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Axisymmetric simulations of libration-driven fluid dynamics in a spherical
shell geometry
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1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles,
California 90095, USA
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�Received 6 April 2010; accepted 29 June 2010; published online 26 August 2010�

We report on axisymmetric numerical simulations of rapidly rotating spherical shells in which the
axial rotation rate of the outer shell is modulated in time. This allows us to model planetary bodies
undergoing forced longitudinal libration. In this study we systematically vary the Ekman number,
10−7�E�10−4, which characterizes the ratio of viscous to Coriolis forces in the fluid, and the
libration amplitude, ��. For libration amplitudes above a certain threshold, Taylor–Görtler vortices
form near the outer librating boundary, in agreement with the previous laboratory experiments of
Noir et al. �Phys. Earth Planet. Inter. 173, 141 �2009��. At the lowest Ekman numbers investigated,
we find that the instabilities remain spatially localized at onset in the equatorial region. In addition,
nonzero time-averaged azimuthal �zonal� velocities are observed for all parameters studied. The
zonal flow is characterized by predominantly retrograde flow in the interior, with a stronger
prograde jet in the outer equatorial region. The magnitude of the zonal flow scales as the square of
the librational forcing, �2, where �=��f and f is the dimensionless libration frequency defined as
the ratio between the libration frequency and the mean angular rotation rate. In addition, the zonal
flow is primarily independent of the Ekman number, implying that the zonal flow does not depend
on the viscosity of the fluid. The simulations show that the zonal flow is driven by nonlinearities in
the Ekman boundary layer; it is not driven by Taylor–Görtler vortices or by inertial waves in the
fluid interior. Application of our results suggests that many librating bodies in the solar system are
above the onset for centrifugal instabilities, with values up to �30 times supercritical. However, the
spatial localization of the instabilities at onset in our simulations suggests that their effects are
limited on the global dynamics of librating bodies. We find that the zonal flows driven by libration
in axisymmetric spherical shells are unlikely to produce significant planetary magnetic fields, but
will likely generate nonzero mean torques on the bounding surfaces. © 2010 American Institute of
Physics. �doi:10.1063/1.3475817�

I. INTRODUCTION

Many planetary bodies in the solar system have a time-
periodic axial rotation rate, known as longitudinal libration.1

This motion is the result of periodically reversing gravita-
tional torques acting on asymmetries in mass of the planet.
Some of the bodies undergoing longitudinal libration, such
as Mercury and the Galilean satellites, are inferred to possess
liquid metal cores or subsurface liquid water oceans �e.g.,
Refs. 2 and 3�. It is likely that exchanges of angular momen-
tum between the outer librating shell and the interior fluid
volume of these bodies is presently occurring. The exchange
of angular momentum can occur through viscous, gravita-
tional, electromagnetic, and topographic coupling. Viscous
coupling is perhaps the simplest mechanism to model from
both a numerical and laboratory standpoint and so provides a
useful starting point from which to begin an examination on
the fluid dynamical effects of libration. It is also likely to be
the weakest of the coupling mechanisms,4 thus providing a
useful lower bound on librationally driven flow velocities.

For these reasons, the current study focuses entirely on the
viscously excited flows generated by libration.

We characterize the oscillatory motion of a librating
body by a single �angular� libration frequency, �L=2� / PL,
where PL is the libration period. In general, the librational
motion of a given planetary body is composed of several
different periods, where the libration period with the largest
amplitude corresponds to the orbital period �e.g., see Refs. 1
and 3�. Thus, our results can be used to understand a particu-
lar planet’s response to that period which is characterized by
the largest amplitude.

The range of libration frequencies present throughout the
universe is likely to be broad. When a librating body is in
synchronous rotation, its rotation period is equal to its orbital
period around the primary.1 In such cases, the dimensionless
libration frequency, f =�L /	o, where 	o is the mean rotation
rate of the librating body, is unity. This value is applicable,
for example, to the Earth’s moon and the Galilean satellites.1

Mercury, however, completes three rotations for every two
orbits around the sun, resulting in f =2 /3. Future space mis-
sions and telescopic observations will likely yield more di-
verse libration frequencies �e.g., Ref. 5�. We focus primarily
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on the frequency f =1, which is characteristic of most librat-
ing bodies.

In a rotating spherical shell containing a homogenous
fluid, the motion of the librating boundary is transmitted vis-
cously to the interior fluid through the thin Ekman boundary
layer that is present along the outer librating surface. The
flux of mass into or out of the Ekman layer induces oscilla-
tions in the fluid volume in the form of inertial modes.6 In-
ertial modes are the natural modes of oscillation for a rotat-
ing fluid body and propagate throughout the fluid interior
along conical characteristic surfaces.7,8 We shall refer to the
disturbances propagating along these paths as inertial waves.
As shown in Fig. 1, we define the angle between the charac-
teristic surfaces and the equatorial plane as 
. Assuming lin-
ear dynamics, this angle is solely dependent on the forcing
frequency f and is given by

f = 2 cos 
 . �1�

Inertial waves exist only in the finite frequency band �f ��2.
Steady �geostrophic� motion is characterized by f =0 and,
therefore, by characteristic surfaces that are parallel to
the rotation axis, giving 
=� /2 rad. For f =1 we have

=� /3 rad. Finally, for f =2, the characteristic surfaces are
perpendicular to the rotation axis, 
=0. For fully nonlinear
systems, as investigated here, harmonics and subharmonics
of f can also be generated.

