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Abstract

Accelerating Electronic Structure Calculations with Machine Learning

by

Daniel Rothchild

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Joseph Gonzalez, Chair

New chemicals and new materials have transformed modern life: pharmaceuticals, pesti-
cides, surfactants, alloys, catalysts, polymers, battery electrodes, and countless other mate-
rials play critical roles in healthcare, construction, energy, and other wide-ranging industries.
New materials are not generally stumbled upon by happenstance, but rather are discovered
through a long process that involves extensive physics-based computer simulations at the
atomic level. Electronic structure calculations play an important role in the discovery pro-
cess, but they can be extremely computationally expensive. As such, there is a long history
of approximation methods that trade off speed and accuracy.

Machine learning has the potential to open a new frontier on this speed-accuracy trade-off,
and in doing so, significantly accelerate discovery of new materials. In this dissertation, we
first cover the quantum mechanical background necessary to understand the problem setting,
written with the machine learning community in mind as the audience. Next, we survey
the learning-based methods that are pushing the speed-accuracy frontier, along with some
foundational non-learning-based methods. Lastly, we investigate self-supervised learning as
a mechanism for understanding the shape of the potential energy surface without expensive-
to-obtain supervision on energies and forces.
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Chapter 1

Quantum Mechanics Background

1.1 Electrons

Wavefunctions

Electrons are the central object of interest for the behavior of atomic systems. If we could
quickly and accurately figure out what electrons would do in any situation, we would im-
mediately increase the pace of discovery across chemistry and materials science. However,
modeling electrons is difficult because their behavior is governed by the Schrödinger equa-
tion, which has no known analytical solution for any but the simplest of systems. Physicists
and chemists have come up with many ways to approximate and numerically solve the
Schrödinger equation at various speed/accuracy trade-offs, and machine learning has the
potential to significantly improve on this tradeoff compared to existing methods. The rest
of this thesis will explore a number of these ML methods.

To provide a foundation upon which to understand these methods, this chapter first
gives an overview of how we model electrons (and other particles) in quantum mechanics.
Electrons are often described as being “both” waves and particles. This analogy is supposed
to help students of quantum mechanics understand electrons by comparing them to familiar
objects from classical mechanics: waves – like sound waves or water waves – and particles
– like billiard balls. In fact, electrons are neither waves nor classical particles. In some
situations, they behave like waves we are familiar with; in some situations, like particles;
and in plenty of situations, like neither.

When we say that a billiard ball behaves like a classical particle, we mean that a system
of billiard balls can be well described using the laws of classical mechanics: the state of the
system at any given time is the locations and momenta of each of the balls, and the system
changes over time according to Newton’s laws (F = ma, etc.). By modeling the system in
this way, we can carry out the two most basic functions of scientific modeling: predicting
the outcome of measurements, and using the state of the system at one time to predict the
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x1=0.2 x2=0.7

Figure 1.1: Left: example of a classical state describing two particles at x1 = 0.2 and
x2 = 0.7. Right: example of a quantum state describing two particles localized around
x1 = 0.2 and x2 = 0.7. ψ(x) is assumed to be real-valued in this example.

state at future times.1

When we say an electron is a quantum-mechanical particle, we mean that a system of
electrons can be well described using the laws of quantum mechanics, but not by the laws of
classical mechanics. In other words, one could try to assign positions and momenta to each
electron in the system and then evolve those over time using Newton’s laws, however, this
results in a very poor match between predictions and measurements in the lab. Instead of a
list of particle positions and momenta, the state of a quantum mechanical system is called a
“wavefunction”, and the system’s wavefunction evolves over time according to Schrödinger’s
equation. As in classical mechanics, what we want is a scientific model that allows us to
predict the outcome of measurements and to propagate a system’s state forward in time.
The system’s wavefunction, combined with the laws of quantum mechanics, allow us us to
do both of these.

A system’s wavefunction is a function over the degrees of freedom of the system. For
example, the wavefunction of a system of two electrons in three dimensions could be expressed
as a function over six dimensions—three degrees of freedom (x, y, and z) for each particle.
For every possible pair of positions of the particles, the wavefunction takes on some value,
and these values can be real or complex. The wavefunction is commonly denoted by Ψ(x, t),
or ψ(x) when we’re only considering Ψ at a particular time. In other words, a state in
classical mechanics might look like x1 = 2, x2 = −1 . . .; a state in quantum mechanics might
instead look like ψ(x1, x2) = e−(x2

1+x2
2). A state in classical mechanics evolves over time by

changing the positions and momenta of the particles according to Newton’s laws. A quantum
state evolves over time by changing the system’s wavefunction according to Schrödinger’s
equation, which I will discuss below. The difference between a classical and quantum system
state is illustrated in Figure 1.1

1“Predict” in this context refers to what a physics model asserts will happen, not the output of any kind
of learned model, as discussed later in the thesis.
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To start making sense of the idea of a wavefunction, consider a simple example of a
particle in a one-dimensional box. The box starts at x = 0 and ends at x = 1. Another way
of saying this is that a particle between x = 0 and x = 1 has zero potential energy, and a
particle outside of this range has infinite potential energy. In classical mechanics, the state
of this system at any moment in time consists of the particle’s position and momentum.
The particle could have any position between x = 0 and x = 1, and it can have any
momentum whatsoever. The particle will follow Newton’s laws, which predict that it will
bounce back and forth within the box forever as long as the initial momentum is non-zero.
The energy of the particle consists solely of kinetic energy, since the potential inside the box
is zero. Therefore, since the particle can have any momentum, it can also have any energy
E = 1

2
mv2 = p2

2m
, where p, v, and m are the momentum, velocity, and mass of the particle.

For a quantum particle in our one-dimensional box, the system’s state at any moment
in time is the particle’s wavefunction ψ(x), which is a complex-valued function over all
coordinates x. As you might expect, for the one-dimensional box, ψ(x) = 0 for x ≤ 0 and
x ≥ 1. Within the box, ψ(x) can be any function (though it must be suitably normalized).
Some example wavefunctions are shown in 1.2. Although any suitably normalized function
is possible, the wavefunctions shown in Figure 1.2 have the property that |ψ(x)| does not
change over time as ψ(x) evolves according to the Schrödinger equation. In other words,
|Ψ(x, t)| = |Ψ(x, 0)| for all t. These wavefunctions are called “stationary states”, which are
discussed below.

By itself, the wavefunction at a particular point in time doesn’t tell us much. What’s
missing is 1) an understanding of how to use the wavefunction to predict what the outcome
of a measurement will be, and 2) a mechanism to predict what the wavefunction will be in
the future. I’ll cover these in the following two sections. The concepts of wavefunctions,
measurement, and time evolution are important because we want to replace slow, physics-
based calculations involving these concepts with machine learning.

Measurement

In classical mechanics, predicting the outcome of measurements is simple and intuitive. If
we are modeling a system of billiard balls and we want to predict, say, the outcome of a
measurement of the number of balls that have x positions less than 0, we simply look at
each ball in the system’s state and check whether its x position is less than 0. If we build an
apparatus that measures the number of balls in the real world with an x position less than
zero, it will measure the same value every time, and that value will match what the model
predicts.

Measurement in quantum mechanics is not so straightforward. As in classical mechanics,
we can use the state of the system to predict what the outcome of a measurement in the lab
will be. However, unlike in classical mechanics, the system’s state gives us probabilities that
certain values will be measured rather than predicting a particular outcome of a measure-
ment with certainty. In the case of a system of particles, a classical model of a system of
billiard balls will predict that a particular number of billiard balls have x position less than
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0; a quantum model of a system of electrons will yield a probability distribution over the
number of electrons that have an x position less than 0. This distinction between how we
model classical and quantum systems reflects a difference in how measurements actually work
in the lab. If you make a measurement on a particular classical state, your measurement
apparatus will always give you the same answer unless the equipment is malfunctioning. If
you make a measurement on a particular quantum state, your correctly functioning mea-
surement apparatus will in general give you different answers each time you make the same
measurement.

The wavefunction of a system at a given time tells us the probability of measuring each
possible value. For example, if we build an apparatus that measures the position of an
electron, then given an electron with a wavefunction ψ(x), the probability of measuring
the electron at position x0 is |ψ(x0)|2, where | · | denotes the complex modulus. Position is
called an “observable”, and other observables include a particle’s momentum, its spin, and its
energy. As it turns out, all observables of physical quantities are linear operators on the space
of all possible wavefunctions, and as such, they have eigenvectors and eigenvalues. Measuring
the value of an observable always results in an eigenvalue of the observable, and after the
measurement is complete, the quantum state of the system “collapses” to the eigenvector (or
eigenstate) corresponding to that eigenvalue. The probability of a measurement returning
any particular eigenvalue is given by the square of the inner product between the system’s
state before the measurement and the eigenstate corresponding to that eigenvalue.

Using quantum mechanics to predict the outcome of a measurement is therefore a two-
step process. Say we are measuring an observable Ô. The first step is to find the eigenvalues
and eigenstates of Ô by solving the eigenvalue problem

Ôψ = oψ.

The result of this step is a set of eigenstates ψa and corresponding measurement values oa.
Note that there can be infinite ψa, and that a can be either continuous or discrete depending
on the observable. For the position observable, the eigenstates are ψa(x) = δa(x) for every
real value a—i.e. the eigenstates are dirac delta function centered at every possible x—and
the corresponding measurement values are oa = a. For the energy observable, the eigenstates
will depend on the system’s potential function. For the one-dimensional particle in a box
discussed above, the eigenstates are indexed by integers n ≥ 1, and are given by

ψn(x) =

{ √
2 sin (πnx) 0 < x < 1

0 o/w
.

