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ABSTRACT OF THE DISSERTATION 

Microbes versus Fish: The Bioenergetics of Coral Reef Systems 

by 

Tracey Shannon McDole 

Doctor of Philosophy in Biology 

University of California, San Diego, 2012 
San Diego State University, 2012 

 
Professor Forest Rohwer, Chair 

Metabolic rate refers to the rate by which chemical energy is converted into 

biological energy and used for either maintenance of existing structure or production 

of new biomass. The Metabolic Theory of Ecology (MTE) predicts the metabolic rate 

of individual organisms based on the observation that most variation in an individual's 

metabolic rate can be explained by body size and temperature. The objective of this 

dissertation was to investigate the bioenergetics of coral reef systems using MTE. My 

hypothesis was that human activities alter the energy budget of the reef system, 

specifically by altering the allocation of metabolic energy between microbes and 

macrobes. I found that in reef systems, even a small increase in microbial biomass can 

result in substantial changes in whole system rates of energy and materials flux. By 

comparison, relatively large reductions in fish biomass, affect the system bioenergetics 

to a lesser degree. The percentage of the combined fish and microbial predicted 

metabolic rate that is microbial, a.k.a. the microbialization score, was used as a metric 
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for assessing and comparing reef health. My results demonstrated a strong positive 

correlation between reef microbialization scores and human impact. Regardless of 

oceanographic context, the microbialization score was a powerful metric for assessing 

the level of human impact a reef system is experiencing. The process of 

microbialization was further examined by assessing the effects of human activity on 

the relative roles of heterotrophic and autotrophic microbes. I found that shifts in 

microbial trophic structure change both the magnitude and efficiency of energy flow. 

Specifically, there was a significant increase in the ratio of autotrophic to 

heterotrophic microbes with human impact, which was also related to an increase in 

the mass specific energy requirements (W g-1) of the microbial community. I am 

proposing that microbialization is actually a mechanism of reef resilience that 

dampens the effects of both overfishing and eutrophication. In conclusion, this 

research sheds new light on the effects that rising human impact has on the 

bioenergetics of coral reef systems and adds to our current understanding of the 

mechanism(s) that underlie reef system degradation. 
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CHAPTER 1 

Body Size Allometry and Metabolic Theory of Ecology (MTE) 

Introduction 

Body size allometry refers to equations which describe the relationship 

between the mass of an organism and another of its characteristics ( y ) (1). In fact, the 

word “allometry”, is derived from the root words “allos” meaning “other” and 

“metron” or “measure”. These relationships typically take the form presented in 

Equation 1, where body size (W ) and whatever characteristic y  represents typically 

increase at different rates; the dependent variable y changes as some power of body 

size. 

                                                                                 
by aW=                                                                               Equation 1 

Traditionally, the data is logarithmically transformed (Equation 2) so that linear 

regression analysis can be performed. 

                                              log log logy a b W= +                                        Equation 2 

Because a  represents a taxon-specific normalization constant, log a is also a constant, 

so the new form of the equation is a straight line.  

                                                      y mx b= +                                                   Equation 3 

The change in the dependent characteristic y  with the independent variable body size  

(W ), is called the scaling of that characteristic to body size, represented as b in 

Equation 1. Therefore, b  is called the scaling exponent. Scaling indicates that some 
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quality is being preserved while everything else changes. Of course, mathematics is 

only a means for expressing the laws that govern complex phenomenon and one of the 

most common gripes against body size allometry is that these equations sacrifice 

precision for generality. Allometric relationships between metabolic rate and body size 

underlie the foundation of Metabolic Theory of Ecology (MTE). As stated by James 

brown, one of the founders of MTE “The macroecological perspective deliberately 

sacrifices a great deal of detail in order to see the big picture” (2). Consequently, body 

size allometry is a great tool for making comparisons or predicting over many orders 

of magnitude change in body sizes. This requirement does not necessarily rule out 

metabolic rate predictions microbial communities. Cell volume (V ) varies as the 

radius ( r ) cubed ( 3V r∝ ), so small changes in size can have a large effect on 

biomass. The size rage of natural bacterial assemblages is roughly between 0.2 µm to 

2 µm, with mass values typically ranging from 10-14 to 10-11 grams (3). 

 

Metabolic rate refers to the rate by which chemical energy is converted into 

biological energy and used for either maintenance of existing structure or production 

of new biomass. Metabolic rate is energy consumption per unit time and is typically 

measured in Watts or joules of chemical energy degraded to heat every second. For 

comparison, 4.184 Joules is equal to one Calorie (1). Therefore, whole organism 

metabolic rate is the amount of energy per unit time that an individual organism 

requires. It is important to make the distinction between whole organism metabolic 
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rate (W) and mass specific metabolic rate. Mass specific metabolic rate or the rate of 

energy expenditure per unit mass is another way to make comparisons among 

organisms and is typically given in Watts per gram. For metazoans, like fish and 

mammals, basal metabolic rate scales as 3/4M , where M is wet mass in grams and 

mass specific metabolic rate scales as 1/4M − (2). This is because 3/4M  divided by 1M

equals 1/4M − . This means that large organisms require more resources than small 

organisms overall, but flux them through at slower rates. For Bacteria and Archaea, 

basal metabolic rate scales as 1.7M , so mass specific metabolic rate scales as 0.7M  (4). 

 

The Metabolic Theory of Ecology (MTE) predicts the metabolic rate of 

individual organisms based on the observation that most variation in an individual's 

metabolic rate can be explained by body size and temperature (2, 5). Therefore, the 

general form of the equation describing whole organism metabolic rate is the same as 

in Equation 1, but also includes a term to account for the effects of temperature on 

metabolic rate ( I ) (Equation 4).  

 

                                                  0
E kTI i M eα −=                                               Equation 4 

Here 0i  is the mass-independent normalization constant, M is the wet weight of the 

organism in grams, and α is the scaling exponent. The effects of temperature on 

metabolic rate are accounted for by the term E kTe−  (2,5-6) where E is the average 

kinetic energy of activation, k is Boltzmann’s constant (8.62 x 10–5 eV K–1), and T is 

the temperature (in Kelvin). For endotherms, T would be the average body 
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temperature; for exotherms this would be the ambient temperature. Boltzmann’s 

constant describes the proportion of molecules with sufficient kinetic energy to exceed 

the activation energy. According to the Boltzmann distribution, as the temperature is 

raised the rate of reaction speeds up exponentially. The negative sign in front of E 

means that as the ratio gets bigger, metabolic rate ( I ) gets smaller. Therefore, high 

temperature and low activation energy speed up the rate of reaction. For example, the 

activation energy of respiration, which is driven by ATP synthesis and is similar for 

plants and animals, is of greater magnitude than that of oxygenic photosynthesis, 

controlled by Rubisco carboxylation (6-7). Consequently, an autotrophic microbe 

would require more energy per gram than a heterotrophic microbe of the same mass. 

At lower temperatures, autotrophs have an edge over heterotrophs; which may be a 

factor contributing to seasonal algal blooms in polar regions. Body size and 

temperature account for most of the variation in individual metabolic rate; however, 

experimental/measurement error, phylogenetic/environmental constraints, the 

influence of stoichiometry, and acclimation or adaptation to different conditions can 

also contribute to the observed variation in metabolic rate (1-2). 

 

The Role of Microbes in the Coral Reef Food Web. In the ocean, the process by 

which heterotrophic bacterioplankton recover and repackage energy and materials in 

the form of dissolved organic matter (DOM) into particulate organic matter (POM) is 

called the Microbial Loop (8). This POM can ultimately be reincorporated into 

bacterioplankton as DOM via predation-driven remineralization processes; i.e. 
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“sloppy” predation by heterotrophic nanoflagellates or bacteriophage-mediated DOM 

release. In the euphotic zone of the open ocean, i.e. oligotrophic waters, where nutrient 

supply is thought to limit phytoplankton biomass, microbial abundance may be close 

to a lower threshold (~ 105 cells ml-1) (9). Predation by bacterivores and bacteriophage 

may be less efficient near this lower bound, and the mobilization of nutrients via the 

microbial loop may be reduced. In oceanic waters, POM in the form of microbial 

biomass is a substantial fraction of the total POC (> 40%) and it can also be linked 

back into the larger planktonic food web by the microbial grazers (9). However, due to 

the large number of inefficient trophic transfers involved, less than 1% of this 

microbial POM pool is thought to actually make it into fish; most of the carbon that 

goes into building fish biomass comes from zooplankton and other fish (Azam, pers. 

comm). 

 

In terms of energy, turnover time is defined as the time required to metabolize 

an amount of energy equal to the energetic content of the tissues (the amount stored in 

biomass) (1). In the open ocean, the microbial community typically releases an 

amount of energy equal to 100% of its body’s energy in roughly 2-6 days (10). 

Relative to macroorganisms, these rates of energy and materials flux are high (11). Yet 

most studies which have assessed the effects of human activity on coral reef systems 

emphasize the importance of fish biomass information (12-13). This is not surprising 

considering global fish stocks have collapsed from roughly 30 million to 3.0 million 

tonnes per hectare in last 20 years and many of the most threatened marine ecosystem-
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types including mangroves, coral reefs, rocky-reefs, and surface waters typically 

experience multiple types of fishing (14-15). In oceanic and reef systems, even a small 

increase in microbial biomass can result in substantial changes in whole system rates 

of energy and materials flux via the microbial loop. By comparison, relatively large 

reductions in fish biomass, affect the system bioenergetics to a lesser degree. 

Therefore, in order to understand the mechanism(s) that underlie reef system 

degradation, we need to understand the effects of rising human impact on the 

bioenergetics of both organismal components (fish and microbes). 
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CHAPTER 2 
 
 

Assessing Coral Reefs on a Pacific-wide Scale Using the Microbialization Score 

 

Abstract 

The majority of the world’s coral reefs are in various stages of decline. While a 

suite of disturbances (overfishing, eutrophication, and global climate change) have 

been identified, the mechanism(s) of reef system decline remain elusive. Increased 

microbial and viral loading with higher percentages of opportunistic and specific 

microbial pathogens have been identified as potentially unifying features of coral reefs 

in decline. Due to their relative size and high per cell activity, a small change in 

microbial biomass may signal a large reallocation of available energy in an ecosystem; 

that is the microbialization of the coral reef. Our hypothesis was that human activities 

alter the energy budget of the reef system, specifically by altering the allocation of 

metabolic energy between microbes and macrobes. To determine if this is occurring 

on a regional scale, we calculated the basal metabolic rates for the fish and microbial 

communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean 

using previously established scaling relationships. From these metabolic rate 

predictions, we derived a new metric for assessing and comparing reef health called 

the microbialization score. The microbialization score represents the percentage of the 

combined fish and microbial predicted metabolic rate that is microbial. Our results 

demonstrate a strong positive correlation between reef microbialization scores and 

human impact. In contrast, microbialization scores did not significantly correlate with 
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ocean net primary production, local chla concentrations, or the combined metabolic 

rate of the fish and microbial communities. These findings support the hypothesis that 

human activities are shifting energy to the microbes, at the expense of the macrobes. 

Regardless of oceanographic context, the microbialization score is a powerful metric 

for assessing the level of human impact a reef system is experiencing. 
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Introduction 

The relationship between increasing human activity and decreasing fish 

biomass is well-established in coral reef systems (1-3). Although herbivore reduction 

due to overfishing probably facilitates coral to algal transitions, the mechanistic link 

between overfishing and coral mortality is not clear (4). Much uncertainty about the 

mechanisms of reef decline linked to eutrophication and climate change also still exists 

(5-6). In addition to increasing algal cover relative to hard coral cover, other effects of 

anthropogenically-driven disturbances include disease outbreaks, fewer links in 

trophic webs, and loss of physical structure and habitat complexity (7-9). Reef-

associated microbial communities have been shown to respond to all of the above 

disturbances (overfishing, nutrient enrichment, thermal stress) by becoming less 

beneficial and more pathogenic, i.e. the proportion of sequences related to known 

pathogens typically increases (10-17).  

 

Despite the epidemiological evidence linking the microbial ecology of coral 

reef systems to human activity, the largest study of coral reef microbial communities 

included only four coral atolls in the Line Islands, all clustered within one 

oceanographic region (14). In this island chain a 10-fold increase in microbial and 

viral abundances in the overlying reef-water correlated with increasing human 

disturbance and was accompanied by decreased fish biomass (1, 14). Further, a large 

proportion of the microbial 16S rDNA sequence similarities on the most disturbed 
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reefs were most closely related to known pathogens (14).  These reefs also had the 

highest incidences of coral disease and the lowest percent coral cover. Other studies 

have also suggested that the total carbon flow through microbial pathways via detritus 

is inversely related to coral cover (18-19).   

