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Abstract

Neonicotinoid  insecticides  are  among  the  most  used  insecticides  and  their

residues are frequently found in surface water due to their persistence and mobility.

Neonicotinoid insecticides exhibit toxicity to a wide range of aquatic invertebrates at

environmentally relevant levels, and therefore their contamination in surface water is

of significant concern. In this study, we investigated the spatiotemporal distribution of

six  neonicotinoids  in  a  large  wetland  system,  the  Prado  Wetlands,  in  Southern

California,  and  further  evaluated  the  wetlands’  efficiency  at  removing  these

insecticides. Total neonicotinoid concentrations in water ranged from 3.17 to 46.93 ng

L-1 at  different  locations  within  the  wetlands,  with  imidacloprid  and  dinotefuran

among the most detected. Removal was calculated based on concentrations as well as

mass fluxes. The concentration-based removal values for a shallow pond (vegetation-

free), moderately vegetated cells, densely vegetated cells, and the entire wetland train

were 16.9%, 34.2%, 90.2%, and 61.3%, respectively. Principal component analysis

revealed that pH and temperature were the primary factors affecting  the removal of

neonicotinoidss  removal.  Results  from  this  study  demonstrated  the  ubiquitous

presence of neonicotinoids in surface water impacted by urban runoff and wastewater

effluent  and  highlighted  the  efficiency  of  wetlands  in  removing  these  trace

contaminants due to concerted effects of uptake by wetland plants, photolysis, and

microbial degradation.

Keywords

3

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45



Neonicotinoid  insecticides;  Constructed  wetland;  Phyto-mitigation;  Removal

efficiency; Ecological risk

4

46

47

48



1. Introduction

Surface water is the primary water source for direct human consumption, 

agriculture, industry, and biodiversity conservation, but is often impaired by 

contamination of man-made chemicals (Gifford et al., 2018; Kolpin et al., 2002; Shi et

al., 2019). Over the past two decades, neonicotinoids, which are broad-spectrum 

systemic insecticides (Simon-Delso et al., 2015), have been the most used insecticides 

in both agricultural and urban settings (Jeschke et al., 2011; Simon-Delso et al., 2015; 

Hladik and Kolpin, 2016; Gould et al., 2018; Douglas and Tooker, 2015; Jeschke et 

al., 2011; Simon-Delso et al., 2015). As water-soluble compounds, neonicotinoids are 

highly mobile and have been frequently detected in rivers and streams (Dijk et al., 

2013; Hladik et al., 2014; Sánchez-Bayo and Hyne, 2014; Schaafsma et al., 2015; 

Starner and Goh, 2012). For example, a nationwide study of streams in the United 

States showed that at least one neonicotinoid compound was present in 63% of the 48 

streams surveyed (Hladik and Kolpin, 2016). Neonicotinoids were detected found 

ubiquitously in all streams draining row-crop areas in the Midwest of the United States

(Klarich et al., 2017), with maximal concentrations of 260, 43, and 190 ng L-1 for 

clothianidin, imidacloprid, and thiamethoxam, respectively. Another route for 

neonicotinoids to contaminate surface water is through wastewater treatment plant 

(WWTP) effluents (Sadaria et al., 2016), as they are not effectively removed via 

current WWTP systems (Iancu and Radu, 2018; Sadaria et al., 2016).

Recent studies highlighted the chronic toxicity of neonicotinoids, especially in 

aquatic invertebrates (Miles et al., 2017; Morrissey et al., 2015; Sánchez-bayo et al., 
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2016). The presence of neonicotinoids in Ssurface water exposures to neonicotinoids 

have has been correlated associated with observable impacts direct effects on 

invertebrates (Dijk et al., 2013; Prosser et al., 2016), and as well as indirect 

consequential effects on insectivorous insect-eating birds (Hallmann et al., 2014) 

and fish (Gibbons et al., 2015). Studies Research indicated have found the 

occurrence presence of neonicotinoid insecticides in surface water within urban 

areas surface water (Buzby et al., 2020) at concentrations levels that are hold 

toxicological significancely relevant to for aquatic invertebrates (Tennekes, 2010), 

and similarly, as well as in the sediment, where residues may persist have the 

potential to endure for extended prolonged periods after following deposition

(Kuechle et al., 2019). 

Constructed wetlands (CWs) represent a potential option to remove neonicotinoid

residues in surface water. Many studies have demonstrated that CWs can effectively 

remove nitrogen and phosphorous species (Vymazal, 2007), metals (Lima et al., 

2013), antibiotic resistance genes (Du et al., 2022), and various organic compounds

(Nguyen et al., 2019; Paz et al., 2019). Given that neonicotinoids are systemic 

insecticides (Simon-Delso et al., 2015), wetland plants such as macrophytes may be 

efficient at taking up neonicotinoids. The few studies to date have shown inconclusive 

results. In a greenhouse study, a variety of wetland plants were found to be capable of 

removing neonicotinoids when grown in hydroponic containers (Liu et al., 2021). 

