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Abstract

In several nuclear cardiac imaging applications (SPECT and PET), images are formed by 

reconstructing tomographic data using an iterative reconstruction algorithm with corrections for 

physical factors involved in the imaging detection process and with corrections for cardiac and 

respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of 

linear equations and include attenuation, scatter, and spatially varying geometric response. The 

solution to the tomographic problem involves solving the inverse of this system matrix. This 

requires the design of an iterative reconstruction algorithm with a statistical model that best fits the 

data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes 

Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori 

estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood 

function for the Poisson statistical model. The a priori distribution is formulated as the joint 

entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI 

cine image modeled as a FE mechanical model. The developed algorithm shows the potential of 

using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain 

solutions of gated cardiac PET images.

Keywords

Bayesian reconstruction; joint entropy; finite element cardiac mechanical model; positron 
emission tomography; cardiac; hybrid PET/MRI

1 Introduction

PET/MRI technology holds the potential to provide a wealth of diagnostic information from 

functional analysis of the myocardium as well as biochemical and physiological 
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characterization of disease processes. One example (see Figure 1), involves using PET and 

MRI together to develop technologies for calculating, evaluating, and studying myocardial 
efficiency, particularly in patients with heart failure. Cardiac work of specific tissue regions 

can be calculated by measuring cardiac strain (distance) from MRI tag and cine pulse 

sequences and stress (force) from an image derived finite element (FE) mechanical model of 

the patient heart. Combine this with measures of oxygen utilization, measures of tissue 

efficiency and its inhomogeneity can be ascertained. Imaging and analytical methods to 

measure myocardial work and oxygen consumption will provide methods to quantify cardiac 

efficiency and relationships between myocardial perfusion, structure, and wall dynamics. A 

key aspect of this effort is the use of a mechanical model of the imaged heart not only to 

measure cardiac efficiency but also to provide improved PET images of the cardiac motion 

that can be used as priors in a maximum a posteriori reconstruction algorithm.

The Dassault Systèmes FE Living Heart model1 provides technology for developing patient 

specific electromechanical cardiac models. The model consists of four chambers: the left 

and right atria and the left and right ventricles, connected by four valves. A FE model of the 

whole heart is created from assumed circulatory models and from anatomic information that 

might be obtained from PET and MRI imaging data. All four deformable chambers are 

electrically excitable with hyperelastic material properties connected by in- and out-flow 

conditions. Kinematic equations, boundary conditions, and excitation contraction coupling 

provide a realistic electromechanical model of the heart. The living heart model was 

designed to aid in device design and treatment planning in cardiac diseases. Using the 

Dassault Systèmes FE cardiac modeling technology, we obtain patient specific mechanical 

models of the heart by fitting it to cardiac MRI cine data acquired from a PET/MRI scanner 

at the University of California San Francisco (UCSF).

We hypothesize that the FE mechanical model of the patient myocardium will better 

constrain the reconstructed solution of the patient’s cardiac deformation from data acquired 

during the acquisition of gated cardiac PET data. In our application the patient specific FE 

mechanical model is obtained from cardiac MRI cine data. Tang and Rahmim2 provide an 

excellent review of work using CT and MRI images to design priors to constrain solutions in 

the application of maximum a posteriori (MAP) reconstruction algorithms. Some work has 

attempted to provide constraints by specifying deformation based upon optical flow; 

however, no work has used a FE mechanical model to more accurately model the 

deformation of the heart over the cardiac cycle. In our work here we consider the 4D 

problem of space and cardiac deformation motion using Gaussian basis functions to model 

the continuous deformation of the heart.3 We use the joint entropy (JE)4 to measure the 

similarity between the gated cardiac PET image and the mechanical model specified from 

the cardiac MRI cine images. The JE measure provides the prior for our Bayesian PET 

image reconstruction.