 

Ecosystems exhibit higher-level properties resulting from lower-level 

phenomena (20). The energy available to a higher trophic level, for example, is 

reduced by the amount required to support the individual organisms in the lower level. 

The Metabolic Theory of Ecology (MTE) predicts the metabolic rate of individual 

organisms based on the observation that most variation in an individual's metabolic 

rate can be explained by body size and temperature (21, 22). Whole organism 

metabolic rate (I), defined as the amount of energy per unit time that an individual 

organism requires, is calculated using Equation 1:  

 

                                                      0
E kTI i M eα −=                                          (Equation 1) 

 

where 0i  is the mass-independent normalization constant, M is the wet weight of the 

organism in grams, and α is the scaling exponent. The effects of temperature on 

metabolic rate are accounted for by E kTe−  (21, 23) where E is the activation energy, k 

is Boltzmann’s constant (8.62 x 10–5 eV K–1), and T is the water temperature at the site 

at the time of collection (in Kelvin). Distinct scaling exponents have been derived for 

different physiological states and evolutionary groups (21, 24-25). 
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The process of replacing macroorganisms with microbes has been termed 

microbialization (26). In this study, Equation 1 was used to predict metabolic rates for 

all individual fish and microbes present in a 10 m3 volume of reef water. 

Microbialization refers to an increase in the percentage of the combined fish and 

microbial predicted metabolic rate that is microbial. Island-level microbialization 

scores were derived for 29 islands (99 sites) within four oceanographic regions of the 

Pacific Ocean. Our data show a strong significant positive correlation between 

microbialization scores and the NCEAS cumulative human impact scores at each 

island. In comparison, microbialization scores did not correlate with the net primary 

production values. These findings support the hypothesis that human activities rather 

than variation in oceanographic conditions are causing microbialization of coral reefs 

and that the microbialization score is a powerful metric for assessing and comparing 

reef health. 

 

Materials and Methods 

Site descriptions: The twenty-nine islands included in this study were surveyed 

following the National Oceanic and Atmospheric Association (NOAA)'s Rapid 

Ecological Assessment (REA) protocol as part of the Coral Reef Ecosystem Division 

(CRED) and Pacific Reef Assessment and Monitoring Program (Pacific RAMP) (27). 

Multiple coral reef sites (average depth: 10 m) were sampled at each island in four 

broad regional groups: the Main Hawaiian Islands (MHI), Guam and the Mariana 
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Islands (MARIANA), the American Samoa region (SAMOA), and the Pacific Remote 

Island Areas (PRIA) (Fig. 1, Table 1). Microbial samples were collected during the 

2008-2010 Pacific RAMP monitoring cruises: MHI (2008), MARIANAS (2009), 

SAMOA (2010), PRIA (2010). For fish, belt survey data from 2001-2009 was used for 

all islands. Because the REA survey protocol switched to the Stationary Point Count 

(SPC) method in 2009, 2010 fish data was not included. Microbial and fish data 

collection sites at each island are not necessarily co-located. Due to the variability 

inherent with observational fish data, the standard approach for estimating island 

means for fish abundance requires a large sample size. To have an adequate sample 

size, this fish data was pooled from all sites and years. Island-level averages and 

standard errors for fish and microbial biomass are provided in Table S2 and Fig. S2. 

Microbial metabolic rates were calculated per site then averaged by island. Island-

level averages for fish and microbial predicted metabolic rates were used to calculate 

one microbialization score for each island.  

 

Collection of microbial data: At each site, 4 replicate 2 l seawater samples 

were collected ~1 m above the benthos using polycarbonate Niskin bottles. 

Microscopy grade glutaraldehyde was added to a final concentration of 0.3% v/v. 

Microbial cells were collected from each sample by filtration using a 0.2 μm Anodisc 

filter (Whatman) and then stained with 5 μg ml–1 DAPI (Molecular Probes, Invitrogen) 

within 2 hours of collection (28-30). Filters were mounted on microscope slides and 

stored at -20 °C. For each site, 10 fields of view (5 fields for each of 2 replicate filters, 
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~200 cells per field) were examined by epifluorescence microscopy 

(excitation/emission: 358/461 nm) at 600X magnification. Cell counts and dimensions 

were collected using ImagePro Software (Media Cybernetics) set for a size range of 

0.00001 – 10 μm for both length and width. Cell volume (V) was calculated by 

considering all cells to be cylinders with hemispherical caps using Equation 2:  

 

             ( )24 3V w l wπ= × −                   (Equation 2) 

 

where l is length and w is width (31). No correction was made for possible cell 

shrinkage as a result of fixation. Individual microbial cell volumes V (μm3) were 

converted to mass in wet weight (g) using previously established size-dependent 

relationships for marine microbial communities (32). Each cell volume V was next 

converted to dry weight using the linear relationship derived from data reported in 

Simon and Azam (1989) and shown in Equation 3: 

 

  ( ) ( )log 1.72log 12.63y x= −      (Equation 3) 

 

where x is cell dry weight and y is cell volume (r2=0.99). Then cell wet weight (z) was 

calculated using the linear relation shown in Equation 4 (32) (r2 = 0.99):  

 

 ( ) ( )log 1.63log 2.0z x= −                                                        (Equation 4) 
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Collection of fish data: This study includes fish data from all surveys 

performed at REA sites during the years 2001–2009. The number of REA sites 

surveyed over this time period is provided for each island in Table S2. Visual surveys 

provided a census of the reef fish community (33). Surveys were restricted to shallow-

to-moderate depths along the forereef between 10-15 m with a majority of surveys 

completed along the 10m isobaths. At each site, a total of three 25 m long belt transect 

surveys were conducted by two different divers. For each survey, the diver made two 

passes: during the first pass, all fish > 20 cm in length were recorded in adjacent 4 m 

wide belts; during the second pass all fish ≤ 20 cm were recorded in 2 m wide belts. 

Lengths were recorded to the nearest cm for fish < 5 cm and in 5 cm bins for all others 

(34). Species-specific mass values for individual fish were calculated from length-

weight relationships using FishBase (35-36). The fish data was provided for each 

family as mean biomass (g m-2) and mean abundance (# individuals m-2), from which 

the mean mass per individual (g) was calculated. Because surveys were carried out at 

an average water depth of 10 m and surveyors counted all fish in the water column up 

to the surface, the mean abundances (individuals per m2) represented the total number 

present in a 10 m3 water column.  

 

Metabolic rate calculations: At each REA site, community-level metabolic 

rates were calculated by summing the individual metabolic rates (I) for all fish or 

microbes present in a standard volume of water (10 m3). Individual metabolic rates (I) 

in watts were calculated using Equation 1.   
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The mass independent normalization constant for fish, i0, (ln(i0) =18.47) was extracted 

from the plots in Brown et al. (21), while those for basal and active microbial states 

(4.61 × 1016 and 1.08 × 1021, respectively) were calculated from previously reported 

individual prokaryote metabolic rate values (25). The predicted scaling exponents (α) 

used for microbes were 1.72 (basal) and 1.96 (active) (25), while 0.71 was used for 

fish (21). The activation energies (E) used were 0.61 eV for microbes (25) and 0.69 eV 

for fish (21).   

 

Quantification of human impact: The level of human impact was assessed from 

the cumulative global human impact map generated by the National Center for 

Ecological Analysis and Synthesis (NCEAS; 

http://www.nceas.ucsb.edu/globalmarine/impacts). Using ArcGIS 9.3, "NoData" 

pixels corresponding to the land mass of each island were identified and converted 

into polygon format. A 10 km zone was then calculated for each of these polygons, 

representing the immediate 10 km of sea surface around the border of each island in 

the study. Using these zones, statistics were then performed on the NCEAS human 

impact raster in order to calculate the mean impact score. These scores incorporate 

data related to: artisanal fishing; demersal destructive fishing; demersal non-

destructive, high-bycatch fishing; demersal non-destructive low-bycatch fishing; 

inorganic pollution; invasive species; nutrient input; ocean acidification; benthic 

structures (e.g., oil rigs); organic pollution; pelagic high-bycatch fishing; pelagic low-

http://www.nceas.ucsb.edu/globalmarine/impacts
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bycatch fishing; population pressure; commercial activity (e.g., shipping); and 

anomalies in sea surface temperature and ultraviolet insolation.  

 

Other indicators of reef system health were also considered in this study using 

benthic survey data collected at the same time as the microbial data. Benthic surveys 

were performed using the survey methodology described in Vargas-Angel (37-38). A 

principal components analysis was carried out using R on the following initial 

variables: coral disease prevalence, prevalence of coral colonies with compromised 

health (unidentified sub-lethal lesions including algal and cyanophyte interactions, and 

barnacle and tubeworm infestations), percent crustose corraline algae cover, percent 

coral cover, and the microbialization score (39, 40). Raw data sets were rescaled to 

give mean 0 and standard deviation of 1. As a supplement to PCA analysis, k-means 

clustering was also performed on the same data matrix for k = 2-8 (100 iterations); the 

dissimilarity matrix was calculated using Gower’s standardization (41).  

 

Estimation of net primary production: Productivity estimations for net primary 

productivity (NPP) (mg C m–2 day–1) were derived from Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite data using the Vertically Generalized Production 

Model (VGPM; 

http://www.science.oregonstate.edu/ocean.productivity/standard.product.php). This 

model, based on an algorithm by Behrenfeld and Falkowski (1997) calculates net 

primary production from satellite-based measurements of surface chla concentrations, 

http://www.science.oregonstate.edu/ocean.productivity/standard.product.php
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while also taking into account sea surface temperature, daily photosynthetically active 

radiation, and a temperature-dependent photosynthetic efficiency factor (42). Because 

these satellite data sets are less accurate for near-shore measurements, the satellite-

based NPP values used here were estimated from the data for a 50 km radius ring 

surrounding each island, with the first 10 km around each island removed. The 

nearshore chla concentrations (μg l–1) used in this study were obtained using 

fluorometric analysis (43). The chla samples were collected in conjunction with the 

microbial samples at each site. 

 

Results and Discussion 

Predicted metabolic rates for the fish and microbes: Field surveys carried out 

at 99 coral reef sites at 29 Pacific islands (Fig. 1) were used to calculate the biomass (g 

per 10 m3) and basal metabolic rate (W per 10 m3) for both the water column-

associated microbial and fish communities (Table 1). The high and low values for 

microbial biomass occurred on the islands of Oahu (1.53 g per 10 m3) and Wake Atoll 

(0.12 g per 10 m3), respectively. This difference in microbial biomass equates to a 76-

fold increase in the rate of energy flux (W per 10 m3 or J sec-1 10 m-3 ) on Oahu (0.076 

W per 10 m3) relative to Wake Atoll (0.001 W per 10 m3). The highest fish biomass 

was found on Kingman (514.84 g per 10 m3) and the lowest on Guam (17.98 g per 10 

m3). The metabolic requirements predicted for the fish communities on Kingman and 

Guam were 0.015 and 0.002 W per 10 m3, respectively. This difference equates to a 

7.5-fold reduction in the metabolic requirements of the fish community. The largest 
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differences in the predicted metabolic rates between each island represent a 100-fold 

change for the microbes, as compared to a 14-fold change for the fish (Table 1). 