However, in Sadaria et al. (2016), an engineered wetland did not show significant 

removal of imidacloprid or acetamiprid. In contrast, in Main et al. (2017), the 
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presence of vegetation in prairie wetlands was found to attenuate contamination of 

clothianidin, and the reduction was attributed to accumulation by wetland 

macrophytes. 

As neonicotinoid use and contamination of surface waters continue to grow in 

both frequency and spatial extent, it is important to evaluate management strategies to 

reduce neonicotinoid contamination of surface water. Therefore, the main objective of 

this study was to determine the ability of constructed wetlands to mitigate 

neonicotinoid water contamination. We specifically aimed to 1) explore the spatial-

temporal variations of neonicotinoid insecticides in the Prado Wetlands, a large 

wetland system receiving both urban runoff and WWTP effluent; 2) assess the removal

efficiencies of neonicotinoid insecticides of wetland cells with different vegetation 

densities; and 3) evaluate the reductions in aquatic toxicity achieved by the wetlands. 

This study provides information for ascertaining the effectiveness of constructed 

wetlands in minimizing neonicotinoid contamination in surface flows under field and 

environmentally relevant conditions.

2. Materials and Methods

2.1 Study area

The Prado Wetlands is a managed constructed wetland system situated near the 

Prado Dam in Southern California. It is the largest constructed wetland (CW) on the 

west coast of the United States, covering an area of approximately 188 ha consisting of

50 shallow wetland ponds (OCWD, 2019). The primary use of the Prado Wetlands 
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has been to remove nitrate from the wastewater-impacted Santa Ana River since 1992

(OCWD, 2019). During the dry months, approximately 50% of the Santa Ana River 

flow, which is dominated by discharge from twelve upstream WWTPs, is directed into 

the Prado Wetlands system for treatment (OCWD, 2019). During the rest of the year, 

stormwater runoff and snowmelt account for the majority of the river’s flow. 

The present study considered different wetland ponds, annotated as BB1, S7-S8, 

and S9-S10, as shown in Figure 1. BB1 covered 0.770 ha and was essentially absent of

any vegetation; S7-S8 was 7.54 ha in size and consisted of two connected wetlands 

with moderate vegetation density; and S9-S10 was 9.41 ha in size and consisted of 

two connected wetlands with relatively high vegetation density. BB1 was located in the

front section of the whole wetland system, where diverted flow entered the wetlands, 

while S7-S8 and S9-S10 were vegetated wetland cells located at the heart of the 

wetland system (Figure 1). From a rhodamine tracer experiment carried out at the 

Prado Wetlands (Lin et al., 2003), the hydraulic retention time of the entire Prado 

Wetlands was estimated to be 1.29 days. Samples and measurements were taken at the 

inlet weir box (inlet) and the outlet weir box (outlet) of BB1, S7-S8, and S9-S10 

wetland cells, as well as at the entry (Prado inlet) and W17 exit (Prado outlet) points 

of the entire wetland systems (Figure 1).

2.2 Chemicals and Materials

All analytical standards used in this study were procured with reported purities ≥

98 %. Specifically, acetamiprid, clothianidin, dinotefuran, imidacloprid, 
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thiamethoxam, and thiacloprid standards were purchased from Sigma-Aldrich (Saint 

Louis, MO). Methanol, acetone, and acetonitrile (HPLC grade) were purchased from 

Fisher Scientific (Fair Lawn, NJ). Ultrapure water was prepared using an in-house 

Milli-Q water purification system from Millipore (Carrigtwohill, Cork, Ireland).

2.3 Sample collection and water quality parameters

In order to investigate neonicotinoids removal in the Prado wetlands, a total of 54

surface water samples were collected on a monthly basis from June to November in 

2022 at various locations, including Prado inlet, BB1 inlet, BB1 outlet, S7 inlet, S8 

outlet, S9 inlet, S10 outlet, and Prado outlet (Figure 1). Grab samples were collected 

directly into 1-L amber glass bottles, kept at 4°C℃, and extracted within 24 h after 

collection. Additionally, plant samples including bulrush shoots (n = 5), bulrush roots 

(n = 5), duckweed (n = 5), hydrocotyle (n = 4) and sediment samples (n = 11) were 

collected in wetland cells BB1, S7-S8, and S9-S10. Sediment samples were collected 

by using a small hand shovel from a surface depth of 0 – 15 cm, and placed in 50 mL 

centrifuge tubes. Bulrush was collected along with the root, while only the shoot and 

leaves were collected for hydrocotyle. Duckweed was collected by using a small hand 

fishing net. All the plant samples were wrapped in foil and stored in a -80°C freezer 

until analysis. All sediment and plant samples were freeze-dried under vacuum at -

60°C for three days before analysis.