The physical structure and amplitude of inertial waves
are dependent on the ratio of viscous forces to the Coriolis
force, denoted by the Ekman number, E=� / �	oro

2�, where �
is the kinematic viscosity of the fluid and ro is the radius of

the outer shell. The magnitude of the mass flux flowing
through the Ekman layer typically scales as E1/2. This behav-
ior changes at locations along the boundaries where the re-
flected energy of an incident inertial wave is tangent to that
boundary. In a spherical system, this location is known as the
critical latitude, 
cr, and is given by the relation6

f = 2 sin 
cr. �2�

Therefore, 
+
cr=� /2 rad. At the critical latitude on both
the outer and inner spherical shell boundaries, there is a local
increase in the thickness of the Ekman layer from E1/2 to
E2/5.10 Typically, the mass flux in and out of the Ekman layer,
referred to as Ekman pumping, scales as E1/2. However, at
the critical latitude on the outer boundary, the mass flux at
the critical latitude increases, scaling as E1/5 over an angular
distance of E1/5.11 Furthermore, at the critical latitude on the
inner boundary, the anomalous Ekman pumping generates a
shear layer tangent to the local spherical shell surface. This
shear layer is of width E1/3 and is characterized by tangential
velocities that scale as E1/6.9 The properties of the internal
shear layers and the boundary layers occurring in a rotating
spherical shell are summarized in Fig. 1.

Previous laboratory12,13 and numerical14 work has em-
ployed longitudinal libration as a convenient mechanism for
exciting inertial waves in rotating spheres and spherical
shells due to the properties stated above. Tilgner14 investi-
gated the attractors associated with inertial waves in a spheri-
cal shell. Aldridge12 and Aldridge and Toomre13 tested theo-
retically predicted inertial mode resonance frequencies �e.g.,
see Ref. 6� and determined the associated viscous decay
rates. Aldridge12 also found that when the libration amplitude
was above a certain threshold, Taylor–Görtler vortexlike in-
stabilities developed along the outer librating shell.

The recent experimental investigation of Noir et al.15

�hereafter referred to as N09� expanded the work of Aldridge
by covering a broad range in libration frequency, amplitude,
Ekman number, and inner core radius. The authors deter-
mined the stability boundaries for the onset of Taylor–
Görtler vortex formation and their subsequent breakdown
into boundary layer turbulence. They also observed little de-
pendence of the flow regimes on the presence and size of an
inner sphere. The results suggest many librating bodies are
within the unstable or turbulent regime. However, as the
laboratory experiments were limited to E�10−5, additional
work is necessary to confirm that their results can be realis-
tically extrapolated to the low Ekman numbers �E�10−12�
that are characteristic of planets.

It is of general interest in rotating fluid mechanics to
understand the conditions under which mean azimuthal
�zonal� flows can be generated �e.g., see Refs. 16–18�. It has
been shown experimentally19 and analytically20 that nonlin-
earities in the Ekman boundary layer can drive large-scale
zonal flows in librating systems. Busse21 first studied the
zonal flow produced by local nonlinearities in the Ekman
boundary layer at the critical latitude. He showed that these
nonlinearities will drive a strong radial shear along a geo-
strophic cylinder coaxial with the rotation axis at the radius
scr=ro cos 
cr. We refer to this shear structure as the geo-

αcr

E1/2

E2/5

E1/6

E1/5

E1/5

E1/3

Ωo

α

E1/5E1/6

α

E1/5

FIG. 1. �Color online� Schematic showing velocity and length scalings for
internal shear and boundary layers in a rapidly rotating spherical shell
�modified from Ref. 9�. Thin, solid �black� arrows denote layer thicknesses.
Dots �black� on the inner and outer boundary represent the critical latitude.
The solid, oblique �red� lines represent oscillatory shear layers resulting
from the velocity singularity at the critical latitude. The steady, geostrophic
shear layer is denoted by the vertical, solid �blue� line emanating from the
critical latitude on the outer boundary. The scalings for the Ekman boundary
layer present on the inner sphere are identical to those on the outer sphere.
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strophic shear layer �see Fig. 1�. Thus far, studies predict a
divergent radial shear along scr as E→0.11,21

In the current study we employ axially and equatorially
symmetric, fully nonlinear numerical simulations to investi-
gate under what conditions forced longitudinal libration gen-
erates Taylor–Görtler vortices and mean zonal flows at Ek-
man numbers 10−7�E�10−4. The lowest Ekman numbers
investigated here are over two orders of magnitude smaller
than in comparable studies.12,13,19 In Sec. II we outline the
numerical methods used in our simulations, in Sec. III we
present our results, and in Sec. IV we discuss our results and
their planetary implications.