 

 

 

Figure 2.1 Location of the 29 islands surveyed. Color scale indicates oceanic net 
primary production derived from satellite data using the Vertically Generalized 
Production Model (VGPM). Circles indicate the relative NCEAS cumulative human 
impact score for each island. For island abbreviations see Table 1. 
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Table 2.1 Survey data and calculated values for 29 islands in the Pacific, grouped 
by region. Predicted metabolic rates are basal rates. NPP = net primary production. 
Colors identify each island group in the figures. 
REGION  MICROBIAL COMMUNITY FISH 

COMMUNITY 
OTHER 

Code Island Abundance 
x 105 

Total 
Biomass  

Predicted 
Metabolic 
Rate 

Total 
Biomass  

Predicted 
Metabolic 
Rate 

NPP Chla NCEAS 
Score 

  cells ml–1  g 10 m-3     W 10 m-3  g 10 m-3         W 10 m-3  mg C m–2 
yr–1 

μg l–1  

GUAM & MARIANA ISLANDS (orange) 
AGR Agrihan 2.6 0.22 0.005 84.54 0.007 155 0.11 7.7 

AGU Aguijan 2.3 0.16 0.006 41.5 0.005 125 0.34 9.9 
ASC Asuncion 2.7 0.15 0.002 182.54 0.011 159 0.11 7.6 

FDP Farallon 
de 
Pajaros 

2.7 0.2 0.003 103.18 0.007 165 0.06 6.8 

GUA Guam 2.8 0.27 0.012 17.98 0.002 126 0.17 13.7 

GUG Guguan 3.5 0.27 0.002 145.03 0.012 153 0.1 7.1 

MAU Maug 3 0.24 0.003 70.95 0.005 159 0.22 6.7 

ROT Rota 2.3 0.17 0.003 36.9 0.004 125 0.07 9.4 

SAI Saipan 2.1 0.21 0.017 23.31 0.003 143 0.1 11.2 

TIN Tinian 1.8 0.17 0.004 31.19 0.003 143 0.05 10.3 

MAIN HAWAIIAN ISLANDS (MHI, blue) 
HAW Hawaii 4.7 0.81 0.012 51.24 0.004 248 0.12 12.2 

KAU Kauai 2.8 0.69 0.024 33.39 0.002 262 0.34 13 

LAN Lanai 3.3 0.4 0.007 33.44 0.002 264 0.15 12.7 

MAI Maui 3 0.56 0.019 40.16 0.003 258 0.21 14.2 

MOL Molokai 2.1 0.32 0.006 24.8 0.002 270 0.1 12.8 
NII/LEH Niihau & 

Lehua 
4.1 1.29 0.05 54.49 0.003 234 0.22 10.7 

OAH Oahu 3.7 1.53 0.076 23.99 0.002 270 0.19 15.6 

PACIFIC REMOTE ISLANDS & ATOLLS (PRIA, pink) 
BAK Baker 3.8 0.33 0.004 228.18 0.011 380 0.1 5.3 
HOW Howland 4.5 0.49 0.014 195.37 0.022 380 0.06 6.3 

JAR Jarvis 5.8 0.46 0.005 408.75 0.026 445 0.08 4 

JOH Johnston 3.5 0.72 0.024 91.6 0.005 196 0.09 8.5 

KIN Kingman 1.7 0.18 0.002 514.84 0.015 282 0.11 5.5 

PAL Palmyra 3.7 0.22 0.002 229.08 0.01 307 0.16 8 

WAK Wake 2.2 0.12 0.001 161.4 0.008 147 0.06 9.5 

SAMOA REGION (green) 
OFU/OLO Ofu & 

Olosega 
2.9 0.19 0.003 57.83 0.004 139 0.07 8.4 

ROS Rose 3.2 0.14 0.002 82.98 0.007 130 0.04 8.2 

SWA Swains 3.1 0.26 0.004 85.17 0.005 148 0.04 8.6 
TAU Tau 3.3 0.23 0.004 44.77 0.004 139 0.06 8.6 

TUT Tutuila 3.5 0.25 0.006 33.11 0.003 151 0.15 12.4 
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Microbialization scores versus the NCEAS human impact score: Based on the 

predicted metabolic rates for fish and microbes (Table 1), we are proposing a separate 

metric called the microbialization score, which represents the microbial share of the 

total predicted metabolic rate. The microbialization score is the percentage of the 

combined fish and microbial predicted metabolic rate that is microbial:  

 

                   ( ) ( )3 3 3W 10 m W 10 m W 10 m 100microbes microbes fish+ ×              (Equation 5) 

 

Although both increased microbial biomass and decreased fish biomass affect 

microbialization scores, microbial biomass has a proportionately greater impact on the 

combined predicted metabolic rate. For example, on Oahu, the fish are responsible for 

only 3% of the combined predicted metabolic rate, but account for 94% of the total 

biomass. Even on Kingman where we observed the highest fish biomass and microbial 

biomass represented less than 0.03% of the total biomass, the microbes still account 

for 13% of the combined predicted metabolic rate.  

 

Recently, the NCEAS human impact score has been proposed as a cumulative 

metric of different anthropogenic stressors ranging from overfishing to predicted 

climate change events (44). As shown in Fig. 2, the microbialization score is 

positively correlated with the NCEAS score (linear regression, r2 = 0.68; Fig. 2). The 

microbialization scores ranged from 8% at remote and relatively pristine Wake Island 
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to 75–98% in the heavily-impacted main Hawaiian Islands (MHI). Oahu, with the 

highest microbialization score (98%) also had the highest NCEAS score (15.59).  

 

Johnston Atoll in the PRIA group appears to be an exception to the overall 

trend in that it has a high microbialization score (82%) but a relatively low NCEAS 

score (8.48). In actuality, Johnston is heavily impacted by factors not reflected in the 

NCEAS scores including the addition of two artificial islands with paved runways 

formed by coral dredging, usage for both above-ground and underground nuclear tests 

in the 1950s and 1960s, and service as a chemical weapons depot until 2000. The 

microbialization score appears to be a better indicator of these stressors than the 

NCEAS index of human impact. 

 

 

 



24 

 

 

 

 

 

Figure 2.2 Linear regression analysis of microbialization scores versus NCEAS 
cumulative human impact values (y = 8.19 x – 26.10; r2 = 0.68). The 
microbialization score is the percentage of the combined fish and microbial predicted 
metabolic rate that is microbial. Color denotes oceanographic region: Guam and the 
Mariana Islands (orange circles), the Main Hawaiian Islands (blue circles), Pacific 
Remote Islands and Atolls (pink circles), and the Samoa region (green circles). For 
island abbreviations see Table 1. 
 

A principal components analysis was carried out with the goal of visualizing 

how the microbialization score related to other indicators of reef health, including 

coral disease prevalence, prevalence of coral colonies with other signs of 

compromised health, percent crustose corraline algae cover, and percent coral cover 

(Fig. S1). The first two components accounted for 66% of the variation. The first 

component (PC1) accounted for 46% of the variation and was driven in the positive 

direction (relative to 0) by coral disease incidence, other visible signs of compromised 

coral health, and microbialization score (Fig. S1). A complete table of PCA loadings is 
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provided in Table S3. By comparison, variables which typically correlate positively 

with reef system health (% crustose coralline algal cover and % coral cover) were 

represented as vectors moving in the negative direction (relative to 0). The separation 

by vector sign along PC1 supports the hypothesis that the microbialization score is a 

useful measure of reef system decline. Because the PCA analysis indicated that there 

was separation in the data, we used k-means clustering as a supplementary analysis to 

determine how many groups there were. K-means is a classical variance-based 

clustering method that defines n data points in d dimensions, into k clusters, so that the 

within clusters sun-of-squares is minimized (41). The within group sum of squares 

plotted against the number of clusters (k) indicated k = 3 to be the optimal number (for 

k = 2-8). The 11 islands contained in cluster two (within-cluster sum of squares = 

1.47) were negative for PC1 (Fig. S1), while the 16 islands contained in cluster 3 were 

all positive on PC1 (within-cluster sum of squares = 2.06). The two islands in the first 

k-means cluster were Lanai (LAN) and Guam (GUA) (within cluster sum-of-squares = 

0.32).  

 

Microbialization scores versus combined metabolic rate:  The metabolic rates 

predicted for the combined microbial and fish communities at the 29 islands ranged by 

approximately one order of magnitude, from a low of 0.007 W per 10 m3 on Rota 

Island (MARIANA) to a high of 0.077 W per 10 m3 on Oahu (MHI) (Fig. 3, x-axis). 

The combined predicted metabolic rate was not correlated with the microbialization 

score, which also varied widely among the islands, ranging from a low of 8% at Wake 
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to a high of 97% at Oahu (Fig. 3, y-axis). At the low end of this scale, increased 

microbalization scores were explained by reduced metabolic contribution from the 

fish. However, higher microbialization scores were associated with a sharp rise in 

combined predicted metabolic rate driven primarily by increasing microbial metabolic 

rates. This break-point may reflect the release of the microbes from some resource 

limitation.  

 

 

Figure 2.3. Microbialization scores plotted against the combined fish + microbes 
predicted metabolic rates for each of the 29 islands surveyed. Colors are as in Fig. 
2. For island abbreviations see Table 1. 
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Predicted metabolic rates of fish and microbes versus primary production: Net 

primary production (NPP) might be expected to be a significant factor driving 

variation in community metabolic rates. Previous small-scale inter-island studies that 

correlated differences in microbial communities with varying local human impacts 

could not conclusively rule out inter-island variations in oceanographic conditions as a 

possible driving factor (14). To address this issue, we surveyed net primary production 

(NPP) at islands in four oceanographic regions throughout the Pacific Basin (Table 1).  

 

Estimated net primary production (NPP; mg C m–2 day–1) derived from satellite 

data is shown in Fig. 1. NPP ranged from 125 mg C m–2 day–1 at Aguijan to 445 mg C 

m–2 day-1 at Jarvis (Table 1). This predicted NPP was not a strong predictor of the 

combined fish + microbial metabolic rate at the island-level (non-linear regression, R2 

= 0.21; Fig. 4A). Likewise, when the predicted NPP values were compared against the 

metabolic rates of the fish and microbial communities separately, R2 values were 0.20 

for fish and 0.054 for microbes (Table 1). Large differences in NPP were observed 

between the geographic regions surveyed, but relatively little variation within each 

one (Fig. 4A, C). Since the satellite data used for the above predictions omitted a 10 

km ring around each island, nearshore chla concentrations were also measured as an 

alternative proxy for NPP. These samples were collected with the microbial samples at 

each site. The nearshore chla concentrations (μg l–1) explained even less of the inter-

island variation in combined predicted metabolic rate (non-linear regression, R2 = 
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0.08; Fig. 4B). For the individual communities, R2 values were 0.13 and 0.15 for fish 

and microbes, respectively (Table 1).  

 

Microbialization scores and primary production: The island microbialization 

scores did not correlate with predicted oceanic NPP values (Fig. 4C, R2 = 0.004) or 

nearshore chla concentrations (Fig. 4D; R2 = 0.22). However, higher nearshore chla 

concentrations associated with microbialization scores above a certain threshold 

(~70%) are suggestive of eutrophication processes linked to human impact (Fig. 4D) 

(45). These analyses demonstrate that estimated reef primary production is not a 

significant driver of variation in either community metabolic rates or microbialization 

scores.  
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Figure 2.4. Measures of energy use versus metrics of primary production. (a) 
Non-linear regression analysis of the combined fish + microbes predicted metabolic 
rate versus net primary production (NPP) for the 29 surveyed islands. NPP was 
derived from satellite data using the Vertically Generalized Production Model 
(VGPM). (y = 0.00008x + 0.0012; R2 = 0.21) (b) Non-linear regression analysis of the 
combined fish + microbes predicted metabolic rate versus nearshore chla 
concentrations at the 29 surveyed islands (y = 0.54x + 0.01; R2 = 0.08) (c) 
Microbialization scores versus NPP derived from satellite data using the VGPM for 
the 29 surveyed islands. (d) Microbialization scores versus nearshore chla 
concentrations at the 29 surveyed islands (y = 171.5x + 29.7; R2 = 0.22). Colors are as 
in Fig. 2. For island abbreviations see Table 1. 
 
 

To further examine whether or not accounting for oceanographic context 

would improve our ability to predict reef microbialization, multiple linear regression 

analysis was performed. In addition to the NCEAS score, satellite-based estimates of 

net primary production (NPP) and nearshore (chla) were included as variables. This 
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resulted in 4 models of interest: microbialization score = β0 + β1(NCEAS),  y = β0 + 

β1(NCEAS) + β2(chla), y = β0 + β1(NCEAS) + β2(NPP), y = β0 + β1(NCEAS) + 

β2(chla) + β3(NPP). Given that the NCEAS score was in the model, the p-values for 

chla and NPP were not significant by the t-test in the second and third models (p-value 

> 0.1). The only variable that was significant was the NCEAS score, having a highly 

significant p-value in all of the models (p-value < 0.0001). The model which included 

both chla and NPP as variables (y = β0 + β1(NCEAS) + β2(chla) + β3(NPP)) gave a 

multiple R2 value of 0.706, which was not a significant improvement over the simplest 

model (y = β0 + β1(NCEAS)) which explained 68.4 % of the variability of the 

microbialization score.  

