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The mission of an unmanned air vehicle (UAV) tethered to a small unmanned surface

vehicle (USV) is considered. The tether doubles as a power umbilical and communications

link, providing unlimited flight duration and secure data transfer while limiting mobility.

Contrary to the majority of existing tethered UAV work which assumes a taut tether for

dynamic stability, this dissertation addresses the challenge of tether management for a

slack, hanging tether in a dynamic ocean environment up to sea state 4 on the Douglas

scale. For controlled laboratory experimentation, a novel wave and boat motion replication

mechanism is developed capable of replicating motion up to 2.2 m heave, 32◦ roll, and
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35◦ pitch. A reference hanging tether model maximizes heave robustness, providing a

target tether length, departure angle, and tension. An effective estimation and control

strategy is presented and validated indoor through motion capture experimentation and

outdoor using a differential global positioning system (GPS) solution. The foundation

of a simulation model for the complete tethered UAV - USV team is developed. The

dynamic partial differential equations of motion are derived by treating the tether as a

continuous body using Hamilton’s principle of least action. A simulation model is then

developed, discretizing the elastic tether with linear and quadratic shape functions. Finally,

the simulation results are experimentally validated.

The primary contributions of this dissertation include:

1. A novel 3-PSR mechanism capable of replicating the pitch, roll, and heave motion of

a boat in sea state 4 (see Chapter 2),

2. A catenary hanging cable theory-based model to determine a reference tether length,

angle, or tension for maximum heave robustness (see Chapter 3),

3. A relative velocity-based gain scheduled tether management controller (see Chapter

4.2),

4. A Kalman filter model to estimate relative altitude, fusing a slow, relative altitude

differential GPS measurement with fast inertial measurements (see Chapter 4.4),

5. The experimental validation of the heave robustness model, filter and controller (see

Chapter 6),

6. The derivation of the partial differential equations of motion of a continuous three

dimensional elastic string pendulum and UAV-USV team (see Chapter 7), and

7. The development and experimental validation of a quadratic shape function simulation

model (see Chapter 8 and Chapter 9).
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Chapter 1

Introduction

Lightweight, agile, low cost, unmanned air vehicles (UAV) provide numerous ca-

pabilities for a variety of missions and tasks. However, a significant limitation is short

mission duration due to battery life, weight and payload capacity, often limited to less

than 30 minutes flight time [1]. This compounds when trying to use the UAV to perform

any task involving a payload such as cameras or radios. The more payload, the greater

thrust required, and the shorter the mission. To overcome short duration flight, similar to

the approach of pumping fuel up to a rotorcraft [2], a recent trend has been to provide a

power umbilical tether with the power source on the ground or base station, providing for

unlimited flight duration [3–5]. Such a persistence of flight capability can greatly benefit

emergency and disaster response efforts by providing a secure communication network

node or video surveillance in the sky [6], as well as military Intelligence, Surveillance,

and Reconnaissance (ISR) missions such as presented here. However, a tether limits the

mobility of the UAV and introduces the problem of tether management due to the dynamics

and control of the tether. Taut tether flight may also be undesirable since it introduces

downward forces on the UAV due to tether tension. These forces must be overcome by

increasing UAV thrust, ultimately reducing the overall payload capacity and total power
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budget.

Most published works in the field of tethered flight are restricted to the taut tether

case. Taut tether flight can be used to avoid dealing with tether oscillations [2], improve

flight stability [7–11] or enhance landing capability [12–14]. Such systems neglect the

reduced payload capacity and increased UAV thrust requirement. They employ either no

tether management while the UAV maintains tension with novel linear and nonlinear flight

controllers [8, 15], or a tension monitoring winch mechanism that continuously reels in any

slack tether length [16]. Station keeping, where the UAV remains stationary, is not possible

for systems where the UAV controls tension. Advanced tethered flight challenges have been

undertaken, such as landing on an inclined surface [17], coordinated load carrying [18] [19],

or using two unmanned ground vehicles (UGV) to control the flying height of a UAV [20].

However, all of the above examples operate with a taut tether, and are not applicable to

the present study.

Other systems have considered non-taut tethered flight using a reactive tether man-

agement approach [21]. The addition of a tether to a UAV gives an additional measurable

feature to develop non-GPS based UAV position estimation techniques. Primarily, the

tether arrival angle at the UAV is measured [22], or the tension at the UAV [23], and

incorporated into the state estimation algorithm. Another work used the measured tether

length, tension, and departure angle as a means for non-GPS position estimation of the UAV

based off a catenary cable model [6, 24]. However, the work relies on a clutch-driven winch

mechanism and on the UAV for tension control with no consideration of total power budget.

These tethered systems consider only a scenario where the base station is stationary, not

undergoing any dynamic motion. Other work has considered tethered UAVs with moving

platforms, but only under taut conditions with no experimental validation [25]. The above

examples do not consider the mission presented here involving a highly dynamic moving

base and do not consider any tether management
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Figure 1.1: Schematic of a tethered UAV USV team in up to sea state 4. The winch
system controls tether length to account for the dynamic motion of the small USV,
leaving the tether in a hanging, semi-slack state at all time.
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The mission schematic for a tethered UAV system considered here is shown in Fig.

1.1. The UAV, flying at up to 50 meters altitude must maintain position, orientation, and

altitude for communication or ISR missions. The UAV is tethered to a small, 3 to 7 m

length unmanned surface vehicle (USV) subject to a dynamic ocean environment. The

power umbilical tether enables long duration UAV flight over 22 hours [26]. However,

the total system power budget is limited for small USVs on long duration missions. A

reasonable hypothesis is that compared to taut tether flight, a hanging tether can minimize

the counteracting tether tension forces, ultimately decreasing power consumption and

the required thrust safety margins of the UAV. The fast acting dynamics of an ocean

environment are inherently compensated for through the varying sag of the tether. Flying

on a non-taut, or hanging tether can decouple the motion of the UAV and USV, but

introduces two potential failure mechanisms solved by tether management: preventing the

tether going taut affecting UAV flight, or fouling with the USV during a large heave event.

In order to effectively develop, validate, and analyze any prototype and control

approach, a repeatable testing environment is needed for replicating open water dynamics

and boat motion. A testing platform capable of replicating wave and boat motion allows

for land-based testing, reducing costs and the design iteration cycle time. The alternative,

of relying on weather conditions to test in specific sea states is too costly, time limiting, and

dangerous. Chapter 2, presents the design of a novel, low-cost, 3-PSR parallel mechanism

capable of replicating the full scale range of boat motion up to sea state 4: up to 2.2 m

heave, 32◦ roll, and 35◦ pitch. A design parameter optimization is presented to maximize

the roll-pitch workspace. A three-axis interpolation approach is presented to accurately

generate a desired path through the roll-pitch workspace. The 3-PSR parallel mechanism

was fabricated and experimentally validated using an inertial measurement unit (IMU).

For semi-slack hanging tether control, a reference model is necessary. Chapter 3

analyzes the static catenary hanging cable problem and develops a model-based approach
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for tether management driven by relative position and tether length. A recommended

relative flying position is presented considering robustness to vertical motion of the USV.

An approximate model is presented in the form of a low order polynomial. This provides

a computationally inexpensive approach for determining a reference tether length, angle,

or tension. The proposed model allows for a large range of flying positions while lowering

overall power consumption. Experimental testing confirms the validity of the proposed

catenary tether model.

Chapter 4 develops a tether management prototype design, relative position esti-

mator, and control system for autonomous tether management. The prototype is capable

of measuring tether length, departure angle, and tension. With the goal of outdoor op-

eration, a Kalman filter model is developed to fuse a slow, 4 Hertz Real-Time Kinetic

differential GPS (RTK dGPS) based relative position measurement with fast, 100 Hertz

inertial measurements, to output a fast, 100 Hertz estimate of the relative position, relative

velocity, and inertial sensor bias. A relative velocity-based gain scheduled controller was

developed to smooth out any errors and discontinuities seen in the Kalman filter at low

relative velocities. Chapter 5 describes the phased testing procedure. The experimental

approach is split into three stages UAV surrogate, indoor flight, and outdoor flight testing

in order to first validate the controller and mechanical prototype, tune and validate the

estimation filter, and then evaluate the RTK dGPS solution. Chapter 6 presents the results

from experimental testing. The system is experimentally validated through indoor motion

capture based experimentation and outdoor RTK dGPS-based experimentation. Indoor

experimentation, using a UAV surrogate for a perfectly known, controlled environment,

demonstrated the developed estimator and controller greatly reduce tether tension and

forces on the UAV compared to taut tether control. Indoor flight testing successfully showed

decoupling of USV heave motion from UAV altitude and position, while also demonstrating

a similar UAV altitude and position range compared to un-tethered flight. Finally, outdoor
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flight testing using a dGPS and an IMU-based Kalman filter solution to measure relative

position showed the feasibility in an unknown dynamic environment. A hanging tether

management system can extend longevity, decrease power consumption, extend mission

duration, increase flight altitude, and decrease the required thrust safety margins of the

UAV.

In order to eventually develop more capable control methodologies, a complete

dynamic model and simulation environment are required. Chapter 7 presents a complete

Hamilton’s principle derivation of the equations of motion for an elastic string pendulum.

In Chapter 8, the continuous body is discretized via the Galerkin finite element method,

developing a formulation for one dimensional linear, and quadratic shape functions. Chapter

9 discusses the simulation results, and compares them to experimental three dimensional

pendulum motion capture experiment performed to validate the developed numerical model.

This dissertation is outlined as follows. Chapter 2 details the 3-PSR wave and boat

motion replication parallel mechanism. Chapter 3 derives the heave robustness catenary

tether model. Chapter 4 describes the prototype winch, controller and estimator devel-

oped. Chapter 5 details the experimental test setup. Chapter 6 presents the experimental

validation results. Chapter 7 presents the dynamic derivations of the three dimensional

elastic string pendulum dynamics and UAV-USV dynamic equations of motion. Chapter 8

presents the development of linear and quadratic shape function finite element formula-

tions for simulation. Chapter 9 presents the simulation results and validates them with

experimental testing. Chapter 10 presents the continued and future work. Finally, Chapter

11 summarizes the key conclusions of this dissertation.
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Chapter 2

Design and Parameter Optimization

of a 3-PSR Parallel Mechanism for

Replicating Wave and Boat Motion

This chapter presents the design of a novel, low-cost, 3-PSR parallel mechanism

capable of replicating the full scale range of boat heave up to sea state 4. A design parameter

optimization maximized the roll-pitch workspace. A three-axis interpolation approach is

presented to accurately generate a desired path through the roll-pitch workspace. The

3-PSR parallel mechanism was fabricated and experimentally validated using an IMU.

The remainder of the chapter is organized as follows. Section 2.1 discusses the

relevant mechanism background. Section 2.2 details the design and hardware selection.

Section 2.3 derives the relevant geometric constraints to develop the kinematic lookup table.

Section 2.4 details and discusses the roll-pitch workspace. Section 2.5 discusses the design

parameter optimization approach and results. Section 2.6 discusses the interpolation of the

lookup table. Section 2.7 investigates the generation of motion profiles and discusses the

experimental results. Section 2.8 details recent improvements. Section 2.9 summarizes the
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key conclusions.

2.1 Background

The development of the parallel six degree of freedom (6-DOF) Gough-Stewart

platform in the 1960s sparked a wealth of research into wave and boat motion simulation

and replication. Originally developed for simulating flight [27] and tire testing [28], the

platform has been used in a variety of applications, including telescope positioning [29],

cnc machining [30], precision surgery [31], wave compensation [32], wave energy conversion

[33,34], and floating platform replication for UAV landing [35]. To carry heavy loads, the

designs often use a hydraulic piston, which have limited range of extension. The high

cost and limited motion from hydraulic pistons limits the capabilities of existing systems,

usually resulting in mechanisms that are scaled down. This can be problematic if trying

to capture the full heave, or vertical translation displacement of boat motion in large

waves. Some 6-DOF and 4-DOF prismatic-spherical-spherical (6-PSS, 4-PSS) mechanisms

on parallel linear rails have been proposed to achieve larger displacements, but not for

wave replication [36–38]. Other ship motion replication mechanisms decouple heave from

orientation, using lifts to capture the full scale range of vertical motion, but are large and

costly [39]. Man made wave pools, like Naval Surface Warfare Center (NSWC) Carderock’s

Maneuvering and Sea-keeping (MASK) basin have been used for replicating waves [40,41].

These wave replication systems are very expensive to build and use. Often, they are

specifically built for recreation and limited to less than 1.25 m waves [42]. There is no

existing low-cost system that can capture the full scale range of heave for moderate to high

sea states.

For the coordinated UAV-USV scenario, USV motion can be characterized by three

orientation DOFs {roll, pitch, yaw} and three translation DOFs {heave, surge, sway}. The
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dominant DOFs of the USV induced by sea waves are roll, pitch, heave. The other three

DOFs {surge, sway, yaw} change at a slower rate, are an order of magnitude smaller, and

are often induced by propellers, wind, and currents [43]. Any drift of the minor DOFs

motion are more easily gradually corrected by the UAV-USV system. Thus, a reduced

3-DOF mechanism, which has control in the primary DOFs {roll, pitch, heave} is sufficient

to capture the major motions of the USV in high sea states. That motion can be accounted

for via feedback control applied to the winch system for reliable operation.

Many 3-DOF prismatic-revolute-spherical (3-PRS) and revolute-prismatic-spherical

(3-RPS) parallel mechanisms have been proposed and thoroughly analyzed [44–51]. However,

these mechanisms don’t provide the desired control in the primary DOFs for wave replication

{roll, pitch, heave}, with minimal coupling of the minor DOFs {surge, sway, yaw}. By

switching the location of the joints, thus creating a 3-DOF prismatic-spherical-revolute

(3-PSR) parallel mechanism, the desired mobility and control can be achieved. Specifically,

the 3-PSR design allows for large displacement heave and precise control of 2 orientation

DOFs {roll, pitch}.

2.2 Design

A 3-PSR parallel mechanism is proposed to replicate the primary DOFs {roll,

pitch, heave} for wave replication, similar to one developed for a shipboard stabilization

platform [52]. The proposed design, as shown in Fig. 2.1 does not require a redundant

fourth link which differentiate it from previous work. The proposed design uses linear

guides to achieve the required heave range for sea state 4.
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Figure 2.1: Conceptual 3-PSR parallel mechanism for wave and boat motion replication.
The sliders on the vertical rails are kinematically linked to the platform, and actuated
to replicate the roll, pitch and heave motion experienced by an USV. This specific
mechanism is designed for testing a winch controller for a tethered UAV-USV system.

2.2.1 Mechanical Design

To accommodate the large displacement required in the vertical direction, three

rails with belt driven actuated sliders are used as prismatic joints. The sliders are attached

to three arms through spherical ball joints. The arms then connect to a platform through

revolute hinge joints. The platform is large enough to carry the winch system, and can

roll and pitch at any height along the vertical rails by changing the relative slider heights

according to the workspace lookup table derived in Section 2.4. The radially symmetric
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Table 2.1: 3-PSR Prototype Hardware

Hardware Supplier Part Number

T-slotted frame MiniTec Profile 45x90 F
Linear rail + slide MiniTec LR6S + LR6
Timing belt pulley MiniTec 28.0510/1

Stepper motor Anaheim Automation 34Y214S-LW8
Motor driver Anaheim Automation MBC10641

Micro-controller Azteeg X3
Power supply B&K Precision 9117

Ball joint Mcmaster 8412K120
Hinge MiniTec 21.2020

Firmware Custom -

equilateral design limits an UAV to 120◦ of operating space. Similar to an elevator, a

secondary slider system acts as a counterweight to ease the static torque requirements of

the actuators and prevent catastrophic damage in the event of a failed motor. Low-cost

stepper motors allow for a motion profile to be commanded in open loop.

A primary benefit of this design and the following analysis is the ability to scale

the design for larger wave heights. By extending the vertical rails, the heave range can

be increased. Larger payloads can be achieved by increasing the radius, arm length, and

platform size. A higher torque motor can be easily integrated to account for a heavier

payload. This design works well in applications where heave is a major component of the

required motion, an order or two greater. The platform can be oriented up from the sliders

instead of down, which would be beneficial for perfecting the automated landing of an

UAV.

2.2.2 Hardware

An experimental prototype was developed using T-slotted extruded aluminum for

the frame, fabricated large enough to replicate wave conditions up to 2.5 m heave (sea state
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4), with a 5 to 15 second period [53]. A geared belt system was used driven by NEMA 34

stepper motors with a maximum torque of 8.5 N-m, enough to carry a 15 kg payload on

the platform. Stepper motor drivers capable of 10 A at 80 V were required to fully use the

torque range of the motors. A 3D printer micro-controller based off the Arduino ATMEGA

2560 communicates with the stepper motor drivers. Custom firmware was developed to

command motor steps per clock tick, running at 10 Hertz. Table 2.1 lists the specific

hardware used. All hardware was purchased for under $6k USD.

2.3 Kinematics

The kinematic derivations in the literature on 3-PSR parallel mechanisms are limited,

primarily due to the challenge of determining coupling DOFs of the platform for typical

inverse kinematic approaches. A previous 3-PSR mechanism derived an inverse mapping

between the platform and sliders under the assumption that the platform location and

orientation are known [52]. They first determined the coupling of the translation DOFs

{surge, sway} to determine the platform location when orientation DOFs {roll, pitch} are

independently specified. They then use screw theory to solve for the required slider heights.

However, they neglect the induced coupling of the orientation DOF {yaw} when two

orientation DOFs {roll, pitch} are specified jointly. To reiterate, knowing two orientation

DOFs {roll, pitch} does not immediately give the position of corners of the platform for

typical inverse kinematic approaches. Because the third orientation DOF {yaw} coupling

can not be solved analytically when two orientation DOFs {roll, pitch} are specified, a

forward kinematic numerical procedure to develop a lookup table is considered here.
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Figure 2.2: 3-PSR mechanism schematic. a) Diagram of the linkage structure. b)
Design parameters for solving kinematics.

2.3.1 Geometric and Hinge Constraints

Given slider heights for the schematic shown in Fig. 2.2, the spatial coordinates of

the corners of the platform can be solved using geometric constraints and hinge constraints

for each of the three towers. The distance between the platform corner and slider is defined

as:

||si − ci|| = l (2.1)

where si are the coordinates of the slider for the i’th tower, ci are the coordinates of the

i’th corner of the platform, and l is the constant length of the arm. A similar geometric

constraint equation specifies the size of the platform:

||ci − cj|| = d (2.2)
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where cj are the coordinates of the j’th corner and d is the edge length of the equilateral

shaped platform. The hinge joint constrains the arm to be perpendicular to the back edge

of the platform. When perpendicular, the inner product of the vector from the slider to

the corner of the platform and the back edge is zero:

〈si − ci, cj − ck〉 = 0 (2.3)

where ck are the coordinates of the k’th corner of the platform.

Combining Eq. 2.1, Eq. 2.2, and Eq. 2.3 for each of the three towers leads to a

system of 9 equations with 9 unknowns. The nine unknowns are the x, y, and z coordinates

of the three platform corners. This set of equations can be solved with a numerical solver

such as the Newton-Raphson (NR) method for any given set of slider heights [54].

