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ABSTRACT: In the past several years, Materials Genome
Initiative (MGI) efforts have produced myriad examples of
computationally designed materials in the fields of energy
storage, catalysis, thermoelectrics, and hydrogen storage as well
as large data resources that are used to screen for potentially
transformative compounds. The bottleneck in high-throughput
materials design has thus shifted to materials synthesis, which
motivates our development of a methodology to automatically
compile materials synthesis parameters across tens of
thousands of scholarly publications using natural language
processing techniques. To demonstrate our framework’s
capabilities, we examine the synthesis conditions for various
metal oxides across more than 12 thousand manuscripts. We
then apply machine learning methods to predict the critical parameters needed to synthesize titania nanotubes via hydrothermal
methods and verify this result against known mechanisms. Finally, we demonstrate the capacity for transfer learning by using
machine learning models to predict synthesis outcomes on materials systems not included in the training set and thereby
outperform heuristic strategies.

■ INTRODUCTION

First-principles materials design, open access materials property
databases,1−3 and machine learning4,5 have accelerated novel
compound identification for a variety of applications, including
energy storage, catalysis, thermoelectrics, and hydrogen
storage.6−14 To fully realize the vision of the Materials Genome
Initiative of accelerating materials development,15−18 we must,
in a comprehensive and accessible way, link the compositions,
structures, and morphologies of these computationally
discovered materials to the synthesis conditions that can
produce them. This work represents a small step in the
direction toward this goal of systematically understanding the
relationships between synthesized materials and reaction
conditions by broadly data mining the literature.
The materials design community remains gated by the use of

heuristic synthesis guidelines once a particular material of
interest has been identified, either by direct first-principles
computations or screening methods.6,19,20 As a result, the
synthesis of targeted novel compounds is rapidly becoming the
slow step in computationally driven materials design. With
direct modeling of the complex kinetic processes occurring
during synthesis out of reach, a data-driven, machine learning
approach that learns from the hundreds of thousands of

published synthesis recipes may be more productive. As a step
toward this objective, we use recent advances in full-text
publisher application programming interfaces (APIs)21 and
natural language processing (NLP)22−26 to develop a statistical
learning approach to materials synthesis. While numerous
studies have focused on text extraction from scientific
literature,22−24,27−29 we present here a framework focused on
the problem of extracting and data-mining materials synthesis
conditions.
Using a variety of machine learning and natural language

processing techniques, our platform automatically retrieves
articles and then extracts and codifies the materials synthesis
conditions and parameters found in the text. By combining
these text-mined synthesis parameters at large scale, this
synthesis database can be mined to discover the underlying
relationships between synthesis conditions and the materials
they produce. This literature-based data mining strategy also
complements and benefits from current combinatorial and in
situ synthesis studies which produce libraries of materials with

Received: August 21, 2017
Revised: October 8, 2017

Article

pubs.acs.org/cm

© XXXX American Chemical Society A DOI: 10.1021/acs.chemmater.7b03500
Chem. Mater. XXXX, XXX, XXX−XXX

Cite This: Chem. Mater. XXXX, XXX, XXX-XXX

pubs.acs.org/cm
http://dx.doi.org/10.1021/acs.chemmater.7b03500
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemmater.7b03500
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemmater.7b03500
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemmater.7b03500


varied compositions to explore a materials parameter
space.30−32

Here, we present a platform that leverages the large body of
published synthesis recipes through natural language processing
and uses these recipes to train machine learning models that aid
in developing insights into the key parameters that drive the
synthesis of specific, technologically relevant materials at a high
level of automation.12,33,34

■ METHODS
The methods used for text extraction are briefly discussed in the
following sections, and these methods are based on the techniques
used by Kim et al.35

