

compare the convergence and performance of two optimization methods, the Nelder-Mead downhill

simplex and multilevel coordinate search strategies for selecting array geometries. For this simple

example, both techniques converge to the globally optimal design. We also consider a more com-
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plicated four parameter design problem which optimizes a combination of array length and vertical

offset. We conclude by examining trade-offs between source sparsity and the quality of tomographic

reconstructions. Preliminary results suggest that high-quality differential images can be generated

using only a small number of optimally positioned sources.

PRINCIPLES & PREVIOUS RESEARCH

As mentioned previously, optimal designed algorithms can be roughly decomposed into three com-

ponents, the metric used to discern an “optimal” experiment, the space of experiments considered

as possible solutions, and the search technique used to find the best design. Another important

component which we will only briefly cover is the implementation of secondary constraints, either

direct limitations on the geometry or auxiliary parameters such as survey cost, acquisition time

etc. In this section we will outline a framework for expressing optimal design search problems and

their associated components.

A Notation For the Optimal Design Problem

Implicit in the entire design process is the inversion step itself, i.e. the methodology by which mea-

surements are transformed into estimates of earth properties. Most optimal design algorithms are

formally posed within the framework of linear inverse problems, sometimes with ad-hoc extensions

to the non-linear case. We will use the traditional notation for such problems (Menke, 1984),

Gm = d, (1)

where G, referred to as the kernel, maps a model (m) to a dataset (d). G encapsulates both
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the operative physics and the geometry of the experiment. Linear inversion attempts to undo the

action of G thereby reconstructing an earth model given a dataset.

As mentioned previously, G contains an implicit dependence on the experiment geometry; since

we are searching across these possible geometries this relationship must be written explicitly. Let

the geometry of our permanent source/receiver array be encapsulated by a vector ξ. In the most

general case where we are free to locate each of d sources and e receivers at any point in space we

express the experiment geometry as,

ξ = [s1, s2, ...sd : r1, r2, ...re] (2)

where s and r are source and receiver locations in the appropriate number of spatial dimensions. In

3D, the number of scalar design parameters in the experiment becomes (d+ e)× 3. The optimality

metric, Ω, maps ξ to a scalar measure of experiment quality. The optimal design geometry, ξoptim

can then be written as:

ξoptim = min(Ω(ξ, {α1, ...αt})), (3)

where the set of α variables are auxiliary parameters which are required to evaluate Ω but are not

part of the search problem. An example of α would be a background velocity model required to

calculate G. The metric Ω can be further decomposed into two parts, a raw measure of experiment

quality (Ωu) and a set of f soft secondary constraints (Ωcf
), possibly including information per-

taining to spatial limitations of the survey, field costs, or acquisition time. Momentarily dropping
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the arguments to Ω, we can write this decomposition as,

Ω = Ωu +
f∑

i=1

βiΩci , (4)

where βi is a weighting factor which scales the strength of the ith soft constraint terms. Equation

4 is in no way encompassing since the constraint term can also be implemented in a “hard” form

as part of the search algorithm itself. This notation for writing Ω is not well-suited to expressing

greedy design algorithms for which the dimensions of ξ vary dynamically as part of the search

process.

Previous Research

Despite some successes, existing optimal design algorithms suffer from a combination of problems,

mainly inappropriate choices for Ω, the experiment quality metric, and/or poor parameterizations

for the geometry search space, typically involving the explicit use of ξ. A bad choice of Ω or ξ

can in turn result in an unnecessarily large search space with non-ideal properties, particularly the

existence of extraneous local minima.

Experiment Quality Metrics

The quality metrics proposed by previous authors roughly fall into two camps, those who define

quality in terms of the eigen-properties of a given design (Barth and Wunsch, 1990; Curtis and

Snieder, 1997; Curtis, 1999a,b) and more applied practitioners who optimize heuristic attributes

such as fold or ray coverage (Liner et al., 1999; Vermeer, 2003; Galbraith, 2004). Design algorithms

based on SVD analysis of the linear inverse problem were pioneered in a geophysical context by
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Maurer and Boerner (1998) and Curtis (1999a) who adapted previous work by Barth and Wunsch

(1990) and earlier authors (Box and Lucas, 1959; John and Draper, 1975). All of these techniques

seek to maximize the amount of information contained within a given geophysical survey, typically

by reducing the linear problem’s null space. Curtis (1999b) provides a catalog of five experiment

quality metrics based only on the eigenspectrum of G. Most of these metrics involve sums or

products of eigenvalues, possibly truncated so as to consider only values above or below a given

threshold.

Despite their apparent elegance, global SVD based techniques suffer from several clear weak-

nesses. Methods which rely solely on examination of the eigenspectrum provide no avenue for

incorporating zones of interest since all spatial information is encoded in the right eigenvectors; the

resulting designs often optimize the experiment to recover properties within unimportant portions

of model space. This is particularly problematic in the case of monitoring experiments where we

have prior knowledge of regions where change might occur. Curtis (1999b) attempts to remedy this

problem by incorporating a second “focused” component of Ω by examining projections of model

regions onto the right singular vectors.

An attractive set of related quality metrics are those which make direct use of the model

resolution matrix, R, which for linear problems maps the true model (mtrue) to the estimated

model (mest) i.e. mest = R mtrue. In the case where R = I, the true model is perfectly

reconstructed. Routh et al. (2005) suggests a computationally feasible approach for sequentially

reconstructing the kth row of R by solving for point-spread functions. Routh et al. (2005) then

uses the spatial compactness of the point-spread functions to estimate the suitability of experiment
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designs yielding a quality metric of the form,

Ωu(ξ) = ‖Qk(pk(ξ)−∆k)‖22, (5)

where pk, the point-spread response, is the solution of a regularized linear inverse problem of the

form

 G(ξ)

λWm

 pk =

G(ξ)∆k

0

 (6)

In equation 6, Wm is a model-space regularization operator (I in the case of damping) and ∆k is

an impulse function in the model domain; the product G∆k is the synthetic data which would be

generated by such an impulse. Equation 5 also includes a weighting operator Qk which penalizes

elements of pk away from the kth cell according to a specified distance function (see Routh et al.