The water quality parameters, including temperature (T), pH, electric 

conductivity (EC), TDS, and dissolved oxygen (DO), were measured in situ using a 
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YSI Pro20 meter (Yellow Spring, OH). Water samples (50 mL) were filtered through 

0.45 μm-PTFE filters (ANPEL, Shanghai, China), and the filtrate was used for analysis

of nutrients. The concentrations of nitrite (NO−
2-N), nitrate (NO−

3-N), and phosphorus 

(PO3−
4 -P) were measured by using a Dionex Aquion Ion Chromatography (Sunnyvale, 

CA), along with a Seal AQ2 Discrete Analyzer (Mequon WI) for ammonium (NH+
4-N).

Further information and details are given in Table S1.

2.4 Sample extraction and analysis

2.4.1 Extraction of water samples

A 1.0-L aliquot of water sample was filtered through glass fiber filters (GF/F, 0.7 

mm, Whatman, England), followed by the addition of 500 mg Na4EDTA·2H2O. To 

address the matrix effects, the filtered samples were spiked with surrogate standard. 

Solid-phase extraction (SPE) was carried out using an Oasis HLB cartridge (500 mg 

6mL, Waters) to extract and concentrate neonicotinoid compounds. The cartridges 

were sequentially activated with 18 mL methanol and 6 mL Milli-Q water. 

Subsequently, the water samples were loaded onto the cartridges at a flow rate of 5 mL

min-1, and the loaded cartridges were then dried under vacuum for approximately 10 

min. The sample cartridges were then eluted with 12 mL methanol and 6 mL of 

acetone: methanol (1:1 v/v), sequentially. The eluate was evaporated to dryness under 

a gentle stream of nitrogen and reconstituted with 1.0 mL methanol: H2O (1:1 v/v). 

The final samples were filtered through a 0.22 μm-PTFE syringe filter into a glass 

HPLC vial and kept at -20  before further analysis by LC-MS/MS.℃
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2.4.2 Extraction of sediment and plant samples

TheDried freeze-dried plant tissue samples underwent a grinding process by a 

tissue grinder to achievewere ground into a finely powdered using a tissue grinder. 

Plant tissue samples were analyzed using aA modified multi-step QuEChERS 

method (Sigma-Aldrich, n.d.), modified  was employed to extract neonicotinoids 

from plant tissue samplesfor macrophytes. In Bbriefly, a plant tissue sample weighing 

1.0 g of plant tissue sample was weighed measured and placed introduced into a 50 

mL centrifuge tube, . Subsequently, followed by the addition of 20 mL of 

acetonitrile (ACN) was added, and the mixture was vigorously vortexing vortexed 

for a duration of 1 min. To this mixture, 4.0 g of anhydrous MgSO4 and 1.0 g of NaCl

were added, followed by vortexing for another 1 min, and sonication for 15 min. The 

sample tubes were centrifuged at 3500 rpm for 15 min, and a 9 mL aliquot of the 

supernatant was decanted into a 15 mL cleanup tube (Thermo Scientific product 

number 60105–205; 900 mg MgSO4/400 mg PSA/400 mg GCB). The tubes were then 

shaken vigorously for approximately 1 min, followed by centrifugation at 3500 rpm 

for 15 min. An aliquot of 6 mL portion of the final ultimate supernatant was 

transferred into a test tube and subjected to evaporated evaporation until completely

dry, usingto dryness under a gentle stream of nitrogen. The dried residue was 

reconstituted using 1.0 mL methanol: H2O (1:1 v/v) and subjected to sonication for 5 

mins. The mixture was then filtered through a 0.22 μm-PTFE filter and transferred to 

an HPLC vial. The final extracts were stored at -20 ℃ before LC-MS/MS analysis.
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2.4.3 Chemical Analysis

Analysis of sample extracts was carried out on a Waters ACQUITY ultra-

performance liquid chromatography (UPLC) system coupled to a Waters triple 

quadrupole mass spectrometer (QqQ-MS/MS) (Waters, Milford, MA). An ACQUITY 

BEH C18 column (100 × 2.1 mm i.d., 1.7 μm; Waters, Milford, MA) was used for 

chromatographic separation. The LC conditions for the neonicotinoid analysis were as 

follows: injection volume, 5 μl; mobile phase flow rate, 0.3 mL min-1; column 

temperature, 40 ℃; mobile phase A, 0.1% formic acid in Milli-Q water; mobile phase 

B, 100% methanol. The mobile phase gradient was programmed as follows (with 

regard to mobile phase B): 10% (0 min), 40% (1.5 min), 50% (4 min), 100% (6 min), 

10% (8 min), and 10% B (9 min). The multiple reaction monitoring (MRM) 

transitions of all target compounds were optimized and are provided in Table S2. Data 

were processed using the TargetLynx XS software (Waters, Milford, MA).