2.3.2 Platform Pose

The location of point p, roll, pitch, yaw, hinge, and ball joint angles can be determined

knowing the x, y, and z locations of the three corners of the platform. Point p, defined

as the center of mass (COM) of the platform, is found from the mean of the x, y, and z

coordinates of the corners. The coupled surge, sway, and heave of the platform correspond

to the translation of point p. The body coordinate vectors, x′, y′, and z′ define an affine

rotation matrix from a unit length coordinate system centered at the origin of the world

frame, o. The platform normal vector is found from the normalized cross product of two of

the edges.

z′ =
(c1 − c3)× (c1 − c2)

|| (c1 − c3)× (c1 − c2) ||
(2.4)

14



The remaining platform body coordinate vectors are found from the normalized vector

between corner 1 and point p,

y′ =
(c1 − p)
|| (c1 − p) ||

(2.5)

and the cross product of y′ and z′.

x′ = y′ × z′ (2.6)

The roll, pitch, and yaw angles can be backed out from three separate entries of the 1-2-3

Tait Bryan rotation matrix [55]:

φ = arcsin z
′(1) (2.7)

θ = − arcsin
z
′(2)

cosφ
(2.8)

ψ = − arcsin(
y
′(1)

cosφ
) (2.9)

where φ is roll, θ is pitch, ψ is yaw, and the 1 and 2 superscripts correspond with the

first and second entry of the respective vector. The i’th hinge angle, δi, is found from the

normalized inner product of the arm vector with the vector from the respective corner to

point p:

δi = arccos
〈ci − p, si − ci〉
||ci − p||l

(2.10)

The i’th ball joint angle, βi, is found from the normalized inner product between the arm

vector and the mounting axis as:

βi = arccos
〈si − ci, b̂i〉

l
(2.11)
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where b̂i is the unit length mounting axis of the ball joint defined by:

b̂i = R (γ) t̂i (2.12)

where γ is the ball joint mounting angle and t̂i is the unit length vector from the origin

to the base of the tower. R (γ) is a rotation matrix to rotate the vector by the ball joint

mounting axis angle:

R (γ) =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (2.13)

The equations defined here provide the precise platform pose required to define the workspace

for parameter optimization.

2.4 Workspace

The workspace for nominal, nondimensional length parameters is first investigated,

i.e., the tower radius, r = 1, arm length, l = 1, and platform edge length d = 1, and

then the results are used to optimize these design parameters in Section 2.5. All possible

combinations of relative slider heights were simulated apriori to develop a lookup table

relating platform pose to slider heights. To capture the entire workspace, the first slider

was kept at a height of 2.5r, and the other two ranged from 0 to 5r in 200 increments. For

each combination of slider heights, the geometric constraints were solved numerically from

Eq. 2.1, Eq. 2.2, and Eq. 2.3 using the tower base coordinates as initial guesses for the NR

method. When a numerical solution was found, the roll and pitch angles were calculated

using Eq. 2.7 and Eq. 2.8.
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2.4.1 Physical Constraints

Two physical constraints are applied to avoid mechanical singularities. First, the

platform must physically stay within the towers. The arm vectors must never be parallel

with the towers, imposed by only keeping solutions where the inner product between the

arm vector and tower vector is greater than 0.

〈si − ci, t̂i〉 ≥ 0 (2.14)

Secondly, the arm can not rotate through the platform, limiting the hinge range from 0◦ to

180◦. This is imposed by only keeping solutions where the inner product between the arm

vector and platform normal are greater than 0.

〈si − ci, z′〉 ≥ 0 (2.15)

2.4.2 Workspace Results

The workspace for the nominal parameters are shown in Fig. 2.3a. As the design is

symmetric across the y-z plane, the workspace is symmetric across the φ = 0 axis. The

slider curves, defining the movements of the three sliders, wrap back in on themselves in the

regions near the boundaries and corners of the workspace. These regions of kinematic lock

corresponds to an extreme platform orientation that can only be achieved after a specified

set of slider movements. More specifically, after the platform moves to the boundary of the

workspace, it can move back away from the boundary by yawing. The curves stop when

the physical constraints are applied, where the mechanism would become singular.

The yaw coupling, as shown in Fig. 2.3b for sub-optimal design parameters, is

largest at the extreme roll and pitch angles and regions near the edge of the boundary.

The coupling is different for the same roll and pitch combinations in these regions as seen
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Figure 2.3: Roll - pitch workspace for: a) Nominal design parameters r = l = d = 1.
The S1, S2, and S3 curves correspond to the path through the space by changing
one of the slider heights while keeping the other two constant. The three curves for
each slider path correspond to different relative slider heights of the other two sliders.
b) Sub-optimal design parameters r = 1, l = 1.1, and d = 1.15. Yaw coupling is
shown by the color intensity map. The missing area results from imposing the physical
constraints. The roll - pitch workspace inside the polygon was maximized in the
parameter optimization.

by the overlapping color intensities. Imposing the physical constraints can potentially leave

holes, or disjoint regions in the workspace. These regions represent where the platform

would have to travel outside the towers, or the hinge would rotate past 180◦, through a

mechanical singularity, and potentially invert the platform.

The coupling of the two uncontrollable translation degrees of freedom have similar

results, but are not shown. Surge is symmetric across the φ = 0 axis, while sway is inversely

symmetric across the same axis. The maximum translation coupling is ∼50% of the nominal

scale. For this application, where heave motion is significantly greater than the nominal

scale, the yaw, surge and sway coupling are within an acceptable negligible range.
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2.5 Design Parameter Optimization

An engineering objective is to find the design parameters which maximize the

workspace given the geometric and physical constraints. A parameter study was performed

varying l and d relative to r from 50% to 150% in 2.5% increments. For each parameter

combination, the area of the boundary of the workspace was calculated. The parameter

sets with disjointed workspace were discarded. The regions of kinematic lock at the corners

of the workspace were reduced by limiting the hinge angle range from 26◦ to 180◦. This

was enforced by normalizing Eq. 2.15 and keeping solutions greater than or equal to .45:

〈si − ci, z′〉
||〈si − ci, z′〉||

≥ .45 ≈ cos (90◦ − δi) (2.16)

To further remove the regions of kinematic lock from the optimization, the boundary of

the workspace was intersected with the polygon shown in Fig. 2.3b. The area of the

intersection was then calculated for all parameter combinations and the maximum found.

2.5.1 Ball Joint Mounting Angle

The ball joint used in the prototype is capable of 30◦ rotation in all directions. For

each design parameter set in the nominal optimization, the ball joint axis angle was varied

from 20◦ to 45◦ in 1◦ increments. The area of the resulting workspace was calculated such

that all ball joint angles within the workspace were less than the physical limit.

2.5.2 Parameter Optimization Results

The scale of this optimization resulted in ∼70 million numerical solves of the system

of nine equations, which proved computationally intensive. To speed up the process, the

optimization was performed on a supercomputer, running all 41 possible combinations

19



Figure 2.4: Optimized workspace after parameter optimization. The larger region
shows the workspace optimization for design parameters r = 1, l = 0.825, and d = 1.325.
The smaller region shows the workspace for design parameters r = 1, l = 0.975, d = 1.15,
and γ = 30◦ given the ball joint constraint. The motion profile for the workspace
validation experiment is shown by the dashed line

of the arm length parameter in parallel. The optimal workspace for both the nominal

optimization and the ball joint mounting angle optimization are shown in Fig. 2.4. The

regions of kinematic lock have been minimized, and there are no disjoint regions. The

region for the ball joint constraint is ∼ 60% of the overall workspace. The roll and pitch

range achievable is from -32◦ to 32◦ and -25◦ to 35◦, respectively. Table 2.2 catalogs the

top six parameters and workspace area. The arm length and platform size change inversely

proportional to each other as the area slightly decreases. Table 2.3 catalogs the top six

parameters given the ball joint angle constraint and workspace area.

Table 2.2: Top 6 maximum workspace parameters

Rank 1 2 3 4 5 6

Area (◦)2 4551.9 4547.1 4543.1 4540.9 4536.8 4535.7
l 0.825 0.85 0.875 0.9 0.925 1.05
d 1.325 1.3 1.275 1.25 1.225 1.1
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2.6 Path Generation

A simple way to generate a path through the workspace for simulation and ex-

perimentation is to use a high fidelity lookup table with ∼1000 increments between the

minimum and maximum slider heights. Such a lookup table results in ∼.1◦ resolution

in roll and pitch. For ∼1000 increments between 0 and 5r, the slider resolution between

points is proportional to the nominal scale as .005r. Depending on the scale, this may be

much larger than the position accuracy of the stepper motors. Interpolation of the lookup

table can improve the accuracy of path generation.

2.6.1 Three Axis Interpolation

A three-axis interpolation approach, as shown in Fig. 2.5, is required to determine

s∗i , the commanded slider heights. Given a desired roll-pitch combination, wd, the nearest

roll-pitch point, wn, is determined by subtracting wd from all workspace combinations,

w(i,j,k), and finding the minimum value. The vector from wn to wd, is projected onto each

of the slider motion directions using the inner product. The final slider height for each

slider i is determined by adding a scaled, proportional amount of the projection to the

slider height, sni corresponding to wn:

s∗i = sni +
2

3

3∑
m=1

||〈wd − wn, wm − wn〉||
||wm − wn||

∆hm (2.17)

Table 2.3: Top 6 maximum workspace parameters given the ball joint constraint

Rank 1 2 3 4 5 6

Area (◦)2 2816.5 2813.9 2812.7 2811.5 2809.2 2805.1
l 0.975 1.0 1.0 0.95 1.0 1.0
d 1.15 1.075 1.125 1.075 1.05 1.1

γ (◦) 30 32 30 34 33 31
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Figure 2.5: Three-axis interpolation approach. The vector from the desired point to
the nearest point is projected onto the three directions of motion, then proportionally
added to each slider height.

where ∆hm is the slider height change between wm and wn. The slider motion profile is

then numerically differentiated using a fourth order central difference method to command

slider velocity [54].

2.7 Experimental Validation

A prototype was built using the optimal parameters in Table 2.3, scaled up to the

minimum size to accommodate an UAV winch payload, resulting in r = 0.40 m, d = 0.46 m,

and l = 0.39 m. Fig. 2.6 shows the prototype during testing next to a Matlab simulation

showing the same pose. Because the design uses stepper motors and runs in open loop,

motion profiles and corresponding slider heights were determined apriori using the three-axis

interpolation of the lookup table. Two motion profiles were considered: a profile to validate

the workspace and a boat motion profile. Both motion profiles were validated using an
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Figure 2.6: Workspace validation. a) Prototype mechanism during workspace motion
profile testing. An IMU at the center captures the platform pose. b) Matlab simulator
for the same motion profile. Both show near identical pose.

IMU.

2.7.1 Workspace Validation Profile

To test the entire workspace, the ball joint constraint boundary was offset by 25%,

50%, 75%, and 90%. These were connected as the desired motion profile, as seen by the

connected level sets path shown in Fig. 2.4. The commanded height of the sliders was

adjusted such that the COM had no commanded heave.

Fig. 2.7a shows a typical result from the workspace motion profile. After adjusting

for the initialization offset and starting time, the IMU coincides with the commanded

profile well. The average error for roll and pitch was 1.2◦ with a standard deviation of 2.8◦.

Note that yaw, not shown, is coupled, but remained below 5◦.

2.7.2 Boat Motion Profile

An open-source numerical ocean simulator based on the Phillips spectrum was used

for generating wave data [56–60]. Fig. 2.8 shows the numerical simulator along with the
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Figure 2.7: Experimental results showing the platform orientation vs. time for a
typical trial of the a) Workspace motion profile and b) Wave motion profile. The blue
curve is the commanded path, and the red curve the output from the IMU.

specified heave profile. Simulating boat motion in rough waves, or converting known ocean

motion to boat motion is a challenging problem [61,62]. A simplification, used here, is to

assume the orientation of the boat is fixed to three separate points on the wave surface,

making a plane. From this plane, the specified roll, pitch, and heave can be backed out

using a similar calculation to Eq. 2.7, and Eq. 2.8.

Fig. 2.7b shows a typical result from the wave motion profile. The roll and pitch

Figure 2.8: Input wave data for the mechanism. a) Numerical simulator for waves up
to sea state 4. b) Corresponding boat heave profile.
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are seen to follow the commanded paths. The average error for roll and pitch was 1.2◦

with a standard deviation of 3.1◦. The errors in pitch, seen around 20 and 50 seconds can

be attributed to spikes in the commanded slider steps, found only after testing. The root

cause was linked to the data output from the numerical wave simulator. Using better input

data would negate these errors. The vibrations from the stepper motors as slower speeds

may have added to the noisier signal.

2.8 Improvements

Since the original publication of this work, a few improvements have been imple-

mented. To improve payload capacity, the original stepper motors were replaced with

larger stepper motors, P/N 42Y312S-LW8 from Anaheim Automation. New motor drivers,

MLA10641 from Anaheim Automation, running off 110V AC power were used to support

the larger motors. For smoother operation, the software was updated to run at 30 Hertz

instead of 10 Hertz, and 16:1 microstepping implemented. An IGUS track was mounted to

one of the extruded aluminum columns to allow for kink free cable routing to the platform.

A hollow pipe was attached to one of the sliders, extending above the frame to be used as

a GPS antenna mounting location. Additional boat motion profiles were developed using a

Unity engine simulation of a patrol boat using the ultimate water system tool described in

Section 5.6 [63].

2.9 Conclusion

In this chapter, a 3-PSR parallel mechanism was presented, capable of replicating

spectral based ocean wave and boat data for testing a winch system for a tethered UAV.

Geometric constraint equations were derived to build a lookup table given the position of

the vertical sliders. A parameter optimization resulted in a roll-pitch workspace suitable
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for replicating ocean waves up to sea state 4. A three-axis interpolation method of the

lookup table was presented for more accurate motion profile generation. Experiments were

conducted using an IMU to verify the workspace and a wave profile. Experimental results

show an error between the actual and desired motion of ≤ 2◦. This ocean wave and boat

motion replicator design is low-cost, and easily scale-able for different payload sizes and

wave heights. It can be adapted to other use cases by scaling the design parameters and

actuator hardware according to the parameter optimization results.
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Chapter 3

Catenary Tether Shape Analysis for

a UAV-USV Team

This chapter analyzes the static catenary hanging cable problem and develops a

reference model for tether management driven by relative position and tether length. A

recommended relative flying position is presented considering robustness to vertical motion

of the USV. An approximate model is presented in the form of a low order polynomial.

This provides a computationally inexpensive approach for determining a reference tether

length. The proposed model allows for a large range of flying positions while lowering

overall power consumption. Experimental testing confirms the validity of the proposed

catenary tether model.

The remainder of the chapter is organized as follows. Section 3.1 derives the relevant

catenary curve and heave robustness equations. Section 3.2 details the empirical analysis

and nondimensionalization over the flying space. Section 3.3 presents and discusses the

empirical analysis results. Section 3.4 presents and discusses the experimental results.

Section 3.5 details recent improvements. Section 3.6 summarizes the key conclusions.
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3.1 Tether Shape Analysis

The goal of the following analysis is to investigate the catenary hanging cable

equation in relation to the relative position of the endpoints, and to determine the cable

length which can withstand the largest vertical motion of the base endpoint. The analysis

assumes that the UAV can lift the cable weight and a winch system operates fast enough

to overcome dynamic heave disturbances, wind effects, and tether stiffness, i.e., the tether

is assumed to remain in a semi-slack, near minimal tension, quasi-static state. Thus, the

static catenary equation, which considers only cable weight and tension is applicable to

this case. The desired operating conditions should withstand tether oscillations and wind

loading associated with a Douglas sea state 4 [64] and Beaufort wind scale 4-5 [65], i.e.,

1.25-2.5 m wave heights over a 5-15 second wave period and wind speeds of 11-21 knots.

3.1.1 Catenary Equation and Parameters Derivation

The free body diagram given in Fig. 3.1 is used to determine the catenary equation

and associated parameters. Point A, with angle α, is connected to the USV and the winch

mechanism, while point B, with angle β, is connected to the UAV.

A balance of tangential tension and tether weight forces between points B and C,

leads to the differential equation:

tan(β) =
dy

dx
=
λgL

T0

(3.1)

where L is the tether length, λ is the linear density of the tether, g is gravity, and T0 is the

horizontal tension at the vertex. The solution of Eq. 3.1 is given by the general form of

the catenary equation [66]:

y = y0 + a cosh(
x− x0

a
) = y0 +

a

2

(
e
x−x0
a + e−

x−x0
a

)
(3.2)
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Figure 3.1: Free body diagram of a catenary curve with length, L. The weight of
the tether, Fg is offset by the tension at the endpoints, T0 or TA, and TB. ∆x and ∆y
correspond to the relative position, and drive the solution of catenary parameter, a.
Point C, the vertex, is used for the determination of the resulting differential equation.
x0 and y0 represent a shift in the coordinate system.

where y0 and x0 are the distances that shift the axes to point A, and a is the catenary

parameter defined as:

a =
T0

λg
(3.3)

In relation to the relative position of the endpoints A and B, the catenary parameter, a,

can be found numerically from the transcendental equation [67]:

√
L2 −∆y2 = 2a sinh(

∆x

2a
) (3.4)

where ∆x,∆y are the relative positions and L is the known tether length.

The x-axis shift, x0, can be found once the catenary parameter a has been determined
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by dividing the quantity (L+ ∆y) and its corresponding catenary equation by (L−∆y):

L+ ∆y

L−∆y
=

e
xB−x0

a − e
xA−x0

a

−e−
xB−x0

a + e−
xA−x0

a

(3.5)

where xA and xB are the x-coordinates of points A and B in the coordinate frame. Using

the identity:

ex − ey

e−y − e−x
= ex+y (3.6)

and solving for x0 in Eq. 3.5:

x0 =
xA + xB

2
− a

2
ln

(
L+ ∆y

L−∆y

)
(3.7)

The y-axis shift, y0, is found by substituting either endpoint into Eq. 3.2:

y0 = yA − a cosh(
xA − x0

a
) = yB − a cosh(

xB − x0

a
) (3.8)

where yA and yB are the y-coordinates of points A and B in this coordinate frame.

The departure angles, α and β, can be found by inserting the derivative of Eq. 3.2

with respect to x into Eq. 3.1.

α = arctan

(
sinh

(
−x0

a

))
, β = arctan

(
sinh

(
∆x− x0

a

))
(3.9)

Performing a balance of forces for points A and B yields the tension at each point. Using

the following identities:

cos (arctan (x)) =
1√

1 + x2
, sin (arctan (x)) =

x√
1 + x2

,

cosh2(x)− sinh2(x) = 1

(3.10)
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and knowing that cosh (x) > 0, the tension can be found without having to solve for the

angles:

TA =
−λgL cos β

sinα cos β − sin β cosα
=

−λgL cosh
(−x0

a

)
sinh

(−x0

a

)
− sinh

(
∆x−x0

a

) (3.11)

TB =
−λgL cosα

sinα cos β − sin β cosα
=

−λgL cosh
(

∆x−x0

a

)
sinh

(−x0

a

)
− sinh

(
∆x−x0

a

) (3.12)

Given any relative position and tether length, all necessary parameters for the tether shape

and tension are now known.