 

Next, Akaike’s Information Criterion (AIC) was used for model selection 

between the 4 different statistical models. AIC is the most widely known and used 

model selection criterion which consists of a “goodness-of-fit” term and a “penalty” 

term for increased number of model parameters (46). The model with the lowest AIC 

value is selected as the best model.  The model having the smallest AIC was the model 

which did not include additional variables (y = β0 + β1(NCEAS)). Although the exact 

mechanism(s) underlying the process of microbialization remain unclear, these 

analyses support the hypothesis that human activities alter the energy budget of the 

reef system, specifically by altering the allocation of metabolic energy between 

microbes and macrobes.  
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The finding that microbialization scores did not significantly correlate with 

ocean net primary production, local chla concentrations, or the combined metabolic 

rate of the fish and microbial communities suggests that the microbialization score 

may be a powerful metric for comparing and assessing reef degradation, particularly at 

large spatial scales. Other measures of reef degradation which are more heavily 

influenced by oceanographic context (i.e. percent coral cover, percent algal cover) 

may be more easily confounded by non-human factors and are subsequently harder to 

interpret across large spatial scales. 

 

Other considerations: In this study, surveys of microbial and fish sizes were 

used to predict whole organism metabolic rates. Ideally, the energetic requirements per 

unit time for fish and microbial communities would be measured empirically. 

However, this is not practical over this large region. To evaluate whether or not the 

MTE-based approach is a reasonable alternative to quantifying energy flux, the mean 

predicted metabolic rates for microbial communities were compared against 

experimental values reported from other studies (Table S1). The means for both the 

predicted basal metabolic rates used in our analyses and the corresponding predicted 

active metabolic rates fall within the same range as the empirically-based 

measurements. Similarly, differences in temperature at the time of sampling explained 

a small proportion of the variation in metabolic rate between islands. Water 

temperature at the time of sampling ranged from 25 – 30°C. For the microbial 

community-level metabolic rates, the standard deviation in the 29 island data set was 
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0.16 at the actual temperatures and 0.01 when all locations were corrected to the same 

temperature (20°C); for the fish community-level metabolic rates, the standard 

deviations were 0.006 and 0.003, respectively. Temperature correction increased the r2 

value for the regression analysis of community-level metabolic rate as a function of 

biomass by only 0.01% and 0.05% for fish and microbes, respectively. Therefore, 

inter-island variation in temperature does not account for our observed trends. 

 

Conclusions 

Overfishing, eutrophication, and global climate change are important drivers of 

the global loss of coral reefs. However, the precise mechanism(s) by which these 

perturbations lead to coral decline have remained elusive. We and others have 

previously argued that human activities are favoring the coral reef-associated microbes 

at the expense of the macrobes, a process called microbialization. The data presented 

here supports this hypothesis over a wide swath of Pacific coral reefs and suggests that 

microbialization is a general process of reef decline. Although the exact mechanism(s) 

driving the process of microbialization remain unclear, the microbialization score 

provides a way to diagnose the degree of microbialization that has occurred on reefs. 

Fish were the primary movers of energy in the most pristine locations (i.e. fish were 

responsible for 97 and 87% of the total predicted metabolic rate on Wake (PRIA) and 

Kingman (PRIA), respectively) but made up only 3% of the total predicted metabolic 

rate on Oahu (MHI). Microbialization scores reflect both increased microbial biomass 

and decreased fish biomass; however microbial biomass has a proportionately greater 
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impact on metabolic rate. This means that even a minor increase in the microbial load 

results in a substantial shift in community energy use; up to a 100-fold increase in the 

metabolic requirements of the microbes in the most heavily impacted reef systems. 

This study has significant implications for the protection of coral reefs. The degree of 

microbialization a reef is experiencing may be important for predicting its response to 

perturbation. On Pacific coral reefs, microbialization may be set in motion by an 

increase in the percent cover of turf algae resulting from the loss of herbivorous fish. 

Turf algae release large amounts of dissolved organic carbon (DOC) into the water 

column, a source of energy almost exclusively available to the microbes (47).  

Consequently, the process of microbialization is likely to have stabilization effects in 

the system once a catastrophic regime shift to an algal-dominated state has occurred.  
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Appendix 

Supplemental Figures 

 

Figure S1. Principal components analysis of reef system properties related to reef 
health. The first two principal components account for 66% of the variability in the 
dataset (PC1 = 46%, PC2=20%). Arrow length reflects the relative contribution of a 
variable to a PC axis. MS = microbialization score; CCA = % crustose coralline algae 
cover; DZ = % coral disease prevalence; CO = % coral cover; CH = % coral with 
other indications of compromised health. Symbol denotes oceanographic region: 
Guam and the Mariana Islands (*), the Main Hawaiian Islands (^), Pacific Remote 
Islands and Atolls (#), and the Samoa region (+). Two groups of islands identified 
from k-means cluster analysis are divided along PC1 by the dotted line; the third 
group is circled (Lanai and Guam). For island abbreviations, see Table 1.  
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Figure S2. Mean microbial and fish biomass. (a) Mean microbial biomass with 
standard error. Total number of sites where microbial data was collected = 99. (b) 
Mean fish biomass with standard error. Total number of sites where fish data was 
collected = 791. The number of REA sites included is given in parentheses next to 
three-letter island code.  
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Supplemental Tables 

Table S1. Comparison of mean MTE-based microbial metabolic rate predictions 
from this study with experimental measurements from marine systems48-52. Rates 
of photosynthesis were converted from units of gross carbon production (Pg) to units 
of power (W) using 39,444 J g-1 C, the standard free energy change from the synthesis 
of glucose from CO2 and H2O during photosynthesis at STP6. For conversion between 
rates of oxygen consumption or production in volume or mass units, we assumed that 
1 ml O2 per second = 1.43 mg O2 per second24. To convert between units of power 
(W) and rates of respiration we assumed that 1W = 0.05 ml O2 per second24. 
Metabolic rates in W per 10 m3 were derived after calculating total daily energy use: 
Pg (from sunrise to sunset) + Respiration (over a 24 hour period). In studies where 
only dark incubation experiments were performed, total daily energy use was 
calculated assuming Pg/R24 hrs = 1. When two measurements are listed for the same 
sample and conditions, they indicate high and low values. B = predicted basal 
metabolic rate; A = predicted active metabolic rate. 
 

 

 

 

 

 

Reference Microbe Source Temp (°C) Method Habitat type W per 10 m3 

Hopkinson, C.S. (1985) 10 incubation nearshore/estuarine 0.4290

28 2.2663
Hoppe, H.G. et al.  (2002) 10-20 incubation N. Atlantic Ocean (30') 0.0131

0.9861
Wild, et al.  (2009) 20-28 incubation reef 0.1298

1.2508
Quinones, R. (1992) water column (125 μm -8 mm) NA incubation oceanic shelf 0.0301

water column (1-125 μm) 0.1483
Hopkinson, C.S., et al.  (1989) water column  (< 208 μm) above 20 incubation open ocean 0.7770

water column  (< 10 μm) 0.6216
water column  (< 1 μm) 0.7382

This study water column (0.2-10 μm) 27-29 Metabolic Theory of Ecology reef 0.0002 (B)

0.1041 (B)

0.0022 (A)

2.1412 (A)

water column 

water column

water column 
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Table S2. Summary table showing the number of REA sites where microbial or fish 
data (belt transect method only) was collected, time period of sampling, and standard 
error for biomass and abundance of the fish and microbial communities at each island. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

AGR Agrihan 18 22.608 0.7211 2 (2009) 0.072 8.65E+04
AGU Aguijan 8 7.190 0.9009 1 (2009)
ASC Asuncion 15 75.603 1.3872 1 (2009)
FDP Farallon de Pajaros 13 33.346 0.4974 1 (2009)
GUA Guam 39 2.505 0.1451 4 (2009) 0.025 2.96E+04
GUG Guguan 11 23.890 1.1377 1 (2009)
MAU Maug 34 11.502 0.4271 2 (2009) 0.006 4.45E+04
ROT Rota 23 6.423 0.5365 2 (2009) 0.004 4.50E+04
SAI Saipan 30 3.333 0.2494 1 (2009)
TIN Tinian 19 3.906 0.2538 2 (2009) 0.024 5.40E+04

HAW Hawaii 60 3.785 0.2345 6 (2008) 0.111 7.00E+04
KAU Kauai 28 6.186 0.3308 3 (2008) 0.167 5.01E+04
LAN Lanai 18 5.138 0.2924 2 (2008) 0.131 9.41E+04
MAI Maui 35 4.601 0.1926 5 (2008) 0.150 1.74E+04
MOL Molokai 13 6.576 0.2321 2 (2008) 0.023 1.95E+04
NII/LEH Niihau & Lehua 26 10.550 0.7855 2 (2008) 0.073 7.54E+04
OAH Oahu 19 5.038 0.2735 1 (2008)

BAK Baker 29 20.960 2.3117 5 (2010) 0.040 4.41E+04
HOW Howland 26 22.573 4.6728 5 (2010) 0.089 3.74E+04
JAR Jarvis 29 96.484 4.6592 5 (2010) 0.042 5.39E+04
JOH Johnston 7 29.610 0.4953 5 (2010) 0.270 6.79E+04
KIN Kingman 13 125.195 1.0118 5 (2010) 0.018 2.25E+04
PAL Palmyra 39 41.629 0.5140 5 (2010) 0.024 4.01E+04
WAK Wake 36 29.796 0.2550 5 (2010) 0.028 2.44E+04

OFU/OLO Ofu & Olosega 34 8.463 0.3801 5 (2010) 0.044 4.50E+04
ROS Rose 36 15.827 0.4691 6 (2010) 0.056 5.15E+04
SWA Swains 28 37.826 0.6721 7 (2010) 0.080 1.84E+04
TAU Tau 33 7.549 0.2366 8 (2010) 0.051 4.30E+04
TUT Tutuila 72 3.423 0.2015 9 (2010) 0.039 3.60E+04

REGION: ISLAND or ATOLL Fish Data Microbial  Data

GUAM & MARIANA ISLANDS (orange)

MAIN HAWAIIAN ISLANDS (MHI, blue)

PACIFIC REMOTE ISLANDS & ATOLLS (PRIA, pink)

Stations 
completed (2001-

2009)

SEM Total Biomass 
(all species 
combined)

SEM Abundance          
(all species combined)

Sites sampled 
(year)

SEM 
Biomass             

SEM 
Abundance                 

Island 
Code Island

SAMOA REGION (green)
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Table S3. Summary table for Figure S1. The importance of each component and the 
contribution (loadings) of each variable is shown. MS = microbialization score; CCA 
= % crustose coralline algae cover; DZ = % coral disease prevalence; CO = % coral 
cover; CH = % coral with other indications of compromised health.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation   1.510 1.003 0.903 0.724 0.613
Proportion of Variance 0.456 0.201 0.163 0.105 0.075
Cumulative Proportion  0.456 0.657 0.820 0.925 1.000

DZ  0.493 -0.454 0.149 0.394 0.611
CH 0.464 -0.402 -0.504 -0.602
CCA -0.392 -0.525 0.578 0.283 -0.397
CO -0.403 -0.593 -0.348 -0.521 0.305
MS 0.475 0.519 -0.697 -0.114

Importance of Components

PCA Loadings
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CHAPTER 3 

Microbial-mediated resilience on intermediately disturbed coral reefs 

 

Abstract  

Microbialization describes the process where micro-organisms, relative to 

macro-organisms, become increasingly metabolically dominant in an ecosystem. We 

previously documented microbialization occurring on Pacific coral reef ecosystems 

where increased algal-derived organic carbon resulting from overfishing and/or 

eutrophication fuels microbial growth. In this study, we further examine the process of 

microbialization by assessing the relative energetic contributions of heterotrophic 

versus autotrophic microbes across 29 Pacific islands experiencing a range of human 

impacts and oceanographic conditions. Energy flux rates (W 10 m-3) for both groups 

of microbes were derived allometrically and compared relative to each other. We 

found that while heterotrophic microbes dominated in terms of biomass (g 10 m-3) 

microbial autotrophs dominated in terms of energy flux. The ratio of autotrophs to 

heterotrophs increased with human impact and reef systems experiencing more human 

impact supported less microbial biomass per unit of energy flux (g W-1). This suggests 

that autotrophic microbes facilitate the “burning” of excess energy without a 

corresponding increase in microbial abundance. Autotrophs are also generally less 

pathogen-like. Together these results show that shifting energy to autotrophic 

microbes may be an important resilience mechanism for dampening the effects of 

overfishing and eutrophication on reefs experiencing intermediate levels of 

microbialization. 
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Introduction  

Aquatic communities are often strongly body size-structured, with most 

predators larger and less abundant than their prey [1, 2]. These two variables, (size and 

abundance) help establish the energetic architecture of ecosystems since food webs are 

networks of pathways for energy flow [3-7]. In oceanic systems including coral reef 

food webs, the largest pathways for energy and materials flux are typically through the 

smallest and most abundant organisms, namely the microbes [8-10]. For example, 

oceanic phytoplankton represent less than half of one percent of the global primary 

producer biomass, but are responsible for roughly half of the total net primary 

production (NPP) on the planet [11-13].   