Article Retrieval. To construct a corpus of journal articles, the
CrossRef Application Programming Interface (API)21 is used to
programmatically retrieve large lists of Digital Object Identifiers
(DOIs), which serve as unique article identifiers, related to chosen
search queries (e.g., “battery + electrode + synthesis”). Following this,
a number of publisher APIs are used to download full-text journal
articles, using a click-through service provided by CrossRef. We
retrieve articles in both Portable Document Format (PDF) and plain
text format, depending on availability.
Plain-Text Conversion and Classification. Using PDF text-

processing tools (located at https://github.com/iesl/watr-works), we
convert the collected PDF files to plain text files. The body-text
contained within the articles is fed into a paragraph relevance classifier,
both to reduce the data volume in later stages of data processing and
to differentiate between similar sections of text, such as the
experimental synthesis and materials characterization subsections.
To determine which paragraphs contain materials synthesis

information, we manually applied binary labels to several hundred
paragraphs from approximately 100 different journal articles, with
positive samples representing materials synthesis paragraphs and
negative samples representing all other paragraphs. We then use a
logistic regression classifier to classify relevant articles, as implemented
in the scikit-learn Python module.36

To reframe our journal article paragraphs as mathematical objects, a
“word embedding” approach is used to transform the paragraphs into
real-valued vectors, where each paragraph is represented by an average
of context-sensitive word vectors.25,37 This word-embedding approach
has become standard in machine learning literature and was found to
yield good performance on materials science vocabularies.35

The logistic regression classifier then applies binary labels to the
paragraphs, with a label of 1 indicating a synthesis paragraph and 0
representing a paragraph unrelated to synthesis. Because there are
many fewer synthesis paragraphs than nonsynthesis paragraphs, we use
a class-weighting scheme to assign proportionally greater loss to the
rarer category during the automated training of the algorithm. This
logistic regression achieves an overall accuracy of 95% on unseen test
data.
Parsing and Extraction. After identification of relevant synthesis

paragraphs, the paragraphs are transformed into dependency parse
trees using the ChemDataExtractor and SpaCy parsers.24,25 As a part of
the parsing process, word tokenization and part-of-speech tagging are
performed. The former refers to splitting each sentence into a list of its
constituent words (or tokens), and the latter is the process of applying
grammatical labels to each word token, such as noun or verb. It is
often the case that the synthesis verb of interest (which is
automatically detected by a neural network) is placed at the root of
the tree,35 with the relevant synthesis parameters and materials
appearing as children within the subtree of the root node.
Extraction of synthesis parameters is handled by a mixture of neural

network word labeling and traversal of the dependency parse tree.35

The parse tree of each sentence in a synthesis paragraph is scanned for
the presence of key synthesis verbs (e.g., sinter, dissolve, mill), and the
dependency parse trees are then iteratively traversed to find operating
parameters (e.g., sintering temperature, stirring speed) by matching to
specific character patterns.

The parse tree for each sentence is then scanned again for noun
phrases (e.g., LiOH, ethanol, gold NPs, powder), and these phrases are
matched against the PubChem database,38 a character n-gram classifier
(which achieves 82% accuracy for identifying materials), and the
pretrained ChemDataExtractor model24 to validate whether or not
they are references to meaningful materials. These matches, along with
word embedding vectors37 trained on our corpus of papers, are fed
into a neural network which predicts word categories (i.e., material,
operation, amount, or condition). Training this neural network with
∼5000 human annotated words yields an overall accuracy of 86% for
word categories, as measured against a set of approximately 100
human-annotated synthesis articles.35

Some of the errors made by the text extraction algorithms are
corrected systematically by considering technological and practical
limitations. As an example, the “degree” symbol is sometimes decoded
from PDF documents as a numerical digit, which can adversely affect
temperature parsing; this issue is fixed by pattern searches when
temperatures are parsed above or below reasonable limits for related
synthesis steps.

The authors note that the parsing and text extraction techniques
presented here focus solely on information written in the main body
text of scientific journal articles (and specifically the title, abstract, and
methods sections). As a contrasting example, Swain et al. designed a
system for data extraction from tables,24 and the authors intend for
future work to make use of both plain-text and tabular synthesis data,
as such approaches would be informative for linking synthesis methods
with resulting materials properties. Furthermore, text extraction from
elsewhere within a manuscript, such as the results section, would
provide information on the quality of the resulting material.