The working solutions of the six neonicotinoids were prepared by diluting 

standard mixtures in methanol for UPLC-MS/MS analysis. The quantification of each 

neonicotinoid was conducted by the external standard method. For each sampling 

batch, and instrumental lank, procedural blank, sample repetition, blank spike, and 

matrix spike were applied. All instrumental and procedural blanks were below the 

method detection limits (MDLs).the method detection limit (MDL) and recovery, 

blank samples (Milli-Q water) were spiked with the working mixture solution. The 

blank recoveries, matrix recovery, MDLs, method quantification limits (MQLs), 
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instrumental detection limits (IDLs), and instrumental quantification limits (IQLs) of 

the six neonicotinoids in water, plant, and sediment samples are shown in Table S3. 

The limit of quantification (LOQs) was estimated as a signal-to-noise ratio (S/N) of 

10, which was given by TargetLynx XS software (Table S3).

2.5 Environmental risk assessment

The risk quotient (RQ) method was used to evaluate the potential ecological risk 

of individual neonicotinoids for freshwater species. The RQ values in the water were 

calculated as follows:

                                                       (1)

where MEC and PNEC were the measured concentrations and predicted no-effect 

concentrations of neonicotinoids, respectively. The PNEC values for dinotefuran, 

thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid were reported 

to be 0.953, 0.4, 0.0024, 0.18, 0.1, and 0.017 mg L−1, respectively (Mahai et al., 2019; 

Zhang et al., 2023). The ecological risks were classified into three levels: low risk, RQ 

< 0.1; medium risk, 0.1 ≤ RQ < 1; and high risk, RQ > 1 (Zhang et al., 2023).

3. Results and Discussion

3.1 Occurrence of neonicotinoid insecticides at the Prado Wetlands
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3.1.1 Spatiotemporal trends of neonicotinoid insecticides in water

Neonicotinoid compounds were frequently detected in water samples collected 

within the Prado Wetland system, with dinotefuran (87.5%) and imidacloprid (100%) 

detected at a higher frequency than the other compounds (Figure S1). Figure 2A and 

Table 1 show the concentrations of the six neonicotinoids in water samples collected 

from the Prado Wetlands. The total concentrations of neonicotinoids varied from 

3.87 17 to 55.9346.9 ng L-1 at different sampling locations within the wetland 

system. Compared to earlier studies, the concentrations of neonicotinoid insecticides 

in the water samples from the Prado Wetlands were relatively low. For example, 

previous studies reported a maximum total concentration of three neonicotinoids in 

the Maumee River to be 670 ng L-1 (Hladik et al., 2018), a maximum concentration of

0.13 μg L-1 of imidacloprid in the Kisco River (Phillips and Bode, 2004), a seasonal 

average concentration of 198.6 ng L-1 of four neonicotinoids (i.e., clothianidin, 

thiamethoxam, imidacloprid, and acetamiprid) in an intensive agricultural area in 

central Saskatchewan (Main et al., 2015), and a total neonicotinoid concentration up 

to 3290 ng L-1 in a river in California (Starner and Goh, 2012). The differences in the 

maximum concentrations between the Prado Wetlands and the surface streams in 

other areas could be attributed to the surrounding drainage areas, as the Prado 

Wetlands receive mostly treated wastewater and urban drainage water.

In this study, imidacloprid and dinotefuran were found to be the most prevalent 

neonicotinoid insecticides, accounting for an average of 54.82 ± 15.22% (10.81 ± 5.81

ng L-1) and 39.42 ± 15.41% (9.03 ± 5.67 ng L-1) of the total neonicotinoid 
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concentrations in water, respectively. Imidacloprid was the most commonly detected, 

which was consistent with its widespread use in both agricultural (Jeschke et al., 2011)

and urban areas (Sánchez-Bayo and Hyne, 2014; Simon-Delso et al., 2015). Previous 

research estimated that approximately 1.0 - 3.4 tons of imidacloprid was discharged 

into U.S. surface waters annually (Sadaria et al., 2016). Imidacloprid was the most 

frequently detected neonicotinoid insecticide in the Great Lakes, USA (Hladik et al., 

2018), and concentrations of up to 10,400 ng L-1 were reported in Lake Erie and Lake 