The corresponding measurement values are En = n2π2h̄2

2m
. These ψn(x) are the wavefunctions

shown in figure 1.2.
The second step of predicting the outcome of measuring Ô is to compute the square of

the inner product between the system’s wavefunction ψ(x) and each of the eigenstates ψa(x).
The inner product between two wavefunctions ψ1 and ψ2 is denoted ⟨ψ1|ψ2⟩, and is given by

⟨ψ1|ψ2⟩ =
∫ ∞

−∞
ψ1(x)

∗ψ2(x)dx,
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where ψ1(x)
∗ denotes the complex conjugate of ψ1(x). For the position observable, the

probability of measuring x is

| ⟨ψ|δx⟩ |2 =
∣∣∣∣∫ ∞

−∞
ψ(x′)∗δx(x

′)dx′
∣∣∣∣2 = |ψ(x)|2.

Once a value x is observed, the wavefunction ψ collapses to δx. In other words, if we measure
a particle’s position twice in a row, we’ll get the same answer the second time as we got the
first time. For the particle-in-a-box energy observable, the probability of measuring En is

| ⟨ψ|ψn⟩ |2 =
∣∣∣∣∫ 1

0

ψ(x)∗
√
2 sin(πnx)dx

∣∣∣∣2 .
If ψ(x) is equal to one of the eigenstates ψn, then the inner product will be 1 and we will
measure the value En with probability 1. In other words, the eigenstates ψn are the wave-
functions with a definite energy value. Any wavefunction that isn’t one of these eigenstates
will stochastically return an En depending on the inner product above, and it will collapse
to the corresponding ψn after measurement.

Time Evolution

Energy and time are intertwined in quantum mechanics, and as such, the energy observable,
called the Hamiltonian and denoted Ĥ, is of central importance in determining how a system
evolves over time. The time-dependent Schrödinger equation governs how wavefunctions
evolve over time:

ih̄
d

dt
|Ψ(x, t)⟩ = Ĥ |Ψ(x, t)⟩

We can solve this equation by assuming the solution Ψ(x, t) can be separated into spatial and
temporal components: Ψ(x, t) = ψ(x)τ(t). If we make this assumption, then the solution to
the time-dependent Schrödinger equation above is Ψ(x, t) = ψ(x)τ(t) (as assumed), where
τ(t) = e−iEt/h̄ and ψ(x) is the solution to the time-independent Schrödinger equation:

Ĥ |ϕ(x)⟩ = E |ϕ(x)⟩ .

This equation is the same eigenvalue equation used above to determine the wavefunctions
of definite energy. Solutions to this differential equation are called stationary states, since
their time evolution is very simple (i.e., multiply by e−iEt/h̄ to advance to time t), and the
probability of finding a particle at position x, |ϕ(x)e−iEt/h̄|2 = |ϕ(x)|2|eiEt/h̄|2 = |ϕ(x)|2,
does not depend on time. In other words, the wavefunctions of definite energy are exactly
those which vary over time only by a global phase e−iEt/h̄. In contrast, states that are not
energy eigenstates will have different probability densities |ψ(x)|2 depending on what time
a measurement is taken.
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Figure 1.2: Left: eigenstates ϕ(x) for the particle in a box potential. Right: eigenstates ϕ(x)
for the harmonic potential. In both figures, the potential is indicated by a dashed black line,
and the wavefunctions ϕn are offset vertically by En.

Example: Harmonic Oscillator

Above, we considered the example of a particle in a one-dimensional box. This potential
function is of limited use for modeling atomic systems, since real-world potentials rarely
look like the particle in a box. In this section we’ll consider a much more useful example:
the harmonic oscillator. The one-dimensional harmonic oscillator is the quadratic potential
function V (x) = 1

2
kx2, where k is analogous to the classical spring constant and determines

how quickly the potential increases as you move away from the origin. The harmonic oscil-
lator is of particular interest because it is the lowest-order approximation to any potential
function around a local minimum. Local minima in the potential function are important
because systems in the real world tend to occupy low energy states.

To find out how particles behave in a harmonic potential, we need to find the energy
eigenstates, or stationary states of an electron situated in the potential. The energy of an
electron is the sum of its kinetic and potential energy, and so the Hamiltonian (also known
as the energy observable) can be written as

Ĥ = KE + PE =
p̂2

2m
+

1

2
kx̂2.

As explained above, the stationary states are the solutions to the eigenvalue problem Ĥψ =
Eψ, and it turns out that, for the harmonic oscillator, there is one stationary state for each
integer n ≥ 0. If we ignore normalization and choose units judiciously, the stationary states
are given by:

ψn(x) ∝ e−x2/2Hn(x),

where Hn are polynomials of order n called Hermite polynomials. In other words, the
nth stationary state is a polynomial of degree n multiplied by a Gaussian envelope. The
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associated energies En are (in the same judiciously chosen units as above)

En = n+
1

2
.

These stationary states of the quantum harmonic oscillator are shown in Figure 1.2.
There are a number of differences between the classical and quantum harmonic oscillator

that are worth noting. An analogous classical system to consider is that of a ball rolling
back and forth in a quadratically shaped valley. If the ball is released from some place
on the hill, it will oscillate sinusoidally back and forth within the valley forever (assuming
no friction). Compared to the classical harmonic oscillator, where the ball can be released
from any height and therefore can have any amount of total energy, the states of definite
energy in the quantum harmonic oscillator are quantized, meaning that only a discrete set
of energy measurements are possible. A consequence of this is that an electron in energy
level n—i.e. whose wavefunction is given by ψn(x)—cannot absorb or release an arbitrary
amount of energy in order to move to some other energy level n′. Instead, it must absorb or
release energy in packets of size h̄ω, or some integer multiple thereof. Electrons can absorb
or release energy by absorbing or releasing photons, so this phenomenon is the reason why
emission and absorption spectra exhibit lines at particular wavelengths.

Another noteworthy difference between the quantum and classical harmonic oscillators
is that, in the classical harmonic oscillator, there is a hard maximum x value at which you
might find the ball in. In the quantum case, on the other hand, there is non-zero probability
of measuring the quantum particle in the classically disallowed region. This probability
decays exponentially as |x| increases, but is non-zero nonetheless. This feature of quantum
mechanics is what allows quantum tunneling to occur, where a particle surpasses an energy
barrier that, from the standpoint of classical mechanics, should not be possible to cross.

Example: Hydrogen Atom

The hydrogen atom is also an important model system, and for a single electron, it can be
solved analytically. In a hydrogen atom, an electron experiences the Coulomb potential in
three dimensions due to its electrostatic interaction with the nucleus: V (r⃗) ∝ 1

r⃗
. Plugging

this potential into the usual Hamiltonian Ĥ = p2

2m
+V (r) and solving the eigenvalue problem

Ĥϕ = Eϕ gives the energy eigenstates for the Hydrogen atom with one electron. For
the Hydrogen atom in particular, the energy eigenstates are also referred to as “orbitals”,
since before quantum mechanics was fully developed, electrons in atoms were believed to be
particles orbiting a nucleus.

Similar to the particle in a box and the harmonic oscillator, these energy eigenstates for
the Hydrogen atom are quantized, but for Hydrogen they are indexed by three integers rather
than just one. A full treatment of the Hydrogen atom is beyond the scope of this thesis,
but in brief, the three integers are n, the “principle quantum number”, which determines
the spatial extent of the orbital; l, the “azimuthal quantum number”, which determines the
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Figure 1.3: Density plots of |ψnℓm|2 for n = 1 (left-most plot), n = 2 (middle pyramid), and
n = 3 (right-most pyramid). The rows of each pyramid denote ℓ = 1, 2, and 3, and the
columns are the m values, from m = −ℓ to m = ℓ

angular momentum of the orbital, and m, the “magnetic quantum number”, which sets a
tradeoff between the oscillation frequency of the orbital along lines of latitude vs. longitude.

Ignoring normalization and dropping fundamental constants, the energy eigenstate (or
stationary state, or orbital) associated with integers n, ℓ, and m can be written as follows:

ψnℓm(r, θ, ϕ) ∝ e−r/nrℓL2ℓ+1
n−ℓ−1

(
2r

n

)
Y m
ℓ (θ, ϕ).

Here, L2ℓ+1
n−ℓ−1(x) is a polynomial in x of degree n − ℓ − 1 called a generalized Laguerre

polynomial, and Y m
ℓ is a spherical harmonic function, which is analogous to a sinusoid but

on a sphere, where ℓ determines how quickly Y m
ℓ changes as a function of θ and ϕ. Notice

that n determines the spatial extent of ψnℓm because the wavefunction is exponentially cut off
by e−r/n. ℓ determines both how many times ψnℓm oscillates with increasing r before dying
out (through L2ℓ+1

n−ℓ−1) and also how fast ψnℓm changes as a function of θ and ϕ (through Y m
ℓ .

Visualizations of ψnℓm are shown in Figure 1.3.