II. METHODOLOGY

The physical system we investigate consists of a homo-
geneous, Newtonian fluid contained in a rapidly rotating
spherical shell with outer radius, ro, and inner radius, ri. In
the simulations reported here we use a geometrically thick
spherical shell of radius ratio 
=ri /ro=0.35. The rotation
rate of the outer solid, spherical boundary is modulated in
time, t, with angular frequency �L and libration amplitude,
��, and is given by

	�t� = 	o + ���L sin��Lt� . �3�

The inner solid sphere rotates at the constant rate 	o.
For small libration amplitudes, the librational forcing

drives axisymmetric and equatorially symmetric flow in the
spherical shell. Two-dimensional numerical simulations can
thus be performed, greatly reducing computational expense
and allowing for lower Ekman numbers than would be ac-
cessible in fully three-dimensional models. The difficulty as-
sociated with low Ekman number simulations is due to the
small length and time scales that must be used to avoid nu-
merical instabilities and to maintain numerical accuracy. For
instance, the Ekman boundary layers scale as E1/2, which
requires increasingly high spatial resolution as the Ekman
number is reduced. Furthermore, at least 100 time steps per
rotation are required to resolve the fastest inertial waves.

We solve the fully nonlinear Navier–Stokes equations
for an incompressible fluid. This is done using a vorticity-
stream function formulation in the meridional plane of a
spherical coordinate system �r ,� ,��, which rotates with rate
	o, where the radial, colatitudinal, and azimuthal velocity
components are given by u, v, and w, respectively. The
vorticity-stream function method allows the pressure to be
eliminated from the governing equations and mass to be ex-
actly conserved. A schematic of the flow domain is shown in
Fig. 2.

The azimuthal vorticity, �, is given by

� =
1

r

�

�r
�rv� −

1

r

�u

��
. �4�

Physically, the azimuthal vorticity describes the rotational
direction of individual fluid elements in the meridional
plane; positive vorticity corresponds to locally clockwise
motion and negative vorticity corresponds to counterclock-
wise motion. The meridional stream function, �, is defined
by the relations

u =
1

r2 sin �

��

��
, �5�

v = −
1

r sin �

��

�r
. �6�

Note that the meridional stream function formulation, by
definition, requires mass to be conserved. Combining Eq. �4�
with Eqs. �5� and �6� we have the following equation relating
the stream function to the azimuthal vorticity:

� = −
1

r sin �

�2�

�r2 −
1

r3

�

��
� 1

sin �

��

��
	 . �7�

Using the outer radius, ro, as the basic length scale, and
the inverse of the mean rotation rate, 	o

−1, as the basic time
scale, the nondimensional equations for the azimuthal veloc-
ity and azimuthal vorticity are written, respectively, as

�w

�t
+ u

�w

�r
+

v
r

�w

��
+ w�u

r
+ cot �

v
r
	 + 2u sin �

+ 2v cos � = E�2w �8�

and

��

�t
+ u

��

�r
+

v
r

��

��
+ w� 1

r2 sin �

�

��
�w sin ��

−
cot �

r2

�

�r
�rw�	 − ��u

r
+

v
r

cot �	
= � 1

r sin �

�

��
�w sin �� + 2 cos �	 �w

�r

+ �1

r

�

�r
�rw� − 2 sin �	1

r

�w

��
+ E�2� , �9�

where we use the notation

θ

r

φ

ri ro

Ωo

u

v

w

s

z

FIG. 2. Drawing of the flow domain and spherical coordinate system used in
the numerical simulations. The spherical coordinate system used is �r ,� ,��
with corresponding velocities �u ,v ,w�. The inner and outer radii are ri and
ro, respectively. The cylindrical radius is given by s=r sin � and the cylin-
drical coordinate z is given by z=r cos �.
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�2� · � =
1

r2

�

�r

r2�� · �

�r
� +

1

r2

�

��
� 1

sin �

�

��
�� · �sin ��
 .

�10�

No-slip boundary conditions are employed along the inner
and outer spherical surfaces,

w�1,�,t� = � sin � sin�ft� , �11�

w�
,�,t� = 0, �12�

��

�r
�
,�� =

��

�r
�1,�� = 0, �13�

where

� = ��f �14�

is the librational forcing. Stress free boundary conditions are
applied along the rotation axis and equatorial plane

��r,0� = ��r,�/2� = 0, �15�

and zero mass flux is enforced along the symmetry planes
and solid boundaries

��
,�� = ��1,�� = ��r,0� = ��r,�/2� = 0. �16�

The colatitudinal components of the diffusive terms
present in Eqs. �7�–�9� can be simplified by introducing the
following substitutions:

A = rw sin �, B = − r� sin � . �17�

Note that the quantity, A, is the local axial angular momen-
tum of a fluid parcel. The variables are then expanded in the
form