3.1.2 Heave Robustness

If the assumption that the winch can manage all dynamic disturbances fails, the

effects on the UAV can be minimized by operating at a tether length, Lrob, best suited to

handle heave, the vertical displacement of the USV. The heave robustness tether length

allows for equal vertical displacement of the USV to specified limits while the tether length

remains unchanged. As shown in Fig. 3.2, in the upward heave case, ∆y1, the limit is

chosen to be the slack tether condition, where α = 0. In the downward heave scenario,

∆y2, the limit is chosen to be a percentage increase in tension, Trob, from the slack length

tension, Tslack.

For the upward heave scenario, where the vertex of the curve is at point A, i.e.,

xA = x0 = 0, the derivative of Eq. 3.2 with respect to x can substituted into Eq. 3.1,

yielding:

L = a1 sinh(
∆x

a1

) (3.13)

The new upward heave catenary parameter, a1, can be found numerically for this transcen-

dental equation, and ∆y1 can be solved as:

∆y1 = ∆y − a1 cosh

(
∆x

a1

)
+ a1 (3.14)
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Figure 3.2: Robustness margin determination for heave displacement of the lower
endpoint. An operating tether length, Lrob, which gives equal heave tolerance both
upward, ∆y1, and downward, ∆y2, is desired.

In the downward heave scenario, ∆y2 is introduced into Eq. 3.4, and the new catenary

parameter, a2, cannot be found numerically as both ∆y2 and a2 are unknown:

L2
rob − (∆y2 + ∆y)2 = 2a2 sinh(

∆x

2a2

) (3.15)

A so-called shooting method approach [54] can be used to find Lrob, by assuming

∆y1 = ∆y2. By first solving for ∆y1 using Eq. 3.14 for a given tether length, the catenary

parameter, a2, can be found using Eq. 3.15. With the tension found from Eq. 3.12, Lrob

can then be found by iterating over the tether length, increasing the length from the slack

length, Lslack, where α = 0, until TB ≥ Trob, at which point the tether length will be Lrob.
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3.2 Analysis of Flying Space

Due to the transcendental nature of Eq. 3.4, a purely analytic solution cannot be

found. A “brute force” empirical analysis of the flying space can be performed to find an

appropriate relative position for flying and robustness to heave tether length.

3.2.1 Analysis Limits

The flying heights of interest are in the range of 0 < ∆y ≤ 60 m. The corresponding

horizontal offset is 0 < ∆x ≤ 60 m. Discretization is performed in .5 m increments. For

each combination of relative positions, (∆xi,∆yj), 480 tether lengths were considered,

limited by a minimum length corresponding to the taut tether length and a maximum

length chosen large enough to capture the minimum tension length. A sample discretization

is shown in Fig. 3.3. Clearly, operational limits lie between the taut and slack tether

length to ensure the tether does not sag into the water. The empirical analysis described

involves solving for the minimum tension length, LTmin, departure angles, α and β, and

tether tension, TB, for each of the 480 tether lengths for all 14,400 combinations of relative

position. A tether density of λ = 0.042 kg
m

was used for analysis and experimentation.

3.2.2 Nondimensionalization

The empirical analysis for each flying height combination can be reduced by finding

a scaling factor that results in a non-dimensional relative position parameter. Intuitively,

an α and β for the taut, slack, and minimum tension tether shapes should be the same for

proportional relative positions, i.e., (25 m, 25 m) and (50 m, 50 m). By rearranging Eq.

3.4 and scaling the catenary parameter, a, by the relative height, ∆y, the nondimensional
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Figure 3.3: Example catenary tether shape discretization for ∆y = 55 m and ∆x = 44
m, with 480 tether lengths discretized evenly between 70.4 m and 92.5 m. The taut
tether is shown in cyan; slack tether in red; minimum tension tether in green; max
length tether in blue.

relative position parameter is found to be ∆x/∆y.

√(
L/∆y

2a

)2

−
(

1

2a

)2

= sinh

(
∆x/∆y

2a

)
(3.16)

The length is now also scaled by the relative height. The relative height scaling propagates

through to the tension, as seen in Eq. 3.11 and Eq. 3.12, since tension scales linearly with

length. Thus, the empirical analysis for each relative position can be combined by scaling

the horizontal offset, tether length, and tension by the relative height at both endpoints.

3.3 Analysis Results

The following results give a convenient model for determining the reference tension,

length, and angle parameters for a given relative flying position.
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Figure 3.4: Comparison of tether tension vs. length for ∆y = 55 m and (a) ∆x = 5
m, (b) ∆x = 30 m, and (c) ∆x = 55 m. The slack length, shown by the red marker, is
shorter and lies to the left of the minimum tension, shown by the green marker. The
separation between these two points increases with offset (a)→(c).

3.3.1 Characteristic Result

The tether tension at the UAV for a flying height of ∆y = 55 m and three horizontal

offsets is shown in Fig. 3.4. These curves show that a minimum tension length exists, and

that operating at that tether length minimizes the UAV thrust and power consumption.

To the left of the minimum, tension increases rapidly due to the change in direction of the

tension vector at the base. To the right of the minimum, the increase is much slower due

to the fact that only tether weight increases while the tension vector direction remains

relatively unchanged. In both Fig. 3.3 and Fig. 3.4, the minimum tension length is greater

than the slack length and lies outside the operating region. The robustness to heave length

lies in the critical region to the left of the slack length since the slack length is the maximum

tether length limit due to the risk of fouling.
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Figure 3.5: Robustness margin empirical results as a function of offset (a) for ∆y = 55
m and (b) combined nondimensionalized data. The two curves for each margin show the
heave tolerance in both upward and downward directions, with the origin corresponding
to no heave tolerance.

3.3.2 Heave Robustness Margins

The tolerance to vertical displacement of the USV results are shown in Fig. 3.5. The

margins increase rapidly with offset until a maximum is reached around 25 m in Fig. 3.5a,

or at .46 in Fig. 3.5b for the 5% tension limit margin. The values taper off slowly thereafter.

The inflection point corresponds to the point where the shooting method limiting factor

switches from the slack length limit to the tension limit. It is also the recommended relative

operating position, where the difference between the upward and downward heave tolerance

curves is largest.

3.3.3 Tether Tension

Empirical results for the tether tension are shown in Fig. 3.6. For an offset less

than 50% of the flying height (∆x/∆y ≤ .5), the slack length and heave robustness length

tensions remain nominally within 10% of the minimum tension. The nondimensionalized

data shown in Fig. 3.6b combines all 14,400 empirical analysis “data” points into individual
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Figure 3.6: Tension at the UAV empirical results as a function of offset (a) for ∆y = 55
m and (b) combined nondimensionalized data. The heave robustness margin tether
tensions have been plotted for a 5%, 10%, and 20% increase in tension from the slack
length tension, and are shown slightly offset from the slack length tension curve.

curves that can be approximated as a 3rd order polynomial:

T = λ

(
c1∆y + c2∆x+ c3

∆x2

∆y
+ c4

∆x3

∆y2

)
(3.17)

with coefficients, c1, c2, c3, c4, and coefficient of determination, R2, shown in Table 3.1

for normalized λ = 1. As seen in Eq. 3.12, the tether tension scales linearly with tether

density. This is also true for the polynomial fit.

Table 3.1: Nondimensional tension polyfit coefficients

T c1 c2 c3 c4 R2

Tmin 9.7864 2.0294 3.3904 -0.9513 1
Tslack 9.7886 2.0226 3.8953 0.1676 1
Trob5 9.8038 2.5078 3.5501 0.3644 1
Trob10 9.7940 2.8427 3.4364 0.4404 1
Trob20 9.7838 3.1106 3.7257 0.3463 1
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Figure 3.7: Length empirical results as a function of offset (a) for ∆y = 55 m and (b)
combined nondimensionalized data. The tether length increases with offset as physically
required, and again the heave robustness lengths offset the slack length data.

3.3.4 Tether Length

The tether length empirical results are shown in Fig. 3.7.

The analysis data can again be fit into a 3rd order polynomial:

L = c1∆y + c2∆x+ c3
∆x2

∆y
+ c4

∆x3

∆y2
(3.18)

with the curve fit coefficients, c1, c2, c3, and c4, shown in Table 3.2. Given the relative posi-

tion, a reference length can be computed rather than using a lookup table. A quantitative

test to determine the reference tether length using a computer with a 3.1Ghz processor

Table 3.2: Nondimensional tether length polyfit coefficients

L c1 c2 c3 c4 R2

Lmin 0.9972 0.2406 0.5849 -0.1497 1
Lslack 0.9976 0.2094 0.3752 -0.0862 1
Lrob5 0.9964 0.1514 0.4674 -0.1280 1
Lrob10 0.9974 0.1283 0.4888 -0.1335 1
Lrob20 0.9982 0.1127 0.4906 -0.12831 1
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and 16GB ram showed an increase in speed of 2300 times for the polynomial evaluation

compared to using a lookup table. The least square curve fits have a R2 = 1, giving high

confidence in the fit. These polyfit coefficients are independent of linear density.

3.3.5 Departure Angles

The departure angle empirical results are shown in Fig. 3.8. For a horizontal offset

less than 50% of the flying height, the heave robustness length angles vary between 40 and

10 degrees and track the minimum tension angle. Thereafter, they are bounded by the

slack length angle. The nondimensional data is again modeled as a polynomial:

α = c1 + c2
∆x

∆y
+ c3

(
∆x

∆y

)2

+ c4

(
∆x

∆y

)3

+ c5

(
∆x

∆y

)4

(3.19)

with curve fit coefficients, c1, c2, c3, c4, and c5, shown in Table 3.3. In order to keep the

R2 confidence value near 1, a 4th order and only a 2nd order fit were needed for the 5%
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Figure 3.8: Departure angle at boat empirical results as a function of offset (a) for
∆y = 55 m and (b) combined nondimensionalized data. The minimum tension angle,
shown in green, is negative, representing the tether dipping down into the water and a
high risk of fouling. The heave robustness angles are shown within the operating region
between the taut and slack length angles.
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heave robustness and taut angles, respectively. These polyfit coefficients are independent

of linear density.

For the angle at the UAV, β, the difference in the minimum tension, heave robustness,

and slack length angle is negligible. This is a benefit, since one does not need to reserve

critical payload budget for a sensor to measure the angle.

3.3.6 Combined Results

By combining Fig. 3.5a, 3.6a, 3.7a, and 3.8a, for ∆y = 55 m, it can be argued that

operating at a horizontal offset set point of 20 m provides ∼ .75 m heave tolerance in each

direction. For this case, one sacrifices less than a 10% increase in nominal tension, while

having enough resolution in tether length and departure angle to give the ability to control

to the reference. While these figures exist for every combination of relative position in

the analysis, the nondimenionalized curve fit polynomials give a single equation model

for any flying position. Given the relative position, the reference heave robustness tether

length can be determined, along with the predicted tether tension and departure angles.

Indeed, the recommended relative offset for maximizing heave robustness while keeping the

nominal tension increase small is ∆x/∆y ≈ .46.

Table 3.3: Nondimensional angle polyfit coefficients

α c1 c2 c3 c4 c5 R2

αmin -10.0482 -49.6974 36.8857 -13.2127 - .99
αtaut 90.3299 -62.0733 16.7069 - - 1
αrob5 40.3217 -162.7497 309.9161 -280.6729 95.8555 .99
αrob10 40.5363 -105.5804 116.5771 -46.5409 - .99
αrob20 41.6537 -84.6802 79.7592 -28.9605 - .99
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Figure 3.9: Test setup showing two different length configurations on the left, and the
UAV surrogate platform and USV surrogate platform on the right. Potentiometers collect
departure angles, α and β, and a fulcrum converts the tension load into compression for
a load cell to read. A microprocessor was used to read the data in both locations.

3.4 Experimental Validation

The goal of the following experiment is to show that the proposed tether for the

given UAV/USV flight scenario conforms to the catenary analysis in Section 3.3.1 and that

the approximations detailed in the remainder of Section 3.3 are valid.

3.4.1 Test Setup

The test setup to is shown in Fig. 3.9. The tether is rigidly mounted to a UAV

surrogate platform capable of measuring the vertical component of the tether tension, TBv ,

and the departure angle, β. The tether is connected to a fulcrum that converts the tension

load into compression for the load cell. At both the upper and lower ends of the tether,
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Figure 3.10: Typical experimental results for tension vs. length, shown for ∆y = 18.29
m and (a) ∆x = 6.10 m, and (b) ∆x = 12.19 m. The mean and standard deviation are
shown on top of the empirical analysis results for 20 experiments at each cable length.

a potentiometer measures the departure angle. A microprocessor is used to record the

data via a WiFi connection. Using the angle measurement and a force moment balance

around the fulcrum, one can calculate the tether tension, TB. The tether length was marked

initially, and recorded for each measurement. Due to the limitations from the building

height, testing was performed at three vertical offsets, ∆y = 4.87 m, 12.19 m, and 18.29 m.

The horizontal offset for each started test at ∆x = 1.52 m, 3.05 m, and 3.05 m, respectively,

and increased in increments of 1.52 m until the vertical offset or the building limit max

offset of 13.72 m was reached.

3.4.2 Experimental Results

Static tether tension and departure angle experiments were performed for 18 combi-

nations of vertical and horizontal offsets. Fig. 3.10 shows a typical result for the tension

at the UAV surrogate, TB. The experimental tension results agree with the empirical

analysis results for the two relative positions shown. The same agreement was observed for

those results not shown. The tension data capture the sharp decline, the minimum, and
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slow increase as the tether length increases. The small variability, shown by the standard

deviation in the measurements is likely due to the tether not completely reaching steady

state. Specifically, the standard deviation is greater at the shorter tether lengths. The

tether exhibited small dynamic oscillations, particularly when under higher tension. The

time for those oscillations to settle out was prohibitively long for data gathering purposes.

Given enough time to settle, the standard deviation would likely decrease even more for

the shorter lengths, higher tension measurements.

Table 3.4 shows the average error and standard deviation for all tension measurements

of the 18 relative position experiments. All experiments had an average error within 7% of

the empirical catenary analysis. All but three of the experiments had a standard deviation

of less than 3.6%. The three outliers were due to dynamic oscillations caused by the

tether not fully reaching steady state. The average error and standard deviation for all

measurements was 3.8%± 3.3%. Comparing the three vertical offsets, the error decreases

as ∆y increases. Sensor measurement, setup, and cable density errors play a larger role at

low ∆y due to the smaller overall tensions, i.e., the errors are proportionally larger in this

case.

Table 3.4: Tension experimental error ± standard deviation from empirical analysis
per relative position

∆x ∆y = 4.87 m ∆y =12.19 m ∆y =18.29 m

1.52 m 6.4 % ± 2.9 % - -
3.05 m 6.7 % ± 5.0 % 4.4 % ± 10.9 % 1.8 % ± 1.5 %
4.57 m 2.7 % ± 2.0 % 4.0 % ± 3.4 % 4.5 % ± 5.6 %
6.10 m - 3.4 % ± 2.7 % 1.6 % ± 1.5 %
7.62 m - 3.2 % ± 2.3 % 4.9 % ± 2.9 %
9.14 m - 5.1 % ± 3.6 % 3.3 % ± 2.5 %
10.67 m - 3.0 % ± 2.1 % 3.5 % ± 2.0 %
12.19 m - 2.8 % ± 1.9 % 2.5 % ± 1.7 %
13.72 m - - 2.7 % ± 2.8 %
Mean 5.2 % ± 3.3% 3.7 % ± 3.8 % 3.1 % ± 2.6%
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Figure 3.11: Typical experimental results for α vs. length, shown for ∆y = 12.19
m and (a) ∆x = 6.10 m, and (b) ∆x = 10.67 m. The data shown is the mean of 20
measurements at each length.

Fig. 3.11 shows a typical result for the departure angle, α, at the base. The

experimental departure angles agree with the empirical analysis results for the two relative

positions shown. This is also observed for those results not shown. The measurements at

each length did not vary significantly enough to justify a standard deviation calculation.

Much of the error between the empirical analysis and the experimental results can be

attributed to the experimental setup. As seen in Fig. 3.9, the tether did not terminate at

the base surrogate. The departure angle measurement clamped onto the tether, with the

remaining tether maintaining the shape and departure angle only by being held properly by

the data gatherer. Fortunately, this measurement, and associated error has minimal or no

effect on the tension measurement, TB, and the tension at the base, TA, was not measured.

Fig. 3.12 shows typical results for the departure angle, β, at the UAV surrogate.

The experimental departure angle results agree with the empirical analysis results for the

two relative positions shown, as well as for those not shown. Again, the sensitivity of the

potentiometer did not justify a standard deviation calculation.

The experimental results for these 18 relative position operating conditions confirm
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Figure 3.12: Typical experimental results for β vs. length, shown for ∆y = 12.19
m and (a) ∆x = 7.62 m, and (b) ∆x = 12.19 m. The data shown is the mean of 20
measurements at each length.

the use of the catenary analysis approach for this specific hanging tether, and the analysis

in Section 3.3.

3.5 Improvements

During experimental evaluation detailed in Chapter 4, it was realized that the curve

fit models developed here, are not valid above a relative position ratio of ∆x/∆y = 1.2.

Because they are 3rd order, the model fits have an inflection point. For ∆x/∆y > 1.2, as

described in Section 4.3, a 2nd order model can be extended from the 3rd order model.

For clarity when dealing in three dimensions the notation will be changed moving forward

to be ∆r for the relative radial distance, and ∆z for the relative altitude.

3.6 Conclusion

A quasi-static model using the catenary hanging cable equation was developed based

on the relative position for a tethered UAV - USV team. An empirical analysis over the
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flying space determined a minimum tension and heave robustness length for every flying

combination. Division of the relative catenary parameters by the flying height transforms

the empirical analysis data into individual curves that can be approximated with low

order polynomials. The recommended relative offset for maximizing heave robustness is

∆x/∆y ≈ .46. Experimental tension and departure angle results from 18 relative positions

experiments confirmed that the catenary approach is valid. Follow on work already in

progress includes the development of a mechanized reel system, the development of a

dynamic model, and a controller using this analysis as reference set point.
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Chapter 4

Prototype, Estimator and Controller

In this chapter, a tether management prototype design, relative position estimator,

reference model extension, and control system for autonomous tether management are

developed. For a tether management system to function outside of a lab environment, it

needs to be able to control and measure tether length, provide tether tension or motor

torque feedback, measure the tether departure angle, and provide safety precautions to

prevent catastrophic forces on the UAV. For a future UAV payload, a coaxial tether with a

diameter of 4.5 mm is used, much larger than typical tethers for tethered UAV systems.

The tether management problem is more challenging due to the weight and bending stiffness

of the tether. The tether management system is split into three subsystems: mechanical,

controller, and estimator.

The remainder of the chapter is organized as follows. Section 4.1 details the tether

management prototype. Section 4.2 develops a method for tether length control. Section

4.3 extends the reference model to be valid beyond ∆r/∆z = 1.2. Section 4.4 details

a Kalman filter estimation model for relative altitude. Section 4.5 summarizes the key

conclusions.
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4.1 Mechanical Design

Figure 4.1: Smart reel prototype capable of spooling 100 m of 4.5 mm diameter tether
with a 50 mm minimum bend radius. The integrated sensors can measure the tether
length, departure angle, and motor torque.