Spin

So far, I have introduced wavefunctions as functions of three spatial degrees of freedom.
However, electrons have an additional non-spatial degree of freedom called spin. A spatial
degree of freedom x can take on any real value, but the spin degree of freedom can only
take on two discrete values: “up” or “down”. Just like the position x̂ of an electron is
an observable, so too is the spin ŝ an observable that can return either up or down. The
associated eigenstates are denoted ψ↑(s) and ψ↓(s), respectively.

If we assume that there is no interaction between an electron’s spin and its orbital, the
total wavefunction of an electron ψ(x, s) can be factored into a spatial and a spin component
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ψx(x)ψs(s). The spin component ψs(s) can be written as any (suitably normalized) linear
combination of ψ↑(s) and ψ↓(s). So, for example, an electron in the lowest energy orbital of
the Hydrogen atom with completely unknown spin can be written as:

ψ(r, θ, ϕ, s) =
1√
2
ψ000(r, θ, ϕ)(ψ↑(s) + ψ↓(s)).

Because I will assume that there is no interaction between the spatial and spin compo-
nents of an electron’s wavefunction, spin can largely be treated separately from the spatial
wavefunction, so for ease of exposition, I will mostly ignore spin in this thesis.

1.2 Approximation Methods

Multiple Electrons and Antisymmetry

For larger atoms with multiple electrons, there is no known analytical solution for the energy
eigenstates. The reason for this is that the potential becomes more complicated. For two
electrons, the potential depends not only on the distances between each electron and the
nucleus r1 and r2, but also on the distance between the two electrons r12:

V (r⃗1, r⃗2) =
p21
2m

+
p22
2m

− Z

r1
− Z

r2
+

1

r12
,

where Z is the charge of the nucleus (e.g. Z = 2 for Helium). This extra term means it
is impossible to factor the problem into two independent one-electron problems, and the
problem only gets worse with more electrons.

As a very first approximation, we can model the 2-electron wavefunction by simply ig-
noring the 1

r12
term entirely. Doing so allows us to factor the problem into two separate

one-electron problems. By this logic, if the energy eigenstates for the 1-electron problem are
ϕi(x) with energies Ei, then the energy eigenstates for the 2-electron system are products
ϕi(x1)ϕj(x2), and the associated energies are Ei+Ej. Extending this to the N -electron case
would mean that the energy eigenstates are products ϕi(x1)ϕj(x2)ϕk(x3) · · · with associated
energies Ei+Ej+Ek+ . . .. In particular, the lowest-energy state for a system of N electrons
would be ϕ0(x1)ϕ0(x2)ϕ0(x3) · · · , where ϕ0(x) is the lowest-energy stationary state for the
1-electron system.

Atoms are systems of N electrons, so by this reasoning, the lowest-energy state of
every atom would consist of all electrons occupying the orbital ψ000. In other words,
the electronic wavefunction for an atom with N electrons would be ψ(x1, x2, . . . , xN) =
ψ000(x1)ψ000(x2) · · ·ψ000(xN). This product of one-electron wavefunctions is called a Hartree
product. In reality, the Hartree product is a qualitatively incorrect model for an atom with
N electrons. What we observe in the real world is that the binding energy between electrons
and nucleii decreases as more electrons are added. In contrast, if the Hartree product were a
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good model for N electrons, we would expect each electron to have the same binding energy
to the nucleus.

The reason why the Hartree product is so bad is not because we ignored the 1/r12 term
in the Hamiltonian. Instead, it is due to one last feature of quantum mechanics that I’ll
introduce in this chapter, namely that the wavefunction of any system of multiple electrons
must be what’s called “antisymmetric”. An antisymmetric wavefunction has the property
that if you swap the coordinates of two electrons, the overall wavefunction picks up a negative
sign. In other words, if r1 is the location of electron one and r2 is the location of electron
two, then (ignoring spin)

ψ(r1, r2) = −ψ(r2, r1).

This fact about electrons is highly unintuitive: electrons are identical, so from the standpoint
of classical mechanics, it should make no difference if two of the particles swap places.
Nevertheless, this negative sign is extremely important, since it means that the Hartree
product is not a physically allowed wavefunction for a system of N electrons. For example,
if ψ(x1, x2) = ϕ(x1)ϕ(x2), then antisymmetry requires

ϕ(x1)ϕ(x2) = ψ(x1, x2) = −ψ(x2, x1) = −ϕ(x2)ϕ(x1).

This can only be satisfied if ϕ(x) = 0 everywhere, which is not possible because the wave-
function must be normalized so that |ψ|2 is a probability distribution.

In fact, not only is the Hartree product ψ(x1, x2) = ψ000(x1)ψ000(x2) not allowed, but
there is no way whatsoever to combine ψ000(x1) and ψ000(x2) into a two-electron antisym-
metric wavefunction. This fact is another way to state the Pauli exclusion principle, which
says that it is impossible for two electrons to occupy the same quantum state.

Hartree-Fock

Evidently, the Hartree product is not a valid way to combine N one-electron wavefunctions
into an N -electron wavefunction. Instead, to form antisymmetric N -electron wavefunctions,
we can combine N one-electron wavefunctions using what’s called a Slater determinant.
For the case of two electrons with one-electron wavefunctions ϕ1(x) and ϕ2(x), the Slater
determinant of ϕ1 and ϕ2 is

ψ(x1, x2) =
1√
2
(ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)) .

For N electrons, the Slater determinant is the determinant of a matrix:

ψ(x1, x2, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) · · · ϕN(x1)
ϕ2(x1) ϕ2(x2) · · · ϕN(x2)

...
...

. . .
...

ϕN(x1) ϕN(x2) · · · ϕN(xN)

∣∣∣∣∣∣∣∣∣ .
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The Slater determinant satisfies antisymmetry because the determinant of a matrix picks up
a negative sign if you swap two of the rows.

Armed with an antisymmetric way to combine one-electron orbitals, we can now make
progress on finding the energy eigenstates for a system of interacting electrons (i.e. without
ignoring the 1/r12 term in the potential). To start, we’ll focus on finding the energy eigenstate
corresponding to the lowest energy eigenvalue. This eigenstate is particularly important
because it represents the lowest-energy state that the N electrons might find themselves in.
The approach we’ll take will be remarkably familiar to anyone who has studied machine
learning. The key insight is that, given a guess for the ground-state wavefunction is, we can
pretty easily compute the actual energy of that wavefunction. Then, because we’re trying
to find the ground-state wavefunction, we can adjust our initial guess until the energy is
minimized. More concretely, we’ll guess that the wavefunction is a Slater determinant of N
one-electron wavefunctions ϕi

N
i=1. The energy of this Slater determinant is a mess of integrals

of various combinations of the ϕi, which I won’t write out here. But if we take the derivative
of this expression for the energy with respect to ϕi and set it to zero, we get out the equation

f(x)ϕi(x) = ϵiϕi(x),

where f(x), called the Fock operator, consists of several integrals involving all of the N
different wavefunctions ϕi(x). If we treat f(x) as fixed, we now have a set of N eigenvalue
problems that we can solve to get a new set ofN wavefunctions ϕ′

i(x). The Slater determinant
of these new ϕ′

i(x) must have as low or lower energy than the Slater determinant of the
ϕi(x), since we found the ϕ′

i(x) by minimizing the system’s energy. However, the new Slater
determinant is not necessarily the wavefunction with lowest possible energy, since in order
to find the ϕ′

i(x) we had to treat f(x) as fixed, even though in reality it depends on all the
ϕi(x). Nevertheless, this procedure allows us to take any set of ϕi(x) and improve them. As
such, we can start with an initial guess for the ϕi(x), and then repeatedly apply this method
to find wavefunctions with lower and lower energy until the energy converges.

This algorithm is called the Hartree-Fock algorithm. To summarize, the steps in the
algorithm are as follows:

1. Choose an initial set of one-electron wavefunctions {ϕi(x)}Ni=1.

2. Calculate the Fock operator f(x). If we choose the ϕi(x) to be a linear combination of
basis functions, we can write f(x) as a matrix F .

3. Solve each of the N eigenvalue problems Fc⃗i = ϵc⃗i.

4. Calculate each of the new ϕ′
i(x) as a linear combination of the basis functions using

the c⃗i calculated in the previous step.

5. Return to step 2, replacing ϕi(x) with the new ϕ′
i(x). Continue iterating until the

energy converges.
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The Hartree-Fock method will find the lowest-energy N -electron wavefunction out of all
possible Slater determinants. However, we unfortunately haven’t fully solved the Schrödinger
equation, since there’s no guarantee that the energy eigenstates are in fact Slater determi-
nants. A number of methods, called post-Hartree-Fock methods, remove the assumption
that the energy eigenstates can be written as a Slater determinant. These post-Hartree-
Fock methods attain much higher accuracy than Hartree-Fock, and in principle it’s even
possible to fully solve the Schrödinger to arbitrarily good accuracy. However, these methods
are extremely expensive. The computational complexity of Hartree-Fock scales as n4

electrons,
and post-Hartree-Fock methods scale as n6

electrons, n
8
electrons, or even higher. As such, these

methods are only suitable for small systems.