2 Algorithm

The 4D model of the activity distribution of a radionuclide in the image space for a 

deforming myocardium is represented by a function A(x, τ), where x is the spatial 
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coordinate and τ is the cardiac phase coordinate due to beating of the heart. The activity 

distribution can be written as a tensor product of the spatiotemporal basis functions:3

A(x, τ) = ∑m, qamqSm(x)Wq(τ),

where Sm(x), m = 1,2, … M, are the spatial basis functions and Wq(τ), q = 1,2, … Q, are 

basis functions corresponding to the cardiac phases. The reconstruction problem thus 

involves the estimation of the expansion coefficients amq.

For the projection p with elements pi, the activity at phase coordinate τ for detector element 

di is given by

pi(τ) = ∫χ
F x, di A(x, τ)dx,

where the spatiotemporal distribution of the activity is integrated along the line of projection 

i in the image space χ. The weighting function F[x, di] incorporates the physical factors of 

the image detection process and provides a mapping of the activity from a position x and 

cardiac phase coordinate τ in the image space into the projection at the detector position di. 

It is assumed that the detection of photons at each detector element di is governed by a 

Poisson distribution.

The random number of photons recorded in projection pik during the gate or phase interval 

[τk, τk + Δτk] is pik = ∫ τk

τk + Δτk pi(τ)dτ where pik is a Poisson distributed random variable. 

The mean of Pik is

pik = ∑m, qamqΛikmq . (1)

where Λikmq = ∫ τk

τk + Δτ
Um di Wq(τ)dτ and Um(di)= ∫χ F[x, di]Sm(x)dx.

Hence, assuming the detection of photons pik in each projection bin i during the phase 

interval k is an independent process, the likelihood function is given by

ℒ(p | A) = ∏
i, k

e
− pik pik

pik

pik! ,

where A is the vector of basis function coefficients A = {amq}. Equivalently, one can write 

the log of the likelihood function as

ln[ℒ(p A)] = ∑i, k − pik + piklnpik − ln pik! .
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From Equation (1), the log-likelihood function is

ln[ℒ(p A)] = − ∑i, k ∑m, qamqΛikmq + ∑i, k pikln ∑m, qamqΛikmq − ∑i, k ln pik! .

(2)

Now using Bayes theorem, the Bayesian log-likelihood is

ln ℒB(A p) = ln(ℒ(p A)) + ln(P(A)) − ln(P(p)) .

Substituting the expression for the likelihood function in Equation (2), we have

ln ℒB(A p) = − ∑
i, k

∑
mq

amqΛikmq + ∑
i, k

pikln ∑
m, q

amqΛikmq − ∑
i, k

ln pik! + ln(P(A)) − ln(P(p)) .

Constraining the solution by a prior ln(P(A)) equal to the JE between the gated cardiac PET 

images A and a mechanical cardiac model M determined from the cardiac MRI cine data 

(dropping terms independent of amq), the objective function is given by:4

ln ℒB(A p) = − ∑
i, k

∑
mq

amqΛikmq + ∑
i, k

pikln ∑
m, q

amqΛikmq − βΦJE(A, M) − ln(P(p))

Where ln(P(A)) = ΦJE(A, M) = −∫p(A(x, τ), M(x′, τ′))log[p(A(x, τ), M(x′, τ′))]dxdτdx′dτ
′

p(A(x, τ)) = 1
NxNτ

∑
i = 1

Nx
∑

j = 1

Nτ
ϕ

A(x, τ) − ∑m, qamqSm xi Wq τ j
σxτ

p A(x, τ), M x′, τ′ = 1
NxNτ

∑
i = 1

Nx
∑

j = 1

Nτ
ϕ

A(x, τ) − ∑m, qamqSm xi Wq τ j
σxτ

ϕ
M x′, τ′ − M x′i, τ′ j

σx′τ′

and ϕ are Gaussian functions with means Σm,q amqSm(xi)Wq(τ j) and x′i, τ′ j, and variances 

σxτ and σx′τ′, respectively.