A prototype smart reel system, similar to the non-taut tether management system

found in previous work [21], is shown in Fig. 4.1. The prior work used a torsional spring to

measure torque, and a non-contact proximity sensor to measure the departure angle of the

tether. Our design differs from earlier designs by using the motor current to measure motor

torque and using a balanced, contact-based passive tether follower to measure the departure

angle of the tether. One of the goals of the experimental approach described in Chapter 5

is to characterize this unique angle measurement approach and its feasibility as a means

for feedback. As the tether exits the spool, it feeds through a tether follower attached to

guide arms. The follower is free to slide left and right along a shaft as needed for spool

winding. The guide arms can rotate freely about the spool. A support rod constrains the

two guide arms to rotate together. The guide arms are counter-weighted such that the

weight of the arm does not affect the departure angle of the tether. An absolute encoder
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on the guide arm measures the angular rotation of the guide arm. The balanced freedom

of movement of the follower allows for a minimally intrusive measurement of the tether

departure angle. A future design improvement will be to convert the follower and follower

shaft into a cross-threaded level winding screw to accommodate greater tether lengths and

spool neatly. A motor-encoder-gearbox combination connects directly to a slip ring inside

the spool drum through a drive shaft and coupling. The slip ring transfers the required

power at 400 V and communication signals to allow the spool to spin up to 100 rpm, while

also providing the necessary power for sustained UAV flight. A future design improvement

will be to incorporate a turntable to allow the entire system to rotate, thereby ensuring the

smart reel stays pointed at the UAV.

4.2 Controller Design

For the tether management prototype, a dynamic gain-scheduled discrete-time

proportional-derivative (PD) controller running at 50 Hertz is graphically shown in Fig.

4.2. The controller inputs are the estimated relative altitude, ∆z̃k, the estimated relative

vertical velocity, ∆ ˙̃zk, the measured tether length, Lk, and a slow, 4 Hertz, relative radial

Figure 4.2: Proposed tether management controller. The relative position of the UAV
and USV feed into the polynomial model to determine a reference length. Comparison
to the measurement estimate from the spool encoder creates an error signal. A PD
controller on the spool motor commands the spool to pay out or reel in tether. The low
pass filter coefficient and the controller gains are gain scheduled based on the estimated
relative velocity.
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distance measurement, ∆rk. An error signal, ek, and its derivative multiplied by the

proportional and derivative gains, Kp and Kd, respectively, are used to determine the

commanded motor voltage, uk, the controller input. The gains change depending on the

relative velocity between the UAV and USV, with both the gains and velocity thresholds

found through experimental testing. The error signal is generated using the difference

between the measured tether length, Lk, and a gain-scheduled low-pass filtered reference

tether length LLPref,k. The low-pass filter is a typical first order discrete-time filter defined

as:

LLPref,k = (1− α)LLPref,k−1 + αLref,k (4.1)

where α ∈ [0, 1] is the filter smoothing factor and scheduled depending on how fast the

relative altitude changes. The intent of the low-pass filter is to smooth out the reference

tether length, Lref,k, due to any discontinuities in the relative altitude estimate at slow

speeds. At high relative velocities, the relative altitude estimate proved experimentally

to be smooth, and α was set to 1 to pass through the reference tether length without

filtering it. The gain-scheduler is set up similar to an electronic Schmitt trigger, where

the threshold for triggering between states changes depending on specific criteria [68].

Determined experimentally, an α value of 0.2 was used when the relative velocity dropped

below 0.3 m/s. If the relative velocity dropped below 0.1 m/s, the threshold would also

drop down to 0.1 m/s. This has the effect of smoothly transitioning to a low-pass filtered

reference signal when the relative velocity slows down, but abruptly turning off the filter

with increasing relative velocity, allowing for the smart reel to respond faster without the

low-pass filter-induced lag. The reference tether length, determined by a catenary tether-

based heave model previously developed, is dependent on the relative altitude estimate

and relative radial distance [69]. Our previous work investigated the heave model based on

static catenary hanging cable theory, but did not experimentally validate the model for

control of a hanging tether from a dynamically moving UAV or USV.
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4.3 Catenary Tether Model

This section will summarize the catenary tether-based heave model developed in

our previous work [69], and extend its valid operation range. The static catenary cable

equation given by:

z = z0 + a cosh

(
r − r0

a

)
= z0 +

a

2

(
e
r−r0
a + e−

r−r0
a

)
(4.2)

where a is the catenary parameter, was converted to relative position form:

√
L2 −∆z2 = 2a sinh

(
∆r

2a

)
(4.3)

where ∆r and ∆z are the radial and vertical distance between the UAV and the USV, and

L is the known tether length. Because Eq. 3.4 is a transcendental equation in a, it was

empirically analyzed for a range of operating conditions from 0 to 60 m in radial distance

and altitude, and varying range of tether lengths. For each relative position, a heave

robustness tether shape was determined that allows for equal vertical heave displacement

of the USV to specified tension and sag limits while the tether length remains unchanged.

The results of the empirical analysis were curve fitted to develop a reference model for

tether length, departure angle, and tension, depending only on the relative position between

the UAV and USV. A key result from the analysis was a recommended operating relative

position ratio, ∆r/∆z ≈ 0.46. In this work, only the length model will be used, and the

simple 3rd-order polynomial is repeated here for reference:

Lref = c1∆z + c2∆r + c3
∆r2

∆z
+ c4

∆r3

∆z2
(4.4)

with coefficients c1 = 0.9964, c2 = 0.1514, c3 = 0.4674, and c4 = −0.1280. The third

order model was originally developed for ∆r/∆z ≤ 1.2. In that region, the third order
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Figure 4.3: Tether reference model showing original 3rd order model, inflection point,
and 2nd order fit for relative position ratio ∆r/∆z > 1.2

approximation is nominally better than a lower order model. However, outside the region,

because this model is third order, it has an inflection point, which occurs at ∆r/∆z = 1.22.

For ∆r/∆z > 1.22, the third order model is no longer physical, and results in a taut

tether reference length at ∆r/∆z = 1.77. While the goal is to operate at ∆r/∆z < 1,

the constrained indoor testing environment and other operation scenarios can result in

∆r/∆z > 1.2. A second order curve fit model, extrapolated from the third order model,

will be used for such operation regions:

Lref = d1∆z + d2∆r + d3
∆r2

∆z
(4.5)

with coefficients d1 = 0.9748, d2 = 0.2615, and d3 = 0.2370. The original third order model

and the extrapolated second order curve fit model are show in Fig. 4.3. For relative position

ratio, ∆r/∆z ≤ 1.1, the third order model will be used, and for ∆r/∆z > 1.3, the second

order model will be used. In the region between, 1.2 < ∆r/∆z < 1.3, a linear combination

of the second and third order models is used in order to smooth the transition. A key

challenge for this control approach will be the accurate measurement of relative position.
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4.4 Sensing and Estimation Filter Design

To address the challenge of determining the relative position, a commercial off

the shelf RTK dGPS solution is used. However, RTK dGPS solutions are limited to a

maximum 4 Hertz update rate, which is too slow for the developed controller, which runs

at 50 Hertz. To augment the estimated relative position during the time in between RTK

dGPS measurements, a Kalman filter model was designed to measure and double integrate

the acceleration using two IMUs running at 100 Hertz. There are numerous examples of

GPS-inertial navigation system (INS) Kalman filters for a variety of applications [70–73],

as well as some more specific to using RTK dGPS and UAV navigation [74–77]. To simplify

for this scenario, the Kalman filter is restricted to the altitude degree of freedom (DOF)

since the primary DOF affecting the tether is the vertical heave motion of the USV, and

the UAV is near hover. To account for the bias due to gravity of the accelerometers, they

are included in the double integration dynamic model for the Kalman filter as:

X =



∆z

∆ż

∆z̈

µ1

µ2


, Xk+1 =



1 ∆t 0 0 0

0 1 ∆t 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


Xk +



ωz,k

ωż,k

ωz̈,k

ωµ1k

ωµ2,k


(4.6)
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such that:

∆zk+1 = ∆zk + ∆t∆żk + ωz,k

∆żk+1 = ∆żk + ∆t∆z̈k + ωż,k

∆z̈k+1 = ∆z̈k + ωz̈,k

µ1,k+1 = µk + ωµ1,k

µ2,k+1 = µk + ωµ2,k

ωz = N (0, σz)

ωż = N (0, σż)

ωz̈ = N (0, σz̈)

ωµ1 = N (0, σµ1)

ωµ2 = N (0, σµ2)

(4.7)

where ∆z, ∆ż, ∆z̈ are the relative position, velocity, and acceleration, respectively, µ1 and

µ2 are the estimated accelerometer biases, and ∆t is the timestep of the filter running at

100 Hertz. All states are assumed to have zero mean and normally distributed system noise.

The measurement model is defined as:

Yk =


∆zdGPS

∆z̈Acc1

∆z̈Acc2

 , Yk =


1 0 0 0 0

0 0 1 1 0

0 0 1 0 1





∆zk

∆żk

∆z̈k

µ1,k

µ2,k


+


vz,k

vz̈1,k

vz̈2,k

 (4.8)

such that:

∆zGPS,k = ∆zk + vz,k

∆z̈Acc1,k = ∆z̈k + µ1,k + vz̈1,k

∆z̈Acc2.k = ∆z̈k + µ2,k + vz̈2,k

vz = N (0, σdGPS)

vz̈1 = N (0, σAcc1)

vz̈2 = N (0, σAcc2)

(4.9)

where ∆zdGPS is the RTK dGPS measurement, and ∆z̈Acc1 and ∆z̈Acc2 are the vertical

accelerations from both IMUs. All measurements are assumed to have zero mean, normally

distributed measurement noise. Some care needs to be taken due to the fact that the RTK
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dGPS measurement is slow, at 4 Hertz. During the time between RTK dGPS measurements,

the dGPS covariance, σdGPS, is artificially set to infinity to zero out the Kalman gain for

that state.

4.5 Conclusion

A prototype smart reel was presented, capable of measuring the tether length,

departure angle, and tension. The semi-slack hanging tether model, dependent on the

relative position between the UAV and USV was extended to operate through a larger

relative position range, extending above ∆r/∆z > 1.2. With the goal of outdoor operation,

a Kalman filter model was developed to fuse a slow, 4 Hertz RTK dGPS based relative

position measurement with fast, 100 Hertz inertial measurements, to output a fast, 100

Hertz estimate of the relative position, relative velocity, and inertial sensor bias. A relative

velocity-based gain scheduled controller was developed to smooth out any errors and

discontinuities seen in the Kalman filter at low relative velocities. A major benefit of this

control system is that is is based purely on relative position, regardless of scale.
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Chapter 5

Experimental Validation Procedure

In this chapter, the methodology for evaluating the prototype, reference model,

estimation filter, and controller is presented. The experimental approach is split into three

stages to first validate the controller and mechanical prototype, tune and validate the

estimation filter, and then evaluate the RTK dGPS solution:

1. UAV surrogate testing is performed to validate the controller. To accomplish this,

a 100 Hertz infrared camera motion capture (MoCap) system is used for relative

position feedback to validate the controller and tune the estimation filter. Then, the

estimation filter is evaluated, de-rating the MoCap system feedback down to 4 Hertz

to replicate the RTK dGPS measurement.

2. Indoor flight testing is performed to introduce the dynamic variability of the UAV,

again using the MoCap system and the estimation filter for relative position feedback.

3. Outdoor flight testing is performed using the RTK dGPS as input into the estimation

filter for relative position feedback.

This staged approach will first evaluate the tether reference model, the controller,

and the mechanical prototype in a controlled environment, then involve flight dynamics
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with perfect feedback, then incorporate the estimation filter for increased complexity and

difficulty, and finally evaluate the feasibility of the RTK dGPS sensor for feedback. For each

of the scenarios described, the smart reel is mounted onto the payload platform of a 3-PSR

mechanism to replicate wave and boat motion [78]. The sensor subsystem communication

design and wave profiles are discussed after the test setup for each scenario.

The remainder of the chapter is organized as follows. Section 5.1 describes the

UAV surrogate experimental setup. Section 5.3 details the UAV and indoor flight setup.

Section 5.2 describes the process for tuning the Kalman filter model. Section 5.4 describes

the dGPS payload, and outdoor test setup. Section 5.5 details the sensor subsystems

communication design. Section 5.6 describes the wave profiles developed for the 3-PSR

wave replication mechanism. Section 5.7 summarizes the key conclusions.

5.1 UAV Surrogate Test Setup

A rigidly mounted load sensor acting as a UAV surrogate was used to evaluate and

validate the tether model and controller prior to flying. The UAV surrogate was rigidly

mounted just beneath the 7 m high ceiling of the testing facility as shown in Fig. 5.1. The

tether was mounted to a rotating connector which measures the arrival angle, β, with a

potentiometer. A fulcrum converts the tension load into compression for the load cell to

measure the vertical component of the tether tension. Using the angle and vertical load,

the geometry of the fulcrum determines the tether tension. A microprocessor was used

to read the load and angle data and communicate it to the smart reel for data logging

purposes. The wave mechanism was positioned in such a way that the relative position is at

the recommended ratio ∆r/∆z = 0.46 when the platform is at the bottom of its range [69].

The 3-PSR wave replication mechanism runs a prescribed wave profile in open loop in three

DOFs: pitch, roll, and heave. The MoCap system was used for ground truth feedback,
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Figure 5.1: UAV surrogate test setup during taut tether testing. The smart reel
prototype is mounted on the 3-PSR wave replication mechanism. The tether is outlined
with a white dashed line to make it more visible. The UAV surrogate components are
labeled, as well as the tether departure and arrival angles, γ and β.

and then de-rated to tune and evaluate the estimation filter. Next, a comparatively test

evaluated the controller against a typical taut controller. The taut controller maintained a

specified torque on the spool, reeling in and paying out as needed to maintain tension on

the tether.

5.2 Filter Tuning

The data obtained while validating the controller was then used to tune the estima-

tion filter covariance values. Using the MoCap system as a ground truth measurement,

the so-called ad-hoc Twiddle Algorithm was used to refine the Kalman filter covariance

values [79,80]. The algorithm cost metric was modified to use the root mean square error

(RMSE) between the measured relative position from the MoCap and the estimated relative
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Algorithm 1: Modified Twiddle Algorithm

1: P = [σ1, σ2, ..., σm]
2: dP = [δσ1, δσ2, ..., δσm]
3: n = length(data)
4: ∆z̃ = kfilter(P, data)

5: QBest =
√

1
n

∑n
j=0 (∆z̃j −∆zj)

2

6: l = 1
7: while 1

m

∑m
j=0(dPj/Pj)) > .1 do

8: for i = 1 : m do
9: P (i) = P (i) + dP (i)

10: ∆z̃ = kfilter(P (i), data)

11: Ql =
√

1
n

∑n
j=0 (∆z̃j −∆zj)

2

12: if Ql < QBest then
13: QBest = Ql

14: if dP (i)/P (i) <= 0.5 then
15: dP (i) = dP (i) ∗ 1.1
16: else
17: dP (i) = P (i) ∗ 0.5
18: end if

19: else
20: P (i) = P (i)− 2 ∗ dP (i)
21: ∆z̃ = kfilter(P (i), data)

22: Ql =
√

1
n

∑n
j=0 (∆z̃j −∆zj)

2

23: if Ql < QBest then
24: QBest = Ql

25: if dP (i)/P (i) <= 0.5 then
26: dP (i) = dP (i) ∗ 1.1
27: else
28: dP (i) = P (i) ∗ 0.5
29: end if
30: else
31: P (i) = P (i) + dP (i)
32: dP (i) = dP (i) ∗ 0.9
33: end if
34: end if
35: end for
36: l = l + 1
37: end while

position from the filter, ∆z̃. To ensure the covariance values do not go negative, the change

in parameter was limited to 50% of the current parameter value. Psuedocode for the

modified Twiddle Algorithm is shown in Algorithm 1.

5.3 Indoor Flight Test Setup

For indoor flight testing, the UAV surrogate is replaced with a modified DJI S900

hexacopter UAV shown in Fig. 5.2. The UAV is flown in remote control (RC) mode with

an open source ArduPilot flight controller. The UAV uses a Pixhawk autopilot, RC and

telemetry radios, GPS for outdoor flight, magnetometer, power electronics, and has a tether

mounting point on a u-joint to allow for the tether to rotate at the attachment point.

Again, the relative position feedback is provided by the infrared camera MoCap system,

and then the estimation filter using the de-rated MoCap measurement to imitate the RTK

dGPS measurement. The desired relative position is an altitude of 5 m and 2.5 m radial
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Figure 5.2: UAV test setup. a) Topside of the UAV showing flight electronics. b)
Underside of the UAV showing the tether attachment point and power electronics.

distance. Indoor flight testing builds on the UAV surrogate experiment by including the

UAV, thus introducing more variability in the relative position. Because the UAV flies near

the ceiling of the indoor testing facility to attain the largest relative altitude, taut tether

testing was not performed. The variability of tether tension during taut controller testing is

too great and would likely cause the UAV to crash. Therefore, UAV altitude and position

variations will be compared to un-tethered flight. For both the UAV surrogate and indoor

flight testing, the limited height of the indoor testing facility resulted in an experiment

near the margins of the proposed concept of operation. A scaled down relative position

(5 m altitude vs 50 m altitude) has less margin for error. For example, a 0.25 m error in

tether length has a greater effect when the overall length is 7 m than when it is 60 m.

5.4 Outdoor Flight Test Setup

For outdoor flight testing, the same 3-PSR wave replication mechanism and UAV

were moved outdoors to allow for higher altitude flight, and a more realistic operational
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Figure 5.3: RTK dGPS payload in: a) rover mode attached to top of UAV. b) in
moving baseline mode attached to the mast on 3-PSR wave replication mechanism.

scenario. Because the MoCap system does not work well outdoors, nor at the altitude

required, the RTK dGPS payload was added to the UAV as shown in Fig. 5.3. An antenna

passes the GPS signal into the dGPS chip which then sends data to a radio. Instead

of broadcasting the signal via an antenna, it sends the signal down the RF tether to

another radio, and then the dGPS chip attached to the top of the mast on the 3-PSR wave

replication mechanism. The desired relative position is an altitude of 30 m and 15 m radial

distance. Outdoor flight testing introduces more complexity such as wind, difficulty in

measuring the relative position, and a more realistic deployment environment.

5.5 Sensing and Communication Protocol

For autonomous tether management, the developed system needs to sense the

dynamics, shape of the tether, and reel in or pay out accordingly. The smart reel design is

capable of sensing the tether characteristics including instantaneous tether length, tether

departure angle, tether tension, and controlling the tether length, as shown in Fig. 5.4.
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Figure 5.4: Communication protocol diagram between the smart reel controller, UAV
surrogate, the MoCap system, and the smart reel microprocessor. The colored blocks
represent each subsystem and the lines show what data is being communicated on
which protocol at what rate. Note that not all subsystems are active for each of the
experimental setups.