 

 Due to their high mass-specific metabolic requirements and rapid biomass 

turnover, small increases in microbial biomass have a proportionately greater impact 

on the rate of energy and materials flux than large reductions in fish biomass.  For 

example, to perform work and drive the cellular processes required for life (i.e. 

biosynthesis, membrane transport, etc.) 1 gram of microbes expends approximately as 

much energy per unit time as 500 grams of fish [14]. Recently we proposed a metric of 

reef system health called the microbialization score; the total amount of energy 

required by the microbes divided by the total amount of energy fluxing through the 

fish in a 10 m3 column of water [14, 15]. Using this approach, it was shown that 

microbialization and human impact are strongly correlated on Pacific coral reefs. In 
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the most heavily impacted reef systems, microbial metabolic rates were up to 100 fold 

higher than on relatively pristine reef systems [14]. 

 

Energy flux rates on coral reefs may be affected by changes in microbial 

biomass and trophic structure. In addition to human impact driving the benthos to 

become more autotrophic in nature (i.e., algae replacing corals) [16, 17], there is 

evidence that on “intermediately disturbed” coral reef systems the microbial 

community in the water column also shifts towards increased autotrophy. For 

example, Dinsdale et al. (2008) documented an increase in the relative proportion of 

autotrophs in the reef water-column along an increasing gradient of human activity 

(Kingman<Palmyra<Fanning). At the most impacted atoll, Christmas (Kiritimati), 

there was a switch to an almost pure heterotrophic community containing many 

potential pathogens. This switch was correlated with the removal of fish herbivores 

which typically graze on benthic reef algae [19]. Algal-derived dissolved organic 

matter (DOM) has been shown to directly stimulate the growth of heterotrophic 

microbes in coral reef systems [20-23], while benthic reef algae [24, 25] and 

phytoplankton biomass [26, 27] have been shown to respond positively to inorganic 

nutrient loading. 

 

In this study, energy flux rates for water-column associated autotrophic and 

heterotrophic microbial compartments were predicted using Metabolic Theory of 

Ecology or MTE [3, 28]. MTE is based on a mathematical equation which predicts 
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individual metabolic rate (I) from the combined effects of body mass (M) and 

temperature (T). Equation 1 describes the effects of body mass and temperature on 

whole organism metabolic rate: 

                                            

                                                  0
E kTI i M eα −=                                             (Equation 1) 

 

where io is the mass-independent normalization constant, M is the wet weight of the 

organism in grams, and α is the scaling exponent. The effects of temperature on 

metabolic rate are accounted for by E kTe−  [21, 23] where E  is the activation energy, k 

is Boltzmann’s constant (8.62 x 10–5 eV K–1), and T is the water temperature at the site 

at the time of collection (in Kelvin). The negative sign (in front of E ) means that as 

this ratio decreases, metabolic rate increases (Eq. 1). Therefore, increasing the 

temperature (T) and/or reducing E  will speed up the rate of reaction; the average 

energy of activation for respiration is ~ 0.65 eV [3], while the effective activation 

energy for the light reactions of photosynthesis is ~ 0.32 eV [29]. Therefore, at 

constant temperature and mass, an individual microbe would expend more energy (J s-

1) during photosynthesis than respiration. Because this parameter ( E ) occurs in the 

exponent (Eq. 1), anthropogenic activities which impact microbial trophodynamics 

(i.e. alter the ratio of autotrophic to heterotrophic biomass) can significantly alter the 

system dynamics in terms of energy and materials use.  

 

  Here we predict the amount of energy required per unit time in a 10 m3 column 
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of reef water (Js-1 or W 10 m-3) by the micro and picophytoplankton (< 20 uM) and 

heterotrophic microbes. We found a highly significant positive relationship between 

the relative fraction of energy used by the microbial autotrophs and the NCEAS 

human impact score. Based on these results we argue that the microbial food web is 

providing a previously uncharacterized mechanism of resilience to moderate some key 

anthropogenic stressors.  

 

Materials and Methods 

Site descriptions: The twenty-nine islands included in this study were surveyed 

following the National Oceanic and Atmospheric Association (NOAA)'s Rapid 

Ecological Assessment (REA) protocol as part of the Coral Reef Ecosystem Division 

(CRED) and Pacific Reef Assessment and Monitoring Program (Pacific RAMP) [30, 

31]. Multiple sites (depth: 10-15 m) were sampled at each island in four broad regional 

groups during the 2008-2010 Pacific RAMP monitoring cruises: the Main Hawaiian 

Islands (2008), Guam and the Mariana Islands (2009), the American Samoa region 

(2010), and the Pacific Remote Island Areas (2010). At each site, samples were 

collected for both flow cytometric analysis as well as metabolic rate predictions (i.e., 

DAPI stains for size and abundance). Benthic surveys were conducted on the same set 

of cruises but island-level averages for benthic percent cover data includes sites where 

microbial data was not collected.  
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Sample collection/preparation: Seawater samples for flow cytometry were 

collected approximately 1 m above the reef benthos and processed within 3 hours of 

collection. Samples were passed through a 20 μm pore size filter (Whatmann) and the 

filtrate, containing micro and picoautotrophs, was collected. 1 ml aliquots were fixed 

in EM grade glutaraldehyde (0.125% final concentration; Electron Microscopy 

Sciences, Hatfield, PA, USA), incubated for 15 minutes at room temperature in the 

dark, frozen in liquid nitrogen, and stored at -80°C.    

 

 On the day of flow cytometry analysis, samples were thawed at 37 °C (samples 

were only freeze/thawed once) and immediately split into 2 x 500 μl aliquots.  One 

500 μl aliquot was left unstained and used to report the abundance of micro and 

picophytoplankton. The other aliquot was stained with SYBR Green I and used to 

analyze the total number of microbes in each sample (10X final concentration; 

Invitrogen Molecular Probes, Carlsbad, CA, USA) [32].  

 

Analysis: Samples were analyzed using a BD FACSCanto with a high 

throughput sampler (HTS) (Becton Dickinson Biosciences, San Jose, CA, USA). One 

hundred μl of total volume was run at 3 µl sec-1. As a reference, yellow-green 

fluorescent microspheres (0.75 μm) (Polysciences; Warrington, PA, USA) were added 

to all samples to ensure that the instrument was stable and to serve an internal 

verification for sample volume run. Additionally, a previously frozen seawater sample 

collected off Scripps Pier, La Jolla, CA was also included in every run as a “standard” 
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to check for consistency between 96-well plate runs. The ratio of autotrophic to 

heterotrophic microbes was consistent among the La Jolla standard seawater samples 

for all 96-well plate runs included in the analysis (n = 5, mean = 0.061, SD = 0.006). 

For the unstained aliquot (autotrophic counts) the threshold was set to chlorophyll 

fluorescence (red), while the SYBR stained aliquot was acquired with a threshold set 

to SYBR fluorescence (green). In both cases, the threshold was set by running a 

sample of molecular grade water (Sigma-Aldrich), and raising threshold just above (or 

at) the level of noise (Supplementary Figure 1). Samples were excited using a blue 

laser line (488 nm). For the detection of SYBR fluorescence (total bacteria), a PMT 

with a 530/30 bandpass filter was used. For the detection of autotrophs, a channel for 

chlorophyll (back to back LP mirrors resulting in a range of 675-735 nm) and a 

channel for phycoerytherin (585/42 bandpass filter) were used. Not all of the 

Prochlorococcus cells were quantified because dimly fluorescing cells were below the 

noise level. Data (.fcs) files were analyzed using FlowJo 7.6.5 software (Treestar Inc., 

Ashland Oregon). To determine counts of heterotrophic microbes, the autotrophic 

counts from the non-stained portion were subtracted from the SYBR-stained total 

count. For each site, relative abundance was calculated by dividing the autotrophic 

count by the SYBR-stained total count. Relative abundances were then averaged to the 

island-level.  

 

Calculating autotrophic and heterotrophic energy use: Site-level metabolic 

rate predictions for all microbes present in a standard volume of water (10 m3) were 
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obtained using the methodology described in McDole et al., 2012. These values were 

averaged to obtain island-level microbial metabolic rates for the 29 islands included in 

this study.  The average energy of activation ( E ) for respiration (0.61 eV) was used to 

predict metabolic rates of the heterotrophic microbes [28]. The effective activation 

energy for the light reactions of photosynthesis is 0.32 eV [29]. A recent transcriptome 

study in Prochlorococcus spp. showed that these two activities have opposite 

expression patterns relative to the light-dark cycle [33]. Therefore, an average value of 

0.46 eV was used to predict metabolic rates for the autotrophic fraction. The predicted 

scaling exponent (α) used for both trophic components was 1.72 (basal) [28]. 

Autotrophic energy use was estimated by multiplying the mean ratio of autotrophic 

cells/total cells measured using flow cytometry by the total predicted microbial power 

requirements for each island (calculated using only the left side of Equation 1; 0i M α ). 

Heterotrophic energy use was then calculated by subtracting autotrophic energy use 

from the total predicted microbial power requirements. These values were then 

multiplied by the right side of Equation 1 ( E kTe− ) using the respective values for the 

energy of activation ( E ). 

 

Quantification of human impact: The level of human impact was assessed from 

the cumulative global human impact map generated by the National Center for 

Ecological Analysis and Synthesis (NCEAS; 

http://www.nceas.ucsb.edu/globalmarine/impacts). Mean impact scores were 

calculated in ArcGIS 9.3 using previously described methods [14]. These scores 

http://www.nceas.ucsb.edu/globalmarine/impacts
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incorporate data related to: artisanal fishing; demersal destructive fishing; demersal 

non-destructive, high-bycatch fishing; demersal non-destructive low-bycatch fishing; 

inorganic pollution; invasive species; nutrient input; ocean acidification; benthic 

structures (e.g., oil rigs); organic pollution; pelagic high-bycatch fishing; pelagic low-

bycatch fishing; population pressure; commercial activity (e.g., shipping); sea surface 

temperature; and ultraviolet insolation.  

 

Estimation of net primary production: Productivity estimations were derived 

from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data using 

the Vertically Generalized Production Model (VGPM; 

http://www.science.oregonstate.edu/ocean.productivity/standard.product.php). This 

model, based on an algorithm by Behrenfeld and Falkowski (1997) calculates net 

primary production from satellite-based measurements of surface chlorophyll a 

concentrations, while also taking into daily photosynthetically active radiation, and a 

temperature-dependent photosynthetic efficiency factor. Since these satellite data sets 

are less accurate for near-shore measurements, the satellite-based NPP values used 

here were estimated from the data for a 50 km radius ring surrounding each island, 

with the first 10 km around each island removed. 

 

Water chemistry: At each REA site (~10-15 m depth) diver-deployable 2 L 

Niskin bottles were filled with water from approximately 1m above the reef benthos. 

Plastic scintillation vials were rinsed 3X with the water sample before being filled 
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(200 ml) for nutrient analysis. These samples were stored frozen at -20 degrees C until 

analysis. Concentrations of nitrite, nitrate, and phosphate were analyzed at NOAA's 

Pacific Marine Environmental Laboratory (PMEL) (Detection limits: NOx, 0.01 µM; 

PO4
3-, 0.01µM). 

 

Results  

 

Links between human activity and trophic structure of the microbial 

community: The relative abundance of micro and picoautotrophs (i.e. microbial 

autotrophs) in reef-water was significantly positively correlated with the NCEAS 

cumulative human impact score (linear regression analysis: n = 29, y = 1.89 x – 6.0, r2 

= 0.46; Pearson correlation: P < 0.0001; Figure 1). In two regions of the study, the 

highest proportion of microbial autotrophs also occurred on the most impacted islands; 

Guam in the Mariana Islands, (NCEAS score = 13.7) and Tutuila in the Samoa region 

(NCEAS score = 12.4) (Figure 1, Supplementary Table 1). This result suggests that 

increasing human activities on Pacific coral reefs systematically shift the competitive 

balance between microbial heterotrophs and autotrophs in favor of autotrophs. 