A�r,�,t� = �
n=1

n odd

L

An�r,t�sin �Pn
1��� , �18�

B�r,�,t� = �
n=1

n even

L

Bn�r,t�sin �Pn
1��� , �19�

��r,�,t� = �
n=1

n even

L

�n�r,t�sin �Pn
1��� , �20�

where Pn
1 are the first associated Legendre functions and L is

the maximum degree Legendre function used. The symmetry
of the problem allows us to only consider the odd degree
Legendre functions for A and the even degree functions for B
and �. Expansions of this type have been used, for example,
by Dennis and Walker.22 The resulting Legendre–Galerkin
equations are discretized in radius using a second-order ac-
curate finite difference scheme. A second-order accurate
Adams–Bashforth/backward differentiation scheme is em-
ployed to advance the solution in time.23 The influence ma-
trix method is used to account for the lack of boundary con-
ditions for the vorticity along the inner and outer spherical
boundaries. This method exploits the linearity of the time-

discretized equations by using a linear combination of the
vorticity and stream function such that the boundary condi-
tions on the stream function are satisfied. Further details of
this method can be found in the text by Peyret.23 We use
associated Legendre functions up to degree L=1800 and
N=1301 radial grid points for the most demanding calcula-
tions. The grids used for the results presented in this study
are shown in Table I. The nondimensional time-step sizes
ranged from 10−2 to 10−3. The majority of the simulations
used Gauss–Lobatto �Chebyshev� points to increase the ra-
dial resolution near the inner and outer solid boundaries in
order to resolve the Ekman layers �e.g., see Ref. 23�. For our
lowest Ekman number cases, the radial distribution function
presented by Tilgner14 is used, which better resolves the Ek-
man layer. The code has been benchmarked with a three-
dimensional libration code developed by R. Laguerre �per-
sonal communication� and with previous axisymmetric
spherical Taylor–Couette studies �e.g., Refs. 24 and 25�.

III. RESULTS

A. Inertial waves

When the librational forcing is small �i.e., ��1�, the
fluid volume is dominated by inertial waves. Figure 3 shows
stream function contours at the instant when the outer shell is
at the maximum retrograde position for an Ekman number of
10−6.5, �=10−3, and f =1. We see that the flow structure is
dominated by the oblique shear layers that are spawned from
the critical latitude at the outer boundary �denoted by the tick
marks in the figure�. These disturbances propagate along the
characteristic surfaces. The basic structure of the time
dependent flow shown in Fig. 3 is also present at higher
libration amplitudes. For detailed discussions concerning
inertial waves in spheres and spherical shells, see the works
of Aldridge and Toomre,13 Rieutord,26 Rieutord and
Valdetarro,27 and Tilgner.14

TABLE I. Parameters used for libration simulations. ��cr and mcr are the
critical libration amplitude in radians and the critical latitudinal wavenum-
ber, respectively. Runs with no entries �¯ � for ��cr and mcr were centrifu-
gally stable.

E f L N ��cr mcr

10−4.2 1 600 401 0.34 12

10−4.4 1 640 421 0.25 23

10−4.6 1 640 441 0.21 26

10−4.8 1 660 441 0.18 44

10−5 1 800 501 0.15 49

10−5 2.2 800 501 ¯ ¯

10−5.2 1 900 601 0.128 55

10−5.4 1 900 601 0.10 78

10−5.6 1 1140 721 0.078 101

10−5.8 1 1500 841 0.063 126

10−6 1 1800 901 0.05 153

10−6.5 1 900 1301 ¯ ¯

10−7 1 1200 801 ¯ ¯
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B. Onset behavior of centrifugal instabilities

Our numerical simulations show that, for fixed Ekman
number E and libration frequency f , there exists a critical
libration amplitude, ��cr, at which the basic librationally
driven flow becomes unstable. Figures 4�a� and 4�b� show
the structure of the instabilities at the instant when the outer

sphere is at the maximum retrograde position for two differ-
ent Ekman numbers, E=10−4.2 and 10−5. The instabilities
consist of counter-rotating Taylor–Görtler vortices that are
similar to those that occur in both spherical �e.g., Refs. 24,
28, and 29� and cylindrical Taylor–Couette flows.30 Taylor–
Görtler vortices can be defined as fluid instabilities resulting
from an adverse angular momentum gradient �e.g., see Refs.
31 and 32�; their presence is typified by closed stream func-
tion contours �as shown in Figs. 4�e� and 4�f��. The vortices
remain spatially localized within the fluid volume; they are
always observed to occur in the equatorial region adjacent to
the outer librating shell where the radial shear is largest.

A libration cycle can be decomposed into a prograde and
retrograde phase; a prograde phase is defined as that part of
the cycle when the outer boundary is rotating in the same
direction as the background rotation, whereas the retrograde
phase occurs when the outer boundary rotates in the opposite
direction as the background rotation. The instabilities grow
during the retrograde phase of the libration cycle, when ad-
verse radial gradients in angular momentum are present; this
is consistent with Rayleigh’s circulation criterion for cen-
trifugal instabilities.31 Figures 4�e� and 4�f� show the meridi-
onal stream function averaged over ten libration cycles. The
strong time-averaged signature of the vortices demonstrates
that they form at nearly the same location over each libration
cycle.