Verification of Annotated Data. In addition to the set of
annotated data used to measure predictive accuracies for text
extraction, another set of 30 articles was annotated in duplicate,
independently, by two materials science researchers. These encoded
articles were used to both confirm the consistency of the annotation
procedure and provide a baseline for the upper-bounds of expected
performance from any machine learning algorithms, by comparing the
level of human agreement between the encoded articles. Inspection of
these articles postannotation confirmed that annotation differences
stemmed from details irrelevant to key synthesis details (e.g.,
annotating an intermediate material as a solution versus a sample
was a common difference).

Data Mining and Machine Learning. Extracted synthesis
parameters are encoded and compiled into a monolithic database,
which can then be programmatically queried. We use this database to
quantitatively analyze synthesis steps such as hydrothermal and
calcination reactions reported in the literature. Additionally, the
database is used to train machine learning models by providing
examples of synthesis parameters and synthesis outcomes.

We note that our machine learning models do not yet robustly
handle the separation of multiple synthesis routes described in a single
paper, as it is nontrivial to detect natural language boundaries between
synthesis routes. Therefore, we focus our data mining on specific
reaction steps rather than entire synthesis routes to avoid conflating
the end of one synthesis route with the beginning of another.

All machine learning models are implemented with scikit-learn and
tensorf low.36,39 The details of all machine learning model parameters
are provided in the Supporting Information. The machine learning
setup in Figure 2, involving a decision tree along with a linear classifier,
was motivated by similar models used by Raccuglia et al. which were
found to produce state-of-the-art results on their data. Raccuglia et al.
also motivated the use of the machine learning approach shown in
Figure 3.33

■ RESULTS

From a collection of over half a million journal articles in our
database, we first apply topic and material-level text queries to
select a set of articles in which metal oxides are synthesized. As
an example of basic information that can be retrieved and
examined in an exploratory manner, we present in Figure 1a the
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distribution of calcination temperatures used in 12 913
syntheses recipes of metal oxides, grouped by their number
of constituent elements and whether or not the targets are
nanostructured.
In each category we list the top 5 materials, by occurrence,

and we delineate arbitrary temperature windows 0−700 and
700−1100 °C to make the peaks easier to see. We also show
example curves for specific materials (with a solid or dashed
line) within each distribution, and additional curves are
provided in Supporting Information Figure S2. Each pair of

nanostructured versus bulk distributions is scaled by paper
count.
Several interesting observations can already be made from

these plots. High calcination temperatures are found more
frequently in the synthesis of bulk materials with greater
elemental complexity. The difference in calcination temperature
is particularly pronounced between the binaries and higher-
component systems. Indeed, a binary oxide is often formed by
straightforward substitution of the carbonate, hydroxyl, or
similar anion group in the precursor by oxygen. In contrast, the
phase-pure synthesis of multicomponent systems additionally

Figure 1. Synthesis parameter distributions across metal oxide systems. (a) Violin-histogram Gaussian kernel density estimate distributions of
calcination temperatures for various oxides. Blue and red histogram areas are normalized to reflect relative counts between Bulk and Nano sections.
The lists above each violin denote top-five occurring material systems in those temperature ranges. A few select material systems are included as solid
and dashed curves within the violins. Each solid and dashed curve has been rescaled to emphasize differences in temperature peaks and relative
counts of Bulk and Nano. (b) 2D hexagonally binned normalized histograms of hydrothermal reaction and calcination times and temperatures for
binary and pentanary oxides. Number of papers is indicated in parentheses after each method label in the legend.
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requires the interdiffusion of multiple metals from the
precursors, necessitating higher temperature. The increase in
calcination temperature with number of components is clearest
for the nanoexamples, where the temperature is kept as low as
possible to prevent crystal growth, but mixing of multiple
components demands a higher temperature.
Because each of the additive distributions in Figure 1a

represents a compilation of many oxides, we comment on some
of the key differences among select materials to provide a brief
explanation for the location of each peak. Binary oxides, for
instance, tend to have calcination temperatures between around
450 and 550 °C. Some of these materials, however, are
predominantly synthesized in nanostructured forms, while
others are not. For example, we see that alumina (solid line in
the binary violin-histogram) has greater representation to the
left side of the violin (bulk), while zinc oxide (dashed line) has
greater representation to the right side (nano), consistent with
the ample use of nanoarchitectures for zinc oxide in
applications such as sensors, optoelectronics, and biomedical
devices.40