Surprisingly, the relative proportion of the microbial autotrophs was not correlated 

with satellite-derived primary productivity (Spearman r: r = 0.31, n=29, P = 0.09, 95% 

CI = -0.07 to 0.62; Supplementary Table 2). 
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Figure 3.1. The relationship between the island-level NCEAS cumulative human 
impact scores and the autotrophic fraction of the microbial community (< 20 um; 
micro and picoautotrophs) (Linear regression analysis: n=29, y= 1.89 x – 6.0, r2 = 
0.46, Pearson r: P < 0.0001). Color denotes oceanographic region: Guam and the 
Mariana Islands (orange circles), the Main Hawaiian Islands (blue circles), Pacific 
Remote Islands Areas (pink circles), and American Samoa (green circles). For 3-letter 
island codes, see Table 1. 
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Table 3.1. Three-letter codes for islands surveyed, grouped by region. Colors identify 
each regional island group in the figures. 
 
REGION: ISLAND or ATOLL 

Island Code Island 

GUAM & MARIANA ISLANDS (orange) 

AGR Agrihan 

AGU Aguijan 

ASC Asuncion 

FDP Farallon de Pajaros 

GUA Guam 

GUG Guguan 

MAU Maug 

ROT Rota 

SAI Saipan 

TIN Tinian 

MAIN HAWAIIAN ISLANDS (MHI, blue) 

HAW Hawaii 

KAU Kauai 

LAN Lanai 

MAI Maui 

MOL Molokai 

NII/LEH Niihau & Lehua 

OAH Oahu 

PACIFIC REMOTE ISLAND AREAS(PRIA, pink) 

BAK Baker 

HOW Howland 

JAR Jarvis 

JOH Johnston 

KIN Kingman 

PAL Palmyra 

WAK Wake 

AMERICAN SAMOA (green) 

OFU/OLO Ofu & Olosega 

ROS Rose 

SWA Swains 

TAU Tau 

TUT Tutuila 
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Regardless of oceanographic context, larger islands are often more populated.  

For example, in our 29-island dataset, NCEAS human impact scores are highly 

correlated with log land area (km2) (linear regression analysis: n = 29, y = 1.98 x – 

6.7, r2 = 0.70; Pearson correlation: P < 0.0001). Island size could be confounding the 

positive correlation between the level of human impact and the percent autotrophs 

(Figure 1). To address this issue, land area (km2) and reef area (km2) were included as 

possible predictor variables in multiple linear regression analysis [35]. This resulted in 

four models of interest: percent autotrophs = β0 + β1 (NCEAS), y = β0 + β1 (NCEAS) 

+ β2 (log land area), y = β0 + β1 (NCEAS) + β2 (log reef area), y = β0 + β1 (NCEAS) 

+ β2 (log land area) + β3 (log reef area). The regression coefficients (β) represent the 

relative contribution of each of the independent variables to the prediction of the 

dependent variable (y), where y = percent autotrophs. In the first model, the NCEAS 

score was significant, having a p-value less than 0.0001. Using a t-test, and given that 

the NCEAS score is included in the model, the p-values associated with land area (but 

not reef area) were significant in both the two and three parameter models (p-value < 

0.01). Using a model selection criteria, the model with the smallest AIC value 

included land area as an additional variable (y = β0 + β1 (NCEAS) + β2 (log land 

area) [36]. This model explained 57% of the variability in the percent autotrophs; an 

improvement over the simplest model (y = β0 + β1 (NCEAS)) which explained 45% 

of the variability. These analyses support the hypothesis that the trophic balance 

between autotrophs and heterotrophs in reef water is largely driven by the combined 

effects of human impact and island size rather than oceanographic setting.   
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To investigate whether anthropogenic-based sources of nutrient input might 

explain the positive relationship between the relative abundance of phytoplankton and 

human impact, mean NCEAS layers for nutrient input (based on average annual use of 

fertilizer) and non-point source inorganic pollution (urban runoff) were obtained from 

http://globalmarine.nceas.ucsb.edu [37]. In the Marianas islands (n = 5), a strong 

positive relationship was found between inorganic pollution and the percent of micro 

and picoautotrophs (linear regression: y = 213.0 x + 5.98, r2 = 0.87, Pearson corr., P < 

0.05) (Figure S2). By comparison, in the MHI region (n = 7), percent micro and 

picoautotrophs were not correlated with either inorganic pollution (urban runoff) or 

nutrient input (fertilizer use). No significant relationships were found between 

nutrients levels (PO4
3-, SiO2, or NOx) and abundance of microbial autotrophs in any of 

the regions (Table S2). 

 

 To examine how changes in microbial trophic structure affect reef 

microbialization, energy flux rates (W 10 m-3) for both groups of microbes were 

derived allometrically and compared. A highly significant positive correlation (n = 28, 

y = 0.77 x – 1.86; r2 = 0.80) was found between the amount of energy fluxed by the 

heterotrophic microorganisms and that of the photosynthetic micro and picoplankton 

(Figure 2). This result implies that phytoplankton-bacterioplankton coupling may be 

described by a power relationship. The slope of the log-log plot is less than unity 

(slope = 0.77); heterotrophic power requirements increased more slowly than those of 

the autotrophic component (Figure 2). Assuming that our allometric calculations are 

http://globalmarine.nceas.ucsb.edu/
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correct, the autotrophic microbes may use up to 128X more energy per second than the 

heterotrophic microbes. The large difference in energy use per unit area per unit time 

(W 10 m-3) between the two microbial trophic levels is due to the lower activation 

barrier required for the light reactions of photosynthesis versus the biochemical 

reactions of the Calvin cycle (respiration). Thus, at constant temperature and mass, an 

individual microbe expends more energy (J s-1) during photosynthesis than respiration 

(Equation 1). Together with Figure 1, these results suggest that anthropogenic 

activities can alter the competitive balance between autotrophs and heterotrophs and 

cause dramatic increases in rates of energy and materials flux on impacted coral reefs 

systems.  

 

Figure 3.2. Least squares regression analysis on log transformed energy use 
predictions for autotrophic and heterotrophic components (< 20 µm fraction; micro 
and picoautotrophs) in the 103 water-column above the reef sites (n = 28, y  = 0.77 x – 
1.86; r2 = 0.80). Colors represent oceanographic region: Main Hawaiian Islands (blue), 
Guam & Mariana Islands (orange), Pacific Remote Islands Areas (pink circles), and 
American Samoa (green circles). 
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Relative energy flux through the microbial loop by heterotrophic microbes is 

reduced as total power requirements increase. In the reef water column, heterotrophic 

microbes were always more abundant than photosynthetic micro and picoplankton 

(69-98% of the total SYBR + count). Yet their predicted contribution to the total 

energy use was minor and ranged from 14% around Tau Island in American Samoa to 

1% around Maui Island in the Main Hawaiian Islands (Figure 3). This percentage was 

related to total energy use; as total microbial power requirements increased, 

heterotrophic microbes had less metabolic significance. In Figure 3, the discontinuous 

increase in the total amount of energy fluxing through the water-column is largely 

driven by autotrophic microbes (and their lower energy barrier). A highly significant 

correlation was found to exist between total predicted energy use (W 10 m-3) and the 

number of microbial autotrophs (cells ml-1) (Spearman autotrophs: r = 0.82, n=27, P = 

0.0001, 95% CI = -0.63 to 0.91) but not the number of microbial heterotrophs 

(Spearman r heterotrophs: r = -0.04, n=27, P = 0.83, 95% CI = -0.42 to 0.35).  

 

 



61 

 

 

 

 

Figure 3.3. The percent of energy used by heterotrophic microbes plotted as a 
function of total predicted microbial power requirements. The grid line at x = 0.08 W 
10 m-3 represents the first natural break in the data set identified using the Jenks’ 
Natural Breaks algorithm ([R] statistical package: classIntervals, style: jenks). Colors 
represent oceanographic region: Main Hawaiian Islands (blue), Guam & Mariana 
Islands (orange), Pacific Remote Islands Areas (pink circles), and American Samoa 
(green circles). 
 

In the euphotic zone of the open ocean, i.e. oligotrophic waters, where nutrient 

supply is thought to limit phytoplankton biomass, bacterial abundance may be close to 

a lower threshold [38]. Predation by bacterivores and bacteriophage may be less 

efficient near this lower bound, and the mobilization of nutrients via the microbial 

loop may be reduced. As previously stated, the proportion of the total energy fluxed 

by the autotrophic microbes was not correlated with levels of net primary production 

occurring over 10 km offshore. This may be because as reef systems become more 

impacted, microbial density increases and predation-driven remineralization processes 

are more likely to fuel microbialization processes [39, 40].  
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Using the Jenks’ Natural Breaks algorithm in R (http://www.R-project.org), a 

lower bound for total metabolic rate (the first natural break in the dataset) was 

identified (Figure 3). This lower bound contained 53% of the entire dataset. Below this 

lower bound (< 0.08 W 10 m3), the relative contribution of heterotrophic microbes to 

total energy use was highly variable (2% -14%). Above this lower bound, the 

autotrophic to heterotrophic energy flux ratio remained fairly fixed. On 92% of the 

reefs with total microbial metabolic rate predictions above 0.08 W 10 m3, 

heterotrophic microbes accounted for less than 5% of the total energy use predictions. 

Reefs where total microbial energy use predictions exceed this lower bound (0.08 W 

10 m-3) are likely to be experiencing some degree of microbialization. These locations 

include all of the Main Hawaiian Islands and those islands with the highest NCEAS 

scores within each respective region: Guam and Saipan (Marianas), Tutuila (American 

Samoa), and Johnston (PRIAs) (Figure 3). 

  

More human impacted reefs support less microbial biomass per unit of energy 

flux: In size-structured food webs, inverted biomass pyramids can exist because larger 

organisms (higher trophic levels) require less energy per gram. Similarly, in the 

microbial food web, the lowest trophic level (autotrophic microbes) not only has 

access to a larger pool of available energy, but also a greater ability to dissipate it. 

This is because at constant temperature and mass, an individual microbe expends more 

energy (J s-1) during photosynthesis than respiration. To further investigate the 

bioenergetic role of the microbial component with respect to ecosystem functioning, 

http://www.r-project.org/
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the amount of microbial biomass supported per unit of energy degraded (g W-1) was 

derived by dividing mean microbial biomass (g 10 m-3) by the total microbial 

metabolic rate predicted for each island (W 10 m-3). When this parameter was plotted 

as a function of human impact, reef systems with lower NCEAS scores (i.e., less 

human impact) tended to support a greater amount of microbial biomass (g) per unit of 

energy flux (W or J s-1) (Figure 4). In other words, the metabolic efficiency of the 

microbial community decreases with human impact. For example, on Johnston Atoll, 

the most impacted island in the PRIAs group (NCEAS score = 8.5), 4 grams of 

microbes in 10 cubic meters of water overlying the reef required 1 joule of chemical 

energy every second. On Kingman Atoll (PRIAs), one of the least impacted reef 

systems in the data set (NCEAS score = 5.5), the same amount of energy (1 J s-1) 

supports twice as much microbial biomass (8 grams). Similarly, in the American 

Samoa region, the amount of microbial biomass supported per unit of energy flow was 

reduced from 21 g W-1 on Swain’s Island (NCEAS score = 8.6) to 1.5 g W-1 on 

Tutuila, the most heavily impacted island in the region (NCEAS score = 12.4) (Figure 

4). Within the Marianas group, the most impacted islands (Guam and Saipan) also 

support the least amount of microbial biomass per unit of energy flux. Significant 

differences in biomass per unit energy flux were identified between the MHI region 

and both the PRIAs and American Samoa regions (Kruskall-Wallis: n = 28, P = 0.006; 

Dunn’s Multiple Comparison: P < 0.05 for both regions).  
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Figure 3.4. The amount of microbial biomass supported per unit of energy flow versus 
NCEAS cumulative human impact score (n = 26, y = -0.16 x + 1.74; r2 = 0.50). For 
each island, biomass per unit energy flux (g W-1 10 m-3) was calculated by dividing 
total microbial biomass by total predicted metabolic rate. Colors represent 
oceanographic region: Main Hawaiian Islands (blue), Guam & Mariana Islands 
(orange), Pacific Remote Islands Areas (pink circles), and American Samoa (green 
circles).  
 