FIG. 3. �Color online� Stream function contours for E=10−6.5, �=10−3, and
f =1 at the instant when the outer boundary is at the maximum retrograde
position. Tick marks show the location of the critical latitude on the inner
and outer boundaries; oblique dashed lines show the characteristic surfaces
of the inertial waves.

d)c)
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FIG. 4. �Color online� Azimuthal velocity at the mo-
ment when the outer shell is at the maximum retrograde
position for centrifugally unstable cases: �a� E=10−4.2,
�=0.33 and �b� E=10−5, �=0.15. �c� and �d� show
close-up view of instabilities in equatorial region for �a�
and �b�, respectively. ��e� and �f�� Time-averaged
stream function contours for cases shown in �c� and �d�.
The boxes shown in �a� and �b� denote the regions mag-
nified in �c�–�f�. All cases shown are for f =1.
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To better understand the parameters for which Taylor–
Görtler vortices develop in librating systems, we have per-
formed a suite of simulations over the Ekman range of
10−6�E�10−4.2 with a resolution of �E=100.2. The process
of determining the stability of the basic flow consisted of
beginning at a particular libration amplitude and gradually
increasing the value until the instabilities were observed. The
observations of the instabilities were determined via two
methods: �i� visually from the data represented in physical
space and �ii� spectrally from the Legendre spectra of the
various flow variables. The instabilities were typically first
observed visually and their presence was then confirmed us-
ing the Legendre spectra. Simulations were then repeated at
slightly smaller libration amplitudes to identify the stability
boundary.

The results for the onset of the centrifugal instabilities
are shown in Fig. 5. The critical libration amplitude, ��cr, is
determined by linearly interpolating between the largest
stable �� and the smallest unstable �� at each Ekman num-
ber. Figures 5�a� and 5�b� show ��cr as a function of E. In
Fig. 5�a� we plot the best fit for our data �solid line�, which is
given by

��cr,a = �26 � 3�E0.45�0.01. �21�

Figure 5�b� shows the scaling law given in N09, ��cr,b

= �46�4�E1/2, where the prefactor of 46 was determined us-
ing data from the current study. The dotted-dashed lines
shown in Figs. 5�a� and 5�b� represent the standard deviation
of the prefactors for ��cr,a and ��cr,b.

The scaling law for the onset of the Taylor–Görtler vor-
tices given in N09 is based on a boundary layer Reynolds
number, defined as ReBL=�E−1/2, where the length scale is
based on the thickness of the Ekman layer and the velocity
scale is the azimuthal velocity of the outer boundary at the
equator. N09 found the critical boundary layer Reynolds
number to be ReBL,cr�20 for 10−5�E�10−4. Rewriting the
expression for the boundary layer Reynolds number in terms
of a critical libration amplitude we have

��cr = ReBL,cr f−1E1/2. �22�

This is the scaling relationship shown in Fig. 5�b�, where we
determined the critical boundary layer Reynolds number for
the current study to be ReBL,cr�46. This value is somewhat
larger than that determined by N09; one possible explanation
for this discrepancy is the inherent higher noise level present
in their experimental apparatus. Nevertheless, due to the un-
certainty in our determination of ��cr, our results are con-
sistent with the ��cr�E1/2 scaling presented by N09.

Also apparent from the numerical data shown in Figs.
5�a� and 5�b� is the wavy character of the stability boundary.
To highlight this behavior, Figs. 5�c� and 5�d� show the sta-
bility data normalized by ��cr,a and ��cr,b, respectively.
This type of behavior is common when the critical wave-
number of the instabilities varies with the control parameters
�e.g., Ref. 33�.

We observe an increase in the number of Taylor–Görtler
vortices present at onset in the unstable state as the Ekman
number is reduced. In Fig. 6�a�, the number of Taylor–
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FIG. 5. �a� Stability diagram for the onset of Taylor–Görtler vortices in libration with a best fit line to the data obtained in the current study. �b� Stability
diagram for the onset of Taylor–Görtler vortices in libration with the constant boundary layer Reynolds number, ReBL, scaling proposed by N09. �c� Critical
libration amplitude normalized by the best fit line ��cr,a=26E0.45. �d� Critical libration amplitude normalized by the best fit line ��cr,b=46E0.5.
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Görtler vortices, NTGV, is plotted versus the Ekman number.
The individual vortices are identified by the presence of lo-
cally closed streamlines. As the instabilities are inherently
transient, we have examined the properties of the instabilities
at the instant when the outer shell is at its maximum retro-
grade position. However, the vortex count can also be per-
formed on the time-averaged flow �e.g., Figs. 4�e� and 4�f��,
which shows the same number of vortices.

To further quantify the instabilities, Fig. 6�b� shows the
maximum latitudinal extent, �l, of the vortices when the
outer boundary is at the maximum retrograde position. The
critical wavenumber, mcr= �180 /��NTGV /�l, is shown in Fig.
6�c�; its value strongly increases with decreasing E. Numeri-
cal values of mcr can be viewed as the number of vortices
that would be present over an angular distance of 2� radians
if the vortices were not spatially localized. The data shown in
Fig. 6 demonstrate that the vortices become smaller and are
generated closer to the equator as E is reduced. Although
these results characterize the onset of Taylor–Görtler vorti-

ces, they suggest that the effect of centrifugal instabilities on
the fluid volume becomes less pronounced at low Ekman
numbers.

C. Zonal flows

Nontrivial time-averaged azimuthal velocities �i.e., zonal
flows� are observed in all our numerical simulations. Figure
7 shows color plots of the typical structure of the zonal flow
obtained from the numerical simulations for a stable case,
and a case in which Taylor–Görtler vortices are present in the
equatorial region. Underlying each of the color plots are time

�i.e., ·̄ � and axially �i.e., � · �� averaged zonal velocities, �w̄�,
plotted as a function of cylindrical radius, s=r sin �. Plots of
�w̄� are referred to as geostrophic profiles. We see that in
both the centrifugally stable �Figs. 7�a� and 7�c�� and un-
stable �Figs. 7�b� and 7�d�� cases, the zonal flow is charac-
terized by predominantly retrograde motion in the interior,
with a prograde jet in the outer equatorial region. For s
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�0.35, there is a weak mean flow with modulations that
appear to correlate with the inertial wave structure. The zonal
flow is retrograde and varies quasilinearly from 0.35�s
�0.8. The peak retrograde flow occurs at s�0.8. At larger
radii, the flow becomes prograde.