(2005) for an explicit formulation). In words, Routh’s point-spread metric measures how closely

(in an l2 sense) a given geometry can reconstruct a delta feature at some location in the model.

This provides a tempting alternative to SVD techniques since it requires only an least-squares

inversion routine and can take full advantage of sparse solvers. Because regularization can be easily

incorporated into the point-spread calculation, the effect of prior smoothness constraints on the

optimal geometry can also be evaluated. A final more conceptual benefit is that metric 5 truly

operates on the inverted model; the benefits of improving Ω are easily visible in the resulting

images.

The limitation of Routh’s point-spread metric as written in equation 5 is that the resolution is

only evaluated at a single location k; to evaluate such a metric over a larger zone of interest would
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require a full inversion for each cell within this region. As we will discuss in the following sections,

we adopt a metric similar to equation 5 except that we replace ∆k with a single or small suite of

models with broader (although less precise) features.

A second class of techniques uses easily computed metrics which provide a more heuristic guide

to experiment quality e.g. common-midpoint fold, azimuthal coverage, ray density, or more general

measures of operator sensitivity. One example of this type of approach is the work of Liner et al.

(1999) who use a mix of soft and hard constraints to search for survey geometries which satisfy

acquisition criterion including common-midpoint fold and maximum offset. The resulting quality

metric is very inexpensive to evaluate; millions of survey geometries can be tested for suitability in a

relatively short period of time. Unfortunately, such metrics have several well-known problems, the

most crucial is that they can be fulfilled even in cases where the resulting surveys have deficiencies

from an inversion perspective (see Curtis and Snieder (1997) for the equivalent issue in the dual

problem of mesh design).

Parameterizing Survey Geometry

Almost as important as the selection of a quality metric is the set of geometries considered as

valid surveys since this determines the dimensions of the required search space. Assuming a fixed

number of sources and receivers, the most flexible possible representation is the vector ξ which allows

arbitrary positions for all d sources and e receivers; this results in a problem of dimension (d+e)×3.

In some cases such as when the sensors are constrained to a surface (Barth and Wunsch, 1990) or

a line (Curtis, 1999a), each source and receiver has less than 3 degrees of freedom thereby slightly

reducing the search space. However, even for mid-sized seismic surveys (d+ e) inevitably becomes
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quite large, particularly in the context of global search techniques. The resulting optimization

problem may exhibit several unattractive attributes, primarily the existence of numerous local

minima in the objective function. Additionally, the optimal geometries are often difficult to realize

in practice; most acquisition techniques rely on some degree of regularity and the custom fabrication

of take-out cables or streamers with arbitrary sensor spacings can be prohibitively expensive.

COMBINING PARSIMONIOUS GEOMETRY REPRESENTATIONS &

IMAGE-BASED QUALITY METRICS

Our approach to the survey design problems combines a parsimonious parameterization of survey

geometry with an image-based survey quality metric similar to the point-spread metric advocated

by Routh et al. (2005). The resulting optimization problem is solved using one of two direct

search methods, either the local Nelder-Mead downhill simplex algorithm (Nelder and Mead, 1965)

or the global Multilevel Coordinate Search algorithm developed by Huyer and Neumaier (1999).

This blend of a reduced search space, an intuitive model domain quality metric, and robust search

algorithms results in a method which both scales to mid-sized problems and significantly improves

the spatial resolution of the resulting experiments.

As mentioned previously, an alternative to searching across all possible geometries is to introduce

a limited subset of feasible configurations described by a second set of parameters. In this case, we

have an operator Φ which maps a short vector q to a full geometry i.e. Φ(q) = ξ. The elements

of q are typically a small number of geometry descriptors e.g. array length, array center location,

line spacing etc. While the mapping function Φ is designed to produce reasonable geometries, some

constraints must still be applied to the elements of q necessitating a penalty function of the form,
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Ωc(q)

The resulting problem minimizes the combined Ω with respect to q,

ξoptim = min(Ωu(Φ(q)) +
f∑

i=1

βiΩci(qi)) (7)

While the global minimum of Ω with respect to ξ is not guaranteed to be located in the

lower dimensional space covered by Φ, the geometry produced by optimizing Φ(q) will typically

be better than an arbitrary configuration and will hopefully be easy to physically construct if the

parameterization q is chosen correctly. Since q is of a small dimension, searching for a quasi-optimal

Ω is an achievable task. As will be shown in later sections, the resulting objective function can

be unimodal for design problems with a low number of dimensions making it amenable to local

search techniques. This approach to designing surveys by optimizing a limited set of parameters

describing geometry is intuitive to those familiar with large-scale seismic acquisition; Liner et al.

(1999), Morrice et al. (2001), Vermeer (2003), and others have posed their survey design algorithms

in terms of similar parameters such as line offset and shot density instead of arbitrary locations for

each geophone or source.

Up to this point we have not mentioned our formulation for the raw experiment quality metric

(Ωu). In our case, Ωu will be a measure of a given geometry’s ability to reconstruct a known test

model, mtrue, i.e.

Ωu(Φ(q)) = ‖mtrue −mest‖22 (8)
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The estimated model, mest, is calculated by solving a regularized least-squares problem of the form,


G(mbase,Φ(q))

λxDx

λzDz

 mest =


d

0

0

 . (9)

G, as written in equation 9, depends on a prior model estimate, mbase around which we linearize

the problem. mbase and mtrue are not the same; mbase is a reference model used for calculating G

while mtrue is the true model used for generating linear synthetic data and evaluating the quality

metric. Note that “true” in this case denotes a known hypothetical model used for testing purposes

rather than a measured perturbation; this is because the design process should be performed

before installation of the monitoring system and hence before any data is available on the time-

lapse process. Dx and Dz are 1st order derivative operators in the x and z directions while λx and

λz are the associated regularization parameters. Since the background model is known, the d in

equation 9 is the evaluation of a linear forward problem on the current geometry with the addition

of noise i.e. d = G(mbase,Φ(q)) mtrue + dnoise. Additionally, we write the problem in terms of x

and z only because we are considering the 2.5 dimensional imaging problem; the extension of the

formulation to three dimensions (y) is straightforward.