Discussion 

We previously showed that reef microbialization and human impact are highly 

correlated on Pacific coral reefs [14]. In the Northern Line Islands, metagenomic 

analysis showed an increase in the relative fraction of autotrophic microbes concurrent 

with an increase in microbial counts (fluorescent microscopy) across an increasing 

gradient of human disturbance [18]. In this study, FACS analysis showed similar 

trends occurring on both regional and Pacific-wide scales. Increased microbial 

abundances with increasing human impact have also been documented in Brazil [41] 

and Sri Lanka [42]. Here we have extended this data and shown that the microbial 

autotrophs are predicted to play disproportionately large metabolic roles on 
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“intermediately disturbed” coral reefs. The energetic predictions for our 29-island 

dataset suggest that the microbial ecology of these locations is not yet “extremely 

degraded”, e.g. Christmas (Kiritimati) atoll, where the microbial community is 

dominated by heterotrophs containing many potential pathogens [18].  

  

One mechanism thought to stimulate the rise of opportunistic pathogens and 

facilitate coral to algal phase shifts is the microbial-mediated DDAM feedback model 

(Dissolved Organic Carbon, Disease, Algae, and Microbes) [43, 44]. In the DDAM 

model, reduced grazing by herbivores (due to overfishing) and/or nutrient additions 

stimulate the growth of fleshy algae (macroalgae and turf algae) which release DOC, a 

source of carbon almost exclusively available to heterotrophic microbes including 

opportunistic pathogens (microbes that are normally present within the environment 

but may opportunistically become causative agents of coral disease) [43]. Disease 

outbreaks and coral death result in more free space available for DOC-producing 

fleshy algae.  

 

In general, autotrophic microbes are much less likely to be potential coral 

pathogens. Anthropogenic activities that result in more energy and materials being 

shunted towards microbial autotrophs rather than heterotrophs could potentially 

suppress the rise of opportunistic pathogens. We hypothesize that this type of shift 

may actually buffer reefs from anthropogenic influences and contribute to coral reef 

resilience; higher metabolic demands allow for rapid turnover and processing of 
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excess energy and materials without a corresponding increase in the number of 

disease-causing agents. A key finding from this analysis in support of this hypothesis 

is that as Pacific coral reefs become more impacted, the microbial community 

becomes less efficient overall in terms of conversion of energy into organic structure. 

The "burning" of excess energy dampens the effect that human impact might 

otherwise have on microbial biomass. It may be only in the severely degraded state 

(e.g. Christmas atoll) that the relative competitiveness of autotrophic microbes 

becomes reduced, and the dominant controlling feedback shifts from intermediate 

microbialization to DDAM feedback (where heterotrophic pathways of energy flow 

are reestablished through super-heterotrophic microbes, bacteria that live in extremely 

energy-rich environments with more pathogen-like or copiotrophic growth strategies). 

 

In conclusion, the results of this study are consistent with the DDAM model. 

However, this study suggests a new relationship between microbialization and reef 

system functioning: microbialization as a resilience mechanism. Higher relative 

energy flux by autotrophic microbes may reduce the rate at which a coral reef moves 

towards an alternative stable state in response to human impact. Thus, intermediate 

microbialization may promote continuous (as opposed to discontinuous) phase shift, 

which would ultimately make it easier for a reef system to return to the “original” 

and/or a less-degraded state [45]. 
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Figure S1. Flow Cytometry Analysis of a representative reef-water sample  A) 
Molecular grade water only (Sigma-Aldrich) with yellow-green fluorescent 
microspheres (0.75 μm). This was used to verify minimal background with the 
instrument settings. B) A representative marine sample, run with the same settings and 
layout as in A. The beads can still be seen in the same location, along with several 
populations of autotrophs. The gate encompasses all events counted as autotrophic C) 
The same sample as in B, viewed in the same manner as it will be analyzed for the 
SYBR Green I stained aliquot. This was used to set the gate for SYBR positive events 
(autotrophic + heterotrophic count) and minimize background. D) The representative 
reef-water sample stained with SYBR Green I. The gate set determined the total 
number of marine microbes in the sample. Heterotrophs were calculated by 
subtracting the events in the gate of plot B from the events in the gate of plot D. 
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Figure S2. The relationship between the relative abundance of microbial 
autotrophs and inorganic pollution (urban run-off) in the Marianas region. The 
data layer for inorganic pollution, extracted from the NCEAS website, returned values 
for 5 of 10 island locations in the region including the 4 most populated islands 
(Guam, Saipan, Rota, and Tinian) and one uninhabited island (Aguijan). Linear 
regression analysis: y = 213.0 x + 5.98, r2 = 0.87. 
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Supplementary Figure S3. The predicted metabolic rates of the water-column 
associated microbial autotrophs versus the microbial heterotrophs. Autotrophic 
energy use spans approximately three orders of magnitude while heterotrophic energy 
use increases by only two orders of magnitude. The x-axis is segmented to improve 
data visualization. 
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Supplementary Tables 
 
Table S1. NCEAS cumulative human impact scores shown with the values for the 
percent of the microbial community that is autotrophic (micro and 
picophytoplankton).  The 29 islands that were included in this study are located in 
the central and western Pacific, and are grouped by oceanographic region. Values 
provided for the NCEAS score and the percent autotrophs represent island-level 
means; STDEV is the standard deviation from this mean for the percent autotrophs. 
 

 
 
 
 
 
 
 
 
 
 

Island Code Island
NCEAS Impact 
Score % Autotrophs # Sites STDEV

AGR Agrihan 7.7 13.7 1 na
AGU Aguijan 9.9 8.2 1 na
ASC Asuncion 7.6 6.7 2 4.2
FDP Farallon de Pajaros 6.8 7.4 1 na
GUA Guam 13.7 20.6 3 8.8
GUG Guguan 7.1 9.6 1 na
MAU Maug 6.7 0.0 1 na
ROT Rota 9.4 7.5 1 na
SAI Saipan 11.2 14.0 3 3.4
TIN Tinian 10.3 8.0 2 4.9

HAW Hawaii 12.2 25.8 1 na
KAU Kauai 13.0 19.9 2 5.6
LAN Lanai 12.7 17.3 2 3.6
MAI Maui 14.2 31.5 2 3.2
MOL Molokai 12.8 14.2 2 5.7
NII/LEH Niihau & Lehua 10.7 26.2 2 16.5
OAH Oahu 15.6 16.9 2 1.0

BAK Baker 5.3 9.9 4 1.8
HOW Howland 6.3 13.5 4 5.9
JAR Jarvis 4.0 5.1 4 2.9
JOH Johnston 8.5 5.9 5 3.9
KIN Kingman 5.5 9.3 2 2.8
PAL Palmyra 8.0 10.8 4 5.7
WAK Wake 9.5 4.4 5 1.6

OFU/OLO Ofu & Olosega 8.4 5.5 2 0.5
ROS Rose 8.2 4.1 3 1.8
SWA Swains 8.6 2.4 2 2.2
TAU Tau 8.6 2.2 2 0.5
TUT Tutuila 12.4 25.1 2 6.1

PACIFIC REMOTE ISLANDS & ATOLLS (PRIA, pink)

SAMOA REGION (green)

REGION: ISLAND or ATOLL

GUAM & MARIANA ISLANDS (orange)

MAIN HAWAIIAN ISLANDS (MHI, blue)
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Table S2.  Complete results table for regional and Pacific-wide correlation 
analyses. The covariation between the autotrophic fraction of the microbial 
community and a number of different oceanographic proxies was assessed including: 
the NCEAS cumulative human impact score, satellite-derived values of net primary 
production (NPP), and inorganic nutrients (NOx, PO4

3-, and SiO2). The number of 
islands included in the analysis (n), correlation coefficients (r), and 95% confidence 
intervals are included. Significant correlations (P = 0.05) are in bolded font. 
 

 
 

 

 

Pacific wide NCEAS Pearson r 0.7 29 0.0001 0.42 to 0.83 ***
Marianas 0.7 10 0.015 0.12 to 0.93 *

MHI -0.2 7 0.647 -0.83 to 0.64 ns
PRIAs -0.2 7 0.621 -0.83 to 0.63 ns
Samoa 1.0 5 0.004 0.71 to 0.10 **

Pacific wide NPP Spearman r 0.31 29 0.10 -0.07 to 0.62 ns
Marianas -0.5 10 0.14 na ns

MHI -0.9 7 0.01 na **
PRIAs 0.4 7 0.38 na ns
Samoa 0.4 5 0.55 na ns

Pacific wide NOx Spearman r -0.3 27 0.11 -0.63 to 0.09 ns
Marianas 0.3 9 0.36 na ns

MHI -0.3 7 0.44 na ns
PRIAs 0.2 6 0.66 na ns
Samoa 0.5 5 0.45 na ns

Pacific wide SiO2 Spearman r 0.4 27 0.05 -0.01 to 0.67 ns
Marianas -0.1 9 0.84 na ns

MHI 0.4 7 0.44 na ns
PRIAs 0.3 6 0.66 na ns
Samoa 0.7 5 0.23 na ns

Pacific wide PO4
3- Spearman r -0.3 27 0.19 -0.59 to 0.15 ns

Marianas 0.5 9 0.19 na ns
MHI -0.3 7 0.59 na ns

PRIAs 0.1 6 0.92 na ns
Samoa 0.6 5 0.35 na ns
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CHAPTER 4 

Microbial-mediated Mechanisms of Reef Decline:  

A Review of the Current Literature  

Abstract 

Phase-shifts from coral to algal dominance are currently occurring on coral 

reefs world-wide. Although a number of anthropogenic pressures have been 

implicated, the mechanism(s) underlying these dramatic shifts in benthic community 

structure have yet to be revealed. The existing literature demonstrates a wide variety 

of potential mechanisms of reef-decline. In this review, we examine the current coral 

reef-literature on microbial-mediated mechanisms of reef-decline in relation to coral 

reef phase shift dynamics. By including new data from our own studies, we build on 

the DDAM hypothesis, the current model for how benthic reef algae overtake corals. 

In summary, we classify the ecological integrity of Pacific coral reef systems using a 

degradation threshold based on key macroecological patterns that emerged from our 

data analysis and propose a revised view of reef system degradation which includes 

the effects of human impact on microbial energy flux partitioning and the implications 

for reef resilience.  
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Introduction  

In physics, a “phase transition” is characterized by “different patterns of 

qualitative behavior corresponding to different forms of internal organization 

separated by a sharp boundary” (1). For example, when liquid water freezes, cohesion 

forces dominate over thermal motion, and water molecules which were previously 

undergoing constant collisions with other molecules become locked into a regular 

lattice formation.  In ecology, the terms “phase-shift” and “regime-shift” generally 

refer to a change in system-level behavior resulting from the crossing of a critical 

ecological threshold (2,3). In the case of water freezing, the system’s “state” variables 

(variables used to describe the state of the system) include temperature, volume, and 

pressure. In most ecological systems where phase-shifts have been documented, the 

environment within which the system’s state variables function changes in response to 

multiple human stressors and the system’s state variables remain largely unknown.  

 

Phase shifts on coral reefs: Coral reefs are unique systems in the sense that 

they are intensely competitive and dynamic environments when it comes to space on 

the substrate. The archetypal coral reef phase shift typically occurs as calcifyers (hard 

coral and crustose corraline algae) loose the battle to benthic algae, which include 

fleshy macroalgae (seaweed) or turf algae (a diverse assemblage of filamentous algae) 

(4-5). In the Caribbean, increased levels of anthropogenic disturbance have been 

shown to lead to macroalgal replacement of coral and/or CCA (6). In the Pacific, 

human impact typically leads to turf algal replacement of coral and/or CCA (7,8). 
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Coral disease outbreaks, fewer links in the trophic web, and loss of habitat complexity 

also occur in conjunction with anthropogenically-induced benthic phase shifts (9-11). 

Although a number of anthropogenic pressures have been implicated, including 

herbivore reduction due to overfishing and nutrient loading from pollution, the 

mechanistic cause of coral death remain a topic of debate (6, 12-14).  

 

A growing body of evidence suggests that the combined effects of nutrient 

pollution and overfishing can initate microbially-mediated mechanism(s) by which 

turf algae gain a competitive advantage over corals. The DDAM (Dissolved organic 

carbon, Disease, Algae, and Microbes) model posits that when herbivorous fish and 

other grazers are removed from a coral reef, more fixed carbon from benthic primary 

producers becomes available to the reef-associated microbes (15-22). Turf algae are 

known to release large amounts of dissolved organic carbon (DOC) into the water 

column. A recent study by Haas et al. (2011) found that compared to CCA, 

scleractinian coral, and macroalgae, turf algae release the greatest amount of DOC per 

unit surface area (21). When percent cover data was considered, the amount of DOC 

predicted to be released by turf algae was still significantly higher even when coral, 

macroalgae, or CCA made up a greater percentage of substrate (Figure 4.1A; 

Kruskall-Wallis, P < 0.0001). For example, even on islands with relatively high 

calcifyer cover (50-60%) and low turf algae cover (15-20%), the amount of DOC 

predicted to be released by turf algae is roughly 2X higher than the amount of DOC 
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predicted to be released by calcifyers (~300 µmol hr-1 versus 150 µmol hr-1 m-2, 

respectively) (Figure 4.1B).  