During UAV surrogate testing, the tether tension and arrival angle, β, are sent to the

smart reel microprocessor for data syncing. For indoor flight testing, the relative position

is measured via the MoCap system, and sent to the smart reel microprocessor via a UDP

point to point Ethernet network at 100 Hertz. For outdoor flight testing, the airborne

dGPS unit sends RTK messages over the tether via a 2.4 GHz radio to the other dGPS

unit. The relative position is then transmitted to the microprocessor via USB serial at 4

Hertz. The specific electronic hardware is listed in Table 5.1.

Table 5.1: Prototype Electronics

Electronics Supplier Part Number

UAV Surrogate Load Cell Loadstar Sensor RAS1-050S-S
UAV Surrogate Microprocessor beagleboard BeagleBone Blue

Smart Reel Microprocessor beagleboard BeagleBone Blue
Smart Reel Angle Arm Encoder US Digital MAE-3

Smart Reel Spool Motor Moog Animatics SM23165MT
Estimation Filter IMU-1 InvenSense MPU-9250
Estimation Filter IMU-2 Lord MicroStrain 3DM-GX5-25

RTK dGPS u-blox NEO-M8P-2
dGPS Tether Radio Airborne Innovations pDDL2450
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5.6 Input Wave Profile

Four distinct wave profiles were developed for testing on the 3-PSR wave replication

mechanism. The first profile considered only the heave motion of a wave. The heave-only

wave profile was derived from the JONSWAP spectrum [81]. A sum of sinusoidal signals

with randomized initial phase was used to create the time series heave profile. The resulting

four minute wave profile had a 1.6 m peak wave amplitude and a 10 second peak period,

approximating sea state 3 on the Douglas Sea Scale [53]. The next three wave profiles

include heave, pitch, and roll (HPR), and were taken from a Unity engine simulation of

a patrol boat using the ultimate water system tool [63]. Each wave had a heave range

up to the maximum heave capability of the 3-PSR wave replication mechanism of 2.2 m,

pitch range of ±18.1,±14.5,±17.4 degrees, and roll range of ±16.1,±21.8,±21.1 degrees,

approximating sea state 4. The first two HPR wave profiles were used for tuning the

filter, while the last HPR profile was reserved for unbiased testing. The amplitude of the

frequency spectrum for each wave profile and a sample wave profile times series is shown in

Fig. 5.5.

Figure 5.5: Experimental wave data for the 3-PSR wave replication mechanism. a)
The frequency content of the four wave profiles and b) Time series example of the third
wave profile.
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5.7 Conclusion

A rigorous, phased approach was presented to best evaluate the prototype, controller,

and estimation filter. UAV surrogate testing, using a rigidly mounted load cell will validate

the proposed controller and reference model against a typical taut tether tension controller.

The data gathered will then be used to tune the estimation filter gains, using the MoCap

system as a ground truth measurement. Indoor flight testing adds in the varying dynamics

of the UAV, evaluating for a varying relative position. Outdoor flight testing will evaluate

the proposed dGPS solution in a relevant dynamic environment. Finally, the communication

protocol and input wave profiles were described.
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Chapter 6

Experimental Results

In this chapter, the experimental testing results are presented. The developed

prototype system is validated through indoor motion capture and outdoor RTK dGPS

experimentation. Using a UAV surrogate for a perfectly known, controlled environment, the

developed estimator and controller are shown to greatly reduce tether tension and forces

on the UAV compared to taut tether control. Indoor flight testing shows the successful

decoupling of USV heave motion from UAV altitude and position, while also demonstrating

a similar UAV altitude and position range compared to un-tethered flight. Finally, outdoor

flight testing, using a dGPS and an IMU Kalman filter solution to measure relative position,

demonstrates the feasibility of the developed system in an unknown dynamic environment.

A hanging tether management system can extend longevity, decrease power consumption,

extend mission duration, increase flight altitude, and decrease the required thrust safety

margins of the UAV.

The remainder of the chapter is organized as follows. Section 6.1 presents and

discusses experimental results for the UAV surrogate testing. Section 6.2 describes tuning

the estimation filter and presents the results using the filter for feedback. Section 6.3

presents the results from indoor flight testing. Section 6.4 ptesents the results from outdoor
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Figure 6.1: Typical tether length experimental results for the UAV surrogate testing.
a) Measured tether length for the taut and catenary model-based control. For reference,
the commanded wave height and theoretical catenary model length based on the relative
position are also shown. b) Error between the measured catenary model-based length
controller and the theoretical catenary model-based length. Also shown is the difference
between the catenary model-based controller and the taut controller.

flight testing. Section 6.5 summarizes the key conclusions.

6.1 UAV Surrogate

The UAV surrogate results are presented using the MoCap system as feedback to

validate the controller and mechanical prototype in four parts: tether length, arrival angle,

departure angle, and tether tension. Nine separate wave profile trials (three heave-only,

three each for two of the HPR profiles) were performed and one stationary, no-motion wave

profile to help tune the estimation filter. For comparative testing, each wave profile was

also tested with the tension-based controller.

6.1.1 Tether Length

The tether length results for a typical UAV surrogate experiment are shown in Fig.

6.1a. The catenary model-based controller follows the catenary model-based theory, with a

mean error across all runs of 0.022 m and RMSE of 0.028 m as seen in Fig. 6.1b. This

shows that the PD controller gains have been tuned well as the actual tether length matches

66



Figure 6.2: Typical arrival angle, β, experimental results for the UAV surrogate testing.
a) Arrival angle showing theoretical catenary angle based on the measured tether length
and relative position, the measured angle during catenary control, taut control, and
the geometric angle based solely on relative position. b) Error between theory and
the measured angle showing relatively consistent error. The error between catenary
measurement and taut measurement is also consistent with minimal variations.

the model. In comparison, the taut controller tether length follows a similar profile, but has

an initial offset. The variations are nearly constant with a mean difference of 0.52 m. The

catenary model-based control can be interpreted as a tether length buffer for taut control.

If the tether length for taut control was known, the same length trend with a longer initial

tether length would result in the catenary model-based tether control. However, the initial

length difference changes with respect to the relative position between the UAV and USV,

thus the catenary model-based controller is necessary.

6.1.2 Arrival Angle, β

The arrival angle, β, of the tether at the UAV surrogate experiments are shown in

Fig. 6.2a. The experimental data was filtered with a low-pass filter with a cutoff frequency

of 2 Hertz to remove the high frequency noise inherent in the potentiometer reading. The

tether has some elasticity and dynamic effects preventing it from becoming fully taut,

resulting in the taut tether angle being slightly greater than the geometric angle. As seen

in Fig. 6.2b, the catenary model-based controller followed theory relatively closely, with
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Figure 6.3: Typical departure angle, γ, experimental results for the UAV surrogate
testing. a) Departure angle showing the theoretical angle based on the measured
tether length and relative position, the measured angle during catenary control, and
the geometric angle based solely on relative position. b) Normalized cross correlation
between the measured and theoretical departure angles. The two signals are strongly
correlated in time as seen by the peak at 0.88 seconds shift.

a mean error of 2.1 degrees, attributable to an initial offset in potentiometer calibration.

Interestingly, the taut tether arrival angle shows a similar trend as the catenary model-based

controller, as seen by the relatively constant error between the two with a mean error of

12.6 degrees. Similar to the length results, this can be interpreted as the catenary controller

providing a constant buffer from the higher tension taut controller. The wave profile has

almost the same effect on both test cases, with the main difference being the starting angle.

6.1.3 Departure Angle, γ

The departure angle results of the tether at the winch are shown in Fig. 6.3a. The

guide arm measurement technique shows promise, but has a 20 degree dead-band gap in

measurement capability as seen by the periodic vertical lines. This error in measurement

occurs when the smart reel switches between reeling in and paying out, and the tether

contact point on the follower switch from one side to the other. Improvements to the

design of the guide arms and follower may improve the angle measurement. However, this

angle measurement design inherently colors the measurement by physically contacting the

tether. While a stretching out of the departure angle measurement occurs, the trend still
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Figure 6.4: Typical experimental UAV surrogate tether tension results. a) Tether
tension for both taut and catenary model-based controllers for the same wave profile.
The theoretical catenary tether tension based on measured relative position and tether
length corresponds well with the experimental catenary controller. b) Error between
the catenary model-based controller and the theoretical values

correlates well with the theoretical catenary-based departure angle as seen in the cross

correlation in Fig. 6.3b. The normalized correlation peaks at 0.88 seconds lag, and steadily

decreases thereafter. Due to the errors in departure angle measurement, a controller with

loop closure based on the reference departure angle was not evaluated.

6.1.4 Tether Tension

Fig. 6.4a shows a typical tether tension result for the catenary model-based control

and taut tether control. The tether tension using the catenary model-based controller

had a mean tension of 2.38 N with a standard deviation of 0.27 N. This corresponds well

compared to the theoretical tension based on the measured relative position and tether

length. The mean error between the experimental and theory was 0.08 N with a standard

deviation of 0.20 N as seen in Fig. 6.4b. This shows that the controller minimized the

dynamic effects of tether motion on the UAV in a controlled environment, while having

perfect feedback and no external disturbances such as wind. The taut controller had a

significantly higher mean tether tension of 27.52 N, with a much larger standard deviation

of 7.30 N. Perhaps more significant is the peak-to-peak variation of 2.21 N for catenary
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Figure 6.5: Twiddle Algorithm relative altitude tuning results for a) a 50 second time
frame of HPR wave profile # 2, b) a 4 second time frame of the heave-only profile,
and c) a 4 second time frame of HPR wave profile # 2. The 50 second segment shows
the estimation filter tracking the ground truth MoCap measurements. The close up
views also show the 4 Hertz de-rated MoCap measurements. The filter fills in the gaps
between measurements, but has some errors when the wave profile slows down and
changes directions, particularly bad for the heave-only profile.

control and 55.70 N for taut tether control, showing the greater variability of tension for

the taut controller. Some of the taut tension variability can be attributed to the friction

inherent in the spooling system. The torque setting on the spool motor had to be above

the friction-stiction threshold in order to ensure continuous motion and prevent undesired

stiction on the drum. A mechanical clutch or other tension sensing method has been shown

to limit tension to a more consistent 8 N force, but not to the minimized level of the

catenary model-based controller [16].

6.2 Estimation Filter Tuning

The estimation filter tuning results are presented first for the nine wave motion

trials and one stationary motion trials using MoCap data as ground truth. The filter is

then evaluated through an additional eight wave profile trials using the output of the filter

as feedback for control.

Using the Twiddle Algorithm, the covariance gains on the filter were tuned to

σz = 0.0133, σż = 8.66e − 08, σz̈ = 0.453, σµ1 = 1.473, σµ2 = 0.0146, σ∆z̈Acc1
= 112.94,
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Table 6.1: Estimation Filter Error

Heave Only HPR # 1 HPR # 2 Zero Motion

Test Time (s) 883.5 1,027.8 1,032.8 837.4

∆z̃ Mean |Error| (m) 0.00256 0.00135 0.00144 0.00111
∆z̃ RMSE (m) 0.00418 0.00239 0.00228 0.00298

FOH Mean |Error| (m) 0.00488 0.00280 0.00291 0.0007
FOH RMSE (m) 0.00783 0.00439 0.00443 0.0018

σ∆z̈Acc2
= 91.105, and when a relative position measurement exists, σ∆zdGPS = 0.01,

otherwise σ∆zdGPS =∞. Fig. 6.5a shows a typical result for one of the HPR wave profiles.

The filter properly fills in the gaps between the de-rated MoCap measurements, but has

some overshoot errors when the wave profile slows down and changes direction as seen

in the shaded regions, shown scaled up in Fig. 6.5b and Fig. 6.5c. The overshoot errors

are particularly bad on the heave-only profile. They are attributed to actuator noise and

resonance of the three stepper motors on the 3-PSR wave replication mechanism actuating

in unison. This is also clearly seen in the mean error and RMSE error shown in Table

6.1, as the filter error for the heave-only profile is double that of the other wave profiles.

For comparison, the tuned estimation filter outperforms a first-order hold (FOH) estimate

using only the de-rated MoCap measurements for all but the stationary motion profile. To

account for the errors and overshoot seen when the relative velocity is low, the relative

velocity gain-scheduled low-pass filter was implemented on the commanded tether length

as previously discussed in Section 4.2. The relative velocity for the same wave profiles is

shown in Fig. 6.6. The gain-scheduling for the low-pass filter activates the filter at two

different thresholds, as seen in the heave-only profile activating at a threshold of -0.3 m/s

at 124.2 seconds, and the HPR wave profile activating at a threshold of 0.1 m/s at 32.5

seconds. The lower magnitude threshold activates if the relative velocity has not gone

above the higher magnitude threshold, as seen in the longer HPR profile view between 210
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Figure 6.6: Typical Twiddle Algorithm relative velocity tuning results for the same a)
50 second time frame of HPR wave profile # 2, b) 4 second time frame of the heave-only
profile, and c) 4 second time frame of HPR wave profile # 2. The 0.1 and 0.3 m/s gain
scheduling thresholds for the low pass filter are shown, and the shaded region where the
low pass filter is active.

and 218 seconds. As seen in the shaded region in Fig. 6.5, the gain-scheduler accurately

activates the low-pass filter when the relative position errors are largest. The effects of this

gain-scheduled low-pass filtering on the tether length will be discussed in the next section.

6.2.1 Estimation Filter-Based Feedback Control

To evaluate the tuned estimation filter performance for feedback control, eight

experimental trials were performed, two for each wave profile, including the HPR #3 profile

which was not used to tune the filter. Table 6.2 shows the mean error and RMSE error of

the tether length compared to the ideal tether length if MoCap has been used for feedback.

The gain-scheduled controller worked well across all wave profiles with a mean error of 0.022

m and RMSE of 0.027 m, only slightly different than for the MoCap feedback presented in

Table 6.2: Tether Length Error

Heave Only HPR # 1 HPR # 2 HPR # 3 Total

Test Time (s) 514.76 648.04 657.11 645.52 2,465.43

Mean |Error| (m) 0.022 0.019 0.023 0.024 0.022
RMSE (m) 0.027 0.024 0.028 0.029 0.027
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Figure 6.7: Typical tether length results from HPR wave profile # 3 using the
estimation filter as feedback showing a) a close up view of the low pass gain scheduler
activating, transitioning from using purely estimation filter-based tether reference length
to a low pass filter-based tether reference length and back, b) a close up view for a trial
run without the low pass gain scheduler, and c) the frequency content of the actual
tether length from a) and b).

Section 6.1.1.

Further motivating the need for the gain-scheduled low-pass tether reference length,

Fig. 6.7a shows a typical tether length result close up view for one of the HPR #3

trials. When the gain-scheduler changes α from 1 to 0.2, denoted by the shaded region,

the commanded tether length transitions from the purely estimation filter-based tether

reference length signal to the low-pass filtered tether reference length signal. In doing so,

the discontinuities and oscillations present in the estimation filter-based tether reference

length signal seen in the shaded region do not propagate through to the commanded

tether length. The oscillations in the estimation filter tether reference length generally

occurred more when slowing down into a change in direction than when speeding up out

of the change in direction. This motivated the dual threshold gain-scheduler, allowing

the commanded signal to speed up earlier when exiting the low-pass enabled region as

seen by the actual tether length after 51.5 seconds, where it coincides with the low-pass

tether reference length signal. In contrast, Fig. 6.7b shows a typical result for another trial

where the gain-scheduled low-pass filter was not enabled. The commanded tether reference

length signal retains the discontinuities and oscillations from the estimation filter, which
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Figure 6.8: Typical experimental indoor flight testing for a single wave period during
a HPR #2 wave profile trial at 192, 197 and 202 seconds duration. The tether has been
highlighted with a white dashed line to make it more visible. Notice the tether is not
taut, and resembles a catenary curve.

ultimately manifests as oscillations in the actual tether length, visibly noticeable on the

smart reel. Fig. 6.7c shows the frequency spectrum content of the actual tether length for

both trials. The low-pass gain-scheduled controller removes the 4 Hertz frequency content

from the tether length output. A downside of implementing the low-pass filter is a small lag

as is seen by the main peak of the frequency content occurring at a slightly lower frequency

for the low-pass filtered trial. However, the low-pass filter is gain-scheduled to only activate

when it is needed, when the relative velocity is low, mitigating the lag effects as much as

possible.

6.3 Indoor Flight

Typical experimentation images of one period of a 1.9 m wave of a HPR wave profile

trial are shown in Fig. 6.8. The tether is highlighted with the dashed line to make it more

visible. The catenary model-based control performed well, with the tether remaining in the

shape of a catenary curve throughout the large heave motion. The tether was instrumented
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Figure 6.9: Typical experimental indoor flight testing MoCap for a single wave period
during a HPR #2 wave profile trial at 192, 197 and 202 seconds duration. Eleven nodes
on the tether, as well as the UAV and smart reel locations demonstrate a catenary
shaped hanging curve. The theoretical reference catenary curve and the corresponding
nodal points are shown for comparison.

with 11 motion capture spheres, or nodes, as seen in Fig. 6.9. The dynamics of the tether

motion produced a mean positional error from the catenary theory-based reference shape

of 0.076 m over eight separate trials (two per wave profile), with a standard deviation of

0.0378 m. The reaction time of the smart reel is fast enough to mitigate any dynamic

effects due to UAV and smart reel motion.

The altitude displacement of the UAV during a typical experiment is shown in Fig.

6.10a. Because there was no position feedback on the UAV flight controller for station

keeping, the RC pilot was required to hold altitude and position manually, which proved

challenging in the confined testing space. The UAV altitude fluctuated 1.08 m from peak to

peak, with a standard deviation of 0.18 m across the eight separate wave motion trials. The

UAV position stayed within a circular radius of 0.60 m across all trials. To better gauge

the effects of the tether, one un-tethered flight was performed in the same location. For the

un-tethered flight, the altitude fluctuated 0.99 m peak to peak, with a standard deviation
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Figure 6.10: Typical altitude results for indoor flight testing for HPR #2. a) UAV
altitude and smart reel platform height for a typical experiment. b) Normalized cross
correlation between UAV altitude and smart reel platform height. The low correlation
demonstrates a successful decoupling of UAV flight from the USV motion.

of 0.18 m, and positional motion within a radius of .48 m, on par with that for tethered

flight. This range of motion is within the realm of what a standard UAV flight controller

can do using GPS and barometer control outdoors [82, 83]. To further demonstrate the

decoupling of the UAV and USV motion, the normalized cross correlation of the measured

altitude and wave height is shown in Fig. 6.10b. The amplitude of the cross correlation is

relatively flat for all time shifts, under a normalized 0.2. If the tether were pulling on the

UAV, a peak near zero lag would be expected. The error statistics for the estimation filter

and the tether controller for the indoor flight trials are shown in Table 6.3. Noticeably, the

mean error and RMSE for the estimation filter are three to four times greater than those

shown in Table 6.1. With the addition of the UAV, both endpoints of the tether are now

Table 6.3: Indoor Flight Estimation Filter and Tether Length Error

Heave Only HPR # 1 HPR # 2 HPR # 3

Test Time (s) 512.4 669.1 627.8 605.5

∆z̃ Mean |Error| (m) 0.0082 0.0056 0.0054 0.0058
∆z̃ RMSE (m) 0.012 0.0083 0.0080 0.0087

L Mean |Error| (m) 0.0118 0.0096 0.0100 0.0099
L RMSE (m) 0.0163 0.0132 0.0135 0.0135
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dynamically moving, resulting in a some larger estimation errors. However, these errors are

again relegated to the regions of the smart reel changing directions. The key error metric

is the tether length error, which has improved compared to the UAV surrogate testing

as shown in Table 6.2. The UAV having the ability to move dynamically adds a factor

of compliance, while the smart reel decouples large scale motions. The gain-scheduled

low-pass filter performs well in preventing errors and discontinuities in the estimation filter

from propagating through to the tether length.