Ontario (Struger et al., 2017). Globally, imidacloprid was detected at up to 4.56 μg L-1

in rivers near Sydney (Sánchez-Bayo and Hyne, 2014) and > 0.1 μg L-1 in New 

Brunswick, Canada (Anderson et al., 2015). Imidacloprid has relatively long 

persistence in aqueous environments, with half-lives of 35.9-230 d in water (Pietrzak 

et al., 2020). Despite the low recovery of dinotefuran, leading to its exclusion from 

target list (Zhang et al., 2017), a small amount ofHowever, studies have nonetheless 

reported the detection of dinotefuran is usually infrequently detected in 

environmental waters. It was reported that only one sample had detectable 

dinotefuran (1.6 ng L-1) in Sope Creek, GA (Michelle L. Hladik, 2012) and, the 

concentrations of dinotefuran ranged from 9.4 - 100 ng L-1 in the rivers of Osaka 

City, Japan (Yamamoto et al., 2012), and dinotefuran was the most dominant 

neonicotinoids (200 ± 296 ng L-1

  

) in Poyang Lake basin (Xiong et al., 2021). 

Dinotefuran has been used in residential and around commercial buildings, in 

professional turf management (USEPA, 2004), and also as a veterinary medicine for 

the prevention of fleas and ticks on dogs and cats (USEPA, 2004). The results of this 
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study were also supported by the annual usage of imidacloprid and dinotefuran in the 

region; imidacloprid and dinotefuran are the most heavily used neonicotinoids in 

Riverside, CA, which drains into Santa Ana River that feeds the Prado Wetlands 

(Table S4). The transport of neonicotinoids to surface streams has been shown to be 

driven by both use and precipitation, with rainfall events increasing the potential for 

surface water contamination (Hladik et al., 2014). For example, a previous study 

suggested that dry weather conditions limited the offsite transport of neonicotinoids to

streams (Chiovarou and Siewicki, 2007). In this study, the relatively low 

concentrations of neonicotinoids observed in the Prado Wetlands as compared to their 

detections in other studies may be also due to the fact that sampling was carried out 

during the dry season with little rainfall. To capture the full extent of neonicotinoid 

contamination in areas with distinct temporal patterns of precipitation, wet season and

stormwater runoff monitoring should also be conducted.

During the sampling period, the concentrations of neonicotinoid insecticides in 

water samples exhibited a clear increasing trend (Figure 3). The total concentration of 

neonicotinoids at each site increased steadily from June to October and then decreased

from October to November. It is likely that the initial rain events in September and 

October mobilized some of the neonicotinoid residues, leading to their increases, 

while further rain events in November caused dilution, resulting in decreased 

concentrations (Table S5) (Hladik et al., 2014). A study of the Maumee River, a 

tributary of Lake Erie, showed an increase in neonicotinoid concentrations starting in 

May, with maximum concentrations frequently detected in July (Hladik et al., 2018). 
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Rainfall-runoff was also found to play an important role in the offsite transport of 

neonicotinoids to streams in Struger et al. (2017), even during peak pesticide 

applications in summer (Main et al., 2014). Findings from this and earlier studies 

suggested that the management of neonicotinoid contamination in surface waters 

should take into consideration the effect of precipitation on their offsite movement, 

particularly during the rainy season.

3.1.2 Spatiotemporal variation of neonicotinoids in sediments and wetland plants

With the exception of imidacloprid, the other five neonicotinoids were below the 

detection limits in sediment and plant samples collected from the Prado Wetlands. 

The low occurrence or non-detection of these compounds in sediment and plant 

samples was consistent with their high water solubility, which would limit their 

partition into the sediment phase (Zhang et al., 2018). Figure 2B shows the 

imidacloprid concentrations in sediment and plant samples in the Prado Wetlands. 

The average imidacloprid concentrations in sediment, bulrush shoot, bulrush root, 

hydrocotyle, and duckweed were 0.770, 0.760, 0.700, 0.650, and 0.900 ng g-1, 

respectively. The detection of imidacloprid in sediment and plant samples from the 

Prado Wetlands was likely due to the fact that it was present in the wetland system at 

higher levels and that imidacloprid is more persistent than the other neonicotinoids

(Buzby et al., 2020; Maloney et al., 2017). The general lack of detectable 

neonicotinoids in the wetland sediments was in line with that reported for the Walnut 

Creek Watershed in Jasper County (Hladik et al., 2017) and Sacramento and Orange 
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County, CA (Ensminger et al., 2013), which also showed no or low levels of 

neonicotinoids in sediments. The lack of detectable systemic uptake of most 

neonicotinoids by plants may be attributed to the low concentrations of these 

compounds in the sediment, as well as to the potential effects of growth dilution 

and/or active metabolism of these insecticides in wetland plants (Hladik et al., 2017). 