For the ternary systems shown in Figure 1a, we see a more
varied set of histograms. We contrast barium titanate (solid
line) with bismuth ferrite (dashed line). In the ferrite system,
the calcination step stabilizes a rhombohedrally distorted
perovskite phase within a relatively narrow temperature range
because of the tendency to form impurities such as Bi2Fe4O9 at
higher temperatures.41 This results in a peak at ∼750 °C for
bulk materials, whereas particle size control demands lower
temperature calcination closer to 600 °C for nanobismuth
ferrite. Barium titanate, on the other hand, has a higher and
broader calcination temperature range. The synthesis of this
material occurs primarily by solid state reaction where
precursors of barium carbonate, titania, and others are calcined
between 900 and 1100 °C.42 We compare this to the
quaternary lead zirconate titanate (solid line), which must be
calcined at temperatures lower than that for BaTiO3 to prevent
loss of lead.
Finally, we see distinct bimodal distributions for the

multicomponent transition-metal oxides used in batteries,
LiMnNi- and LiMnNiCo-oxides, shown in the quaternary and
pentanary violins, respectively. The solid state synthesis

Figure 2. Autonomously learned decision boundaries for titania nanotubes. (a) Overview of decision tree model trained and tested on a total of
22 065 journal articles. Rounded boxes represent decision points in the tree with univariate normalized histograms plotted alongside the decision
nodes. The dots represent further levels of the decision tree extending downward, which are included in the Supporting Information. (b)
Probabilistic machine-learned decision space overlaid in the parameter-space of hydrothermal temperature and NaOH concentration. Circled data
points denote testing points used to compute classification accuracy, and all other points are training points used to learn the decision space. The
green gradient in the background denotes machine-learned probabilistic estimates for nanotube formation with darker green corresponding to higher
likelihoods. Additionally, an experimentally determined plot of a boundary between hydrothermally produced crystalline titania and amorphous
layered sodium titanates is adapted from Tomiha et al.44
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approach to making these oxides involves calcination at 800−
900 °C to crystallize a new phase. Sol−gel and coprecipitation
synthesis methods, however, also involve calcination between
400 and 500 °C to decompose organic constituents or to
decompose the carbonate into an oxide.43

Beyond our analysis of the calcination temperatures used in
the synthesis of various oxides, we also investigate calcination
times and conditions for hydrothermal reactions. Most
hydrothermal reactions, for instance, are carried out between
150 and 200 °C for 12 or 24 h. Such reactions are conducted
above room temperature and in the presence of autogenous
pressure to increase the solubility and reactivity of the
precursors. An upper bound to practically employed reaction
temperatures exists, however, due to the critical points of the
solvents typically used for such reactions (e.g., water, ethanol).
Accordingly, as illustrated in Figure 1b, the hydrothermal
reactions used to synthesize both simple and complex oxides
occur at similar and only modestly high temperatures but often
with fairly long times.
The calcination temperature (occurring at much higher

temperatures and shorter times) is typically material-specific
and driven by the structural change being sought. For example,
binary oxides, largely representing titania, alumina, and zinc
oxide, are most often calcined at 400−500 °C for fewer than 5
h. This observed behavior is dominated by TiO2, given the high
frequency with which its synthesis is reported. Calcination is
used, in this particular case, to obtain larger grained anatase
phase product. More complex oxides must be crystallized at
significantly higher temperatures (800−900 °C) and often for
more than 5 h for the diffusion reasons explained previously.
To reveal further relations in our database, we use feature