The gradient of the joint entropy is
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∂ΦJE(A, M)
∂amq

= − 1
NxNτ

∑
k, l, k′, l′

N p
1 + log p A xk, τl , M x′k′, τ′l′ ϕ

M x′, τ′ − M x′k′, τ′
σx′τ′

∂ϕ
∂amq

A(x, τ) − ∑m, qamqSm xk Wq τl
σxτ

,

where Np is the number of points for which ϕ is computed and

∂ϕ
∂amq

A(x, τ) − ∑m, qamqSm xk Wq τl
σxτ

= ϕ
A(x, τ) − ∑m, qamqSm xk Wq τl

σxτ

A(x, τ) − Sm xk Wq τl

σxτ
2 .

The 4D maximum a posteriori iterative expectation maximization reconstruction algorithm 

is4

amq
new =

amq
old

𝒮mq + β
∂ΦJE(A, M)

∂amq amq = amq
old

∑
j, k

Λ jkmq
p jk

p jk
old ,

where the sensitivity term is Smq = Σj,kΛjkmq.

3 Preliminary Results

Here we present some current results from two patient PET/MRI studies. In both studies a 

simultaneous PET/MRI cardiac patient study was performed using the GE PET/MRI 3.0T 

scanner (GE Healthcare, Milwaukee, WI) at UCSF. Patient Study 1. The patient was first 

injected with 9.9 mCi of 18FDG 20 mins before a PET/CT scan. The patient was then 

brought to the PET/MRI suite with ½ the original activity. During a 10 min PET acquisition, 

a 3D whole heart cine with compressed sensing was simultaneously performed.5 The time-

of-flight PET images in Figs. 2A & 2C give better resolution compared with the non time-

of-flight reconstructions in Figs. 2B & 2D. The gated reconstructions (Figs. 2C & 2D) show 

more noise than the ungated reconstructions as one would expect. Patient Study 2. A 

dynamic cardiac PET study began immediately prior to the injection of 15.1 mCi of 11C-

acetate and subsequently acquires PET data for 30 minutes while simultaneously acquiring 

MRI data from cine pulse sequences. One of the time-of-flight reconstructed transaxial 

images of 11C-acetate uptake is shown in Fig. 2G. The Dassault FE mechanical model 

(upper frame, Fig. 2H) was warped to fit the 3D cine results to provide a patient specific FE 

mechanical model of the heart (lower frame, Fig. 2H) that models the cardiac deformation 

for the entire cardiac cycle. We expect that using a patient specific FE cardiac mechanical 

model as prior in a maximum a posteriori reconstruction algorithm will improve the noise in 

the images in Figs. 2C & 2D.
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4 Summary

The developed algorithm has the potential of using a FE mechanical model of the heart 

derived from a cardiac MRI cine scan to constrain the solution using a joint entropy prior. 

This work implements new mathematical models from simultaneously acquired PET and 

MRI data with several firsts: 1) First to use 4D modeling of cardiac deformation using a FE 

mechanical model; 2) First to use human specific FE mechanical model of the heart as a 

prior in a MAP reconstruction algorithm; 3) First to use basis functions to represent 4D 

modeling in a joint entropy MAP reconstruction algorithm; 4) First to use joint entropy 

mutual prior to reconstruct PET data constrained by a joint entropy prior between PET and 

MRI data.
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Figure 1. Concept for using PET/MRI for measuring cardiac efficiency.
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Figure 2. PET/MRI studies of the human heart.
Patient 1: A) Non ECG gated, time-of-flight reconstruction. B) Non ECG gated, non time-

of-flight reconstruction. C) End diastole, time-of-flight reconstruction. D) End diastole, non 

time-of-flight reconstruction. E) 3D Cine MRI at systole. F) 3D Cine MRI at diastole. 

Patient 2: G) Time-of-flight reconstruction of a transaxial image of 11C-acetate uptake in 

the heart. H) A patient specific FE mechanical model of the heart is formed in the lower 

frame by warping the Dassault FE model in the upper frame to fit the cine MRI data.
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