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A B S T R A C T

Testing for uniformity for any given data set on the circle is an important first step before any
further inference. One important class of tests are those based on spacings, which assume that
the data are measured on a continuous scale. In practice however, the observed data may come
grouped, or the recorded observations may be rounded values. Ignoring this fact can result in
incorrect Type I error probabilities and inference, especially if the degree of rounding is severe
or if the sample size is large. In this article, we propose a simple modification to such rounded
data, which then allows us to continue to use the Rao’s spacing test and its exact critical values,
without affecting the probability of Type I error. We provide theoretical justification for the
suggested modification, as well as simulation studies that demonstrate its strong and robust
performance.

1. Introduction

Circular data arise when measurements are directions on the 2-dimensional plane. Such directional measurements can be
represented as points on the circumference of a unit circle, or equivalently, as angles on the [0◦, 360◦) scale with a conveniently
chosen zero direction and a sense of rotation (clockwise or anti-clockwise). Examples abound from diverse fields such as biology
(vanishing directions of homing pigeons), meteorology (wind directions), geology (directions of sediment deposit), materials science
(orientations of lattice in crystals), etc. A circular framework can also be used to represent observations on a cyclical phenomenon
with a known period. Here, a point on the circle represents the position of the observation relative to the entire cycle. Some examples
are in medicine (the time of day when cortisol level reaches its peak), sociology (time of death in the year relative to one’s birthday),
resource planning (arrival time at an emergency room), etc.

Since a point on the circle can have different representations depending on the choice of zero direction and/or the sense of
rotation, circular observations need inferential techniques that are invariant to these choices. In fact, the spacings i.e. the arc-
lengths between successive observations, form a ‘‘maximal invariant’’ (with respect to the rotation group of transformations) in
this context and play an important role. Several monographs provide detailed treatment of circular data and their analysis — see
for example Batschelet (1981), Fisher (1995), Jammalamadaka and SenGupta (2001) and Mardia and Jupp (2009). There is also a
growing body of literature on the topic of circular statistics, to demonstrate which we just cite two articles: Ghosh et al. (1999) for
detecting change-points and Basu and Jammalamadaka (2002) for testing unimodality.

Often, the first step in dealing with such circular observations is to test whether they are uniformly distributed around the circle,
in which case there is no well-defined mean-direction. For example, when a batch of homing pigeons is released, do they have a
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preferred direction of flight, or are they randomly flying in all directions when they vanish over the horizon? Or, in the case of
emergency room arrivals, are the arrivals equally likely to occur during any time of the day, or are certain times more likely? Due
to the reasons mentioned earlier, classical tests of uniformity do not fulfill this invariance property and several modified procedures
that are invariant, are available.

One such test for circular uniformity is the so-called Rayleigh’s test (Rayleigh, 1880), which is based on the length of the resultant
ector, when each observation is treated as a unit vector. Rayleigh’s test however suffers from a serious limitation — it is only useful
or testing uniformity against unimodal alternatives.

An alternative choice is to use tests based on spacings. Such tests measure the discrepancy between the observed spacings
nd their corresponding expected values, which turn out to be 360∕𝑛 under the null-hypothesis of uniformity, when there are 𝑛
bservations and the directions are measured in degrees. Unlike the Rayleigh’s test, spacings-based tests of uniformity are valid
gainst any alternative distribution and are thus universally applicable.

Formally, suppose 𝜃1,… , 𝜃𝑛 are 𝑛 circular observations measured in degrees on the [0, 360) scale. Let 𝜃(1) < 𝜃(2) < ⋯ < 𝜃(𝑛) be
the corresponding ‘‘ordered’’ values, going either clockwise or anti-clockwise. We define the circular spacings as the gaps between
successive observations, namely

𝑊𝑖 =
{

𝜃(𝑖) − 𝜃(𝑖−1), 𝑖 = 2,… , 𝑛
360 − 𝜃(𝑛) + 𝜃(1), 𝑖 = 1.