Comparison of the centrifugally stable and unstable
cases shown in Figs. 7�c� and 7�d�, respectively, allows us to
infer the effects of the Taylor–Görtler vortices on the zonal
flow. For the unstable case, there is a slight decrease in the
magnitude of the prograde equatorial jet in the region where
the vortices are present �s�0.95�. The comparison of Figs.
7�c� and 7�d� shows that the Taylor–Görtler vortices do not
drive the zonal flow; the general trends and magnitudes of
the geostrophic profiles remain the same with and without
the presence of the instabilities. Since they form primarily
during the retrograde phase of the libration cycle, the net
effect of the vortices is to locally exchange low angular mo-
mentum fluid between the boundary and the neighboring in-
terior fluid. This causes the local decrease in zonal velocity
at s�0.95.

Figure 8 plots geostrophic profiles from a variety of
simulations in order to determine the effects of varying the
libration amplitude and Ekman number on the zonal flow. All
of the zonal velocities have been scaled by the square of the
librational forcing, �2. The geostrophic profiles collapse well
with this scaling, which is consistent with a nonlinear,
Reynolds-stress driven mean flow �e.g., Refs. 9 and 21�. Fur-
thermore, this collapse implies that the primary properties of
the zonal flow are independent of the Ekman number.

The most complex region in the geostrophic profiles is
near scr, where the geostrophic shear layer associated with
the critical latitude is predicted to develop �see Fig. 1�. Noir
et al.11 proposed that the peak-to-peak amplitude of the shear
scales as E−3/10 over a width of E1/5. This predicts that the
geostrophic shear d�w̄� /ds over this E1/5 region will diverge
as E becomes asymptotically small. However, in Fig. 8 it
appears that this shear is beginning to saturate at E�10−6.5.

We have shown via Figs. 7�c� and 7�d� that the Taylor–
Görtler vortices do not drive the zonal flows. Thus, there
remain two nonlinear mechanisms through which libration

can drive a zonal flow: �i� nonlinear self-interaction of iner-
tial waves in the interior fluid and �ii� nonlinearities in the
Ekman boundary layer present along the outer librating
boundary. The contribution of each mechanism can be esti-
mated by considering the time-averaged torque produced by
the nonlinear forces acting on a cylinder coaxial with the
rotation axis �e.g., see Refs. 9 and 19�. Using equatorial and
azimuthal symmetries and a cylindrical coordinate system
�s ,� ,z� in which the z-axis is aligned with the rotation axis,
this torque can be written as

T = 4�sc
2�

0

h�sc�

NLdz , �23�

where h�sc�=�ro
2−sc

2 is the axial height of the cylinder, sc is
the radius of the cylinder, and NL denotes the time-averaged
nonlinear forces present in Eq. �8�,

NL = u
�w

�r
+

v
r

�w

��
+

uw

r
+ cot �

vw

r
. �24�

To elucidate the role of the interior stresses versus those
acting within the Ekman layer, the torque in Eq. �23� can be
decomposed as

T = TEBL + TI, �25�

where TEBL and TI are the torques in the Ekman boundary
layer and in the fluid interior, respectively. We can make
simple estimates for T based on the scalings of the inertial
waves and of the Ekman boundary layers given in Fig. 1.
Within the Ekman layers and away from the critical latitude,
the velocity components scale as6

u � O��E1/2�; v � O���; w � O��� . �26�

Using these estimates, the dominant nonlinear terms in Eq.
�23� scale as

u
�w

�r
,

v
r

�w

��
, cot �

vw

r
� O��2� , �27�

where we have used � /�r�O�E−1/2�.6 Thus, integration of
Eq. �23� across the Ekman layer gives

TEBL � O��2E1/2� . �28�

In the fluid interior, nonlinear torques can be generated by
the two shear layers spawned from the critical latitude on the
inner and outer boundary �see Fig. 1�. We denote these
torques as TI,i and TI,o, respectively. The shear layer gener-
ated on the inner sphere is characterized by a velocity scale
of E1/6 and a length scale E1/3.9 Employing these scalings,
the dominant terms in Eq. �24� are

u
�w

�r
,

v
r

�w

��
� O��2� . �29�

Integration across an O�E1/3� layer then gives

TI,i � O��2E1/3� . �30�

For the nonlinearities associated with the shear layers
spawned from the outer sphere, we use the velocity scale of
E1/5 and length scale of E1/5,10 giving
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FIG. 8. �Color online� Geostrophic profiles for various E, �, and f =1. The
dashed vertical lines denote the radius of the inner sphere and critical lati-
tude. All cases shown are centrifugally stable.
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u
�w

�r
,

v
r

�w

��
� O��2E1/5� . �31�

Integrating across the O�E1/5� layer, we then have

TI,o � O��2E2/5� . �32�

Thus, the scalings given by Eqs. �28�, �30�, and �32� imply
that

TEBL/TI,i � O�E1/6�, TEBL/TI,o � O�E1/10�,
�33�

TI,o/TI,i � O�E1/15� .