Nevertheless, the finding of imidacloprid in various wetland plants underscored the 

potential importance of plants in contributing to the removal of neonicotinoids when 

the contaminated water passes through vegetated wetland systems. Despite of the 

infrequently detections of neonicotinoids of plants in this study, the bioaccumulation 

potential in plants cannot be overlooked for neonicotinoid removal. Neonicotinoids, 

as systemic insecticides, 2% - 20% of them can be accumulated in plant tissues due to

the strong inhaling capacity of plants (Alsafran et al., 2022). It is usually frequently 

reported that neonicotinoids are readily accumulated by plant. Pecenka and 

Lundgren, (2015) found that clothianidin concentrations up to 4 μg kg-1

  

 in milkweed 

plant, imidacloprid and thiamethoxam were the most commonly detected 

neonicotinoids in fruits and vegetables from USCC study and HZC study (Lu et al., 

2018), Ge et al, (2017) found that imidacloprid accumulated in rice leaves and roots 

with 10 mg kg-1

  

 and 1.37 mg kg-1

  

 at a soil-treated experiment. Therefore, the 

bioaccumulation mechanisms of plants regarding neonicotinoids need further 

research.

3.2 Removal and mass fluxes of neonicotinoids
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The concentration-based removal efficiencies of neonicotinoids in water as they 

passed through the Prado wetland system are given in Figure 4A. The removal factor 

(RF, in %) was calculated based on the differences in concentrations at the inlet and 

outlet of the system under consideration:

                                                      (1)

where Cin and Cout are the neonicotinoid concentrations at the inlet and outlet of a 

wetland system. To estimate the removal factor for the entire Prado Wetland system, 

concentrations at the Prado inlet and Prado outlet (W17) were used for the calculation.

Additionally, it is important to acknowledge that the 100% removal included outlet 

concentrations that were below the detection limit. Throughout the duration of this 

study, the average removal efficiencies of the Prado inlet-Prado outlet, BB1, S7-S8, 

and S9-S10 were 66.59%, 27.61%, 42.65%, and 79.18%, respectively. Among the 

systems under evaluation, S9-S10 exhibited the highest removal efficiency, followed by

Prado inlet – Prado outlet and S7-S8, whereas BB1 displayed the lowest removal 

values. The lowest removal observed in BB1 could be attributed to its relatively small 

area (0.770 ha) as well as low vegetation density. In comparison, the higher vegetation 

density and the relatively large area of S9-S10 likely contributed to the greater removal

efficiency. However, the removal efficiency of neonicotinoids for the entire wetland 

system was not the highest, likely due to the fact that many wetland cells of different 

configurations and with varying states of vegetation and hydraulic retention times were

operated in parallel before the treated water converged and discharged (Figure 1). In 
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addition, uncertainties caused by spot sampling and the associated flow and sediment 

resuspension conditions at the time of sampling could also contribute to variations in 

chemical concentrations and hence the derived removal efficiencies. The generally 

efficient removal of neonicotinoids through vegetated wetlands was in agreement with 

previous studies showing that the systemic neonicotinoid insecticides were effectively 

eliminated from hydroponic planted systems, with removal rates ranging from 9.5% to 

99.9% (Liu et al., 2021).

There were no discernible monthly or seasonal patterns observed in the removal 

of neonicotinoids (Figure S2A). However, the peak removal efficacy was observed in 

August, which may be due to the relatively elevated temperature during this month, as 

well as active vegetation growth. The observed variations in removal efficiencies 

among different wetland cells could be attributed to many factors, including 

differences in vegetation densities (Dabrowski et al., 2006), hydraulic retention time

(Gregoire et al., 2009), and environmental parameters (Main et al., 2017). The 

upstream Santa Ana River supplies a sufficient amount of nutrients to the wetlands

(Bear et al., 2017; Vitko, 1996), which facilitates the establishment and growth of 

macrophytes that act to take up and metabolize neonicotinoids. Moreover, microbial 

communities in wetlands in warm regions such as Southern California promote active 

biotic degradation in the sediment, especially in root zones of wetland plants (Cryder 

et al., 2021).

In addition to the concentration-based removal, another essential metric for 

ascertaining the effectiveness of wetlands in attenuating contaminants is the mass flux 
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of chemicals (Figure 4B). In this study, the mass flux of neonicotinoids was calculated 

using the following equation:

                                                (2)

where  is the mass flux,  is the chemical concentration in water, and the 

water flow rate is estimated by the onsite weir boxes or flumes. It is important to note 

that the mass flux values obtained were discrete estimates at the time of sampling. 