In summary, the catenary model-based tether control allows the UAV to hold position

and altitude within the bounds of what an RC pilot can achieve. The gain-scheduled

low-pass filter successfully mitigates any discontinuities realized in the estimation filter at

low speeds. The smart reel successfully decouples the motion of the UAV and USV, while

also minimizing induced dynamics on the tether.

6.4 Outdoor Flight

Typical experimentation images of one period of a 1.7 m wave are shown in Fig.

6.11. The tether is highlighted with the dashed line to make it more visible. The catenary

model-based control performed well over eight separate trials (two per wave profile), with

the tether remaining in the shape of a catenary curve throughout the wave motion. Most

notably, compared to the scenario where the tether management controller is turned off,

the tether sags below the smart reel and would be fouled in a real deployment scenario.

In switching from the MoCap system to the RTK dGPS system, a few technical

challenges needed to be addressed. Fig. 6.12a shows the relative altitude output from the

estimation filter and the raw dGPS measurements for a HPR #2 trial run. Notice that the

Kalman filter fills in the gaps between the dGPS measurements reasonably well. However,

as seen at 98.75 seconds, the RTK dGPS system used was not completely reliable, and
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Figure 6.11: Typical outdoor flight testing for HPR #3 at 126, 132, 136 seconds, and
no control. The tether has been highlighted with the white dashed line to make it more
visible. Notice the tether is not taut, and resembles a catenary curve when the controller
is active, whereas the tether has sagged below the platform when no controller is active.

failed to produce a message. This missed message incident occurred at a rate of 1.35%.

When the dGPS failed to produce a message, the estimation filter kept dead reckoning

using the inertial measurements as desired. However, the following dGPS measurement

was often stale and incorrect, as seen at 99.5 seconds. The missed dGPS measurements

Figure 6.12: Typical relative altitude results for an outdoor flight for a) a HPR #2 trial
showing the relative altitude comparing dGPS and estimation filter output for a typical
experiment before logic was implemented. Note the errors in the dGPS measurements
around 100 seconds. b) a HPR #3 trial showing a similar output after dGPS message
logic applied. Note the missed dGPS message at 207.75 seconds and the stale message
at 208.65 seconds does not affect the Kalman filter output.
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required one second in order for dGPS system to sort itself out before outputting a good

message, occasionally producing a completely erroneous measurement, as seen at 113.5

seconds. As seen in Fig. 6.12b for a HPR #3 trial run, logic was implemented to make

sure the change in dGPS message timestamps were in line with the change in time from

the microprocessor. The missed dGPS message at 207.75 seconds and the stale message at

208.65 seconds does not affect the Kalman filter output. Additional logic was implemented

to prevent any change in subsequent dGPS measurements greater than 1 m from being

used in the estimation filter. With the addition of logic, the dGPS Kalman filter estimation

is a reasonable solution for outdoor operation.

Typical tether length results are shown in Fig. 6.13a for a short 1.5 second section

of a HPR #3 trial. Between 113.2 and 113.6 seconds, the low-pass filter activates, and

the discontinuities shown in the filter-only output are avoided. When the low-pass filter

deactivates at 113.6 seconds and the wave profile speeds up, the lag in the actual tether

length decrease as seen by the decreasing gap between the filter only output and the actual

tether length. Fig. 6.13b shows a longer, 10 second section of a HPR #2 trial. Notice that

the actual tether length stays relatively smooth, with the low-pass filter activating when

the relative velocity is low. While the results for the outdoor flight testing are harder to

Figure 6.13: Typical tether length results for an outdoor flight for a) a HPR #3 trial
showing the commanded and actual tether length. b) a HPR #2 trial showing the
commanded and actual tether length for a longer, 10 second section.
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analyze since there is no ground truth measurement to base an idealized tether length off,

the control scheme shows promise.

6.5 Conclusion

A semi-slack, hanging tether model for tether management of a UAV-USV team

was implemented and experimentally validated with a prototype smart reel in a controlled

and relevant dynamic environment. The developed prototype smart reel, capable of

measuring the tether length, departure angle, and tension, shows promise in using the

angle measurement for feedback, but the tether length was ultimately used as a more

reliable, accurate measurement. The semi-slack hanging tether model, dependent on the

relative position between the UAV and USV was extended to operate through a larger

relative position range, extending above ∆r/∆z > 1.2. With the goal of outdoor operation,

a Kalman filter model was developed to combine a slow, 4 Hertz, RTK dGPS relative

position measurement with fast, 100 Hertz inertial measurements, to output a fast, 100

Hertz estimate of the relative position, relative velocity, and inertial sensor bias. The

estimation filter was tuned using experimental data from an indoor MoCap system as

a ground truth measurement. A relative velocity-based gain-scheduled controller was

developed and experimentally validated through three experimental phases: surrogate,

indoor flight, and outdoor flight testing.

Experimental testing with a UAV surrogate showed that the controller works well in

a controlled environment with no external disturbances. The tether tension agrees closely

with the predicted values from catenary theory. More importantly, taut tether control

exhibits 12 times more tether tension. The tether length trend for both the taut and

catenary model-based control were very similar, but had an initial offset. If the taut tether

length was known, an offset buffer would create the same effect. However, that buffer
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changes depending on the relative position, i.e., the model, controller, and estimation filter

are necessary.

Indoor flight testing showed that the catenary controller works well with a UAV at

large, dynamically varying relative positions. No correlation between the UAV and USV’s

altitude was found, demonstrating a successful decoupling of motion. Additionally, the

UAV’s range of motion was comparable to that of un-tethered flight. The RC pilot was able

to perform manual station keeping comparable to that of a GPS controller. Outdoor flight

in a representative operational environment showed good results using the RTK dGPS and

IMU Kalman filter for relative position feedback, as long as some logic was implemented to

ensure the RTK dGPS messages were proper.

For most tethered UAV operational scenarios, one of the ultimate goals is to fly

at high altitude. The higher the UAV flies, the more the tether pulls down on the UAV,

and the larger thrust authority and margin are required. This tether management system

ultimately decreases the safety margins, allowing for higher UAV flight up to and above 50

m, as well as flying from a USV in moderate seas. A major benefit of this control system is

that is is based purely on relative position, regardless of scale.
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Chapter 7

Three Dimensional Elastic String

Pendulum Dynamics

The heave robustness model is based on static hanging cable theory, however does

not take the dynamics of the tether into account. Thus, the tether management control and

feedback is performed in a quasi-static sense. Compounding that, the accurate measurement

of the relative position given existing sensors has proven challenging, and required logic and

low-pass filtering to produce a functional result. In order to develop a tether management

controller that can specifically counteract tether dynamics such as wind effects, or harmonic

amplification, a numerical model, or digital twin environment, capable of simulating the

dynamics of the UAV, tether, USV, and wind is required. Before a simulation environment

can be developed, the dynamics of the system need to be derived. In this chapter, three

dynamic models are derived using Hamilton’s principle of least action: a three dimensional

elastic string rigid body pendulum, a three dimensional fixed reel elastic string rigid body

pendulum, and a three dimensional moving reel elastic string rigid body pendulum with

extensions to the UAV-USV team.
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7.1 Introduction

Numerous applications of objects connected to cables or strings exist, including

cable cranes, tensegrity robotics, towed underwater vehicles, and swings. Under low tension

applications, gravitational forces play a significant role in the shape and dynamics of the

string, and therefore, the overall movement and dynamics of the attached object. Of

particular interest is a low-tension tethered UAV application, where a winch on a small

USV controls the length of the tether and the UAV maintains position and altitude for ISR

missions. The tether acts as a power and communications umbilical, providing secure data

transfer and unlimited flight duration [3–5]. However, a tether limits the mobility of the

UAV, and introduces the problem of the tether fouling on the USV or winch if slack, or

pulling on the UAV if taut, limiting operation range or at worst destabilizing the UAV flight

controls. Appropriate tether management is needed to control the length and dynamics of

the tether. Many tether management controllers have been developed, but the majority use

a taut tether approach to avoid the tether oscillations [2], improve flight stability [7–11], or

enhance landing capability [12–14]. Other systems have considered non-taut tethered flight

using a reactive tether management approach [21], or a non-taut catenary model based

approach, however no intrinsic tether dynamics were considered [6, 24,84].

A high fidelity numerical simulation that accurately models tether dynamics is

required to develop a non-taut tether controller using modern control techniques. First,

the underlying dynamics need to be fully derived and understood. Then, an appropriate

numerical approximation of those dynamics needs to be developed and validated. Several

dynamic and numerical models have been developed generally focusing on subsurface,

underwater tethers. A number of approaches use a lumped mass approach, where the string

is discretized into a series of small masses connected with massless spring-dampers [2], or

rigid elements [85,86] between them. Of particular interest in these lumped mass models

is how to deal with the changing length of the tether due to a reel or winch [87–89], in
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which a viable solution was to change the nominal length of the nodes closest to the reel

or winch. This has the potential to lead to a large variability in nominal element length

for large reel-ins and payouts. Poor scaling of elements can lead to numerical instabilities

resulting in a failed simulation. Other lumped mass models used torsional spring-mass

dampers between mass nodes [90–92] for instance, to study the cracking of a whip. However,

all these approaches assume that they can discretize the string prior to determining the

equations of motion.

A more flexible and rigorous approach is to treat the string as a continuous system,

first deriving the governing equations of motion according to Hamilton’s variational principle

of least action. A number of different approaches for discretization may then be considered.

A derivation using Hamilton’s principle has been presented along with a Lie group variational

numerical integrator, though it is incomplete [93]. The Lie group variational integration

model focuses on long term energy conservation and stability, at the cost of short term

accuracy.

The remainder of the chapter is organized as follows. Section 7.2 presents a complete

Hamilton’s principle-based derivation of the equations of motion for an elastic string rigid

body pendulum. Section 7.3 presents the inertially fixed reel elastic string rigid body

pendulum dynamic derivation. Section 7.4 presents the moving reel elastic string rigid

body pendulum dynamic derivation. Section 7.5 summarizes the key conclusions.

7.2 Elastic String - Rigid Body Pendulum

This section summarizes and completes the derivation of the three dimensional

elastic string pendulum shown in Fig. 7.1 [93]. The tether, with linear density µ, is attached

at one end to an inertially fixed pivot with the right handed global coordinate system

defined by the orthonormal unit vectors ê1, ê2, and ê3. A point P, along the tether is
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Figure 7.1: Diagrams of (a) simple pendulum, (b) flexible and stretchable string
pendulum, and (c) a flexible, stretchable string pendulum with a rigid body mass

defined by the vector rP = r(so), where so ∈ [0, l] is the unstretched length of string to that

point, and l is the total length of the unstretched string. For the stretched case, the vector

r(s) defines the location of the point, where s is the stretched length of string to point P.

The tangent vector to the string at that point is defined as êt. Attached at the other end

of the string, with its location defined by rrb = r(l) for so = l, is a rigid body with mass m.

Attached at the string mounting point are the body frame, orthonormal unit vectors êb1,

êb2, and êb3. The angular velocity vector, Ω =

[
ω1 ω2 ω3

]T
consists of the three rigid

body rotations about each of the body frame orthonormal unit vectors. The vector from

the string mounting point to the center of mass is ρc represented in the body fixed frame.

The vector from the center of mass to an infinitesimally small mass, dm, located at point

Q, is defined as ρ represented in the body fixed frame.

The Lagrangian needs to be determined. Then, the continuous time equations of

motion will be derived using Hamilton’s Principle of least action.
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7.2.1 Lagrangian

The Lagrangian for this system can be defined as the sum of the potential energy

and kinetic energy from the string and rigid body:

L = Tstring + Trb − Vstring − Vrb (7.1)

Kinetic Energy (T)

The kinetic energy of the string consists of the translational velocity of infinitesimal

string mass elements:

Tstring =

∫ l

0

1

2
µṙ (so) · ṙ (so) dso (7.2)

where ṙ (so) is the time derivative of r (so). Similarly, the kinetic energy of the rigid body

depends on rectilinear motion and rotational velocity of the rigid body:

Trb =

∫
Body

1

2
ṙQ · ṙQdm (7.3)

where rQ describes the vector from the pivot to the location of a infinitesimal mass element

in the rigid body:

rQ = r(l) + (ρ + ρc) . (7.4)

Note that ρ and ρc use the body fixed frame basis vectors (êb1, êb2, and êb3). Converting

to the global basis vectors yields:

rQ = r(l) + R (ρ + ρc) . (7.5)
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where R is the rotation matrix to convert from the body fixed frame to the global coordinate

frame, as defined in Eq. A.7. By converting into the global frame, the typical tensor

analysis which requires meticulous tracking of derivatives, can be simplified into linear

algebra using the rotation matrix derivative kinematic relationship given in Eq. A.5. Taking

and inserting the derivative of Eq. 7.5 into Eq. 7.3, and rearranging results in:

Trb =
1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ (7.6)

where Π is the matrix representation of the inertia tensor as defined in Eq. B.2 [93,94],

and the ·̂ operator denotes a skew symmetric matrix mapping of the cross product of a

three dimensional vector as in Eq. A.1. See Appendix B.1 for the complete derivation from

Eq. 7.3 to Eq. 7.6. (Note the slight difference in notation, that tensors and vectors will

use the sans serif font, and matrices will use the serif font. Clearly seen in the matrix Ω̂,

and vector Ω.)

Potential Energy (V)

In addition to the gravitational potential, the string has internal potential energy

(axial strain, torsion, or bending), and needs to be modeled accordingly [95]. For a

long string, with the length much greater than the diameter, the string can twist freely

and torsion forces are negligible. Below a low tension threshold of approximately 0.5 N,

bending can be neglected [96–101]. Here, bending forces could be included via the integral∫ L
0

1
2
EI (ν ′′)2 dso [102, 103], but would make the analysis considerably more complicated

without much benefit. Thus, the potential energy of the string consists solely of the internal

elastic energy due to its stretch, and gravity potential for the infinitesimal string mass
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elements [104]:

Vstring =

∫ l

0

1

2
EAε2 − µr (so) · gdso (7.7)

where ε is the tangential strain of the string element dso, as defined in Eq. B.3, and g = gê3

is the gravity vector. [93]. Inserting the formal definition of strain for a continuous body

results in:

Vstring =

∫ l

0

1

2
EA (‖r′ (so)‖2 − 1)

2 − µr (so) · gdso (7.8)

where ()′ denotes the spatial partial derivative ( ∂
∂so

), and ‖x‖2 =
√

x · x =
√
x2

1 + · · ·x2
n is

the Euclidean distance, or 2-norm. See Appendix B.2 for the complete derivation from Eq.

7.7 to Eq. 7.8.

The potential energy of the rigid body depends only on the gravitational potential

of the center of mass:

Vrb = −m (r (l) + Rρc) · g

Vrb = −mr (l) · g −mRρc · g
(7.9)

Complete Lagrangian

Inserting the kinetic energies from Eq. 7.2, Eq. 7.6, and potential energies from Eq.

7.8, and Eq. 7.9 into Eq. 7.1 gives the total Langrangian energy:

L =
1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ +

∫ l

0

1

2
µṙ (so) · ṙ (so) dso + mr (l) · g

+ mRρc · g +

∫ l

0

{
−1

2
EA (‖r′ (so)‖2 − 1)

2
+ µr (so) · g

}
dso

(7.10)
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7.2.2 Equations of Motion from Hamilton’s Principle of Least

Action

Using the Lagrangian from Eq. 7.10, the equations of motion can be determined

using Hamilton’s Principle of least action, defined as [105–107]:

δS = δ

∫ t2

t1

L (q, q̇, t) dt = 0 (7.11)

where q and q̇ are the generalized coordinates of the Lagrangian. Taking the variation of

the Lagrangian requires integration by parts (IBP) in time, but also IBP in space due to

the integral across the string domain and the spatial partial derivative. Because one end of

the string is inertially fixed and the length does not change in time, the integral in time

and space order can be freely swapped. Taking the variation and repeatedly applying IBP

yields (See Appendix C for the complete derivation, following and correcting the derivation

given in [93]):

∫ tf

to

∫ l

0

(
−µr̈ (so) + µg + EA

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)′)
· δr (so) dso

+

(
−mr̈ (l) + mg − EA‖r

′ (l)‖2 − 1

‖r′ (l)‖2

r′ (l)−mRΩ̂
2
ρc + mRρ̂cΩ̇

)
· δr (l)

+
(
−ΠΩ̇− Ω̂ΠΩ + mρ̂cR

Tg −mρ̂cR
T r̈ (l)

)
· η dt = 0

(7.12)

From the Hamilton’s Principle definition, the variations, δr (so), δr (l) , and η are defined

such that they equal zero at to and tf , but can be nonzero elsewhere. Thus, for the entire

equation to be true, the terms inside the parenthesis needs to be equal to zero, resulting in
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the equations of motion:

µr̈ (so)− µg − EA ∂

∂s

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)
= 0

mr̈ (l)−mg + EA
‖r′ (l)‖2 − 1

‖r′ (l)‖2

r′ (l) + mRΩ̂
2
ρc −mRρ̂cΩ̇ = 0

ΠΩ̇ + Ω̂ΠΩ−mρ̂cR
Tg + mρ̂cR

T r̈ (l) = 0.

(7.13)

The first equation, a partial differential equation (PDE) is the translation dynamics

of the continuous string including gravitational forces, inertia, and internal tension forces.

The second, a PDE, and third, an ordinary differential equation (ODE), are the translation

and rotational dynamics of the rigid body, respectively, and include coupling forces due to

the string attachment. Note that if the body was a point mass, ρc would be zero, and the

coupling forces would simplify accordingly.
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Figure 7.2: Diagrams of (a) flexible and stretchable string pendulum connected to a
winch, and (b) a flexible, stretchable string pendulum with a rigid body mass

7.3 Fixed Reel - Elastic String - Rigid Body Pendu-

lum

The natural follow on from the three dimensional elastic pendulum is to replace

the fixed pivot with an inertially fixed reel, or winch mechanism. A number of methods

attempted to model a winch by keeping the boundary condition fixed while varying the

nominal element length [88,108] or maintaining the nominal element length and adding

or subtracting elements as the tether length changes [109]. These approaches lead to

inaccuracies and numerical errors or instability in the simulation model. In other work, a

cohesive derivation of the reel elastic pendulum dynamics is used to develop a discrete time

variational integrator model for tethered satellite applications [110]. However, they assume

a Carnot energy loss as the tether exits the reel due to the velocity discontinuity. With the

goal of eventually developing an Arbitrary Lagrangian Eulerian (ALE) formulation [111,112],

this section summarizes and completes the derivation of the fixed reel elastic string pendulum

as shown in Fig. 7.2 [110] .