Thus, the torques produced by the inertial waves in the inte-
rior may dominate those in the Ekman layer, provided the
constants of proportionality remain comparable. Note that
these estimates ignore phase cancellations between the dif-

ferent velocity components that may occur in the shear layers
�e.g., Ref. 9�.

We have numerically evaluated Eq. �23� at the cylindri-
cal midpoint, sc=0.675, for f =1 over the range E
=10−5–10−7 to test the torque scalings given above. The re-
sults of the calculations are shown in Fig. 9, where we have
plotted �TEBL� and TI=TI,i+TI,o with the E1/2 scaling for com-
parison. The torque due to the nonlinear forces in the Ekman
layer TEBL remains negative for all E investigated and is
larger in magnitude than the interior contribution TI. Further-
more, TEBL closely approximates the predicted E1/2 slope
given by Eq. �28�. The interior torque TI is positive for all E
and does not appear to follow any simple scaling relationship
over the Ekman numbers investigated. Thus, the scalings de-
rived above for TI,i and TI,o are not valid within our param-
eter range. Because the difference �TEBL�−TI becomes larger
as E is reduced from 10−5.5 to 10−7, we argue that the zonal
flow in our simulations is maintained by the nonlinearities
present in the Ekman layer along the outer spherical
boundary.

To further investigate the mechanism underlying the
zonal flow generation, we compare a set of simulations at
E=10−5 and ��=10−3, with f =1 and f =2.2. At f =2.2, iner-
tial waves are not excited in the fluid. Figures 10�a� and
10�b� show the nonlinear forces, NL, in the f =1 and f =2.2
simulations. The nonlinear forces are largest in the Ekman
layers for both f =1 and f =2.2. For f =1, however, the non-
linearities in the interior remain finite, as can be seen in Fig.
10�a�. �Note that we have saturated the color scheme for
f =1 such that the interior nonlinear forces can be easily
identified.� For f =1, the interior nonlinearities are largest
along the shear layer emanating from the critical latitude on
the inner sphere, as expected from the scalings given in Fig.
1. In Fig. 10�b�, it can be seen that the interior nonlinear
forces are close to zero when inertial waves are not excited.

Figures 10�c� and 10�d� show the normalized geo-
strophic profiles, �w̄� /�2, for f =1 and f =2.2, respectively. In
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both cases we observe a retrograde zonal flow in the interior,
flanked by an equatorial prograde jet. Thus the basic struc-
ture of the geostrophic profiles for f �2 �i.e., no inertial
waves� are similar to cases with f �2 �i.e., including inertial
waves�. This implies that the basic geostrophic profile is gen-
erated by Ekman layer nonlinearities and not inertial waves.
The differences in the shapes and amplitudes of the geo-
strophic velocities are likely due to the presence of the criti-
cal latitude in the f =1 case.

The geostrophic profiles change direction from retro-
grade in the interior to prograde at roughly s�0.8 in our
simulations and in the cylindrical laboratory experiments of
Noir et al.19 These results differ from the low frequency
analytical predictions of Busse,20 in which the zonal flow is
retrograde throughout the fluid volume. The change in sign
of our geostrophic profiles, shown in Figs. 8, 10�c�, and
10�d�, can be understood by considering a mass balance over
the Ekman layer. During the prograde phase of a libration
cycle, Ekman pumping acts to spin-up the interior by pulling
fluid into the Ekman boundary layer at high latitudes and
returning fluid to the interior at lower latitudes. Therefore,
neglecting the effects of inertial waves in the boundary layer,
the following condition holds during the prograde phase of
libration:

�
0

2� �
0

�0

uin�rE,�,t�sin �d�d�

= �
0

2� �
�0

�/2

uout�rE,�,t�sin �d�d� , �34�

where rE is the radial position within the Ekman layer and uin

and uout represent the radial flow into and out of the Ekman
layer, respectively. �An analogous expression holds during
the retrograde phase of libration.� The angle, �0, is defined as
the colatitude at which the radial velocity in the Ekman layer
changes sign, i.e.,

uin�rE,�0,t� = uout�rE,�0,t� = 0. �35�

Our results show that the value �0 is approximately the same
during both the prograde and retrograde phases. Thus, for
the prograde phase, the radial velocity is predominantly
positive for ���0 and negative for �0���� /2. Assuming
uin�uout in Eq. �34�, we find �0=60°, which corresponds to
s�0.87. Since our results show that the sign of NL is con-
trolled by the radial velocity, we predict a change in sign of
the geostrophic flow near �0. This �0 estimate is in qualita-
tive agreement with the colatitude at which we observe a
change in sign of the zonal flow in all of our geostrophic
profiles. The above argument explains the existence of the
prograde jet in the outer equatorial region, s�0.8.

IV. DISCUSSION

In this study we investigate the axisymmetric and equa-
torially symmetric response of a librationally driven fluid
contained in a spherical shell of radius ratio 
=0.35. The
imposed symmetries of our model allow us to investigate
Ekman numbers two orders of magnitude smaller than re-
lated studies.