Depending on the measure of discrepancy used, we can get different members of the family of spacings-based tests. The most
popular choice in this family is the Rao’s spacing test (Rao, 1969, 1976), defined as

𝑅 = 1
2

𝑛
∑

𝑖=1

|

|

|

|

𝑊𝑖 −
360
𝑛

|

|

|

|

. (1)

It calculates the absolute value of the distance between the observed spacings and their corresponding expected values under the
assumption of uniformity. The popularity stems partly from the fact that its exact distribution (and corresponding large-sample
approximation) under the null-hypothesis of uniformity are well-known. Availability of tables of its critical values (see Russell and
Levitin, 1995) and an R routine rao.spacing.test in library(circular) implementing this test make it easy to use by
practitioners. Another notable spacings-based test for uniformity is the Greenwood’s test (Greenwood, 1946), defined as

𝐺 =
𝑛
∑

𝑖=1

(

𝑊𝑖 −
360
𝑛

)2
. (2)

owever, a closed-form exact distribution for small samples is not available and there is only limited availability of tables of critical
alues (see Burrows, 1979; Currie, 1981; Stephens, 1981). Additionally, the lack of software routines makes it less popular than the
ao’s spacing test.

In practice, the directional measurements are often reported after some rounding or truncation. In rounding, the data are grouped
nto class-intervals. A value falling in an interval is represented by the lower or upper endpoint of the interval, depending on its
roximity to the respective endpoint. The amount of rounding can vary depending on various factors, such as the problem at hand,
he precision of the recording instrument, and the convention in the field of application. For example, angular measurements in
he [0◦, 360◦) continuous scale may be rounded to the nearest multiple of 10◦ for convenience. Here the data are grouped into 36

class-intervals of width 10◦ each, with values falling in the [5◦, 15◦) range rounded to 10◦, values in [15◦, 25◦) rounded to 20◦, and
finally, proceeding similarly, values in the interval [355◦, 359◦) ∪ [0◦, 5◦) rounded to 0◦. The reported measurements after rounding
are in the set {0◦, 10◦,… , 350◦}.

Alternatively, the measurements can also be truncated (i.e. rounded down). In this case, the values in an interval are represented
by the lower end of that interval. For example, values in [0◦, 10◦) are represented by 0◦, those in [10◦, 20◦) represented by 10◦, and
o on. Here again, the reported measurements are in the set {0◦, 10◦,… , 350◦}. One can similarly have upward rounding of data.

Since rounding (and similarly truncation) results in discretization of the data, it leads to spacings with a positive mass at zero.
ny spacings-based test statistic, such as the Rao’s spacing statistic calculated from rounded data would have a different distribution

han the original distribution of the statistic (which is calculated from continuous unrounded data) under the null hypothesis of
niformity. Practitioners often disregard this aspect when they use Rao’s spacing test to test for uniformity based on rounded data.
onsequently, inference from such rounded data may be incorrect, especially if the degree of rounding is quite high, i.e., with fewer
lass-intervals used to group the data.

One way to address this issue would be to calculate the distribution of the test statistic when it is based on rounded or truncated
ata. However spacings tests may not be useful in these contexts because rounding and/or truncating leads to a large number
f zero-valued spacings, depending on the degree of rounding. Tests that are not based on spacings (such as a test for discrete
niformity) are not appropriate either, since spacings are maximal invariant in the circular context.

In this article, we propose an alternative method that allows us to continue using the original set of tabulated and readily
vailable critical values. The proposed method assumes that the mechanism of rounding or truncation is known and one can use
his knowledge to modify the rounded data. Under uniformity, the test statistic based on this modified rounded data is shown to
ave the same distribution as the test statistic based on the original unrounded data. This allows the practitioner to continue using
he currently available tables of Rao’s spacing statistic.

The rest of this article is as follows. In Section 2, we present the details and theoretical justification of the proposed method.
n Section 3, we present results of some simulation studies to support our theoretical findings, and in Section 4, we provide a real
2

ata example. We end the article with some concluding remarks in Section 5.
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2. Proposed method

Suppose 𝜃 denotes a continuous circular measurement on the [0, 360) scale. Instead of recording the value of 𝜃, we record a value
𝜃∗, which is a rounded version of 𝜃.