Density Functional Theory

For larger systems, we can turn to a method called density functional theory (DFT), which
makes a different set of approximations as Hartree-Fock. In DFT, we make use of a fact
about electronic ground states that was mathematically proven by Walter Kohn and Pierre
Hohenberg in the 1960’s. Hohenberg and Kohn proved two theorems about the electronic
ground state. The first theorem says that the ground state properties of an atomic system
are completely determined by the electron density in the ground state. In other words, it
says that it’s possible to do any calculation you want about the ground state even if you
don’t know what the wavefunction of the system is—you only have to know the electron
density. The second theorem gives an expression for the system’s energy as a function of the
electron density. Minimizing the energy yields the true ground-state electron density. The
first theorem is important because the electron density is a function of three spatial coor-
dinates, whereas the N -electron wavefunction ψ(x1, x2, . . . , xN) is a function of 3N spatial
coordinates. This means that calculations using the density are much more computation-
ally tractable than calculations with the wavefunction. The second theorem, combined with
later work from Walter Kohn and Lu Jeu Sham, gives a method—in principle—to find the
ground-state electron density, from which (by the first theorem) all properties can be com-
puted. The expression for the Kohn-Sham energy as a functional of the electron density ρ
is

EKS−DFT [ρ] = T [ρ] + EeN [ρ] + J [ρ] + Exc[ρ].

Each term depends on ρ, which itself is a function, so the expression for the energy is called
a functional. The first term, T [ρ], is the kinetic energy of the wavefunction that generated ρ.
The second term, EeN [ρ], is the energy due to Coulomb attraction between the electron cloud
and the nucleii. Coulomb interactions are the normal electrostatic attraction or repulsion
between positive and negative charges, and they decay proportionally to the inverse of the
distance between the charges. The third term, J [ρ], is the Coulomb repulsion between elec-
trons. And the last term, Exc[ρ], is called the “exchange-correlation energy”, and it consists
of two terms. The first term, called the “exchange” term, represents the energy arising from
the requirement that the N -electron wavefunction ψ(x1, x2, . . . xN) be antisymmetric. As
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opposed to Hartree-Fock, where we only considered antisymmetric wavefunctions, in DFT
we instead remain more flexible but penalize wavefunctions that violate antisymmetry. The
second term, called the “correlation” term, arises from the fact that we don’t know how to
compute T [ρ] exactly. There’s a standard way to approximate T [ρ], which I won’t explain,
but the correlation term within Exc is an attempt to make up the difference between this
approximation and the true T [ρ].

We don’t know how to calculate either of the exchange or correlation terms within Exc,
so instead we have to substitute in our best guess for what those terms should look like
as a functional of ρ. It’s possible to analytically compute Exc for some toy systems. For
example, we can compute what Exc would be for a uniform gas of electrons, and then we
can apply that same Exc for calculations on real systems. This particular functional is
referred to as the local density approximation (LDA), and there are many other functionals
of increasing sophistication. Besides functionals derived from first principles, several authors
have proposed learning the functional with machine learning [48, 30].

Once an Exc is chosen, we can write down a full expression for the energy as a functional
of the electron density ρ. Then, we find the ρ that minimizes E[ρ] which, by the Hohenberg
Kohn theorem, is the true ground-state electron density, up to whatever error is introduced
by our approximation of the true Exc. The details of how we actually minimize E[ρ] are
similar to how we minimized the energy in Hartree-Fock, and in fact much of the code is
reused between Hartree-Fock and DFT calculations. However, the computational scaling of
DFT is in principle only n3

electrons, which is better than Hartree-Fock. In practice, DFT can
scale faster or slower than that, depending on whether additional approximations are made
or whether more advanced (and expensive) Exc functionals are used.
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Chapter 2

Machine Learning Background

2.1 Interatomic Potentials

Instead of deriving how electrons behave from first principles, we can also write down much
simpler models and fit the parameters of those models to match empirical data or data
derived from first-principles calculations. For many types of calculations, we are interested
primarily in the energy of a system or the forces experienced by the nuclei. We can obtain
these two quantities by defining a potential function that depends on nuclear coordinates.
To evaluate a given configuration of nuclei, we plug the nuclear coordinates into the potential
in order to get the energy of that configuration, and we take the derivative of the potential
with respect to the nuclear coordinates to get the forces experienced by the nuclei. These
potentials, or “interatomic potentials”, range from the simple two-parameter Lennard-Jones
model all the way up to machine learning interatomic potentials with millions of parameters.

Force Fields

Originally, domain experts would come up with interatomic potentials by hand based on
a combination of physical principles and heuristics. Perhaps the most famous interatomic
potential is the Lennard-Jones potential. Given a set of nuclear coordinates {xi}Ni=1, the
Lennard-Jones potential is

VLJ(x1, x2, . . . , xN) =
N∑
i=1

N∑
j=i+1

4ϵ

((
σ

||xi − xj||

)12

−
(

σ

||xi − xj||

)6
)
.

In other words, the potential of the system is a sum over all pairs of nuclei, where each
pair—separated by a distance r—contributes energy proportional to (σr)−12 − (σr)−6. This
potential is shown in Figure 2.1 for two nuclei separated by a distance r.

Although the Lennard-Jones potential is not derived from basic physical laws, it does
have some physical motivation: the r−6 term matches how we would expect the potential to
behave at large r for uncharged particles with no dipole. This attractive force is called the
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Figure 2.1: Lennard-Jones potential between two nuclei separated by a distance r.

London Dispersion force. However, the r−12 term is more arbitrary: we know that nuclei
can’t get too close together or else the electron orbitals will overlap and start to disobey
the Pauli exclusion principle, so we need some function that increases steeply as r → 0.
However, the exponent of r−12 was chosen specifically because it can be easily calculated in
a computer as the square of r−6, not because it comes from a basic physical law.

Besides the exponents on r, the Lennard-Jones potential has two configurable parameters:
ϵ and σ. ϵ controls the energy scale of the potential, and σ controls the effective size
of each particle. These parameters can be set fairly easily to match empirical data or
more sophisticated quantum chemical calculations. Despite having only two parameters, the
Lennard-Jones potential can accurately reproduce a range of physical phenomena for some
simple materials, such as noble gasses and methane. However, for materials that don’t have
spherical symmetry or that experience interactions besides London dispersion forces, and for
mixtures of multiple atoms or molecules, the basic Lennard-Jones potential fails to model
real-world behavior.

There are many other interatomic potentials that go beyond the functionality of Lennard-
Jones. Other potentials use a different dependence on r, add additional parameters to handle
multiple atom types, add three-body terms, add terms to explicitly consider bonds between
atoms, add dependence on bond angles, etc. Modern force fields are complex, have many
parameters, and are known to work well with certain types of materials. For example, the
Merck Molecular Force Field, or MMFF, is commonly used for organic chemistry calculations,
the ReaxFF force field is used when modeling chemical reactions where bonds break and form,
and the Universal Force Field, or UFF, is commonly used as a general-purpose force field
that sacrifices accuracy on any specific task for generality. Force fields have the advantage of
being computationally simple to calculate, but they generally lack the accuracy of ab initio
quantum mechanical calculations.
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Local Descriptor Methods

To move towards models with higher accuracy, we need to increase the capacity of the
interatomic potential functions and employ more sophisticated methods to set parameters
based on reference data. A popular way to accomplish this is to write the potential as a sum
over atoms:

V (x1, x2, . . .) =
Natoms∑
i=1

v({rij}Natoms
j=1 ),

where rij = xj − xi is the vector pointing from nucleus i to nucleus j. Then, we parame-
terize v however we like. A popular paradigm is to first construct a description of the local
neighborhood of atom i using the vectors {rij}, and to then pass that description to a neural
network or other machine learning model, which predicts the total energy.

Dividing v in this fashion is advantageous because the potential must be invariant to
rotations and translations of the coordinate system. If the potential were not invariant, then
different rotations/translations of the same system could yield different energies, which is
unphysical. In local descriptor methods, the description of an atom’s local neighborhood
computed from the {rij} is generally chosen to be invariant to translations and rotations.
Then, the machine learning model that predicts energy based on the local descriptors doesn’t
need to worry about invariance, since there’s no way it could accidentally re-introduce a
dependence on rotation or translation once that information has been eliminated from the
local neighborhood description. The only constraint on the energy-prediction model is that it
must be differentiable, since in order to calculate forces we need to take the derivative of the
potential with respect to the atomic coordinates. The descriptors must also be differentiable
for the same reason.

Descriptors

Many papers have explored different local descriptor methods. The transformations that we
need to be invariant to are translations and rotations in 3D space, reflections, and permuta-
tions of atoms of the same type (e.g. swapping one carbon with another). Local descriptor
methods work by identifying properties of an atom’s local neighborhood that are invariant
to these transformations, or by computing functions of non-invariant properties that are
provably invariant. For example, a simple invariant descriptor is a vector containing the
number of neighboring atoms of each atom type that are closer than some cutoff distance.
For each of the transformations mentioned above, this descriptor remains unchanged. As a
more realistic example, Smith, Isayev, and Roitberg [47] propose a descriptor with both a
radial and an angular component. The radial component is a vector, where each element of
the vector (roughly speaking) counts the number of neighboring atoms within an annulus
at some distance from the central atom. The angular component is a matrix, where each
element (roughly speaking) counts how many pairs of neighbors both fall within a certain
annulus and also form an angle with the central atom within a certain range. The over-
all descriptor combines both the radial and angular components, where each component is
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repeated for different sizes of the annulli and angular buckets. This descriptor is invariant
to translations and rotations because it only considers distances and angles between atoms,
and it is invariant to permutations because it counts up the total number of atoms within
each radius/angular bin.