selection and classification techniques to identify the key factors
that drive synthesis outcomes as well as highly probable values
for these reaction parameters. Each synthesis route extracted
from a journal article is composed of many attributes and
parameters, including the temperatures and times of heating
operations, the precursors used, and aspects of the
morphologies of the synthesized products. One approach to
feature selection is to inspect the probabilistic model learned by
a decision tree and automatically select a strongly predictive
reduced subset of synthesis parameters which drive the
behavior of the model.33 By training a decision tree across
22 065 journal articles, a hierarchy of single-variable divisions
for titania nanotube formation is selected from a pool of 27
synthesis variables (e.g., annealing temperature, drying time).
Figure 2a shows an excerpt of the learned decision tree with the
nodes nearest to the root node representing the foremost rules
learned by the model for maximally separating nanotube and
not-nanotube results. The root node in the decision tree splits
the data set by NaOH concentration, and the distributions of
the data projected onto this univariate axis confirm that the
majority of recipes use NaOH at concentrations of either 1 or
10 M. Hydrothermal temperature is also learned as a driving
factor for nanotube synthesis, and examination of the
temperature distributions shows some difference between two
peaks at 150 and 180 °C, although there is a significant amount
of overlap.
Examination of the annealing time, on the other hand, clearly

shows that the two distributions are not easily separated,
suggesting that this lone feature is not as strongly predictive
when compared to NaOH concentration or hydrothermal
temperature. For this reason, NaOH concentration and
hydrothermal temperature are selected as the variables for

further analysis based on the construction of the learned
decision tree rules (in Figure 2b). We chose exactly two
features for further analysis to facilitate a visualizable and easily
interpretable two-dimensional diagram.
However, this does come at the necessary cost of some

classification accuracy, which can be observed by comparing the
accuracies of the full decision tree (82%) and the 2D logistic
regression classifier (76%). Although these classification
accuracies are not perfect, they are indeed sufficient for the
machine learning models to learn an overall correlation
between synthesis conditions and the resultant product
morphologies.
Figure 2b plots a machine-learned phase diagram in this

synthesis parameter-space, using the axes determined by the
decision tree. In contrast to diagrams which may plot more
direct chemical axes (e.g., free energies, ion activities), we
instead restrict our diagram to experimentally accessible (and
experimentally reported) axes to facilitate practical synthesis
route planning. We note that this reduced 2D parameter space
now considers only a particular set of syntheses which report
hydrothermal temperatures and NaOH concentrations, and so
Figure 2b does not reflect other viable ways of producing titania
nanotubes, such as anodization.45 Recipes using higher NaOH
concentrations and lower hydrothermal temperatures, and thus
falling in the darker green area, are more likely to produce
titania nanotubes, and indeed these darker green regions
contain a higher density of nanotube-producing (blue) data
points.
This decision rule agrees with the currently accepted

mechanism of titania nanotube formation: titania, with the
addition of sodium ions, transforms into disordered, layered
sodium titanate, and subsequent ion exchange (e.g., via acid
washing) induces a rolling effect on the layers, producing titania
nanotubes. Accordingly, it is reasonable to expect that a
minimum concentration of sodium ions is required to induce
sodium titanate (and subsequently nanotube) forma-
tion.44,46−50 Bavykin et al. report that increasing the hydro-
thermal temperature changes the final product from nanotubes
to solid (i.e., nonhollow) fibrous structures, which again agrees
with our learned decision boundary.51 The synthesis condition
axes learned automatically by the decision tree also agree with
literature findings: the subplot in Figure 2b, reproduced from
Tomiha et al.,44 shows a similar trend for the hydrothermal
synthesis of amorphous sodium titanates. By comparison, our
machine-learned diagram contains many more data points
aggregated across a range of experimental studies and
additionally extends the span of the data points along the
temperature axis.
Figure 2b reveals a link between two related topics in