 

 
Figure 4.1A Box and whiskers plot of predicted DOC release rates for different 
benthic organisms for 29 Pacific Islands. Kruskall-Wallis followed by Dunn’s 
multiple comparison found turf algae to be significantly different than CCA, Coral, 
and Macroalgae (P<0.0001). Figure 4.1B Relationship between the percent of the 
benthos occupied by calcifyers (hard coral and CCA) and the amount of DOC released 
by calcifyers (black triangles) versus turf algae (open squares) for the same set of 
islands. 

 

DOC exuded from benthic reef algae may become a significant source of energy for 

heterotrophic microbes in human-impacted reef systems. In the same study, Haas et al. 

also showed that reef water associated microbes directly consumed DOC released by 

all four groups of benthic photosynthesizers (CCA, scleractinian coral, macroalgae, 

and turf algae) (2011).  

  

Microbial-mediated mechanisms of coral death: The existing literature 

demonstrates a wide variety of microbially-mediated mechanisms of coral decline by 
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which turf algae could potentially gain a competitive advantage over corals and drive 

the system to an alternative stable state. The hypothesis that coral death is microbial-

mediated was initially formulated in 2006 and is based on a combination of 

experiments published by Smith et al. and Kline et al (17-18). In the Smith et al. study, 

coral and algae were placed in the same chamber but separated by a 0.02 um filter, so 

that only dissolved compounds could pass between the coral and algae. Without 

antibiotics, 100% of the corals died; but when antibiotics were added to the chamber 

100% of the corals survived. In the Kline et al. study, elevated levels of DOC (but not 

nitrate, phosphate, or ammonia) caused substantial coral mortality.  

 

It is likely that microbially-mediated mechanisms of coral decline disrupt the 

balance between the coral and its associated Bacteria (22-24), the majority of which 

are related to known heterotrophs, thought to consume carbon-rich coral mucus (23, 

25). As stated above, when herbivores lose control over the growth of benthic algae, 

an increased supply of algal-derived DOC (photosynthate) is released onto the reef. 

This DOC is a source of energy almost exclusively accessible to heterotrophic 

microbes (water column and/or surface-associated) many of which are opportunistic 

pathogens (microbes that are normally present within the environment but may 

opportunistically become causative agents of coral disease) (26). Disease outbreaks 

and coral death result in more free space available for DOC-producing fleshy algae. 

Increased microbial and viral loading with higher percentages of opportunistic and 
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specific microbial pathogens could potentially drive the system to an algal-dominated, 

alternative stable state.  

 

This hypothesis is primarily supported by two key studies from Pacific island 

locations (26-27). In the first study, which included four coral atolls in the Line 

Islands, the proportion of microbial 16S rDNA sequences related to known pathogens 

was higher on reefs with the highest incidences of coral disease and the lowest percent 

coral cover (26). In the second study, Kelly et al. found that in regions of the Pacific 

where iron is limiting, corals were killed by reef rubble from shipwreck sites through 

microbial activity and that the microbial community became enriched in iron-

associated virulence genes and known pathogens (2012). Phase shifts from calcifyers 

(coral and CCA) to turf algae also arose at shipwreck sites, most likely as a result of 

the microbial activity initiated by iron enrichment rather than DOC (27). 

 

In comparison to coral-associated microbial communities, algal-associated 

microbial communities have been shown to harbor a higher percentage of autotrophs, 

which are less likely than heterotrophs to be opportunistic pathogens (23). However, 

coral mortality can also occur via pathogenic microbes vectored from benthic algae 

and algal-derived allelochemicals. There are instances in the literature when algae 

serve as reservoirs for coral pathogens (28-29). In the Caribbean, the macroalgae 

Halimeda opuntia has been shown to vector the bacterium Aurantimonas coralicida, 
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the causative agent of white plague type II, a disease that has caused widespread 

mortality in most Caribbean coral species (29).  

 

In addition to pathogenic microbes, increased microbial respiration (resulting 

from increased rates of DOC consumption) can create hypoxic conditions at coral-

algal interfaces and lead to hypoxia-induced mortality of coral tissue (22). In the 2006 

study by Kline et al., elevated DOC levels accelerated the growth rate of microbes 

living in the corals’ surface mucopolysaccharide layer by an order of magnitude (18).  

Whether hypoxia-induced mortality works in combination with other mechanisms of 

microbial pathogenesis remains an open question.  

 

Other (non-microbial) processes that may facilitate coral to algal phase shifts: 

A number of studies have demonstrated that some macroalgae produce surface-

associated metabolites that can directly poison corals at coral-algal interfaces; with 

damaging effects ranging from the inhibition of photosynthesis to tissue death (30-31). 

In addition, fleshy turf algal communities can trap sediment on coral reefs (even in 

cases where reef topography would otherwise facilitate transport of sediment down the 

reef slope onto the seafloor). A number of studies have shown that sediment load on 

reef substrata is negatively correlated with the percent cover of CCA (32-33). In a 

field study on Guam, Belliveau and Paul showed that herbivore exclusion cages had 

significantly increased sediment loads (2002). Therefore, in addition to preventing the 

initation of DOC-driven microbial-mediated mechanism of hard coral decline, it is 
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likely that herbivorous fish also play a role in directly mediating the competitive 

balance between CCA and turf algae.  

 

Investigating the relationship between microbial energy flux and phase shifts: 

Although herbivore reduction due to overfishing probably facilitates coral to algal 

phase shifts, small increases in microbial biomass have a proportionately greater 

impact on the rate of energy transfer (W 10 m-3) than large reductions in fish biomass 

(35). For example, roughly 1 gram of microbes uses approximately as much energy as 

500 grams of fish (35). In a recent study by McDole et al., the microbialization of 

Pacific coral reefs (the process where energy and materials are redirected from 

macrobes to microbes; 36) was found to be strongly correlated with human impact; 

microbial metabolic rates were up to 100 fold higher on the most heavily impacted 

reef systems than on relatively pristine reef systems (35).  

 

Building on the DDAM model: The findings described above are consistent 

with the DDAM model, where photosynthate fuels the growth of heterotrophic 

microbes (water column and/or surface-associated) (15). However, a large body of 

literature suggests that anthropogenic-based sources of nutrient input (i.e. agricultural 

run-off containing fertilizers and pesticides, untreated sewage, shipwrecks, etc.) also 

stimulate primary producers in both the water-column (phytoplankton) and the 

benthos (27-28, 34, 37-38).  
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In the open ocean and on coral reefs, heterotrophs dominate over autotrophs in 

terms of sheer microbial biomass (g 10 m-3); however, because the average kinetic 

energy of activation is lower for photosynthesis than for respiration, microbial 

autotrophs dominate in terms of energy flux (W 10 m-3) (39). In the open ocean there 

is a general trend towards increasing bacterial numbers and biomass with increasing 

primary productivity (40).  On coral reefs, although the combined effects of 

overfishing and land-based pollution stimulate both groups of microbes, the relative 

fraction of autotrophs to heterotrophs has been shown to increase across increasing 

gradients of human activity (35, 39). This ultimately means that as a reef system 

becomes more and more impacted, the microbial community requires more energy, 

but becomes less efficient overall in terms of conversion of this energy into organic 

structure (Figure 4.4). This is because the resulting increase in energy use by the 

microbial community (microbialization) is primarily driven by autotrophic 

metabolism. Autotrophic microbes are much less likely to be potential pathogens, so 

partitioning less and less energy to heterotrophic microbes as human impact increases 

may dampen the negative effects of human activity by preventing the rise of 

pathogenic microbes, which would promote DDAM feedback and rapidly move the 

system towards an algal dominated state (39). It has been shown that continuous (as 

opposed to discontinuous) phase shifts may prevent hysteresis, making it easier for 

reef systems to return to “original” and/or less-degraded states (41). As anthropogenic 

stressors press state variables along a trajectory leading from one stable state to 

another (i.e. increased turf cover, reduced coral cover), the system may be less 



87 

 

 

vulnerable to DDAM feedback loop and hysteresis. It may be only in the severely 

degraded state (e.g., Christmas Atoll, Line Islands; 26) that relative competitiveness of 

autotrophic microbes becomes reduced, and the dominant controlling feedback shifts 

from autotroph-driven microbialization to heterotroph-driven DDAM feedback (where 

pathways of energy flow are reestablished through heterotrophic microbes with more 

pathogenic and/or copiotrophic growth strategies).  

 

As previously stated, in most ecological systems where phase-shifts have been 

documented, the environment changes in response to multiple human stressors and 

little is known about how all of these processes interact to lead to phase-shifts and/or 

coral decline. Little progress has been made on identifying reliable indicators of coral 

reef function and resistance to perturbation (i.e. ecosystem state variables). In this 

study, we attempt to classify the ecological integrity of Pacific coral reef systems 

based on some key macroecological patterns that emerged from our data analysis 

which are interrelated by the theoretical framework presented above.  
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Figure 4.2 Relationships between total microbial energy use (x-axis) and three 
different indicators of reef decline. The three different island-level data sets are 
indicated by stars (the percent of total microbial energy use that is heterotrophic, left-
axis), black circles (the NCEAS cumulative human impact score, left-axis) and open 
circles (the microbialization score, right axis). The dotted red line denotes a natural 
break in the data set of biological significance; it represents a threshold value beyond 
which total microbial energy use increases rapidly. 
 

Figure 4.2 plots the relationship between total microbial energy use 

(heterotrophs + autotrophs) and three different indicators of reef decline. The dotted 

line shown on the x-axes represents a natural break in the data set that was identified 

using the Jenks Natural Breaks algorithm (a one dimensional clustering method where 

the variances within all classes are minimized while the variances among classes are 

maximized) (42). This break-point appears to be one of biological significance; it 

represents a threshold value beyond which total microbial energy use increases 

rapidly. This may be a degradation threshold, a point beyond which the state of the 

ecosystem begins to degrade but does not necessarily imply ecosystem collapse. For 
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this reason, we classify Pacific reef systems with total microbial energy use values 

below this threshold (0-0.08 W 10 m-3) as “pristine”, while reefs above this threshold 

are classified as “intermediately” disturbed reefs (Figure 4.2). In general, the majority 

of human impact scores that occur beyond this break-point are relatively high (above a 

value of 10), microbialization scores are all above 80%, and the relative fraction of 

total microbial energy use required by the heterotrophic microbes decreases and 

remains low (below 2%). The benthic dynamics of the same set of Pacific reefs also 

appear to be related to increased microbial energy use (Figure 4.3a and b). In figure 

4.3, a discontinuous increase in turf algal cover (>40%) and a sharp decrease in CCA 

cover (< 20%) both occur when total microbial energy use is above this break-point.  

  

 

Figure 4.3 The relationship between island-level mean percent cover for a) CCA 
and b) turf algae and total predicted energy use by water-column associated 
microbes.  
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Figure 4.4 Changes in relative energy flux partitioning through microbial 
pathways in A. unimpacted Pacific reef systems, B. intermediately disturbed reef 
systems, and C. phase-shifted reef systems. In each state, bars represent the relative 
proportions of energy fluxed by autotrophic microbes (A), heterotrophic microbes (H), 
and opportunistic pathogens (P).The amount of energy fluxed by autotrophic microbes 
(rectangle with hemispherical cap), heterotrophic microbes (clear hexagon), and 
opportunistic pathogens (black hexagon) are generally scaled relative to each other to 
reflect the different contributions to total energy flux by each microbial group. These 
shapes can also be thought of in terms of energy circuit language (43). Important 
inflows of available energy are represented as circles with arrows and include: 1) solar 
radiation (sun icon), 2) nutrient loading (N, P), 3) algal derived photosynthate (algae 
icon, DOC). Concepts of system functioning represented as icons include: the 
importance of herbivorous fish in preventing algal growth (fish icon), increasing level 
of human activity (human icon), and changes in microbial energy efficiency (the 
amount of energy required per gram of microbial tissue) (light bulb). The vertical 
arrow to the right in B and C represent the large amount of energy dissipated as heat 
from the system 
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