We assume that our rounding scheme uses 𝑘 possible consecutive values 𝛼(1) < 𝛼(2) < ⋯ < 𝛼(𝑘) which are spaced equally apart
on the unit circle, where 𝛼(1) ≥ 0 and 𝛼(𝑘) < 360. Hence, 𝛼(2) − 𝛼(1) = 𝛼(3) − 𝛼(2) = ⋯ = 𝛼(𝑘) − 𝛼(𝑘−1) = 360 − 𝛼(𝑘) + 𝛼(1) =

360
𝑘 . We assume

that for any value 𝜃, the corresponding rounded value 𝜃∗ will be given by

𝜃∗ = 𝛼(𝑖) if 𝜃 ∈
[

𝛼(𝑖) −
360
2𝑘

, 𝛼(𝑖) +
360
2𝑘

)

.

Clearly, the choice of 𝑘 decides the level of rounding. A smaller value of 𝑘 represents higher degree of rounding with more
pronounced rounding effect, and a worsening performance of spacings tests based on such rounded data.

In what follows, we will use the notation ‘‘CU’’ to denote the Circular Uniform distribution.

Theorem 1. If 𝜃 ∼ CU, then 𝜃∗ ∼ Discrete Unif{𝛼(1),… , 𝛼(𝑘)}.

Proof. Suppose 𝜃 ∼ CU. Then for 𝑖 = 1,… , 𝑘,

𝑃 (𝜃∗ = 𝛼(𝑖)) = 𝑃
(

𝜃 ∈
[

𝛼(𝑖) −
360
2𝑘

, 𝛼(𝑖) +
360
2𝑘

))

=
2 × 360

2𝑘
360

= 1
𝑘
.

Hence, 𝜃∗ ∼ Discrete Unif{𝛼(1),… , 𝛼(𝑘)}. □

Given a rounded value 𝜃∗, we propose to obtain a pseudo-value 𝜃 (which we call the modified version of 𝜃∗) as

𝜃 ∼ Unif
(

𝜃∗ − 360
2𝑘

, 𝜃∗ + 360
2𝑘

)

. (3)

Theorem 2. If 𝜃 ∼ CU, then 𝜃 ∼ CU.

roof. We know

𝜃|𝜃∗ ∼ Unif
(

𝜃∗ − 360
2𝑘

, 𝜃∗ + 360
2𝑘

)

.

Also, since 𝜃 ∼ CU, we have

𝜃∗ ∼ Discrete Unif{𝛼(1),… , 𝛼(𝑘)}.

ombining, we get

𝜃 ∼
𝑘
∑

𝑖=1

1
𝑘

Unif
(

𝛼(𝑖) −
360
2𝑘

, 𝛼(𝑖) −
360
2𝑘

)

= CU. □

Hence, given a set of observations 𝜃∗1 , 𝜃
∗
2 ,… , 𝜃∗𝑛 (which are rounded versions of unobserved values 𝜃1,… , 𝜃𝑛 — a random sample of

ize 𝑛 from CU), we can get a random sample of pseudo-values 𝜃1, 𝜃2,… , 𝜃𝑛 from CU according to (3). Testing for circular uniformity
f the distribution of the unobserved 𝜃-values is equivalent to testing for circular uniformity of the distribution of 𝜃-values. Rao’s
pacing test based on these unrounded 𝜃-values can now be computed as before.

Let 𝜃(1) < 𝜃(2) < 𝜃(𝑛) denote the ordered pseudo-values. Define the resulting spacings by

�̃�𝑖 =
{

𝜃(𝑖) − 𝜃(𝑖−1), 𝑖 = 2,… , 𝑛
360 − 𝜃(𝑛) + 𝜃(1), 𝑖 = 1.

hen the statistic

�̃� = 1
2

𝑛
∑

𝑖=1

|

|

|

|

�̃�𝑖 −
360
𝑛

|

|

|

|

(4)

has the same distribution as the Rao’s spacing statistic based on a random sample of size 𝑛 from CU. ‘‘Large’’ values of �̃� indicate
departure of the 𝜃 values from circular uniformity, which in turn indicates departure from circular uniformity of the underlying
distribution of the unobserved 𝜃s. This can be done using tabulated critical values of the Rao’s spacings test. For future reference,
we will denote the Rao’s spacing test computed from (unmodified) rounded data by