The regularization matrices included in equation 9 are clearly not restricted to derivatives;

ideally, the regularization operator should be tailored to match prior knowledge of the process

being monitored (Ajo-Franklin et al., 2007b) but in this case we choose derivatives for the purpose

of simplicity. The operator choice and strength will also introduce bias into the optimal design.

We typically select fixed regularization parameters using the discrepancy method applied to a

preliminary geometry since in the design process our noise levels are known; in reality the magnitude
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of λx and λz or even the style of the regularization operator could be considered part of the design

process since field noise levels are difficult to ascertain prior to deployment.

An important component of the inversion quality metric shown in equation 8 is the choice of

test model, mtrue. As mentioned previously, the point-spread approach uses a model with a delta

spike at a single location. While point spread functions are an excellent local measure of resolution,

it requires a large number of independent evaluations to assess resolving power over an extended

model region. An alternative is to use a single or small group of models which provide information

on resolution for a larger region which includes the imaging target. One such commonly used

metric in the global tomography community is the checkerboard test where resolution is evaluated

by looking at the smearing of a regular array of features. Checkerboard tests cannot recover the

same resolution information as a series of point-spread evaluations since the smeared components

of different features may overlap. In our quality metric, mtrue is typically either the product of

a checkerboard and a localized window function which is only positive in the target region as is

shown in figure 1 or an anomaly constructed from multiphase flow modeling results.

[Figure 1 about here.]

For monitoring applications, spatial localization is desirable since the perturbed region is often

confined to a single geological unit. This is particularly true in cases where the process being

monitored is a fluid injection (e.g. CO2, bio-stimulant fluid, steam) and geophysical measurements

are being used to delineate the shape and extent of “fronts” in the flooding process. While checker-

board tests are not the ideal test of survey resolution, as discussed in Leveque et al. (1993), they

are relatively inexpensive to perform, a key attribute when used in the inner portion of an objective

function evaluated as many as 106 times. Ideally, image metrics like equation 8 would be evalu-
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ated for a suite of models related to the process being monitored as we will consider in one of our

examples for the specific case of multiphase flow involving supercritical CO2 .

From a computational perspective, the quality metric shown in equation 8 requires two main

operations, the generation of the forward operator given the background model and the solution

of a regularized linear inverse problem to generate the mest. Since both of these components are

available as part of standard imaging packages, this process often requires minimal code modifica-

tion on the part of the user. Evaluation of equation 8 can also be performed without the explicit

construction of any of the operators making it useful in cases where only the actions of G and GT

on vectors can be performed in core memory.

Design Optimization : Two Algorithms

To this point, we have described a simple system for exploring experimental designs which combines

an l2 image reconstruction metric and a parsimonious description of experiment geometry. The

resulting objective functions are well-behaved for several common seismic array design parameters

although this observation almost certainly does not generalize to arbitrary parameterizations (or

geophysical problems).

Since the selection of an algorithm for minimizing the right hand side of equation 7 strongly

depends on the character of the objective function, we should summarize in advance some obser-

vations, some of which can be inferred from our later examples. First among these attributes is

the dimensionality of the objective function; using a parsimonious geometry description guarantees

a low-dimensional objective function by design. Crucially, the objective function is also expensive

to evaluate. While our l2 image metric can scale efficiently to large problems, it is still expensive,
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requiring at the very least a forward solve and a full inversion. Another attribute key to selecting an

optimization technique is the lack of analytic forms for the gradient of the objective function with

respect to the design parameters. Additionally, for all but the simplest choice of parametrizations

the design objective function should have multiple local minima; however, for the problems we have

been able to explore visually (2 variables) the objective function surface is often dominated by a

single broad minimum. A related observation is that the objective function surface seems relatively

smooth; for our tomographic monitoring problem, particularly when appropriately regularized, we

do not typically observe sudden jumps in image quality due to small perturbations in experiment

geometry. The character of such surfaces, visible for 2 parameter problems, is that they are dom-

inated by broad plains with the occasional valley. While some possible designs are, in fact, very

bad, large regions of parameter space often exhibit similar l2 image quality metrics. The objective

function surface for these regions is correspondingly flat. In some cases, valleys exist, indicating

trade-offs between multiple design parameters.

Previous optimal experiment design studies have made extensive use of stochastic global search

methods, with genetic algorithms (Curtis, 1999a), and simulated annealing (Barth and Wunsch,

1990) being the most popular techniques. We examine two alternative derivative-free approaches

to minimizing the design metric, the downhill simplex method developed by Nelder and Mead

(Nelder and Mead, 1965) and the Multilevel Coordinate Search algorithm (Huyer and Neumaier,

1999). Both methods are deterministic in contrast to the stochastic algorithms often used in the

design literature. The Nelder-Mead method is intrinsically local while Multilevel Coordinate Search

attempts to balance local and global search goals with guaranteed (but very slow) convergence even

in the case of multi-modal objective functions.
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The Nelder-Mead algorithm is a popular (Press et al., 1992) local search approach which in

at least one previous case (Muzic et al., 1996) has been successfully applied to experiment design.

The Nelder-Mead algorithm does not compute numerical derivatives using finite-differences; instead,

the objective function is evaluated at a set n + 1 points (referred to as a simplex), where n is the

dimension of the optimization problem, and this set is sequentially altered by a series of heuristic

rules (see Press et al. (1992) for details and a simple implementation). In practice, the algorithm

reliably creeps to a local minimum of the objective function. As with any local method, the

Nelder-Mead algorithm converges to the local minimum closest to the starting location making it

susceptible to multi-modal objective functions.

The Multilevel Coordinate Search algorithm, descended from the DIRECT method proposed

by Jones et al. (1993), is a deterministic global search algorithm which attempts to balance large

scale exploration of the parameter space with local refinement in regions with promising objective

function values. The Multilevel Coordinate Search algorithm is guaranteed to converge to a global

minimum assuming the objective function is continuous in the vicinity of the minimum; unfortu-

nately the convergence bound is weak in the sense that an exponential number of steps might be

required. The search process is initialized with a hyper-box bounding all of the control parame-

ters thus allowing implicit incorporation of hard bounds on design parameters. This box is then

subjected to different sub-division and sampling operations; the method of division cycles between

global and local refinement steps. The original comparison of Huyer and Neumaier (1999) suggests

that this multilevel search approach outperforms most deterministic global search algorithms for

the suite of test functions proposed by Dixon and Szego (1978).