More sophisticated methods make use of properties of spherical harmonics to achieve
invariance. For example, Bartók, Kondor, and Csányi [4] project a smoothed version of the
density onto a basis of spherical harmonics, and then they compute invariant features from
the projection coefficients by summing up the modulus squared of all coefficients correspond-
ing to each value of ℓ. Thompson et al. [51] and Bartók et al. [5] also project the neighbor
density onto a basis of spherical harmonics, but they use a slightly different basis set and use
a different method to compute invariant features from the projection coefficients. Drautz
[15] generalizes many existing descriptor methods by proposing the atomic cluster expan-
sion (ACE). Studying local atomic descriptors continues to be an active area of research,
with several recent papers for example improving the computational efficiency of descriptor
calculation [13, 16, 36].

Energy Prediction

Once these per-atom descriptors have been calculated, there are a range of techniques used
to combine descriptor values from all atoms in the system to predict the system’s energy.
Linear regression [51] and Gaussian process regression [5, 14, 33, 6], and shallow neural
networks [9, 8, 47] are common options. Interatomic potential models are typically trained
on energies obtained from ab initio calculations like DFT, though some also train on forces
[33].

Neural Network Interatomic Potentials (NNIPs)

As an outgrowth of the line work by [9] and others, which put shallow neural networks on
top of local atomic descriptors, several authors proposed using increasingly complex neural
network architectures using a similar invariant featurization of the nuclear coordinates that
uses only distances and in some cases angles [47, 58, 35, 44]. These architectures make use of
“interaction” layers, which combine features of nearby atoms several times throughout the
network instead of only once in the descriptor-calculation stage.

One particularly simple example of this approach is SchNet, which uses a continuous
version of convolutions for its interaction layer [43]. Standard convolutional layers, like
those used for image processing, cannot be directly applied to atomic systems, since the
nucleii don’t lie on a grid. To address this, SchNet uses spherically symmetric continuous
convolutional filters that compute the features xℓ+1

i for atom i at layer ℓ+ 1 as

xℓ+1
i =

∑
j

xℓjW
ℓ(||rj − ri||),
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where W ℓ(r) is a learned function that serves as the convolutional filter at layer ℓ, and the
sum is over neighbors of atom i. This convolution operator is invariant to translations and
rotations by means of only using interatomic distances, and it is invariant to permutations
because it sums over all neighbors.

Graph Neural Network Formulation

Although the aforementioned papers did not identify as such, a useful abstraction for de-
scribing these and other interatomic potentials is the graph neural network (GNN). In a
GNN, the raw atomic coordinates are first transformed into a graph, where nodes repre-
sent nuclei and edges connect neighboring nuclei. Edges can connect either atoms that are
bonded together or atoms that are closer in Euclidean space than some cutoff radius. Each
node is assigned node features corresponding to the atomic species of the nucleus, and each
edge can be assigned a feature as well, such as the Euclidean distance between the two con-
nected nuclei. This graph representation is invariant to rotations and translations because it
only contains distances between pairs of nuclei. Once the graph has been constructed, any
number of GNN architectures can be used to predict the energy of the atomic system, and
a prediction for the forces acting on the nuclei can be calculated by taking the gradient of
the energy with respect to atomic positions.

Duvenaud et al. [17] introduced graph convolutional networks for molecular modeling,
where atom features are updated in each layer by summing up neighboring atom features
and passing the result through a linear layer. Gilmer et al. [23] unify this and many other
models into a framework called message-passing neural networks (MPNN). In an MPNN,
each node i has features xi and each edge has edge features eij. At each layer ℓ in the
network, node i has a hidden state hℓi , which gets updated in the message-passing step. The
first step to updating hℓi is to compute “messages” from all the neighboring nodes, and then
to sum them up to form mℓ+1

i :

mℓ+1
i = ΣjMℓ(h

t
i, h

t
j, eij),

where the sum is over neighboring nodes, and Mℓ is a learnable function. Then, the hidden
states for each node are updated as

hℓ+1
i = Uℓ(h

t
i,m

t+1
i ),

where Uℓ is another learnable function. Finally, after all N layers are complete, there is a
readout function R that computes the final prediction based on the final hidden states hNi .

A number of other interatomic potentials based on GNNs have been proposed, including
DimeNet [21], which additionally gives angles between neighbors to the GNN, GemNet [20],
which adds dihedral angles to DimeNet, PhysNet [54], which predicts energies by summing
up the final output with intermediate outputs, and others.



CHAPTER 2. MACHINE LEARNING BACKGROUND 19

Equivariant Neural-Network Interatomic Potentials

Training a GNN on top of an invariant representation of the atomic system guarantees that
the resulting predictor will also be invariant. The invariant descriptors described above don’t
necessarily discard any relevant information, but several authors hypothesized that requiring
the input to the neural network to be invariant makes it more difficult for the network to
reason about geometric relationships. For example, while it is possible to reconstruct the
full geometry of the system using only the pairwise distances between nuclei, it is nontrivial
to calculate, say, the angle between two neighbors using only pairwise distances. Doing so
would require multiple layers of computation in an MPNN and for the network to learn how
to do trigonometry. Even if we add angles into the invariant descriptor, it is still difficult for
the neural network to calculate, for example, dihedral angles, or distances to atoms outside
the cutoff radius.

While it is always possible to add more and more features into the invariant descriptor,
the next wave of neural network interatomic potentials instead took a different approach:
give the network the raw displacement vectors between neighbors, which are not invariant to
rotations, but limit network to architectures that only compute equivariant functions of the
inputs. Interatomic displacement vectors are not invariant to rotations, but unlike invariant
descriptors, displacement vectors can easily be used to calculate geometric quantities like
angles between neighbors (take a dot product within one layer), dihedral angles (take a
dot product across two layers), and multi-hop distances (add displacement vectors across
multiple layers). Furthermore, while displacement vectors are not invariant to rotations,
they are equivariant, meaning that rotating the atomic system leads to a rotation of the
displacement vectors. If the neural network is constrained to only carry out equivariant
computations, then the final energy prediction will also be equivariant, as desired (for scalars,
equivariance to rotation is the same as invariance).

Examples of rotation-equivariant calculations include the dot product and cross product;
if we were to limit a neural network to only compute dot products and cross products, then we
would be guaranteed that its output is equivariant to rotations. Thomas et al. [50] generalize
cross products and dot products in a way that both extends to higher dimensions and also
allows the introduction of learnable weights. They then propose a convolutional neural
network architecture for point clouds that only makes use of these equivariant calculations.
Batzner et al. [7] propose NequIP, a GNN interatomic potential that uses the equivariant
calculations introduced by Thomas et al. [50] and improves upon their results, and many
other equivariant neural network interatomic potentials have also been proposed [37, 38, 10,
49, 25, 42]. A full treatment of equivariant neural networks is beyond the scope of this thesis,
but I recommend Geiger and Smidt [22] to the interested reader.
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2.2 Generative Modeling

Problem Setting

Predicting the energy of a structure is not usually an end goal in and of itself. Instead,
interatomic potentials are typically used for a number of downstream tasks, like finding low-
energy geometries, running molecular dynamics or MCMC simulations, estimating transition
states, or finding reaction rates. All of these tasks require some understanding of the po-
tential, but each individual task may not require as holistic an understanding as is provided
by a NNIP. Noting this, a number of machine learning methods have been proposed that
specialize to these individual tasks (e.g. [55] for ground-state estimation, [12] for transition-
state estimation, and [18] for molecular dynamics simulations). As a representative example,
we consider the foundational task of predicting low-energy geometries. This is a particularly
important task because structures corresponding to local minima of the potential function
are the ones most likely to appear in nature, and finding ground states is often a first step
before carrying out further analysis.

Methods take a variety of approaches to the task of finding low-energy geometries. The
simplest setup is that of de novo generation, where a model is trained on a distribution of
ground state geometries and learns to produce similar geometries without any additional
constraints. This problem applicable for example in the drug discovery setting, where we
might have a dataset of existing drug-like molecules and we want to generate additional
candidates for further study. A relatively simple extension of this setting is to condition
generation on desired property values. For example, we may want to generate drug-like
moleclues that have a strong binding affinity to a particular protein, and we have a training
dataset of drug-like molecules labeled with their binding affinities. Additional complication
arises when we want to condition generation on more complex information. For example, Li,
Pei, and Lai [32] propose a method to generate geometries of drug-like molecules conditioned
on the binding pocket of a protein. Shi et al. [45] condition generation of 3D geometries on a
molecular graph, which allows them to generate conformers for particular molecules instead
of generating new molecular structures.

Aside from varying problem settings, a number of modeling techniques have been pro-
posed for generating geometries. Simm, Pinsler, and Hernández-Lobato [46] place individual
atoms in 3D using reinforcement learning; Ragoza, Masuda, and Koes [39] make use of a 3D
convolutional neural network on voxels representing the 3D density of atoms; and Garcia
Satorras et al. [19] generate 3D geometries using equivariant normalizing flows. Recently,
motivated by their success in other domains, denoising diffusion models have been gaining
popularity for modeling atomic systems.