The string and rigid body have the same characteristics as those described in Section
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7.2. Differing in this case, the constrained end of the string is no longer attached to a

fixed pivot, but to a reel. The global coordinate system is defined by the orthonormal unit

vectors ê1, ê2, and ê3. The location of the center of the reel is at point D is defined by

the vector rD. The drum has a rotational inertia of Jd = 1
2
mdd2, where the radius of the

reel is denoted d, and a control moment u. The string is attached to the reel at point O,

and the vector from the center of the drum to an infinitesimal string element on the drum

is denoted rT = d (cos θê1 − sin θê3). As the reel rotates an angle θ, the string wraps on

the reel and is no longer elastic. The string unwraps off the reel at point B, extends a

straight distance, b, to a guide-way located at point G, defined by rG = r(sd), where sd is

the length of string wrapped on the reel between point O and G. The deployed string is

again denoted s0 for the unstretched length, and s for the stretched length.

7.3.1 Lagrangian

The Lagrangian for this system can be defined as the sum of the potential energy

and kinetic energy from the reel, the string and the rigid body:

L = Treel + Tstring + Trb − Vreel − Vstring − Vrb (7.14)

Kinetic Energy (T)

The kinetic energy of the reel consists of the translational velocity of string on the

reel and the rotational kinetic energy of the drum:

Treel =

∫ sd

0

1

2
µṙ (s0) · ṙ (s0) ds0 +

1

2
Jdθ̇ (O)2

The string on the drum is inextensible, and its velocity is constant and equal to the velocity

at the guide way, ṙ (sd) = ṡd. The angular velocity of the drum can be defined as θ̇ (O) = ṡd

d
,
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and substituting in the moment of inertia results in:

Treel =
1

2

(
µsd +

md

2

)
ṡ2
d (7.15)

The deployed string kinetic energy consists of the translational velocity of infinitesi-

mal string mass elements, which is the same derivation as in Section 7.2.1 with the exception

that the lower limit of the integral is different due to the reel boundary condition:

Tstring =

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0 (7.16)

The rigid body kinetic energy, consists of the translational and rotational velocity of

the rigid body. This is the same derivation as in Section 7.2.1 resulting in Eq. 7.6, repeated

here:

Trb =
1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ (7.17)

Combining the reel, string, and rigid body kinetic energies, from Eq. 7.15, Eq. 7.16

and Eq. 7.17, respectively yields the total kinetic energy:

T =
1

2

(
µsd +

md

2

)
ṡ2
d +

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0 +

1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ

(7.18)

Potential Energy (V)

New in this system is the reel potential energy. Because the reel is inertially fixed,

the only changing potential energy comes from the change in gravitational potential of

the mass of the string on the drum, which is determined by the vector to an infinitesimal
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string element:

Vreel = −
∫ sd−b

0

µ (rD + rT) · gds0

Inserting the definition of rT = d (cos θê1 − sin θê3), and the arc length formula, θ = s0

d
,

yields:

= −
∫ sd−b

0

µrD · gds0 +

∫ sd−b

0

µgd sin
(s0

d

)
ds0

Performing the integral results in:

Vreel = −µ (sd − b) rD · g − µgd2

(
cos

(
sd − b

d

)
− 1

)
(7.19)

The deployed string potential energy consists of the internal elasticity and gravity

potential for the infinitesimal string mass elements. The derivation is the same as in Section

7.2.1 with the exception that the limits of the integral are different due to the reel boundary

condition:

Vstring =

∫ l

sd

1

2
EA (‖r′ (s0)‖2 − 1)

2 − µr (s0) · gds0 (7.20)

The rigid body again consists of the gravitational potential of the center of mass,

identical to the derivation in Section 7.2.1:
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Vrb = −mr (l) · g −mRρc · g (7.21)

Combining the reel, string and rigid body potential energies, from Eq. 7.19, Eq.

7.20 and Eq. 7.21, respectively yields the total potential energy:

V = −µ (sd − b) rD · g − µgd2

(
cos

(
sd − b

d

)
− 1

)
+

∫ l

sd

(
1

2
EA (‖r′ (s0)‖2 − 1)

2 − µr (s0) · g
)
ds0

−m (r (l) + Rρc) · g

(7.22)

Complete Lagrangian

Inserting the kinetic energies from Eq. 7.18, and potential energies from Eq. 7.22

into Eq. 7.1 yields the total Langrangian energy:

L =
1

2

(
µsd +

md

2

)
ṡ2
d +

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0 +

1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc

+
1

2
Ω ·ΠΩ + µ (sd − b) rD · g + µgd2

(
cos

(
sd − b

d

)
− 1

)
−
∫ l

sd

(
1

2
EA (‖r′ (s0)‖2 − 1)

2 − µr (s0) · g
)
ds0 + m (r (l) + Rρc) · g

(7.23)

7.3.2 Equations of Motion from Extended Hamilton’s Principle

A few differences exist from the derivation given in Section 7.2.2, specifically the reel,

the effects of the changing boundary condition on the string, and some non-conservative

forces from the string velocity discontinuity at the guide-way exit, the guide-way normal

force, and the applied winch control moment. The Extended Hamilton’s Principle of Least

95



Action can account for these forces through variations in the virtual work [1, 113,114]:

δS = δ

∫ t2

t1

L (q, q̇, t) +WNCdt = 0 (7.24)

Taking the variation of the Lagrangian requires IBP in time, but also IBP in space

due to the integral across the string domain and the spatial partial derivative. Special

attention needs to be taken at the boundary conditions. Because the reel end of the string

is no longer inertially fixed, the integral in time and space order can no longer be freely

swapped. Green’s Theorem must be used to integrate over the line integral instead. Taking

the variation and repeatedly applying IBP yields (See Appendix C.2 for the complete

derivation, following and completing the derivation given in [110]):

∫ tf

t0

{(
−
(
µsd +

md

2

)
s̈d + µ (rD − rG) · g − µgd sin

(
sd − b

d

)
−f
(
s+
d

)
· r′
(
s+
d

)
+ µṡ2

d

(
‖r′
(
s+
d

)
‖2 − 1

)
+

u

d

)
δsd

+
(

mRρ̂cΩ̇−mr̈ (l)−mRΩ̂
2
ρc + mg − f (l)

)
· δr (l)

+
(
−mρ̂cR

T r̈ (l)−ΠΩ̇− Ω̂ΠΩ + mρ̂cR
Tg
)
· η
}
dt

+

∫ l

sd

(
∂

∂s0

f (s0) + µg − µr̈ (s0)

)
· δr (s0) ds0

}
dt = 0

(7.25)

Because the variations δsd, δr (l) , η, and δr (s0) can be anything nonzero between to and

tf , the terms inside the parenthesis needs to be equal to zero, which gives the equations of
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motion:

−
(
µsd +

md

2

)
s̈d + µ (rD − rG) · g − µgd sin

(
sd − b

d

)
−f
(
s+
d

)
· r′
(
s+
d

)
+ µṡ2

d

(
‖r′
(
s+
d

)
‖ − 1

)
+

u

d
= 0

−µr̈ (s0) + µg + EA
∂

∂s0

(
‖r′ (s0)‖2 − 1

‖r′ (s0)‖2

r′ (s0)

)
= 0 s0 ∈ [sd, l]

−mr̈ (l) + mg − EA‖r
′ (l)‖2 − 1

‖r′ (l)‖2

r′ (l)−mRΩ̂
2
ρc + mRρ̂cΩ̇ = 0

−ΠΩ̇− Ω̂ΠΩ + mρ̂cR
Tg −mρ̂cR

T r̈ (l) = 0

. (7.26)

The first equation, is for the motion of the winch, in terms of string length on

the winch. The second equation, a PDE, is the translation dynamics of the continuous

string, and identical to that of the fixed pivot elastic string rigid body pendulum, with

the exception of the range of the string where it is valid. The third, a PDE, and fourth,

an ODE, are the translation and rotational dynamics of the rigid body, respectively, and

identical to that of the fixed pivot elastic string rigid body pendulum.
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Figure 7.3: Diagrams of (a) overview of moving reel, elastic string, rigid body pendulum,
(b) detail view of the rigid body mass, and (c) detail view of the moving reel system

7.4 Moving Reel - Elastic String - Rigid Body Pen-

dulum / UAV

The natural follow on from the inertially fixed reel three dimensional elastic pendulum

is to relax the fixed constraint on the reel. Similar numerical models for tethered satellites

exist, but they all use celestial gravitational potential (GmM
r2

), and the scale is significantly

greater than the tethered UAV-USV scenario such that they ignore many of the dynamic

effects of the winch [87,115–117]. The derivation presented here is modified and extended

use a typical Earth-based formulation of gravitational potential, as shown in Fig. 7.3. To

simplify the analysis, the winch is assumed to be mounted at the center of mass of the

moving object, in this case, a small boat.

The string, rigid body and winch have many of the same characteristics as those

described in Section 7.3. Differing in this case, is a boat coordinate system, denoted by
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the vectors êb1, êb2, and êb3, located at the center of mass of the reel and boat. The mass

of the reel is denoted md and the mass of the boat is denoted mb. The angular velocity

vector of the boat, Ωb =

[
ωb1 ωb2 ωb3

]T
consists of the three rigid body rotations about

each of the body frame orthonormal unit vectors. The coordinate system attached to the

rigid body, or in this case, the UAV, is denoted êu1, êu2, and êu3. The mass of the UAV is

denoted mu. The angular velocity vector of the rigid body or UAV, Ωu =

[
ωu1 ωu2 ωu3

]T
consists of the three rigid body rotations about each of the body frame orthonormal unit

vectors. The overall applied thrust and moment of the UAV are defined as FUAV, and τUAV,

respectively. The location of the center of the reel at point D is again defined by the vector

rD, however is no longer inertially fixed. The drum has a rotational inertia of Jd = 1
2
mdd2,

where the radius of the reel is denoted d, and a control moment u. The string is attached to

the reel at point O, and the vector from the center of the drum to an infinitessimal string

element on the drum is denoted rT = d (sin θêb1 − cos θêb3). As the reel rotates an angle

θ, the string wraps on the reel and is no longer elastic. The string unwraps off the reel

at point B, extends a straight distance, b, to a guide-way located at point G, defined by

rG = rD + ρg = r(sd), where sd is the length of string wrapped on the reel between point O

and G, and ρg is the vector from the center of the reel to the guide way exit. The deployed

string is again denoted s0 for the unstretched length, and s for the stretched length.

7.4.1 Lagrangian

Kinetic Energy (T)

The Lagrangian for this system can be defined as the sum of the potential energy

and kinetic energy from the boat, the reel, the string and the rigid body:
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L = Tboat + Treel + Tstring + Trb − Vboat − Vreel − Vstring − Vrb (7.27)

The kinetic energy of the boat rigid body consists of the translation and rotation

kinetic energy: This is the same derivation as in Section 7.2.1 resulting in Eq. 7.6, repeated

here with ρc = 0:

Tboat =
1

2
mbṙD · ṙD +

1

2
Ωb ·ΠbΩb (7.28)

The kinetic energy of the reel consists of the motion of the reel and string due to

rigid body translation, translation of the string on the reel due to reel rotation, and the

rotational kinetic energy of the drum:

Treel =
1

2
(mr + µsd) ṙD · ṙD +

∫ sd

0

1

2
µṙ (s0) · ṙ (s0) ds0 +

1

2
Jdθ̇ (O)2

The rotation of the reel about the reference point can be neglected as md << mb,

and the effects on the boat motion are negligible. The second and third terms follow the

same derivation given in Section 7.3.1 resulting in Eq. 7.15.

Treel =
1

2
(mr + µsd) (ṙD · ṙD) +

1

2

(
µsd +

md

2

)
ṡ2
d (7.29)

The deployed string kinetic energy consists of the translational velocity of infinitesi-
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mal string mass elements, the same derivation as in Section 7.3.1 in Eq. 7.16:

Tstring =

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0 (7.30)

The UAV kinetic energy, consists of the translational and rotational velocity of the

UAV. This is the same derivation as in Section 7.2.1 resulting in Eq. 7.6, repeated here

with updated variables:

TUAV =
1

2
muṙ (l) · ṙ (l) + muṙ (l) ·RuΩ̂uρc +

1

2
Ωu ·ΠuΩu (7.31)

Combining the kinetic energy from the boat, reel, string, and UAV, from Eq. 7.28,

Eq. 7.29, Eq. 7.30 and Eq. 7.31, respectively yields the total kinetic energy:

T = Tboat + Treel + Tstring + TUAV

=
1

2
(mb + md + µsd) (ṙD · ṙD) +

1

2

(
µsd +

md

2

)
ṡ2
d +

1

2
Ωb ·ΠbΩb

+

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0 +

1

2
muṙ (l) · ṙ (l) + muṙ (l) ·RuΩ̂uρc +

1

2
Ωu ·ΠuΩu

(7.32)
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Potential Energy (V)

New in this setup is the boat potential energy, and the translation potential energy

of the reel. The potential energy of the boat consists of the gravitational potential and is

the same derivation as in Section 7.2.1:

Vboat = −mbrD · g (7.33)

The potential change of the reel is due to the gravitational potential for the mass of

the reel including the mass of string in the guide way, and the mass of string on the reel.

Vreel = − (md + µb) rD · g −
∫ sd−b

0

µ (rD + rT) · gds0

The derivation follows the derivation in Section 7.3.1 and Eq. 7.19, but is slightly different

since the reel is rotating, and rT’s unit vectors are êb1 and êb3:

Vreel = − (md + µb) rD · g − µ (sd − b) rD · g −
∫ sd−b

0

µrT · gds0

= − (md + µsd) rD · g −
∫ sd−b

0

µrT · gds0

Inserting the definition of rT = d (sin θêb1 − cos θêb3), the distance from the center of the

reel to an infinitesimal piece of string on the reel, and the arc length formula (θ = s0

d
):
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Vreel = − (md + µsd) rD · g −
∫ sd−b

0

µd (sin θêb1 − cos θêb3) · gds0

= − (md + µsd) rD · g −
∫ sd−b

0

µd
(

sin
s0

d
êb1 − cos

s0

d
êb3

)
· gds0

= − (md + µsd) rD · g − µd2
(
− cos

s0

d
êb1 − sin

s0

d
êb3

)∣∣∣sd−b

0
· g

resulting in:

Vreel = − (md + µsd) rD · g − µd2

((
1− cos

sd − b

d

)
êb1 − sin

sd − b

d
êb3

)
· g (7.34)

The deployed string potential energy consists of the internal elasticity and gravity

potential for the infinitesimal string mass elements have the same derivation as in Section

7.3.1 resulting in Eq. 7.20, repeated here:

Vstring =

∫ l

sd

1

2
EA (‖r′ (s0)‖2 − 1)

2 − µr (s0) · gds0 (7.35)

The UAV consists only of the gravitational potential of a rigid body, which has the

same derivation as shown in 7.3.1, but with different variable names:

VUAV = −mu (r (l) + ρc) · g (7.36)

Combining the boat, reel, string, and UAV potential energies from Eq. 7.33, Eq.
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7.34, Eq. 7.35, and Eq. 7.36, respectively yields the total potential energy:

V = Vboat + Vreel + Vstring + VUAV

= − (mb + md + µsd) rD · g − µd2

((
1− cos

sd − b

d

)
êb1 − sin

sd − b

d
êb3

)
· g

+

∫ l

sd

1

2
EA (‖r′ (s0)‖2 − 1)

2 − µr (s0) · gds0 −mu (r (l) + ρc) · g

(7.37)

Complete Lagrangian

Inserting the kinetic energies from Eq. 7.32, and potential energies from Eq. 7.37

into Eq. 7.1 yields the total Langrangian energy:

L =
1

2
(mb + md + µsd) (ṙD · ṙD) +

1

2

(
µsd +

md

2

)
ṡ2
d +

1

2
Ωb ·ΠbΩb

+
1

2
muṙ (l) · ṙ (l) + muṙ (l) ·RuΩ̂uρc +

1

2
Ωu ·ΠuΩu

+ (mb + md + µsd) rD · g + µd2

((
1− cos

sd − b

d

)
êb1 − sin

sd − b

d
êb3

)
· g

+

∫ l

sd

(
1

2
µṙ (s0) · ṙ (s0)− 1

2
EA (‖r′ (s0)‖2 − 1)

2
+ µr (s0) · g

)
ds0 + mu (r (l) + ρc) · g

(7.38)
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7.4.2 Equations of Motion from Extended Hamilton’s Principle

A few differences exist from the derivation given in Section 7.3.2, specifically the

addition of a second rigid body, the moving reel effects the simplification due to changing

boundary condition on the string at the guide way, and the applied force and moment at

the UAV. Again, the Extended Hamilton’s Principle of Least Action from Eq. 7.24 will

be used. Taking the variation, repeatedly applying IBP, Leibniz’ rule, Green’s theorem,

and applying the boundary conditions at the guide way yields (See Appendix C.3 for the

complete derivation, following and completing the derivation given in [117]):

δS =

∫ tf

t0

{(
− (mb + md + µsd) r̈D − µṡdṙD − µṡ2

dr′
(
s+
d

)
+ µṡdṙD − µṡdRbρ̂gΩb

+ (mb + md + µsd) g + f
(
s+
d

))
· δrD

+

(
−ΠbΩ̇b − Ω̂bΠbΩb − µṡ2

dρ̂gR
T
b r′
(
s+
d

)
+ µṡdρ̂gR

T
b ṙD − µṡdρ̂

2
gΩb

− µd2 sin

(
sd − b

d

)
ˆ̂e3R

T
b g − µd2

(
cos

(
sd − b

d

)
− 1

)
ˆ̂e1R

T
b g

+ ρ̂gR
T
b f
(
s+
d

)
− uê2

)
· ηb

+

(
1

2
µṙD · ṙD −

(
µsd +

md

2

)
s̈d + µṡ2

d

(
‖r′
(
s+
d

)
‖2 − 1

)
− 1

2
µ
(
ṙD −Rbρ̂gΩb

)
·
(
ṙD −Rbρ̂gΩb

)
+ µrd · g

− µd cos

(
sd − b

d

)
Rbê3 · g + µd sin

(
sd − b

d

)
Rbê1 · g − µr

(
s+
d

)
· g

− f
(
s+
d

)
· r′
(
s+
d

)
+

u

d

)
δsd

+

∫ l

sd

(−µr̈ (s0) + f ′ (s0) + µg) · δr (s0) ds0

+
(

muRuρ̂cΩ̇u −mur̈ (l)−muRuΩ̂
2

uρc − f (l) + mug − FUAVRuê3

)
· δr (l)

+
(
−muρ̂cR

T
u r̈ (l)−ΠuΩ̇u − Ω̂uΠuΩu + muρ̂cR

T
u g + τUAV

)
· ηu

}
dt

(7.39)
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Because the variations δrD, ηb, δsd, δr (s0), δr (l) , and ηu can be anything nonzero

between to and tf , the terms inside the parenthesis needs to be equal to zero, which gives

the equations of motion:

• Rigid body (Boat) translation:

− (mb + md + µsd) r̈D − µṡdṙD − µṡ2
dr′
(
s+
d

)
+ µṡdṙD − µṡdRbρ̂gΩb

+ (mb + md + µsd) g + f
(
s+
d

)
= 0

(7.40)