18



APPLICATION TO THE SEISMIC MONITORING PROBLEM

Our discussion of experiment design so far has been general with no assumptions regarding the

operation which G performs, the model parametrization represented by m, or the type of data

stored as d. We will now apply our formulation to the specific example of differential seismic

traveltime tomography, a technique being used as part of several integrated seismic monitoring

projects. All examples which will be shown use a crosswell geometry to match field deployments

in which we are currently participating in.

In the case of differential inversion we consider two datasets, d1 and d2, acquired at different

times, but with the same geometry. Instead of inverting the two datasets independently, differential

tomography inverts ∆d, the difference between measurements made at time 1 and time 2, for ∆m,

the temporal perturbation in model parameters. In our case, ∆d is the relative traveltime differ-

ence between two different surveys for the same source/receiver pair while ∆m is a perturbation in

slowness. G is the ray-theoretic forward modeling operator. The model is defined on a rectilinear

mesh of constant slowness cells. Differential imaging approaches can be problematic in cases where

the dominant changes in delay time are due to localized effects near the sources or receivers which

are not the target of the monitoring experiment e.g. water table variations or seawater tempera-

ture changes (Vesnaver et al., 2003) in the case of timelapse surface reflection surveys. However,

deep boreholes are relatively stable environments and semi-permanent arrays offer an almost ideal

scenario where changes in formation coupling are minimized.

We treat the differential tomography problem as a linear perturbation; we assume that a back-

ground velocity model, mbase, is available and calculate curved ray-paths in that initial model.

Recovery of ∆m is then considered as a purely linear inverse problem. This simplification seems
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reasonable in the case of seismic monitoring since the property changes induced by human pertur-

bations are often (but not always) considerably smaller than background variations. Unlike the

static imaging problem where the earth model is initially unknown, most monitoring surveys have

access to background property estimates from reconnaissance/exploration surveys or well logs.

Our optimal experiment design algorithm is designed to find surveys which optimally recover

∆mtrue given mbase and constraints on the locations of elements in ξ. In this approach, the ex-

periment is not designed to optimally image the background model but only to resolve a localized

perturbation. As discussed in the previous section, ∆mtrue will in our case be either a spatially

limited checkerboard model or the results of an anomaly generated from a flow modeling run spe-

cific to the site in question.

Evaluation of Ω for a given mbase, q, and mapping function can be written in pseudo-code as:

1. Map the reduced parameter set, q, to the full geometry ξ using Φ;

2. Generate G for the geometry ξ in mbase, a non-linear forward modeling step;

3. Calculate a perturbed synthetic dataset using the G from the background model, ∆d =

G ∆mtrue;

4. Invert ∆d for ∆mest using a regularized linear solver;

5. Evaluate the image quality objective function, Ωu = ‖∆mest −∆mtrue‖22;

6. Evaluate the geometry penalty function Ωc on ξ;

7. Compute the combined experiment quality metric, Ω = Ωu + Ωc.
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We calculate G, the forward modeling operator, in a 2.5 dimensional geometry designed to ac-

commodate heterogeneous 2D structure and well trajectories with out-of-plane deviations. The

solution to the eikonal equation is calculated using a finite-difference eikonal solver (Vidale, 1988;

Sethian and Popovici, 1999); we took advantage of components in the FAST package developed by

Zelt (Hole and Zelt, 1995). Frechet derivatives are extracted using reverse ray-tracing (Aldridge

and Oldenburg, 1993) in the shot-domain. The regularized linear inversion in step 4 is performed

using the LSQR algorithm developed by Paige and Saunders (1982) and solves equation 9. The

geometry penalty function mentioned in step 6 is simply a barrier term which evaluates to zero

within the interior of the modeling domain and smoothly increases to a large value as source and

receiver approach the edges. Ω is optimized over the reduced vector q using either the Nelder-Mead

or Multilevel Coordinate Search algorithm as discussed previously.

In practice, both the assumptions of prior background structure and monitoring linearity can

be clearly violated. In cases where mbase is grossly inaccurate, the resulting survey design may not

have equivalent performance, particularly in situations where significant ray bending is induced by

the unknown feature such as a strong low velocity zone. Similarly, in some situations the model

perturbation, ∆m, might also be large enough to cause significant changes in ray paths; this also

brings into question the validity of differential measurements since d1 and d2 will have sampled

different zones in the subsurface. In this case, the previously discussed metric for experiment quality

might still have utility but the entire problem must be shifted so that both baseline and repeat

datasets are inverted using a non-linear approach.

21



Designing an Optimal Asymmetric Crosswell Array

A complete test of our optimal design algorithm was performed as part of a retrospective examina-

tion of the Frio crosswell seismic monitoring installation. The Frio demonstration project (Hovorka

et al., 2006) was a broad multi-institutional effort to improve understanding of the in situ dynamics

of super-critical CO2 injection within a saline aquifer located in East Texas. Motivated by previ-

ous seismic monitoring experiments targeting CO2 floods (Lazaratos and Marion, 1997), Lawrence

Berkeley National Laboratory carried out imaging experiments during both the first and second

phases of the Frio project. The first experiment consisted of a pair of traditional time-lapse cross-

well surveys where both sources and receivers were deployed via wireline (Daley et al., 2005). While

the wireline surveys successfully imaged the expanding CO2 plume as shown by Daley et al. (2007a)

and Ajo-Franklin et al. (2007b), the existence of only a single repeat survey made evaluation of

flow dynamics difficult.

The second Frio seismic imaging experiment evaluated the combination of a single permanently

installed downhole piezoelectric source and a fixed array of 24 hydrophones with both devices

deployed on production tubing (Daley et al., 2007b). This experiment clearly demonstrated the

high level of repeatability possible with a permanent monitoring system. More importantly, the

acquisition of datasets over time intervals as short as 15 minutes allowed real-time monitoring of the

seismic signal during the injection process. However, the use of only a single source prevented the

Frio II seismic experiment from effectively imaging CO2 movement although qualitative information

on plume geometry was obtained.