Denoising Diffusion Models

Denoising diffusion models for generative modeling were popularized by the success of Ho,
Jain, and Abbeel [26], who used these models to generate high-quality images. Diffusion



CHAPTER 2. MACHINE LEARNING BACKGROUND 21

models have also become popular for generative modeling of 3D geometries of atomic systems
[56, 28, 27, 45, 29]. Diffusion models train on a dataset of low-energy geometries, and they
can be conditioned on labels in the dataset to control the generative process (e.g. to generate
geometries with high binding affinity to a protein). During training, noise is added to the
geometries from the dataset, and the model is tasked with de-noising its input by predicting
what noise was added to the training set geometry to obtain the model’s input. Instead
of predicting the entire noise vector in one step, diffusion models break down the problem
into a series of steps, where at each step, the model predicts a structure that is slightly
less noisy than its input. At inference time, these steps are applied in order starting from
entirely random noise, and at each step, the model makes the input look a little more like
an example from the training distribution and a little less like noise. See [27] and [26] for a
more formal introduction to diffusion models.

For atomic systems, training examples are more structured than for images, where dif-
fusion models first saw widespread adoption: to represent an atomic system, one needs to
include the 3D coordinates of the nuclei, the atomic species of each nucleus, and the charge
of the molecule (or perhaps formal charges on individual atoms), whereas for images, one
needs only a 2D grid of pixel values. Atomic species is a categorical variable, and nuclear
coordinates are continuous, whereas pixel values are ordinal. Atomic systems also exhibit
translational and rotational equivariance, which are much less relevant for image datasets.
Hoogeboom et al. [27] adapt the denoising diffusion models of [26] to account for both of
these requirements. Their method, called “E(3) Equivariant Diffusion Model” (EDM), in-
corporates categorical features by representing atomic species as a one-hot vector, which is
a vector of ordinal values, and then by using the same machinery developed for pixel values.
The method incorporates continuous positions by showing that they can be treated simi-
larly to the transitions between latent states but with an additional normalization factor.
EDM also ensures equivariance to translations and rotations is respected by working in the
center-of-mass frame (to achieve translation invariance) and by using an equivariant neural
network to predict each denoising step.

We investigate EDM in more detail in Chapter 3.
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Chapter 3

Self-Supervised PES Learning

This Chapter contains work co-authored with Andrew Rosen, Eric Taw, and Connie Robin-
son, in addition to my advisors Aditi Krishnapriyan and Joseph Gonzalez.

3.1 Introduction

The potential energy surface (PES) is a fundamental quantity for understanding the behavior
of atomic systems. Finding stable geometries, estimating reaction rates, and predicting tran-
sition states all require an understanding of the shape of the PES. Accurate first-principles
methods for calculating points on the PES are computationally expensive or even entirely in-
feasible for larger systems, so a number of cheaper alternatives have been developed, such as
classical force fields, tight-binding methods, and machine learning methods, the last of which
we focus on here. The vast majority of machine learning methods aimed at understanding
the shape of the PES are learned inter-atomic potentials, which today largely consist of
neural-network interatomic potentials (NNIPs). NNIPs are trained in a supervised fashion
using a dataset of geometries that are annotated with energies and forces derived from a
more expensive physics-based method. The result is a machine learning model that can pre-
dict, given a particular geometry of atoms, the energy of that configuration and the forces
experienced by each nucleus.

While machine-learned interatomic potentials are a powerful tool for understanding the
shape of the PES, they suffer from the major limitation that they require a supervised dataset
of geometries that have been annotated with energies and forces. Relying on datasets based
on first-principles calculations is problematic for several reasons:

• Computational expense. It is extremely computationally expensive to obtain this
sort of dataset. For example, the OC20 dataset includes 1.3M relaxations, each of
which was allowed up to 1728 core-hours of compute time [11].

• Lack of inclusion of all geometries. The space of off-equilibrium geometries is
combinatorially large, and there is no clear way to choose which geometries to include
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in the dataset. If important types of geometries are excluded, models trained on the
dataset may generalize poorly.

• Limited by the level of theory. Because of how expensive it is to produce the
dataset, we are limited in the level of theory that can be used for generating the
energies and forces. For example, authors often generate geometries using tight binding
calculations, which are significantly less accurate than DFT [1, 2]. Generating a labeled
dataset experimentally is not feasible, as it would require measuring energies and forces
for arbitrary off-equilibrium geometries. As such, learned interatomic potentials will
always be limited by the level of theory they were trained on.

To help alleviate these concerns, we explore in this chapter an alternative method, based
on self-supervised learning, to understand the shape of the PES that does not involve learning
an interatomic potential.

Self-supervised learning has powered many of the recent successes in the machine learn-
ing community, from image generation to style transfer to ChatGPT. In more traditional
supervised learning such as the NNIPs described above, the dataset consists of examples (e.g.
images, or molecular structures) and labels (e.g. what object is depicted, or the energy of the
structure), and models are trained to predict the labels from the inputs. In self-supervised
learning, the dataset consists only of the examples themselves, with no corresponding labels.
With no labels to train on, we have to be more creative about how to train models. One
popular strategy is to treat part of the input as a label, and use the rest of the input to
predict the label as in supervised learning. Predicting a patch of an image given the rest of
the image, or predicting the position of a missing atom given all the other atom positions
are two such examples. Another popular approach, which we focus on here, is to add noise
to the input and train a model to predict the original, de-noised version. More specifically,
we investigate adding noise to the 3D coordinates of each nucleus in their local energetic
minima, and then we predict the original positions.

A self-supervised approach helps to alleviate the problems with learning from a labeled
dataset described above:

• Computational expense. It may be less expensive to generate a dataset of only
ground states than to generate a training dataset for NNIPs, since we can initialize
calculations at a higher level of theory with the best guess from a lower level of theory.
In contrast, NNIP training data must include many off-equilibrium structures at a high
level of theory so that they learn to generalize beyond the immediate neighborhood of
the ground state.

• Lack of inclusion of all geometries. There is no need to choose which geometries
should be included, since a self-supervised dataset includes only ground states.

• Limited by the level of theory. Unlike an NNIP, a self-supervised method can
in principle be trained on experimental data. Training ML models on experimentally
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measured geometries is challenging, and we do not pursue experimental structures in
this dissertation, but we think even the possibility of training on experimental data is
a major advantage for self-supervised methods over NNIPs.

Our goal is not to train a better interatomic potential; prior work has already investigated
denoising as a way to improve supervised learning, including for NNIPs [57, 24, 34]. We are
also not proposing a new way to train denoising models on chemical systems, rather opting
for an off-the-shelf Equivariant Diffusion for Molecules (EDM) model [27]. Instead, our goal
here is to understand, from a scientific standpoint, how much can be learned about the PES
using only a denoising objective, without any supervision on energy or forces.

Instead of using a supervised dataset of geometries labeled with energies and forces, we
train only on unlabeled geometries of ground-state structures, or structures corresponding
to local minima of the PES. The EDM models we use were trained to generate new ground
state geometries given a training set of known ground states. To assess how much the model
has learned about the PES, we re-purpose it in three different ways: to carry out structure
relaxations, to estimate the force experienced by the nuclei, and to sample structures from
the Boltzmann distribution.

We investigate the model’s performance on small organic molecules, where the PES is
relatively easy to reason about. What we find is that 1) EDM can find low-energy structures
within an accuracy of ∼ 1kcal/mol, even when the starting structure is out of the training
distribution; 2) The path EDM takes to the ground state is a noisy estimate of the direct
path from the current geometry to the ground state, rather than an estimate of the local
forces at the current geometry, suggesting that the model has learned about local curvature
in the PES; and 3) EDM can draw samples from a distribution similar to the Boltzmann
distribution, even though it was not trained on any off-equillibrium structures, and it can
capture the relationship between energy and temperature (i.e. heat capacity).

To summarize, we make the following contributions:

• We undertake a study of a pretrained EDM model, finding that its inference procedure
can be roughly divided into an “exploration” regime and a “relaxation” regime (Section
3.2).

• We demonstrate that the relaxation regime of the EDM model can be used to robustly
carry out structure relaxations (Section 3.3).

• We compare EDM’s predictions for how to de-noise the nuclear positions with the
actual forces experienced by the nuclei (Section 3.4).

• We use EDM to sample from a molecule’s Boltzmann distribution, establishing a cor-
respondence between diffusion steps and temperature (Section 3.5).
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3.2 Physical Intuition Behind EDM

We investigate how the diffusion process progresses once trained. We aim to gain a physical
understanding of the model’s operation that will inform what other chemical tasks we might
be able to carry out besides the intended de-novo molecular generation.

General procedure. Inference on an EDM model proceeds as follows. First, we sample
a random distribution over chemical species and a random set of 3D coordinates for each
nucleus. Then, for each of T timesteps, we use an equivariant neural network to predict how
the atom species distribution and nuclear positions should change, and we sample the next
structure from a Gaussian distribution around that predicted delta.

We test on QM9, a dataset of small molecules with up to nine heavy atoms among CNOF
[41, 40]. To match QM9, we carried out all DFT calculations at the B3LYP/6-31G(2df,p)
level of theory. We use Psi4 [53] version 1.8, and relaxations were carried out with the
Atomic Simulation Environment (ASE) [31] version 3.22.1 using BFGS with fmax of either
0.01 or 0.03eV/A.

Results. At the beginning, the atomic species and 3D positions are completely scrambled,
but by the end, the model has decided on which atomic species to use and where to place
them. This progression is shown in Figure 3.1, which plots as a function of diffusion steps
the fraction of atomic species that have been finalized, the fraction of atoms that have the
correct valence, and how close the interatomic distances are to their final values.