experimental materials science. Our phase diagram is
constructed entirely from titania synthesis journal articles,
many of which directly produce titania nanotubes. Tomiha et
al.’s phase diagram in the subplot of Figure 2b is adapted from a
study which only discusses the synthesis of various alkali-
titanates. It makes no mention of nanotube-like morpholo-
gies.44 This type of data-driven analysis can therefore also be
used to guide literature review by highlighting correlations and
patterns which are only made apparent when many journal
articles are examined simultaneously.
Finally, we show the potential for transfer learning by

producing synthesis outcome predictions across diverse
materials systems using this text-mined synthesis data set.
While the previous example focused on hydrothermal reactions,
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here we examine a set of syntheses which span across a few
additional synthesis methods (e.g., hydrothermal, sol−gel, and
solid state). We predict tetragonal phase formation (versus all
other reported phases) in BaTiO3 and in BiFeO3, which is
important because the ferroelectric properties of these materials
are deeply linked to polarizations and consequently to the
symmetry of the phases.52,53 Additionally, 2D-like morphology
(e.g., nanosheet) predictions are performed on ZnS and CdS
(vs non-2D morphologies), as such morphologies have
applications in areas ranging from catalysis to data storage.54

Two-dimensional materials also allow for further tuning of key
properties: as an example, confinement effects play a significant
role in two-dimensional materials and alter the electronic
environment such that band gaps may differ significantly
between 3D and 2D morphologies.55,56

In each case, we seek a binary classifier which separates the
desirable outcome (e.g., symmetry equals tetragonal, or
morphology equals 2D) from the other outcomes (e.g., not
2D). In each subplot of Figure 3, the receiver operating
characteristic (ROC) curves are shown for three different
binary classifiers: a nonlinear Gaussian kernel support vector
machine (SVM), a linear heuristic classifier, and a random
guessing classifier. Each point on these curves represents the
performance of a classifier at a particular decision threshold and
the corresponding true and false positive rates. The curves are
generated by continuously sweeping through decision threshold
values from maximally conservative (never predicting positive)
in the lower left corner, to minimally conservative (always
predicting positive) in the upper right corner. The upper left
corner of these subplots denotes a perfect classification strategy
which maximizes true positive results while making no false
positive errors. The three classifiers can be compared by
examining which ROC curves lie closer to the upper left corner

or, equivalently, by comparing the areas under the curves
(AUC).
Figures 3a and b show tetragonal phase prediction in BaTiO3

and BiFeO3. Figure 3a shows how well the classifiers can
reproduce the BaTiO3 data on which it is trained. Figure 3b
then shows the prediction quality of that classifier in another
system of BiFeO3. The linear heuristic assumes that tetragonal
phase formation can be predicted from synthesis temper-
atures,52,53 and so we use a linear classifier which considers only
synthesis temperatures as a representative intuition-based rule.
While this heuristic strategy outperforms random guessing at
training time in BaTiO3, it has no predictive capability on the
unseen test data in BiFeO3. Applying a more complete set of
general synthesis features, including reaction times, solvent
choices, and pH modifiers, while also using a nonlinear SVM to
better capture complicated interactions between synthesis
parameters yields a far superior result in terms of classification
accuracy and consistency between training data and unseen test
data. Note that because the classifier is trained only on BaTiO3,
it cannot capture the dependence in choice of synthesis
parameters on chemistry, and hence, one would not expect it to
give highly accurate results. The fact that there is clearly some
predictive capability of this classifier in BaFeO3 indicates that
there may be some intrinsic aspects of the synthesis conditions
that lead to tetragonal phase formation. Hence, more accurate
classification results can be expected when training is performed
over larger, chemically diverse sets.
In Figures 3c and d, the same comparison between robust

nonlinear machine learning and an intuitive heuristic is shown
for ZnS training data and CdS unseen test data, where the goal
is to predict synthesized 2D morphologies. Two-dimensional
materials synthesis is a rapidly developing field where new
chemistries are frequently discovered and broadly applicable