𝑅∗ = 1
𝑛
∑

|

|

|

𝑊 ∗
𝑖 − 360 |

|

|

. (5)
3

2 𝑖=1 | 𝑛
|
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Table 1
Simulated Type I error probabilities of Rao’s spacing test for uniformity based on (i) unrounded data: 𝑅, (ii) rounded data without adjustment: 𝑅∗, and (iii)
ounded data with adjustment: �̃�. Here 𝑛 = sample size and 𝑘 = number of groups when rounding. Results based on 10 000 simulations for each combination
f 𝑛 and 𝑘. The nominal Type I error level is 𝛼 = 0.05.
𝑛 𝑘 𝑅 𝑅∗ �̃� 𝑛 𝑘 𝑅 𝑅∗ �̃�

5

5 0.05 0.09 0.05

10

5 0.05 1.00 0.05
10 0.05 0.03 0.05 10 0.05 0.15 0.05
20 0.05 0.04 0.05 20 0.05 0.07 0.05
36 0.05 0.05 0.05 36 0.05 0.06 0.05
180 0.05 0.05 0.05 180 0.05 0.05 0.05
360 0.05 0.05 0.05 360 0.05 0.05 0.05

20

5 0.05 1.00 0.05

50

5 0.05 1.00 0.05
10 0.05 1.00 0.05 10 0.05 1.00 0.05
20 0.05 0.17 0.05 20 0.05 1.00 0.05
36 0.05 0.09 0.05 36 0.05 0.75 0.05
180 0.05 0.06 0.05 180 0.05 0.06 0.05
360 0.05 0.05 0.05 360 0.05 0.05 0.05

100

5 0.05 1.00 0.05

200

5 0.05 1.00 0.05
10 0.05 1.00 0.05 10 0.05 1.00 0.05
20 0.05 1.00 0.05 20 0.05 1.00 0.05
36 0.05 1.00 0.05 36 0.05 1.00 0.05
180 0.05 0.11 0.05 180 0.05 0.46 0.05
360 0.05 0.07 0.05 360 0.05 0.14 0.05

500

5 0.06 1.00 0.05

1000

5 0.05 1.00 0.05
10 0.05 1.00 0.05 10 0.05 1.00 0.05
20 0.05 1.00 0.05 20 0.05 1.00 0.05
36 0.05 1.00 0.04 36 0.05 1.00 0.05
180 0.04 1.00 0.05 180 0.05 1.00 0.05
360 0.05 1.00 0.05 360 0.05 1.00 0.04

Remark 1. The results presented in this section for ‘‘rounded’’ data carry over equally well to the case of ‘‘truncated’’ data, with
corresponding modifications. In that case, the truncated value corresponding to 𝜃 would be given by

𝜃∗ = 𝛼(𝑖) if 𝜃 ∈
[

𝛼(𝑖), 𝛼(𝑖+1)
)

and the pseudo-value (the adjusted value after correcting for the effect of truncation) 𝜃 would be given by

𝜃|𝜃∗ ∼ Unif
(

𝜃∗, 𝜃∗ + 360
𝑘

)

.

. Simulation studies

An extensive simulation study was conducted to compare the performances of following three versions of Rao’s spacing test
nder the null hypothesis of uniformity:

(i) the test 𝑅 based on the original data before rounding, as defined in (1),
(ii) the test 𝑅∗ based on rounded data, as defined in (5), and

(iii) the test �̃� based on the data obtained after applying the proposed modification to remove the rounding effect, as defined in
(4).

.1. Comparison of Type I errors

We considered various combinations of sample size (𝑛) and number of classes (𝑘) for rounding. For each case, the nominal Type
I error level was chosen to be 𝛼 = 0.05 and number of simulations was set at 10,000. Table 1 gives the simulated Type I error
probabilities for the three statistics for selected combinations of 𝑛 and 𝑘. The 5% critical values were obtained using the exact
distribution of the statistic 𝑅 under the null hypothesis of uniformity.