Specifically, the mass influx, mass efflux, and changes in mass flux (Δ mass flux) were 

calculated for the inlet and outlet of the individual wetland systems under 

consideration. The median Δ mass flux of BB1, S7-S9, and S8-S10 were 137.89, 

148.70, and 219.36 mg d-1, respectively. Positive changes in mass flux indicate the 

removal of neonicotinoids in a system, while a negative value would indicate a net 

export from the system. The majority of Δ mass flux values were statistically 

significant (Wilcoxon test, P < 0.05).

Positive changes in mass flux values were observed for BB1 (with a median 

value, of 137.87 mg d-1), S7-S8 (with a median value, of 148.70 mg d-1), and S9-S10 

(with a median value, of 219.36 mg d-1), which provides further evidence that the 

wetland cells were effective in removing neonicotinoid insecticides. However, there 

were significant variations in Δ mass flux values based on specific sampling time 

points. The 5-95% ranges were 21.700 - 819.39, 0.61000 - 748.85, and 47.780 -
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1176.66 7 mg d-1 for BB1, S7-S8, and S9-S10, respectively. The large variations could 

be attributed to changes in flow rate and flow-induced resuspension of sediment 

particles when the flow rate was high. Overall, these findings suggest that wetlands, 

including both unvegetated and vegetated wetland systems, are effective at removing 

neonicotinoid insecticide residues from water (Braskerud and Haarstad, 2018; 

Chiovarou and Siewicki, 2007; Gregoire et al., 2009). Further research is needed to 

better understand factors contributing to enhanced removal of neonicotinoids from 

water, such as plant uptake and metabolism, wetland plant species, vegetation density, 

photolysis, and environmental conditions.

To discern the effect of environmental parameters on the removal of 

neonicotinoids in the Prado Wetlands, a PCA analysis was conducted. Figure 5 shows 

a negative correlation between pH and temperature (T) with neonicotinoid levels, 

suggesting that higher pH and temperature may lead to lower neonicotinoid 

concentrations. Liang et al. (2019) documented an increase in photo-degradation of all

neonicotinoids with increasing pH, and Guzsvány et al. (2006) observed that 

imidacloprid and thiamethoxam degraded rapidly under alkaline conditions. There 

was no significant correlation between nutrient levels (i.e., NH+
4, NO-

2, NO-
3, PO3-

4 ) and 

neonicotinoid concentrations in water. However, the presence of nutrients could 

potentially stimulate plant growth and microbial activity, which could subsequently 

accelerate the removal of neonicotinoids through increased plant uptake and enhanced 

microbial degradation. The overall findings suggested that many factors worked in 

concert in influencing the fate of neonicotinoids in a wetland system, such as pesticide
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properties (e.g., DT50, Kd), sediment resuspension, and plant uptake, as well as water 

characteristics (e.g., pH, temperature, conductivity). Aquatic plants may also influence

the micro-environment through physical and chemical alterations, such as changing 

light intensity, pH, and nutrient distribution. Neonicotinoid compounds are highly 

water soluble and may co-exist with dissolved organic matter in water (Bonmatin et 

al., 2015), and could undergo indirect photolysis with dissolved organic matter as the 

photosensitizer (Roy et al., 1999; Zeng and Arnold, 2013). Other researchers also 

reported the role of photolysis in environmental degradation of neonicotinoids (Lavine

et al., 2010; Wamhoff and Schneider, 1999). Photolysis may be especially pronounced 

in unvegetated wetlands, such as BB1 which was shallow and largely void of 

vegetation. Nevertheless, it is imperative not to disregard the filtration effects exerted 

by water and DOM on UV radiation (Lu et al., 2015).

3.3 Neonicotinoid insecticide toxicity and risk assessment

Based on previous studies, contamination of neonicotinoids in rivers can pose 

ecological risks to aquatic organisms, particularly aquatic animals, resulting in adverse

impacts on the biodiversity and overall functions of the aquatic ecosystem (Chen et al.,

2019; Naumann et al., 2022). The risk quotient (RQ) was calculated based on the 

detected concentrations of individual neonicotinoids in the Prado Wetland system 

during the sampling period (Figure 6A). The monitored neonicotinoids, except for 

clothianidin, presented a relatively low ecological risk to aquatic ecosystems with RQ 

< 0.1 (Sánchez-Bayo et al., 2002). The RQs in the Prado Wetlands were comparable to
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those in the Huai River (Zhang et al., 2023), the central Yangtze River (Mahai et al., 

2019), and the Sousa Rivers (Sousa et al., 2019). For each sampling event, a slight 

reduction in RQs was observed as water passed through the wetland system, consistent

with previous studies (Liu et al., 2021; Main et al., 2017). 