Figure 3. Machine-learned classifiers and predictions across materials systems. (a) Receiver operating characteristic (ROC) curves for tetragonal
phase prediction in BaTiO3 on training data. In all four subplots, the three models shown are a Gaussian-kernel support vector machine (SVM)
using 20 features (solid red line), a simplified linear heuristic classifier (dotted red line), and a random guessing strategy (black dashed line). Curves
closer to the upper-left corner of the diagram represent more accurate classifiers, with the point exactly on the upper-left corner denoting a perfect
classifier. (b) ROC curves for tetragonal phase prediction in BiFeO3 on unseen test data. (c) ROC curves for 2D morphology prediction in ZnS on
training data. (d) ROC curves for 2D morphology prediction in CdS on unseen test data.
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heuristic synthesis rules are scarce beyond high-level exper-
imental strategies such as etching.57 Here, the heuristic strategy
chosen is pH adjustment, represented by acid and base
concentrations used, as a driving factor for predicting the
formation of 2D morphologies.58,59 Evidently, this linear
heuristic is not particularly robust and indeed closely resembles
random predictions, suggesting that this is a difficult prediction
problem where generic synthesis parameters do not hold strong
predictive power.
We then apply an SVM, using the same expanded feature set

used in Figures 3a and b, and find that it improves performance
on both training and unseen test data beyond the heuristic,
though the prediction on CdS leaves room for future
improvement.
These results indicate that materials systems where robust

heuristics are not readily available, machine learning ap-
proaches, which jointly consider a broad collection of synthesis
parameters, may outperform better-than-heuristic predictions,
even those that consider a general set of synthesis descriptors.
Further improvements in predictive performance for two-
dimensional ZnS and CdS could be achieved by considering
domain-specific synthesis parameters such as those related to
etching and exfoliation techniques, although this would
introduce a trade-off between accuracy and universality.
The examples outlined in Figure 3 demonstrate the potential

applicability of this text-mining and machine learning frame-
work across varied materials systems. Additionally, we find that
our current predictive performance is achieved at a level
comparable to that of recent algorithms used in predicting
DFT-computed formation energies and similarly outperforms
existing heuristic techniques.60 The accuracies of the models
and features used for the classifiers in Figure 3 are provided in
Supplementary Table S1.
In this work, we presented a framework to automatically

construct a large-scale materials synthesis database. This
framework enables us to explore the materials synthesis
conditions that produce selected materials properties at large
scales. We use text analysis and extraction to populate a
database of materials synthesis parameters drawn from tens of
thousands of previously published journal articles. From this,
we examine the correlations in synthesis conditions and
materials properties across many papers at once. As it would
have required researchers to read through papers and manually
enter relevant information, such analysis was previously rather
inefficient. Furthermore, by applying relevant machine learning
tools, we are able to identify and analyze the specific synthesis
recipe features that produce desired materials properties in both
an automated fashion and without requiring prior or a priori
knowledge of the system of interest.
The examples shown in this work represent a sample of what

is possible with this approach, and continued exploration,
expansion, and data set refinement are planned by the authors.
Further work to improve this methodology will include
consideration of newly published papers and disproportionate
impact of highly cited papers to better complement existing
synthesis planning techniques used by theorists and exper-
imentalists. While this work has data-mined the influences of
using certain solvents or temperatures (focused on a limited set
of synthesis methods), future work will examine additional
methods of synthesis, including thin film depositions, catalyst-
driven reactions, and noncrystalline materials synthesis. Text
extraction for these other synthesis approaches would likely
change the focus of what subparts of extraction accuracy are

more critical. For example, in the case of thin film deposition,
likely equipment settings become essential to extract accurately.
We present our database of extracted synthesis parameters

and data mined insights as a publicly accessible Web site,
named the Synthesis Project, which complements existing
computational materials property databases (www.
synthesisproject.org).2 By providing researchers with a toolkit
for exploring and understanding text-mined and machine-
learned synthesis data, the Synthesis Project will act as a further
catalyst for data-driven materials screening and development
for the community at large.
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