Future monitoring experiments are expected to move beyond the single-source geometry used in

the Frio II trial and combine continuous monitoring with a multi-source geometry more suitable for
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tomographic reconstruction. Considering the high cost of each additional source transducer in com-

parison to hydrophone pods, an asymmetric source/receiver distribution seems almost inevitable.

This combination of high capital cost and minimal previous experience with similar acquisition

systems makes this particular design problem a perfect candidate for optimal experiment design

techniques.

A Two Parameter Design Problem

For our first example, we will consider a simple crosswell array optimization problem where the

geometry is fully described by two parameters, the vertical extents of the source and receiver

arrays. In this case q, the reduced parameterization is simply [P1, P2] . Figure 2 shows the

intended geometry. Both the source and receiver arrays are centered around a single 5 m target

layer with an alternating pattern of 1.5 m wide perturbations. All figures are plotted in terms

of array 1/2 widths i.e. the distance from the array center to the top of the array. In order to

provide insight into the design challenges at the Frio site, we selected an asymmetric geometry

distribution with 8 sources and 80 receivers. Each inversion calculated as part of evaluation of the

quality metric was performed on a 75 x 210 sample mesh yielding a underdetermined 640 x 15,750

(data x model) problem. The synthetic differential traveltime data used in each sub-inversion

was contaminated with 0.5% zero mean gaussian noise. The discrepancy method, applied to the

inverse problem generated by the initial source/receiver geometry, was used to determine an optimal

isotropic regularization parameter (λx = λz in equation 9).

[Figure 2 about here.]
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Considering the low dimensionality of the search problem, we first directly evaluated the exper-

iment quality metric on a regular 2D grid to gain some insight into the optimization problem and

the corresponding survey geometries. The existence of a calculated reference surface also allows

us to examine the convergence properties of both our global and local search schemes. Figure 3

shows the image quality metric for array 1/2 width values between 2 and 16 meters. As can be

seen, the objective function surface is relatively well behaved with a localized trough-like minimum

corresponding to source array 1/2 widths near 6 meters. The global minimum occurs on the domain

boundary at close to the maximum receiver array width.

[Figure 3 about here.]

Figure 4 illustrates the linkage between the experiment quality surface and the actual inversion

results. While the top panel shows the quality surface, the bottom row shows the true reference

checkerboard model [A] and tomographic images corresponding to 3 geometries sampled by the

grid search. Panel [B] shows a narrow aperture geometry where the sources and receiver arrays

are localized near the zone of interest. Panel [C] shows the geometry and tomogram associated

with the global minimum; this “optimal” solution couples a source array of moderate length to a

wide receiver array. Panel [D] depicts the result corresponding to a wide angular aperture in both

the source and receiver wells. As can be clearly seen, the optimal geometry successfully resolves

checkerboard cells near both wells with only a small amount of smearing visible above and below

the target zone. In contrast, the narrow aperture geometry tends to smear features along the

primary survey diagonals imparting an “X” shaped overprint on the tomogram. The maximum

aperture geometry cannot resolve features near the source well due to sparse vertical spacing. This

result is significant since it suggests that asymmetry in the number of sources and receivers can be
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partially compensated for by appropriately adjusting array lengths in cases where the target zone

is spatially limited.

[Figure 4 about here.]

Figure 5 compares the convergence of the Nelder-Mead (top) and Multilevel Coordinate Search

(bottom) algorithms when applied to the same test case. In each panel, the background color map

is derived from the grid evaluation while the superimposed symbols indicate where each algorithm

evaluated the objective function. Both algorithms converge to the correct global minimum as

estimated by the original grid search. Given this particular start location (shown as a red circle),

the Nelder-Mead solver converged to within tolerance after 130 evaluations of the objective function.

The Multilevel Coordinate Search solver was initialized with only the bounds on the domain but

required 203 evaluations to achieve the same level of accuracy.

Figure 5 also gives insight into the evaluation patterns of the two algorithms. Nelder-Mead,

as with most local search methods, “feels” out the trough in the objective function and does not

sample locations outside of this zone of influence. In cases where multiple local minima were present,

this behavior would guarantee that Nelder-Mead would be sensitive to start location. In contrast,

Multilevel Coordinate Search samples the objective function at several locations outside the trough

in zones with significantly worse quality metrics. The method’s search heuristic attempts to balance

global and local search performance by cycling through different types of sub-sampling patterns; in

this case, after some initial linear sampling steps, the algorithm focused on the region containing

the global minimum.

[Figure 5 about here.]
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A Four Parameter Design Problem

While the first test problem provided insight into the simplest class of crosswell array designs, we

decided to investigate a higher dimensional problem with more utility to sites similar to Frio. The

primary injection unit at Frio is located within relatively close proximity to a salt dome; upward

movement of the salt has resulted in faulting near the flank and has imparted an upward dip of

about 17o to the target layer. We expected that this significant dip in the target would necessitate

vertical re-positioning of the arrays in addition to adjustments in array width. Figure 6 shows this

slightly more complicated geometry; q is now a vector of length 4 including the center depths of

the source (P1) and receiver (P2) arrays in addition to the source and receiver array 1/2 widths

(P3, P4).

[Figure 6 about here.]

Preliminary numerical tests indicated that the Nelder-Mead algorithm, when applied to this

design problem, showed significant sensitivity to starting location; based on this observation we

focused on application of the Multilevel Coordinate Search method. Panel [A] of figure 7 shows the

test checkerboard model with a dip of 17o to match the injection unit at Frio. Panel [B] depicts

the tomographic results for an initial “best guess” geometry where the source and receiver arrays

effectively encompassed the target region. Panel [C] shows the optimal geometry as determined

by Multilevel Coordinate Search. In this case, convergence occurred after 333 objective function

evaluations. Since only the 4D bounds on q are required for the search algorithms, panel [B] is

included purely for the purpose of illustration.