The U.S. EPA established acute and chronic toxicity thresholds (i.e., 385 and 10 

ng L-1, respectively) for imidacloprid to further safeguard aquatic ecosystems (USEPA,

2017). According to the U.S. EPA aquatic life benchmark, no imidacloprid values 

detected in this study exceeded the current acute aquatic life benchmarks, but the 

chronic benchmarks were exceeded 29 times (57% of samples) (Figure 6B). In 

addition, previous research has demonstrated that neonicotinoid metabolites possess 

similar levels of toxicity as the parent compounds (Casida, 2011; Suchail et al., 2003; 

Jeschke et al., 2011). Therefore, it is probable that the overall ecological risks were 

underestimated in this study by neglecting neonicotinoid metabolites (Bonmatin et al.,

2021; Chen et al., 2021; Nomura et al., 2013; Song et al., 2020). 

4. Conclusions

This study provides a comprehensive characterization of the spatiotemporal 

variations and the removal of neonicotinoids in a large wetland system during the dry 

season in California. The detected neonicotinoid concentrations in the Prado Wetlands

were relatively low, with imidacloprid and dinotefuran as the most frequently detected

compounds. The changes in neonicotinoid concentrations and mass fluxes highlighted

that constructed wetlands were effective at removing neonicotinoid insecticides, likely
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due to uptake into wetland plants, photolysis, and microbial degradation. These 

findings suggest that constructed wetlands may be used as a low-cost efficient option 

for removing neonicotinoid residues from surface water. Vegetation density and 

hydraulic retention time were among the main variables for optimizing the removal of

neonicotinoids. However, long-term monitoring considering different precipitation 

conditions and parent compound-metabolite mixtures is necessary to obtain a holistic 

understanding of wetlands as a mitigation strategy for water contaminated by 

neonicotinoid insecticides. In addition, the potential release of neonicotinoids 

sequestered by plants or sediment overtime should also be understood when 

evaluating the overall functions of wetlands in attenuating man-made chemicals such 

as neonicotinoid insecticides.     
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Tables:

Table 1. Concentrations of six neonicotinoid insecticides of different sampling sites at

the Prado Wetlands. 

Dinotefura

n

Acetamiprid Clothianidin Thiaclopri

d

Imidaclopri

d

Thiamethoxa

m
Prado in 10.02 ± 6.29 3.49 ± 5.30 1.30 ± 1.39 ND 15.51 ± 4.56 2.87 ± 4.27
BB1 in 9.43 ± 6.15 0.250 ± 0.140 1.01 ± 0.770 ND 13.75 8 ±

4.61

0.300 ± 0.190

BB1 out 8.93 ± 5.94 0.790 ± 0.300 0.760 ± 0.620 ND 12.81 ± 4.37 0.280 ± 0.0700
S7 in 10.89 ± 5.34 0.310 ± 0.290 1.13 ± 0.580 ND 12.48 5 ±

4.55

0.300 ± 0.0700

S8 out 9.25 ± 7.00 0.290 ± 0.240 0.930 ± 0.240 ND 7.08 ± 4.27 0.250 ± 0.0700
S9 in 8.84 ± 6.76 0.250 ± 0.350 0.940 ± 0.740 ND 10.971.0 ±

6.79

0.370 ± 0.260

S10 out 3.96 ± 3.41 0.250 ± 0.430 ND ND 2.76 ± 3.07 ND
Prado out 9.11 ± 5.03 0.210 ± 0.130 0.770 ± 0.0500 ND 8.04 ± 3.70 0.200 ± 0

ND: Not detected (below detection limit)
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Figures:

Figure 1.  Schematic map of the Prado Wetlands in Corona, California. Red squares

are sampling points for BB1, S7-S8, and S9-S10 wetland cells, and Prado inlet and

Prado  outlet  of  the  whole  wetland  system  (Figure  credit:  Orange  County  Water

District).
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Figure  2.  Total  concentrations  of  six  neonicotinoids  in  water  samples  (A);

Concentrations of imidacloprid in the sediment and plant tissue samples (B).
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Figure 3.  Temporal  distribution  and compositions  of  neonicotinoid  insecticides  in

water samples from S7 inlet and Prado outlet sampling points in the Prado Wetlands.
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Figure  4.  Removal  efficiencies  (A)  and  Δ  mass  flux  (B)  of  six  neonicotinoid

insecticides in different cells at the Prado Wetlands. ***, P < 0.001; *, P < 0.05; NS,

no significant difference.
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Figure 5. PCA biplots of 14 hydrogeochemical variables for the surface water of the

Prado Wetlands. Arrows represent the PC1 and PC2 loading of each variable. The

dots signify the PC1 and PC2 scores for each sampling site. The circles characterize

the 95% confidence interval.
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Figure 6. The ecological risk quotient of individual neonicotinoid (A); the ecological

risk of imidacloprid in the water samples at Prado Wetlands.
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