From Table 1, we see that the statistic 𝑅∗, which is based on the rounded data, fails to maintain the nominal Type I error level.
As expected, for a fixed sample size, the Type I error of 𝑅∗ inflates as 𝑘 decreases (i.e. as the degree of rounding gets more severe).
On the other hand, for a fixed degree of rounding, the Type I error of 𝑅∗ gets larger as the sample size increases. Thus, even a
minor amount of rounding will have a severe impact on Type I error if the sample size is large enough. For example, when the
measurements are rounded to the nearest degree (i.e., 𝑘 = 360), there is a 14% chance of incorrectly rejecting the null hypothesis
of uniformity based on a sample of size 200. However, the statistic �̃� based on modified rounded data continues to maintain the
Type I error probability, irrespective of the sample size and the degree of rounding.

Fig. 1 plots the probability of Type I error for Rao’s test against the sample size when observations are rounded to the nearest
multiple of 10◦, resulting in 36 possible values after rounding.

Simulation results in case of the Greenwood’s statistic were similar to those for the Rao’s spacing test. Because of space
considerations, they are not being presented here.
4
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Fig. 1. Plot of Type I error probability against sample size for Rao’s spacing test for uniformity. Solid line: based on rounded data without adjustment (𝑅∗),
otted line: based on rounded data with adjustment (�̃�). Here, observations are rounded to the nearest multiple of 10◦, resulting in 𝑘 = 36 groups. The nominal
ype I error level is 𝛼 = 0.05, shown using the dashed line. Results based on 10,000 simulated values.

Fig. 2. Power comparison of the 3 versions of the Rao’s spacings test based on samples from the von Mises (0, 𝜅) distribution. Sample size 𝑛 = 30, number of
groups 𝑘 = 36, P(Type I error) = 𝛼. Fig. 2(a): 𝛼 = 0.05, Fig. 2(b): 𝛼 = 0.10. Solid line: 𝑅, dashed line: 𝑅∗, dotted line: �̃�. Results based on 10,000 simulated
alues.

.2. Power comparison

Next, we conducted simulation studies to compare the power curves of the 𝑅, 𝑅∗ and �̃� tests. Random samples of size 𝑛 = 40
ere repeatedly selected from the von Mises(0, 𝜅) distribution. For each sample, the values of 𝑅, 𝑅∗, and �̃� were then calculated.
ounded data were obtained by rounding each observation to the nearest multiple of 10◦ (i.e., 𝑘 = 36). This was repeated 10,000

imes and the proportion of times each statistic exceeded the upper 𝛼 quantile of the corresponding Rao’s spacing statistic was noted.
Note that, for the von Mises distribution, the parameter 𝜅, known as the concentration parameter, controls its degree of non-

niformity. The uniform distribution is obtained when 𝜅 = 0 and values of 𝜅 further away from zero lead to a more non-uniform
istribution. The power curves were obtained by varying 𝜅 ∈ 0(0.1)3.

The resulting power curves are presented in Fig. 2. Although the test based on unmodified rounded data (𝑅∗) has higher power,
it fails to maintain the nominal Type I error level. However, the test based on rounded data with the proposed modification (�̃�)
performs identical to that based on unrounded data and is thus preferable.
5
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Fig. 3. Dance directions of 279 honeybees viewing a zenith patch of artificially polarized light. Data from Appendix B.9 on page 244 of Fisher (1995).

. Data example

Wehner and Strasser (1985) describes an experiment conducted to demonstrate that specialized photoreceptors at the dorsal
argin of the eyes of honeybees are necessary for detecting polarized skylight and deriving compass information from celestial

-vector patterns. In the control dataset, the part of the eye of each bee conjectured to contain the receptors are painted out and
he bees are exposed to a zenith patch of artificially polarized light. The resulting dance directions of 279 honeybees are available
n Fisher (1995) (see page 244, Appendix B.9). The corresponding circular dotplot is shown in Fig. 3. Note that the data presented
n Fisher (1995) are rounded values, with rounding done to the nearest multiple of 10◦ (i.e., 𝑘 = 36). It is of interest to test the null
ypothesis of circular uniformity of the dance directions for this (rounded) control dataset.

The Rao’s spacing test, when applied to this rounded data without any modification yields a test statistic value of 313.5484.
his corresponds to a 𝑝-value of approximately 0, strongly indicating non-uniformity. However, using the proposed modification of
he rounded data, the test statistic value comes to be 2.3017, resulting in an associated 𝑝-value of 0.5391, which fails to provide
ignificant evidence against uniformity of the dance directions. The conclusion from the modified test thus coincides with scientific
heory.