[Figure 7 about here.]
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The optimal geometry shown in figure 7 exhibits several interesting attributes. As in the

previous example, the optimal design has improved spatial resolution near the source well and

reduces artifacts above and below the imaging target. The magnitude of the checkerboard features

are also closer to the true model with less shape distortion visible in the high velocity zones. Like the

two parameter case, the best design has asymmetric source and receiver array widths. Additionally,

the source array is shifted upwards so as to shoot across the dip of the target layer.

A Realistic Flow-Based Test Problem

The first and second examples shown assumed both a homogeneous background velocity for mbase

and a spatially limited checkerboard model for the image quality test model for ∆mtrue. As men-

tioned previously, the background model should ideally incorporate prior knowledge of velocity

structure while the image quality test model should present a geometry and magnitude represen-

tative of the physical process being monitored. In the case of the Frio pilot experiment, both

components are available; velocity structure from sonic logs and perturbation estimates from pre-

liminary multi-phase flow modelling results. In this example, we incorporate this additional data

into our experiment design approach and evaluate the performance of the resulting algorithm.

[Figure 8 about here.]

Panel [A] of figure 8 depicts a background velocity model derived from 2D extrapolation of logs

acquired in the Frio injection well with a local dip determined from gamma ties. The units included

are members of the Blue Sand interval, the target of the Frio II seismic monitoring experiment

discussed in Daley et al. (2007b). Only velocity variations within the target unit used for flow

modeling were included; the flow model used a closed boundary for the shale units above and
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below the Blue Sand. Core porosity and permeability measurements were also much more numerous

within the Blue Sand, thus allowing providing better constraints on the rock-physics approach used

for later fluid substitution steps. Vp values are relatively low, ranging from 2650 to 2765 m/s with

a background velocity of 2700 m/s used for zones outside the Blue Sand. The depths show in panel

[A] are in a local coordinate frame; the absolute wireline depth of the target unit is aproximately

1650 m below surface. In this test case, the velocity model shown in panel [A] of figure 8 was used

for mbase; although the quality metric evaluation only involves a linear inversion step to recover

∆mtrue, the true (curved) ray-paths through mbase were used for the inversion. However, since

the velocity variations within the background model were relatively small, only a small number of

ray-paths exhibited significant bending, in particular rays traveling at shallow angle impinging on

the high velocity zones at the top and bottom of the reservoir unit. Also shown in panel [A] are the

injection well (left vertical line) and the monitoring well (right vertical line) with the true lateral

offset seen at the Frio site (30 m).

As part of retrospective analysis of the Frio II experiment described in Ajo-Franklin et al. (2007a)

and Daley et al. (2008), a series of refined flow models were created, constrained by core permeabil-

ity/porosity measurements, injection mass, CO2 break-through times, and continuously acquired

seismic data. 3D multi-phase flow modeling was then performed using the TOUGH2/ECO2N

system (Pruess and Spycher, 2007). The purpose of the original flow modeling exercise was to

understand variations in lateral permeability structure at Frio but in this example we will co-opt

them to generate a realistic velocity perturbation for use in experiment design.

To obtain a ∆mtrue to use as a substitute for the checkerboards described previously, a single

time-frame of CO2 saturation was transformed into a model of Vp. Fluid properties were determined
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for in situ temperatures and pressures using standard thermophysical property estimates for CO2

(Lemmon et al., 2005) and the brine properties predicted by the model of Batzle and Wang (1992).

Elastic property changes induced by the CO2 plume were estimated using White’s patchy saturation

model (White, 1975) as modified by Dutta and Ode (1979). Panel [B] of figure 8 shows the predicted

perturbation in Vp due to CO2 injection. As would be expected, since the in situ density of CO2

is approximately 700 kg/m3, considerably lighter than brine, the plume primarily migrates up-dip

towards the monitoring well. The maximum velocity change seen in the CO2 plume is less then

that observed in the field, approximately -350 m/s in contrast to variations of over -500 m/s seen

in the Frio C Sand during the Frio I crosswell experiment (Daley et al., 2007a); this is probably due

to inadequacies in the rock-physics model used for fluid substitution. However, since we are only

considering the linearized design problem (the plume does not alter ray-paths), this discrepancy in

magnitude will not have a significant impact on the resulting designs. One interesting characteristic

of the plume is a vertical kink visible near 22 m offset which resulted from incorporation of lateral

permeability variations in the original flow model. This feature is a key small-scale imaging target

which might be difficult to resolve using timelapse tomography.

For this test, we consider asymmetric source/receiver geometries with 6 sources, 48 receivers

and 4 degrees of design freedom; like the previous example we are searching for the optimal array

offsets and lengths to image ∆mtrue. Each inversion calculated as part of evaluation of the quality

metric was performed on a 176 x 217 sample mesh (0.3 m spacing) yielding an underdetermined

288 x 38,192 (data x model) problem. The synthetic differential traveltime data used in each sub-

inversion was contaminated with 0.5% zero mean gaussian noise. The discrepancy method applied

to the initial source/receiver geometry was used to determine an optimal isotropic regularization

parameter. The design guess (qinit) in this case included arrays centered around the plume at

29



depths of 35 m with large initial apertures of 46 m. Like the previous 4 parameter optimization

problem, experiments with the Nelder-Mead simplex algorithm failed to converge hence we used

the Multilevel Coordinate Search algorithm for all final tests.

[Figure 9 about here.]

Figure 9 shows the true velocity model perturbation used as the test perturbation in panel

[A], the inversion result for the initial geometry guess in panel [B], and the differential tomogram

generated by the optimal geometry in panel [C]. Although the initial guess does a reasonable job of

resolving the plume, yielding the correct dip and termination points, the optimal geometry success-

fully delineates both the small vertical kink near the center of the plume and the structure of the

plume near the source well. From a quantitative perspective, the l2 quality metrics (Ωu) of the ini-

tial and optimal geometries are 0.0011 and 0.00077 respectively. The Multilevel Coordinate Search

algorithm required 622 iterations to converge to the optimal design. Much like previous solutions,

the optimal geometry incorporated asymmetric array lengths with the source array considerably

shorter than the receiver array. In this case, the optimal design did not exhibit the “cross-dip”

shooting direction seen in example 2, possibly because of the limited lateral resolution required to

image structure within the plume.