Considering first the plot of what fraction of atomic species have been finalized, it is
clear that the diffusion process can be divided into two regimes: an “exploration” regime,
from step 0 to step ∼ 950, where the model is still figuring out the atomic identities, and a
“relaxation” regime, starting at step ∼ 950, where the model is moving around the atoms
while holding the atom types fixed. The transition from 0% finalized to 100% finalized is
fairly abrupt, suggesting that the model is deciding on all the atomic species at once instead
of first deciding on, say, the carbon structure and then deliberating about which functional
groups to add. Note also that the model finalizes geometries decidedly after choosing the
atomic species: the curve showing which fraction of molecules have the correct valence
doesn’t increase until after almost all atomic species have been decided on, and the RMSD
of interatomic distances rapidly decreases starting at step 950, right after the atomic species
have been decided upon.

Looking more closely at the relaxation regime, we calculate the energy of each structure
along the diffusion path, starting with the first structure where all atom types are final-
ized. As seen in Figure 3.2, the energy consistently decreases during the relaxation regime,
suggesting that the diffusion process is largely following the potential energy surface to the
ground state rather than moving atoms through each other or taking a more erratic path.
We investigate this further in Section 3.4.
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Figure 3.1: Left: ℓ2 norm of the step size taken at each step in diffusion (“Step Size”); root-
mean-squared deviation between interatomic distances of the current structure compared to
the final structre, considering only distances between atoms bonded in the final structure
(“Bond Length RMSD”); fraction of atoms whose chemical species is finalized (“Atm. Elem.
Final”); fraction of molecules where every atom’s chemical species is finalized (“Mol. Elem.
Final”); fraction of atoms that have the same number of bonds as they do in the final
structure (“Atm. BO Final”); fraction of molecules where all bond orders have been finalized
(“Mol BO Final”); fraction of atoms that have a valid number of bonds (e.g. 4 for carbon,
“Atm. Valid BO”). Right: zoom of figure on the left.

3.3 EDM Can Relax Structures

Noting the separation of the diffusion process into these two regimes, and that the energy of
generated structures consistently decreases during the relaxation regime, a natural question
to ask is whether we can successfully relax arbitrary structures by running diffusion steps
∼ 950 → 1000, starting at a user-chosen unrelaxed structure. During training, the model
only sees structures that are a Gaussian perturbation away from the ground state, so any
initial structure we provide the model not generated in this way will be outside of the training
distribution. As such, there’s no guarantee that the relaxation regime will actually find a
low-energy geometry if it is initialized at one of these out-of-distribution states. To test this,
we initialize the diffusion process with the ground state produced by running an optimization
using the Merck Molecular Force Field (MMFF94) [52] on molecules from the QM9 validation
set, and then we run the last N steps of diffusion. To find the MMFF ground state, we use
RDKit to embed the molecule in 3D given only the molecular graph, and then we relax this
structure using MMFF.

The MMFF-optimized structures are already a fairly good approximation of the true
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Figure 3.2: DFT-computed relative energy compared to the final generated geometry for the
N final images in the chain that have the correct atom types. Each plot corresponds to a
different generated molecule. Solid lines are geometries predicted by diffusion, and dashed
lines are geometries that are linearly interpolated between the initial and final geometries.

ground state, but we seek to further improve them using EDM. To evaluate the diffusion-
generated structures, we compare the DFT-computed energies of the diffused structures to
the MMFF structures. We also calculate how many steps are required to carry out a DFT
relaxation when initialized at the diffused structure vs. the MMFF structure.

Diffusion-relaxed Structures Have Lower Energies

The question remains what diffusion step N to start at when carrying out the relaxation.
As shown in Figure 3.1, the model consistently makes smaller/larger steps for earlier/later
diffusion steps, so we need to choose N carefully: too large, and the model won’t have
enough steps to move the distance required to reach the ground state; too small, and the
model will drastically re-arrange the molecule instead of finding the nearest local minimum.
Most likely, we should use N >∼ 950, since before that point, the model has not finalized
atom species. As such, we try three values of N : 950, 970, and 980.

Figure 3.3 shows DFT-computed relative energies between the DFT-relaxed structure
and all structures along the diffusion path for each of these values of N . For all values of N ,
the diffused structures are on average equally good, on average about 1 kcal/mol worse than
the DFT-computed ground state. On the high end, at N = 980, the model immediately
begins improving the structure, whereas on the low end, at N = 950, the model first worsens
the structures, increasing the energy, but eventually finds as good or better final structures
as the lower values of N . Because in practice we do not know how far away our initial state
is from the true ground state, it is important that this method is robust to choosing too
many steps, since if so, we can safely overestimate N and still arrive at high-quality ground
states.
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Figure 3.3: Left: DFT-computed energies relative to the ground state for all structures on
the diffusion-generated “relaxation” paths, for 45 randomly chosen molecules from the QM9
validation set. Linestyle indicates how many diffusion steps were used (N = 980, 970, and
950). Different colors represent different individual relaxations. Black lines are averages of
the corresponding colored lines. Right: zoom of left figure.

Diffusion-relaxed Structures Accelerate DFT Relaxations

Next, we compare the number of iterations required to relax structures using DFT when
initialized at the MMFF ground state vs. the diffusion-generated geometry. We perform DFT
relaxations from three different starting points: the MMFF-optimized structure, and the
structures obtained by further ”relaxing” this MMFF-optimized configuration using diffusion
with both N = 980 and N = 950. The number of DFT iterations required for N = 980 and
N = 950 are shown in Figure 3.4, plotted vs. the number of steps required when starting at
the MMFF-optimized structure.

For both N = 980 and N = 950, the DFT relaxations are consistently faster: the median
number of steps required is 40% lower forN = 980 and 57% lower forN = 950. On each point
in Figure 3.4, we plot an arrow showing the difference in energy between the DFT-relaxed
structures when starting at each of the diffusion-generated geometries and the DFT-relaxed
structure when starting at the MMFF-optimized structure. If the diffused geometries stay
within the same local minimum of the DFT PES as the MMFF-optimized structures, then
we would expect these arrows to be approximately zero.

This is the case in every structure but one, in which diffusion with N = 950 steps moved
the geometry to a better local minimum than MMFF found, as indicated by the negative
arrow of magnitude ∼ 1 kcal/mol (scale bar in lower right). This structure is also one of the
few where the relaxation took longer when starting from the diffusion-generated geometry.
Interestingly, when using only N = 980 steps on the same structure, diffusion does not stray
from the MMFF minimum, which is unsurprising given the results in Figure 3.3.
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Figure 3.4: Each point in the plot is a structure that we relaxed using DFT. The value on
the x-axis is the number of steps it took for the relaxation to converge when initializing
DFT with the structure predicted by MMFF. The value on the y-axis is the number of steps
when initializing with the structure predicted by diffusion. Orange dots indicate structures
that were generated using 50 steps of diffusion (i.e. N = 950), while blue dots are for 20
steps (i.e. N = 980). Arrows indicate the difference between the energy of the DFT-relaxed
structure when starting from the MMFF structure vs. starting from the diffused structure.
An arrow with zero magnitude indicates that the DFT-relaxed structures had the same final
energy when starting with either initial geometry. Negative-pointing arrows indicate that the
relaxed structure had lower energy when the DFT relaxation was initialized with diffusion
than with MMFF.

3.4 Alignment of Denoising Steps with Forces

As seen in Figure 3.2, the relaxation regime of the diffusion process consistently improves
structures down to the ground state. However, although the energy mostly decreases as
diffusion proceeds, and the final structure is close to the DFT-computed ground state, it is
unclear which exact path the model takes to the ground state. One simple hypothesis is that
it follows the forces down to the minimum; another is that it takes the most direct path to
the minimum.

To differentiate between these hypotheses, we compute the cosine similarity between the
steps that diffusion makes (“∆”), the DFT-computed forces at each geometry along the
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Figure 3.5: Left: cosine of the angles between the sum of the next k steps predicted by
diffusion (∆k), the DFT-computed forces (f), and the path directly from the current geom-
etry to the DFT-computed ground state (gs). Curves are averaged across atoms from 45
molecules from the QM9 validation set. Shaded regions represent one standard deviation
above and below the mean. (The shaded region can exceed 1.0 because the distribution is
not Gaussian.) Right: schematic showing what different values of k mean.

diffusion path (“f”), and the direction straight from each geometry to the DFT-relaxed
ground state (“gs”). If the model tends to follow the forces down to the minimum, then
we expect the angle between ∆ and f , (“θ∆,f”) to be small, or cos θ∆,f to be large. In
particular, it should be large compared to cos θ∆,gs. Similarly, if the model heads straight
for the ground state, ignoring bumps in the PES along the way, then we expect cos θ∆,gs to
be large compared to cos θ∆,f .

Results are plotted in Figure 3.5 (left). The green lines show cos θ∆,f and cos θ∆,gs as
diffusion progresses. At first glance, it appears that diffusion is taking a path to the minimum
that differs from both following the forces and the direct path, since cos θ tops out around
0.3. However, noting that the diffusion process is inherently noisy, we also plot results when
we consider the model prediction to be the sum of the subsequent k steps of diffusion (the
green line represents k = 1). This idea is depicted schematically on the right side of Figure
3.5, and results are shown for k = 10 and k = 30 on the left side.

As k increases, alignment increases between the model prediction and both the forces and
the direct path to the ground state. The model predictions are substantially more aligned
with the direct path to the ground state than with the DFT-predicted forces, suggesting
that the model is finding a more efficient path to the ground state than following the forces
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gradient-descent style. Although there is some alignment between the model predictions and
the forces, this can be explained by the fact that the forces themselves are somewhat aligned
with the direct path to the ground state (black dotted line in Figure 3.5). cos θ∆k,f is never
substantially higher than cos θf,gs, so any alignment between the model predictions and the
forces can be explained by the alignment between the forces and the straight path to the
ground state.