. Concluding remarks

Tests for circular uniformity based on spacings of rounded observations can have inflated Type I error probabilities if one ignores
he rounding mechanism and treats the data as if they are continuous and have not been rounded. The inflation in Type I error
epends on the amount of rounding and the size of the sample. In this paper, we provide a method of adjusting the data to correct
or the effect of rounding, and using the adjusted data to calculate the test statistic. This adjusting of data needs knowledge of the
ounding mechanism. We considered the commonly used Rao’s spacing test for circular isotropy as well as the Greenwood’s test.
hese tests maintain their Type I error probabilities perfectly when our suggested method for correcting the rounding is applied,
ith the advantage that the critical values currently available continue to be applicable.

It is important to note that our proposed modification to rounded or truncated data is such that it recovers the same distribution
or the test statistics based on the original data under the null hypothesis of uniformity. Consequently, the test is able to maintain
he same probability of Type I error (but not necessarily maintain the same power). For these spacings tests to retain the same
ower as before the data is rounded or truncated, we need to know the alternative under which the power is being calculated. Such
n alternative can then be taken into account for our adjustment, so that the adjusted data follows the same alternative distribution
s the original data before rounding. This can be quite tricky.

Recently, the issue of using Rao’s spacing test in the presence of rounded data was also discussed by Landler et al. (2019). They
roposed adding random perturbations of von Mises variates with zero mean and a high concentration (𝜅 = 1000) to the rounded
alues, and working with Rao’s spacing test calculated using the resulting modified observations. Based on limited simulation studies,
hey claim that their proposed modification maintains Type I error rate as well as power against the von Mises alternatives. We
elieve that their proposed method is not the theoretically correct way of adjusting for the effect of rounding, either under the null
ypothesis of uniformity or under the von Mises alternatives. The only benefit of their method seems to be removal of ties among
6

he observations and the resulting zero-valued spacings, which affect the Type I error.



Statistics and Probability Letters 210 (2024) 110114S. Rao Jammalamadaka et al.

D

P

R

B

B
B
C
F
G
G
J
L

M
R
R

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

ata availability

Data are available from Appendix B.9 on page 244 of Fisher N.I. (1995) Statistical Analysis of Circular Data, Cambridge University
ress.

eferences

asu, S., Jammalamadaka, S.R., 2002. Unimodality in circular data: A Bayes test. In: Balakrishnan, N. (Ed.), Advances on Methodological and Applied Aspects
of Probability and Statistics. Taylor and Francis, pp. 141–158.

atschelet, E., 1981. Circular Statistics in Biology. Academic Press, New York.
urrows, P.M., 1979. Selected percentage points of Greenwood’s statistic. J. R. Stat. Soc. Ser. A 142 (2), 256–258.
urrie, I.D., 1981. Further percentage points of Greenwood’s statistic. J. R. Stat. Soc. Ser. A 144 (3), 360–363.
isher, N.I., 1995. Statistical Analysis of Circular Data. Cambridge University Press, Cambridge.
hosh, K., Jammalamadaka, S.R., Vasudaven, M., 1999. Changepoint problems for the von Mises distribution. J. Appl. Stat. 26 (4), 423–434.
reenwood, M., 1946. The statistical study of infectious diseases. J. R. Stat. Soc. 109, 85–110.
ammalamadaka, S.R., SenGupta, A., 2001. Topics in Circular Statistics. World Scientific.
andler, L., Ruxton, G.D., Malkemper, E.P., 2019. Circular statistics meets practical limitations: A simulation-based Rao’s spacing test for non-continuous data.

Mov. Ecol. 7 (15), http://dx.doi.org/10.1186/s40462-019-0160-x.
ardia, K.V., Jupp, P.E., 2009. Directional Statistics. Wiley, Hoboken, NJ.
ao, J.S., 1969. Some Contributions to the Analysis of Circular Data (Ph.D. thesis). Indian Statistical Institute, Calcutta, India.
ao, J.S., 1976. Some tests based on arc-lengths for the circle. Sankhyā B 38, 329–338.
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