A relevant question when considering the optimization of survey geometries is the sensitivities of

designs to mbase, which could be inaccurate, even in regions with good well control. Since our best

estimate of mbase in the prior case did not exhibit large velocity contrasts, the design would differ

only minimally from the case where a homogeneous model was used for the background. To explore

the role of higher velocity contrasts in the background model, we scaled the perturbations present

in mbase by a factor of four to yield a model with the same layered structure but velocity variations
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between 2522 m/s and 3073 m/s over short spatial scales within the reservoir unit. The resulting

mbase generated strong ray bending, particularly in the vicinity of the low velocity channel. Using

this scaled background model, we performed the same design experiment with identical inversion

parameters and noise characteristics.

[Figure 10 about here.]

Figure 10 shows the results of the high-contrast experiment including the test perturbation

in panel [A] (same as previous test), the inversion result for the initial geometry guess in panel

[B], and the differential tomogram generated by the optimal geometry in panel [C]. The Multilevel

Coordinate Search process converged in a similar number of iterations with a similar l2 misfit

reduction (0.0013345 to 0.0008937). The design results are quite different; the “initial” inversion

result is of lower quality than in first test because of decreased ray coverage in the low velocity zone.

Because first arrivals are dominated by headwaves around the boundary of the plume, the resolution

of the plume interior is less focused. The optimized geometry is also significantly different than

the prior example; the array is shifted up and constrained in aperture but it does not exhibit the

pronounced asymmetry of the earlier design. The improved design clearly enhances image quality

in comparison to the naive design but cannot recover the “kink” in the plume as accurately as in

the low contrast case. This example demonstrates the strong dependence of optimal designs on

the choice of background model, which is not surprising since mbase controls ray coverage and the

structure of G for any given choice of geometry.

Although slightly more realistic, these two simple examples have several clear limitations; mainly

that only a single time-step of the flow process was incorporated as a test perturbation in Ωu and

that only the linearized design problem is considered despite the fact that the magnitude of the
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perturbation is probably outside the linear regime. Ideally, Ωu would include the entire time history

of the flow process in the design problem so as to allow imaging of each temporal stage of plume

evolution. If computational resources allowed, multiple flow realizations could be used to encompass

inevitable uncertainty in subsurface permeability structure. Our use of a linearized imaging test

is a second significant limitation; with large velocity perturbations, secondary ray bending due is

inevitable and might significantly alter the optimal design, as could be inferred by our scaling test

of mbase. As mentioned previously, the same formulation for Ωu could be used to tackle the non-

linear case but the differential tomography approach (i.e. inverting time differences) would have to

be discarded since ∆d would involve a subtraction of times sampling different regions of space.

The Next-Generation Permanent Monitoring Array?

While the crosswell arrays shown in the first three examples were small (8 x 80 and 6 x 48), future

pilot deployments are likely to be even sparser due to cost constraints. The number of source levels

in particular will likely dominate project budgets. With this reality in mind, we solved the two

parameter optimal design problem for source arrays with 2, 4, and 6 levels and a 48 level receiver

array using checkerboard test patterns. Figure 11 shows the test model (panel [A]) besides the

optimal geometries for this set of source array sizes. All three geometries provide some degree of

resolution near the receiver well; however, increasing the number of sources provides the coverage

and aperture needed to effectively image features near the source well and in the central portion

of the imaging target. All three designs also exhibited the asymmetric array lengths present in

previous optimal design experiments. Surprisingly, a minimal array with only 6 sources was able to

effectively image features across the entire target unit suggesting that similar arrays could provide

useful real-time tomographic imagery when permanently installed in the well-bore.
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[Figure 11 about here.]

CONCLUSIONS

Through the examples shown in this paper, we have demonstrated the benefit of optimal design

algorithms when applied to the refinement of crosswell seismic acquisition geometries. Our approach

combines a simple l2 image-based experiment quality metric, a parsimonious representation of

survey geometry, and a robust direct search method. These optimal design components were applied

to differential seismic traveltime tomography, a developing imaging technique with application to in

situ monitoring of flow processes. The resulting methodology performs well for both two and four

parameter optimal experiment design problems and scales to models for which evaluation of SVD

metrics would be prohibitively expensive. Our investigation of optimal crosswell monitoring arrays

for geometries with significantly fewer sources than receivers has yielded the following observations,

1. Tomographic image quality can be improved by incorporating asymmetry into the length of

source and receiver arrays.

2. In addition to asymmetric cable lengths, the resolution of dipping features can potentially

benefit from a vertical offset between the two arrays.

3. Useful tomographic imagery can be derived from sparse asymmetric crosswell data, thus

opening the door to continuous monitoring of flow processes from within the reservoir.

The examples shown in this paper have been limited to ray-theoretic traveltime tomography.

The added benefit of using later arrivals, particularly reflections, in crosswell imaging has been well-

established. An important step in exploration of design algorithms will be to incorporate wavefield
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imaging methods into the same design framework. Arrays tailored to wavefield imaging will likely

have different characteristics than those designed purely for traveltime tomography due to their

different spatial sensitivity patterns. Traditional wavefield processing also requires attention to

spatial aliasing, such constraints could easily be added to the formulation as soft penalty terms.

Equally important challenges remain in adapting the design strategy to truly non-linear imaging

formalisms which do not require recourse to assumptions concerning small velocity perturbations.

Our examination of two deterministic search algorithms suggests that Nelder-Mead is useful

in low-dimensional design problems where the objective function is close to unimodal. For more

complicated problems, a global optimization algorithm is almost certainly required but the Nelder-

Mead algorithm may have some utility after a “hot start” places it near the global minimum.

For the 4 dimensional design problem, Multilevel Coordinate Search reliably converged to high

quality designs provided only with weak bounds on the design variables. Not having compared the

Multilevel Coordinate Search algorithm to other global optimization techniques, we cannot come to

any conclusions concerning its superiority to more commonly used approaches based on simulated

annealing or genetic algorithms.