Given that these results are on molecules that were unseen during training, the fact that
the diffusion path aligns better with the direct path to the ground state rather than the
forces suggests that the model has learned about local curvature of the PES, rather than
only learning about local gradients. Non-learning-based relaxations also attempt to take
the most direct path to the ground state; for example, BFGS preconditions the gradients
with second-order information in order to move straight towards the minimum instead of
following the gradients directly.

3.5 EDM as Boltzmann Generator

As seen in Figure 3.1, the step size taken by diffusion decreases monotonically for larger
timesteps. At any given diffusion time step, the model does not always move directly towards
the local minimum in the PES, both because there is inherent stochasticity in the diffusion
process and because the model moves by a certain step size even if the geometry is closer to
the local minimum than the step size. (This can also be seen experimentally by the bumpiness
in Figure 3.2.) Given that the model has a preference for low-energy conformations, we might
hope that repeatedly applying the same diffusion timestep to a structure might sample low-
energy geometries more often than high-energy geometries. In particular, we might hope
that the distribution of geometries follows the Boltzmann distribution, and that different
diffusion timesteps N would correspond to particular temperatures T .

To investigate this possibility, we carry out MCMC simulations on ten molecules ran-
domly from the QM9 validation set after filtering to select for flexible and linear molecules,
where we expect more interesting behavior at non-zero temperature.1 We run the Metropolis-
Hastings algorithm with an isotropic Gaussian proposal distribution—initialized at the DFT
ground state with 5,000 steps of burn-in—using eighteen temperatures T between 10K and
400K. On the diffusion side, we repeatedly apply a single step of diffusion to the structures,
initialized at the DFT ground state with 1,000 steps of burn-in (we observed that the chain
stabilizes faster than for Metropolis-Hastings). We try fourteen different steps N , from the
last step down to step 960. In both cases, we use GFN2-xTB [3] to measure energies, as
implemented by python’s XTB package (version 22.1).

For very low T and N , we expect both the MCMC simulation at temperature T and the
diffusion chain with step N to have a relative energy of 0 relative to the ground state. How-

1In particular, we use a simple filter based on the molecules’ SMILES strings: we filter out SMILES
containing “=” or “#”, SMILES containing numbers, and SMILES with more than 15 “(” (to bias towards
more linear molecules)
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Figure 3.6: Histograms of the energies obtained with MCMC simulations at temperatures
20K, 70K, 120K, and 300K (orange histograms) and via repeated application of a diffusion
model at steps 996, 986, 980, and 970 (blue histograms).

ever, because there is sometimes disagreement between GFN2-xTB and the DFT-calculated
ground states that the model was trained on, the diffusion chains at low N settle to an
energy slightly above zero. To compensate for this, for each molecule we subtract a constant
energy (< 2kcal/mol) from each chain to equalize the minimum energies achieved by the
two chains at the lowest values of T and N .

Histograms of the chain energies for selected values of T and N are shown in Figure 3.6.
These values of T and N were chosen to maximize the overlap between the distributions, but
they are the same for each of the nine molecules (we discarded the tenth because GFN2-xTB
disagreed strongly with DFT about where the local minimum of the PES was), suggesting
that there may be a correspondence between N and T that generalizes across molecules.
Within each molceule, as T and N increase, we see the same trend of the mean relative
energy increasing and the variance of the distribution increasing. As a point of reference,
when repeatedly perturbing atomic coordinates with an isotropic normal distribution instead
of the diffusion model, the energy diverges, even for extremely small step sizes. Within the
diffusion chain, there is no proposal step as in the Metropolis-Hastings algorithm, and there
is no form of feedback from a ground-truth energy oracle either. In addition, the model was
trained only on geometries, with no energy supervision either on the ground-state geometries
or on any non-equilibrium geometries. Despite this, we never observed a diffusion chain
diverging, even for high values of N , and there is even reasonable agreement between the
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Figure 3.7: Left: average energy of the MCMC and diffusion chains, with shaded regions
corresponding to one standard deviation above and below the mean. Values on the x-axis
indicate the temperature used in the MCMC simulation (top) and the diffusion timestep N
used when making the diffusion chain. Right: same as left, but the lower x-axis is scaled
quadratically and stretched linearly to match the slope of the MCMC line.

distributions of energies within the MCMC and diffusion chains.
Next we investigate the relationship between T & N and the average & variance of the

resulting energy distributions. Figure 3.7 plots the average energy ± the standard deviation
of the energy for each of the N and T values we considered. As expected, the energy
increases linearly with temperature. On the other hand, the energy increases quadratically
with decreasing N . This is unsurprising: near the end of inference, the step size decreases
roughly linearly, as seen in Figure 3.1, and near a local minimum, we expect the PES to be
modeled well as a harmonic oscillator. The left side of Figure 3.7 plots both chains with
a linear scale on T and N . The right side of the Figure instead uses a quadratic scale for
N , and the x-axis is scaled to equalize the slope between the two chains. Any linear and
quadratic functions can be made to line up using this method. Figure 3.8 plots the same
quantities, but repeated for each of the nine molecules considered. In this case, we use the
same linear scaling for each molecule, so there is no guarantee that the lines will all line up.
Even though there is some variation in the heat capacities of the nine molecules (i.e. the
slope of the MCMC lines), the diffusion chain consistently generates very similar average
energies as the MCMC chain at the corresponding temperature.

The variances of the distributions are also similar, though the diffusion chain consistently
results in a wider distribution of energies than the MCMC chain. The energy distributions for
these simple molecules from QM9 are unimodal, but it would be interesting to see whether the
diffusion chain can reproduce multi-modal energy distributions for more complex molecules.
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Figure 3.8: Right-hand plot of Figure 3.7 for the nine molecules considered. Only one linear
scaling factor is used across all molecules.

3.6 Discussion

Motivated by a need to lessen our reliance on supervised datasets generated via physics-
based calculations for learning about the shape of the PES, we investigate in this chapter
how much can be learned about the PES by training a diffusion model on only ground
state geometries. Our trained model is able to relax structures to 10x lower relative energy
than MMFF, and it can produce structures that require 57% fewer DFT steps to relax
than MMFF structures. When relaxing structures, the model follows a noisy estimate of
the path directly to the ground state rather than taking the path of steepest descent. The
model can also sample geometries around a local minimum in the PES from a distribution
that resembles the Boltzmann distribution, and it can model the varying heat capacity of
different materials.

Although we present some of our findings in terms of capabilities that the model has, we
are not proposing that a self-supervised model could outperform state-of-the-art supervised
NNIPs on tasks like structure relaxations or MCMC simulations. After all, the training
data for the diffusion model used in this chapter consists of only a single point on the PES
for each molecule; NNIP training datasets, in contrast, contain many points on the PES
for each molecule, all labeled with energies and forces. Rather, we investigate the model’s
capabilities as a way both to see how far it is possible to get with self-supervision alone, and
to gain insight into what information can be learned about the PES from a training set of
ground-state geometries.
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The molecules investigated here are fairly small and simple. This is an advantage insofar
as it allows for easy reasoning about a PES that is well approximated as quadratic, but a
disadvantage insofar as it limits our ability to investigate whether diffusion models can learn
more complicated potential energy surfaces. For example, following the direct path to the
ground state on QM9 molecules suggests that the model has learned about local curvature
in addition to simply the local direction of steepest descent. But on a more complex PES,
the path that diffusion takes becomes more interesting: does it still follow the direct path to
the ground state even if it requires plowing through a large energy barrier? Larger molecules
are also more likely to have a Boltzmann distribution with multiple peaks, and it would
be interesting to see if diffusion can reproduce this behavior. We leave an investigation of
self-supervised learning on larger/more complex molecules to future work.
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Chapter 4

Conclusion

In this dissertation, we provided an introduction to the background quantum mechanics
knowledge necessary for machine learning researchers to get started working on accelerating
electronic structure problems. We surveyed existing work in this area, with an eye towards
equivariant neural networks and diffusion-based models. Next, we investigated a particular
diffusion model (EDM) more carefully as a way to gain insight into what these sorts of
models can learn given only ground state geometries with no energy or force supervision.
Although EDM was trained originally to generate new molecules de novo, we propose several
tasks that EDM can transfer to with no additional training, simply by applying the model
in novel ways. In this dissertation we investigate how far EDM can get with no additional
training, but future work could investigate the advantage that self-supervised pretraining
yields when training on the downstream task as well.

Accelerating electronic structure theory calculations is of critical importance for speeding
up the discovery of new materials. This goal is especially important today given ongoing
crises in especially energy and healthcare. We hope this dissertation can provide a starting
point for future investigations into how to learn about the potential energy surface in a more
computationally efficient way than training NNIPs using energy and force supervision.
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[44] Kristof T Schütt et al. “Quantum-chemical insights from deep tensor neural networks”.
In: Nature communications 8.1 (2017), p. 13890.

[45] Chence Shi et al. “Learning gradient fields for molecular conformation generation”. In:
International conference on machine learning. PMLR. 2021, pp. 9558–9568.

[46] Gregor Simm, Robert Pinsler, and José Miguel Hernández-Lobato. “Reinforcement
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