Our results demonstrate that libration is capable of gen-
erating Taylor–Görtler vortices along the outer librating
boundary during the retrograde phase of the libration cycle.
This is in qualitative agreement with previous work.12,15 In
N09 it was argued that the formation of Taylor–Görtler vor-
tices was controlled by a Reynolds number based on the
thickness of the Ekman boundary layer, ReBL=��fE−1/2. We
have tested this onset scaling down to E=10−6 and find
agreement within the uncertainties of our results. However,
the calculated critical boundary layer Reynolds number,
ReBL,cr, for the onset of the vortices for various E was found
to be 46, which is �2.3 times larger than the value reported
in the laboratory experiments of N09.

The zonal flows present in our simulations are largely
axially invariant �geostrophic�. They are characterized by ret-
rograde flow throughout the interior �s�0.8�, with a stronger
prograde jet in the equatorial region �s�0.8�. By varying the
libration amplitude and the Ekman number, our results dem-
onstrate that the magnitude of the zonal flow scales as �2 and
that the primary features of the flow are independent of E.
Additionally, the onset of centrifugal instabilities has been
shown to cause only a slight decrease in the magnitude of the
prograde equatorial flow. Direct numerical evaluation of the
nonlinear torques acting on a geostrophic cylinder has shown
that the interior torques due to the nonlinearities in the inter-
nal shear layers are small in comparison to those present in
the Ekman boundary layer. The interior nonlinear torque is
found to decrease much more rapidly than that predicted by
a simple scaling argument, suggesting phase cancellations
between the velocity components are important in these re-
gions �e.g., Ref. 9�. Within our range of accessible E, simu-
lations performed at f �2 �i.e., with no inertial waves
present� produce zonal flows that are grossly similar to those
at f =1 �i.e., with inertial waves present�. Thus, we can con-
clude that the zonal flows in our simulations are driven pre-
dominantly by nonlinearities in the Ekman layer on the outer
spherical shell boundary. The effects of centrifugal instabili-
ties and inertial waves do not dominate the zonal flow gen-
eration process in our range of accessible parameters.

Recent f �1 laboratory experiments19 and a low f ana-
lytical study in a librating sphere20 also found a predomi-
nantly retrograde zonal flow with �2 amplitude and
E-independent behavior. In addition, the prograde flow near
the outer librating boundary has also been found by Noir
et al.19 In contrast, Busse20 predicted retrograde flow
throughout the fluid interior for low libration frequencies. We
find that conservation of mass requires there to be a change
in sign of the radial velocity within the Ekman layer. This
property leads to a change in sign of the nonlinear forces
present within the Ekman layer, thus causing the observed
change in sign of the zonal flow.

Estimates of ReBL for the librating planetary bodies of
the Earth’s moon, Mercury, Io, and Europa are 73, 490, 800,
and 1300, respectively �see Table II of N09�. Our results
imply that these bodies are centrifugally unstable, giving re-
spective supercriticalities, ReBL /ReBL,cr, of 1.6, 11, 17, and
28. However, at the lowest Ekman numbers accessible in our
simulations, the instabilities at ReBL=ReBL,cr are only gener-
ated close to the equator. Furthermore, these equatorially lo-

086602-10 Calkins et al. Phys. Fluids 22, 086602 �2010�



calized vortices do not strongly affect the mean zonal flows.
Thus, our axisymmetric simulations suggest that near onset
Taylor–Görtler vortices will not be of fundamental impor-
tance in planetary cores and subsurface oceans.

The dimensionless zonal velocities scale as w��2 in our
simulations. This scaling allows us to provide estimates for
W, the dimensional librationally driven zonal flow, of
WM �5�10−9 m /s and WE�10−7 m /s, for the planets
Mercury and Europa, respectively. Here we have used the
rotation rates and radii of Mercury and Europa, respectively,
as 	o,M �10−6 s−1 and rM �2.4�106 m, and 	o,E�2
�10−5 s−1 and rE�1.6�106 m. The values for the libra-
tional forcing for each body are �M �4 /3�10−4 and �E�2
�10−4 �see Table II of N09�. For comparison, estimates for
the convectively driven flows that drive the dynamo in
Earth’s core are W�10−4 m /s.34 Assuming the composition
of Mercury’s core is comparable to that of the Earth’s iron
rich outer core, we use a typical value of the magnetic dif-
fusivity ��1 m2 /s to estimate a typical magnetic Reynolds
number of Rm=Wro /��O�10−6�. Since Rm�1, this shows
that viscous librational coupling alone will not induce sig-
nificant planetary magnetic fields. Furthermore, we expect
such flows to be incapable of generating observable secular
variation.

We have shown that axisymmetric librationally driven
zonal flows are small at planetary settings. However, it is
possible that they can influence processes that occur on geo-
logical time-scales, such as the proposed tidally driven non-
synchronous rotation of Europa’s ice shell �e.g., Refs. 35 and
36�. Associated with the mean zonal flow is a small viscous
torque that acts on the spherical shell boundaries. To accu-
rately scale such mean torques to subsurface oceanic set-
tings, future simulations will be carried out with realistic
radius ratio values, 
�0.90.
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