While we are strong advocates of parsimonious descriptions of experiment geometry, exactly how

many parameters should be used is a topic open for discussion. Additional degrees of freedom could

include linear, quadratic, or higher order variations in source/receiver spacing. While providing

this extra flexibility would likely provide some improvement to image quality, the costs of custom

fabrication might outweigh these benefits. Ideally, all budgetary components of the survey would

be rolled into a single objective function which would provide a trade-off curve between total

acquisition cost and image quality. An even more ambitious approach would pose the experiment
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quality metric in a probabilistic hypothesis testing framework, thus allowing us to formally quantify

the cost of accurately answering questions about the subsurface. Our route, while considerably less

ambitious, provides useful design parameters which can be calculated in finite time with available

computational resources.
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List Of Figures

1. A test checkerboard with various target screens : The left panel [A] shows a global checker-

board with square 2 m cells while the middle and right panels depict targeted windows of

this test model confined to either a horizontal [B] or dipping [C] layers.

2. Design variables for a two parameter crosswell geometry : The search problem is posed in

terms of choosing optimal source (P1) and receiver (P2) array dimensions. The target is a

depth limited checker-board intended to replicate the reservoir unit targeted for monitoring.

3. Experiment quality metric for the 2 parameter problem evaluated on a regular grid : Note

the trough-shaped minimum corresponding to a narrow range of source array 1/2 widths near

6 m.

4. The l2 objective function surface and 3 designs for the (P1, P2) search problem : The top panel

depicts the combined objective function sampled on a regular mesh with 3 particular solutions

labeled. The bottom panels show the true perturbation model (A), and reconstructed images

corresponding to a minimal array (B), a “optimal” array (C), and a wide aperture array (D).

5. A comparison of the convergence of the Nelder-Mead downhill simplex (NM, shown in the

top panel) and the global Multilevel Coordinate Search (MCS, shown in the bottom panel)

algorithms. The bold squares indicate the global optimum which both methods converge to.

The bold red circle on the left panel indicates the Nelder-Mead starting model.

6. Design variables for a four parameter crosswell geometry : The search problem is posed in

terms of choosing optimal source and receiver array depths (P1, P2) and 1/2 widths (P3, P4).

The target is a depth limited checker-board intended to replicate the reservoir unit targeted
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for monitoring, in this case possibly tilted to replicate geologic dip.

7. Optimal crosswell design for a four parameter system : Shown are the true model perturbation

[A], followed by the inversion results for an initial guess at q [B], and the final optimized

experiment [C].

8. Base Velocity Model and Estimate of Flow-Induced Velocity Perturbations at Frio : Panel [A]

depicts a log-derived background model used for the the experiment design test while panel

[B] shows an estimate of the CO2 induced velocity perturbation derived from multi-phase flow

modeling results. The dipping black lines in panel [B] are background model isocontours.

9. Optimal crosswell design for a four parameter system with a flow-based test pattern: Shown

are the true model perturbation [A], followed by the inversion results for an initial guess at

q [B], and the final optimized experiment [C].

10. Optimal crosswell design for a flow-based test pattern with a high velocity contrast back-

ground (mbase): Shown are the true model perturbation [A], followed by the inversion results

for an initial guess at q [B], and the final optimized experiment [C].

11. Optimal Designs for three sparse arrays : Panel [A] depicts the true checkerboard model

while panels [B],[C], and [D] show the optimal acquisition geometries for 2, 4, and 6 sources

respectively.
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Figure 1: A test checkerboard with various target screens : The left panel [A] shows a global
checkerboard with square 2 m cells while the middle and right panels depict targeted windows of
this test model confined to either a horizontal [B] or dipping [C] layers.
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Figure 2: Design variables for a two parameter crosswell geometry : The search problem is posed
in terms of choosing optimal source (P1) and receiver (P2) array dimensions. The target is a depth
limited checker-board intended to replicate the reservoir unit targeted for monitoring.
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Figure 4: The l2 objective function surface and 3 designs for the (P1, P2) search problem : The
top panel depicts the combined objective function sampled on a regular mesh with 3 particular
solutions labeled. The bottom panels show the true perturbation model (A), and reconstructed
images corresponding to a minimal array (B), a “optimal” array (C), and a wide aperture array
(D).

48



NM

Receiver array 1/2 width (m)

S
o
u
rc

e
 a

rr
a
y
 1

/2
 w

id
th

 (
m

)

5 10 15

5

10

15

2.2

2.4

2.6

MCS

Receiver array 1/2 width (m)

S
o
u
rc

e
 a

rr
a
y
 1

/2
 w

id
th

 (
m

)

5 10 15

5

10

15

Ω

Ω

2.2

2.4

2.6

a)

b)

Figure 5: A comparison of the convergence of the Nelder-Mead downhill simplex (NM, shown in
the top panel) and the global Multilevel Coordinate Search (MCS, shown in the bottom panel)
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Figure 6: Design variables for a four parameter crosswell geometry : The search problem is posed
in terms of choosing optimal source and receiver array depths (P1, P2) and 1/2 widths (P3, P4).
The target is a depth limited checker-board intended to replicate the reservoir unit targeted for
monitoring, in this case possibly tilted to replicate geologic dip.
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Figure 7: Optimal crosswell design for a four parameter system : Shown are the true model
perturbation [A], followed by the inversion results for an initial guess at q [B], and the final optimized
experiment [C].
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Figure 8: Base Velocity Model and Estimate of Flow-Induced Velocity Perturbations at Frio :
Panel [A] depicts a log-derived background model used for the the experiment design test while
panel [B] shows an estimate of the CO2 induced velocity perturbation derived from multi-phase
flow modeling results. The dipping black lines in panel [B] are background model isocontours.
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Figure 9: Optimal crosswell design for a four parameter system with a flow-based test pattern:
Shown are the true model perturbation [A], followed by the inversion results for an initial guess at
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Figure 10: Optimal crosswell design for a flow-based test pattern with a high velocity contrast
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Figure 11: Optimal Designs for three sparse arrays : Panel [A] depicts the true checkerboard
model while panels [B],[C], and [D] show the optimal acquisition geometries for 2, 4, and 6 sources
respectively.
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