• Rigid body (Boat) rotation

−ΠbΩ̇b − Ω̂bΠbΩb − µṡ2
dρ̂gR

T
b r′
(
s+
d

)
+ µṡdρ̂gR

T
b ṙD − µṡdρ̂

2
gΩb

− µd2 sin

(
sd − b

d

)
ˆ̂e3R

T
b g − µd2

(
cos

(
sd − b

d

)
− 1

)
ˆ̂e1R

T
b g

+ ρ̂gR
T
b f
(
s+
d

)
− uê2 = 0

(7.41)

• Winch rotation dynamics

1

2
µṙD · ṙD −

(
µsd +

md

2

)
s̈d + µṡ2

d

(
‖r′
(
s+
d

)
‖2 − 1

)
− 1

2
µ
(
ṙD −Rbρ̂gΩb

)
·
(
ṙD −Rbρ̂gΩb

)
+ µrd · g − µd cos

(
sd − b

d

)
Rbê3 · g

+ µd sin

(
sd − b

d

)
Rbê1 · g − µr

(
s+
d

)
· g

− f
(
s+
d

)
· r′
(
s+
d

)
+

u

d
= 0

(7.42)

Note above that the 1
2
µṙD · ṙD term cancels with the first term of −1

2
µ
(
ṙD −Rbρ̂gΩb

)
·(

ṙD −Rbρ̂gΩb

)
after multiplying through.
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• String translation dynamics:

−µr̈ (s0) + f ′ (s0) + µg = 0,
(
s0 ∈ [sd, l] , r (sd) = rD + Rb

(
ρr + ρg

))
(7.43)

• Rigid Body 2 (UAV) translation dynamics

muRuρ̂cΩ̇u −mur̈ (l)−muRuΩ̂
2

uρc − f (l) + mug − FUAVRuê3 = 0 (7.44)

• Rigid Body 2 (UAV) rotation dynamics

−muρ̂cR
T
u r̈ (l)−ΠuΩ̇u − Ω̂uΠuΩu + muρ̂cR

T
u g + τUAV = 0 (7.45)

7.5 Conclusion

Three separate dynamic models of elastic string pendulums were developed using

Hamilton’s principle of least action. The kinetic and potential energy for a rigidly fixed

elastic string pendulum with a rigid body on the end were developed. By neglecting

torsion and bending effects, the analysis was simplified, and an intuitive partial differential

formulation was developed. Leveraging Hamilton’s principle of least action, and liberal

usage of IBP in both space and time, the variations of the Lagrangian resulted in a simple,

continuous body partial differential equations of motion. The natural progression of adding

an inertially fixed reel to the pivot end of the string required some additional care in dealing

with the boundary conditions, and IBP steps. Because the reel end of the string is no

longer fixed, the integral order in time and space can not be freely switched. Leibniz’s rule

and Green’s theorem enabled the successful development of the complete variation, and

equations of motion. New to this scenario, was the inclusion of nonconservative virtual

work terms, to account for the energy loss at the winch’s guide way exit due to a string
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velocity discontinuity, the guide way normal force, and the applied moment on the reel.

Finally, a model was developed for a moving reel mounted on a boat, with an elastic

string extending up to a UAV. Again, care needed to be taken with regards to boundary

conditions, and the nonconservative virtual work for the applied forces and moments. In

the next chapter, leveraging these dynamic models, a numerical simulation model will be

developed using Galerkin’s method with linear and quadratic shape functions.
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Chapter 8

Three Dimensional Elastic String

Pendulum Numerical Model

In order to properly develop a numerical method for time-marching, such as a

Runge-Kutta method, the continuous string PDE needs to be discretized into a finite

element method [118]. A finite element model developed in other work presented the

one dimensional linear shape function, but the derivation is incomplete, and it focuses on

developing a discrete time variational integration scheme [93]. In this work, a Runge Kutta

method will be used, which requires a first order ODE. The proper, complete Galerkin

finite element method, and both the one dimensional linear and quadratic finite element

model derivation are presented.

The remainder of the chapter is organized as follows. Section 8.1 presents the theory

og the weighted residual integral. Section 8.2 presents the theory of Gauss quadrature.

Section 8.3 details the derivation of the linear shape function finite element model. Section

8.4 derives the quadratic shape function finite element model. Section 8.5 summarizes the

key conclusions.
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8.1 Weighted Residual Integral

The Galerkin finite element method for relies on the weighted residual integral [118]:

∫ L

0

w (so)R (so) dso = 0 (8.1)

where R (so) is the residual of the PDE, and w (so) is a weighting function depending on

the shape functions used. Inserting the PDE from Eq. 7.13 for R (so), yields:

∫ L

0

w (so)

(
µr̈ (so)− µg − EA ∂

∂s

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

))
dso = 0∫ L

0

w (so) (µr̈ (so)− µg) dso −
∫ L

0

w (so)

(
EA

∂

∂s

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

))
dso = 0.

Performing IBP in space on the second term (IBP:
∫ b
a
udv = uv|ba −

∫ b
a
vdu with u = w (so)

and dv = EA ∂
∂s

(
‖r′(so)‖2−1
‖r′(so)‖2 r′ (so)

)
dso) yields:

∫ L

0

w (so) (µr̈ (so)− µg) dso +

∫ L

0

EA

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)
dw (so)

dso
dso

− w (so) f (so)|L0 = 0

(8.2)

where f (so) is the boundary condition force defined as:

f (so) = EA

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)
(8.3)

8.2 Gauss Quadrature

For many finite element methods, the stiffness terms cannot be evaluated analytically.

For the three dimensional elastic string pendulum, the one dimensional linear shape functions

can be solved analytically, while the quadratic shape functions can not. To evaluate more
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complicated formulations, Gaussian Quadrature can be used, which approximates the

integral as a finite weighted sum [118]:

∫ 1

−1

f (x) dx ≈
n∑
i=1

wif (xi) (8.4)

where the weights, wi, and evaluation points, xi, are specified based on the Gaussian

Quadrature method. For the one dimensional quadratic shape function method, two point

Gauss Quadrature will be used, where x1 = −1√
3
, x2 = 1√

3
, and wi = 1.

8.3 First Order Shape Functions

The string is discretized into N equal sized elements, and N + 1 nodes defined by

the position of the endpoint of the i’th element, (ri, ri+1). There are 6(N + 1) degrees of

freedom for the x, y, z position and ẋ, ẏ, ż velocity of each node. Each element will have

an initial length of l0 = l
N

. The one dimensional linear shape function comprises of a

natural coordinate ζ ∈ [0, 1] defining a point between node points within each element.

Two shape functions, one with positive and one with negative slope, vary linearly between

1 and 0 between ζ ∈ [0, 1]. (See Appendix D.1 for a complete description of the linear

shape function.) The position of a point in the element and its second order derivative in

time as a function of ζ are defined as:

r (ζ) = (1− ζ) ri + ζri+1

r̈ (ζ) = (1− ζ) r̈i + ζ r̈i+1.

(8.5)

8.3.1 Change of Variables

Performing a change of variables on the weighted residual integral given in Eq. 8.2,

from so to the natural coordinate of the linear shape function element, ζ ∈ [0, 1] using Eq.
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D.1 yields:

∫ 1

0

w (ζ) (µr̈ (ζ)− µg) l0dζ + EA

∫ 1

0

(
‖r′ (ζ)‖2 − 1

‖r′ (ζ)‖2

r′ (ζ)

)
dw (ζ)

dζ

dζ

dso
l0dζ

− w (ζ) f (ζ)|10 = 0.

(8.6)

For the spatial derivative terms, the proper change of variables from r′ (so) to r′ (ζ) needs

to be determined. Taking the derivative via the chain rule, taking the partial derivative of

Eq. 8.5 and inserting Eq. D.1 results in:

r′ (ζ) =
∂

∂ (so)
(r (ζ))

r′ (ζ) =
∂r (ζ)

∂ζ

∂ζ

∂so

r′ (ζ) = (ri+1 − ri)

(
1

l0

)
.

(8.7)

Plugging Eq. D.1, Eq. 8.5, and Eq. 8.7 into Eq. 8.6, simplifying and reorganizing yields:

µl0

∫ 1

0

w (ζ) ((1− ζ) r̈i + ζ r̈i+1 − g) dζ

+
EA

l0

‖(ri+1 − ri)‖2 − l0
‖(ri+1 − ri)‖2

(ri+1 − ri)

∫ 1

0

dw (ζ)

dζ
dζ − f (ζ)w (ζ)|10 = 0

where the elemental force density term, qi is:

qi =
EA

l0

‖(ri+1 − ri)‖2 − l0
‖(ri+1 − ri)‖2

. (8.8)

The weighted residual integral results in:

µl0

∫ 1

0

w (ζ) ((1− ζ) r̈i + ζ r̈i+1 − g) dζ + qi (ri+1 − ri)

∫ 1

0

dw (ζ)

dζ
dζ − f (ζ)w (ζ)|10 =0.

(8.9)
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8.3.2 Shape Function and Global Assembly

The one dimensional linear shape function is one of the few element models that

can actually be solved analytically. Using the two shape functions as weights, as defined in

Eq. D.2, leads to a system of two equations per element and the elemental stencil (See

Appendix D.2 for a complete derivation):

µl0
6

2I3 I3

I3 2I3


 r̈i

r̈i+1

 = qi

−I3 I3

I3 −I3


 ri

ri+1

+
µl0
2
g

I3

I3

 ê3 +

−f i

f i+1

 (8.10)

where the last term is the elemental boundary conditions. Because the string is discretized

into elements in series, the global assembly of elements leads to the following structure:

µl0
6




0

0


r̈1

...

r̈N+1

 =




0

0


r1

...

rN+1

+ µl0g



ê3 +




where each element block follows Eq. 8.10. The mass and stiffness sub-matrices are 6× 6

matrices with three rows and columns in the corners overlapping, and the gravity and

boundary condition matrices are tall 6 × 1 with three rows overlapping up, and three

rows overlapping down. Wherever blocks overlap, the terms from each element are added

together, yielding the following nodal stencil for the i’th internal node:

µl0
6

[
I3 4I3 I3

]
r̈i−1

r̈i

r̈i+1

 =

[
qi−1I3 − (qi−1 + qi) I3 qiI3

]
ri−1

ri

ri+1

+ µl0g (8.11)
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where the boundary conditions for the internal nodes, (f i), cancel out. Assembling into a

system of equations for the string yields the following matrix equation:

MstrẌstr = KstrXstr + Gstrê3 + Bstr (8.12)

where the state matrix, Xstr, of size (3N+3)×1, the gravity matrix, Gstr, of size (3N+3)×3,

and boundary condition matrix, Bstr, of size (3N + 3)× 1, are defined as:

Xstr =


r1

...

rN+1

 , Gstr = µl0g



1
2
I3

I3

...

I3

1
2
I3


, Bstr =



−f1

0

...

0

fN+1


(8.13)

and the mass matrix, Mstr, (3N + 3)× (3N + 3) sized, is block tridiagonal:

Mstr =
µl0
6



2I3 I3 0

I3 4I3 I3

. . . . . . . . .

I3 4I3 I3

0 I3 2I3


(8.14)
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and the stiffness matrix Kstr, also (3N + 3)× (3N + 3) sized and block tridiagonal is:

Kstr =



−q1I3 q1I3 0

q1I3 − (q1 + q2) I3 q2I3

. . . . . . . . .

qN−1I3 − (qN−1 + qN) I3 qNI3

0 qNI3 −qNI3


. (8.15)

8.3.3 c0 String Boundary Conditions

There are two boundary conditions that need to be addressed: the c0, or position

boundary conditions at each end of the string. For the first string node, the c0 fixed

boundary condition can be enforced by artificially setting the acceleration to zero using

model reduction [118]. Model reduction removes the rows and columns associated with the

fixed boundary, r1, yielding:

M′
strẌ

′
str = K′str + X′str + G′strê3 + B′str (8.16)

where

X′str =


r2

...

rN+1

 , G′str = µl0g



I3

...

I3

1
2
I3


, B′str =



0

...

0

fN+1


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are three rows shorter now, and M′
str and K′str, now 3N × 3N matrices, are:

M′
str =

µl0
6



4I3 I3 0

I3 4I3 I3

. . . . . . . . .

I3 4I3 I3

0 I3 2I3



K′str =



− (q1 + q2) I3 q2I3 0

q2I3 − (q2 + q3) I3 q3I3

. . . . . . . . .

qN−1I3 − (qN−1 + qN) I3 qNI3

0 qNI3 −qNI3


.

(8.17)

Where the string attaches to the rigid body, the final string node needs to incorporate the

forces and coupling from the rigid body. Because the final string node also describes the

translation equations of motion for the rigid body, the second equation in Eq. 7.13 can be

added to the final row of Eq. 8.16, substituting rN+1 for r (l) and defining fN+1 = f(l) from

Eq. 8.3. In order to augment the system with the rotation matrix kinematic relationship

given in Eq. A.8 (˙̃ri = −Ω̂r̃i), the second order ODE needs to be converted to a first order

ODE by expanding the state. Also augmenting with the third equation of Eq. 7.13 yields:

MẊ = KX + Gê3 + B (8.18)
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where X, now (6N + 12)× 1, G, now (6N + 12)× 3) and B, now (6N + 12)× 1 are:

X =



r2

...

rN+1

ṙ2

...

ṙN+1

Ω

r̃1

r̃2

r̃3



, G = µl0g



0

...

0

I3

...

I3(
1
2

+ m
µl0

)
I3

m
µl0

ρ̂cR
T

0

0

0



, B =



0

...

0

0

...

0

−mRΩ̂
2
ρc

0

0

0

0



, (8.19)

M, now (6N + 12)× (6N + 12), is:

M =



I 0 0

0 M′′
str

−mRρ̂c

mρ̂cR
T Π

0 I3

I3

I3



(8.20)

where the identity matrix in the top coner is size 3N for the conversion from a second

order to first order ODE, and M′′
str is the same as M′

str from Eq. 8.17 with the exception
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of the last element in the last row:

M′′
str =

µl0
6



4I3 I3 0

I3 4I3 I3

. . . . . . . . .

I3 4I3 I3

0 I3

(
2 + 6m

µl0

)
I3


, (8.21)

and K, also (6N + 12)× (6N + 12), has K′str, from Eq. 8.17 embedded in it:

K =



I3

K′str

−Ω̂Π

−Ω̂

−Ω̂

−Ω̂


(8.22)

where the top 3N rows are the conversion from a second order to first order differential

equation, the next 3N rows are the discretized string nodes, the (6N + 1)’th row is the

third equation of Eq. 7.13, and the final nine rows are the vector kinematic relationship

given in Eq. A.8. Note the nonlinear coupling term in B for the final string node where it

attaches to the rigid body. In addition to the stiffness matrix changing in time, the mass

matrix now is also not constant as it includes the rotation matrix for the rigid body.

8.4 Second Order Shape Functions

The string is discretized into N equal sized elements, with 2N + 1 nodes, defined by

the position of the endpoints and midpoint of the j’th element (r2j−1, r2j , r2j+1). There are
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6(2N + 1) degrees of freedom for the x, y, z position and ẋ, ẏ, ż velocity of each node. Each

element will have an initial length of l0 = l
N

. The one dimensional quadratic shape function

comprises of a natural coordinate ζ ∈ [−1, 1] defining in each element a point between

node points. Three shape functions, two with positive and one with negative slope, vary

quadratically between 1 and 0 in the domain ζ ∈ [−1, 1], such that only one shape function

equals 1 at each endpoint and midpoint, while the other two equal 0. (See Appendix D.3

for a complete description of the quadratic shape function.) The position of a point in an

element and its second order derivative in time as a function of ζ are defined as:

r (ζ) =

(
ζ2 − ζ

2

)
r2j−1 +

(
1− ζ2

)
r2j +

(
ζ2 + ζ

2

)
r2j+1

r̈ (ζ) =

(
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
r̈2j+1.

(8.23)

8.4.1 Change of Variables

Performing a change of variables on the weighted residual integral given in Eq. 8.2,

from so to the natural coordinate of the quadratic shape function element, ζ ∈ [−1, 1],

using Eq. D.4 yields:

∫ 1

−1

w (ζ) (µr̈ (ζ)− µg)
l0
2
dζ + EA

∫ 1

−1

(
‖r′ (ζ)‖2 − 1

‖r′ (ζ)‖2

r′ (ζ)

)
dw (ζ)

dζ

dζ

dso

l0
2
dζ

− w (ζ) f (ζ)|1−1 = 0.

(8.24)

For the spatial derivative terms, the proper change of variables from r′ (so) to r′ (ζ) needs

to be determined. Taking the partial derivative via the chain rule, inserting Eq. D.4 and
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the derivative of Eq. 8.23 yields for the j’th element:

r′ (ζ) =
∂

∂ (so)
(r (ζ))

r′ (ζ) =
∂r (ζ)

∂ζ

∂ζ

∂so

r′ (ζ) =
(2ζ − 1) r2j−1 + (−4ζ) r2j + (2ζ + 1) r2j+1

l0

r′ (ζ) =
l (ζ)

l0

(8.25)

where l (ζ) is an elemental length vector defined as:

l (ζ) = (2ζ − 1) r2j−1 + (−4ζ) r2j + (2ζ + 1) r2j+1. (8.26)

Plugging Eq. D.4, Eq. 8.23 and Eq. 8.25 into Eq. 8.24, simplifying and reorganizing the

weighted residual integral in terms of ζ yields:

µl0
2

∫ 1

−1

w (ζ)

((
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
r̈2j+1 − g

)
dζ

+
EA

l0

∫ 1

−1

(
1− l0
‖l (ζ)‖2

)
l (ζ)

dw (ζ)

dζ
dζ − w (ζ) f (ζ)|1−1 = 0

(8.27)

8.4.2 Shape Functions and Global Assembly

The elastic stiffness terms can not be solved analytically for the one dimensional

quadratic element. Using the three shape functions as weights, as defined in Eq. D.5, two

point Gauss Quadrature from Eq. 8.4 is applied to the stiffness integral with x1 = −1√
3
,

x2 = 1√
3
, and wi = 1. The mass terms are solved analytically, leading to a system of

three equations per element with the following elemental stencil (See Appendix D.3 for a
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complete derivation):

µl0
30


4I3 2I3 −I3

2I3 16I3 2I3

−I3 2I3 4I3




r̈2j−1

r̈2j

r̈2j+1

 =

qj6

−7I3 8I3 −I3

8I3 −16I3 8I3

−I3 8I3 −7I3

+
2
√

3∆qj
3


I3 −I3 0

−I3 0 I3

0 I3 −I3





r2j−1

r2j

r2j+1



+
µl0
6
g


I3

4I3

I3

 ê3 +


−f2j−1

0

f2j+1


(8.28)

where the last term is the elementary boundary conditions, and the elemental force density,

qj, and force density bias, ∆qj are defined as:

qj = q+
j + q−j , ∆qj = q+

j − q−j (8.29)

where q−j and q+
j are the two node Gaussian Quadrature biased elemental force density

defined in Eq. D.9. When combining the N elements in series, the global assembly of

elements yields the following block diagonal overlapping element structure:

µl0

6

e1

e2

. . .

eN−1

eN





0

0


r̈1

...

r̈2N+1

 =

e1

e2

. . .

eN−1

eN





0

0


r1

...

r2N+1

+
µl0

6
g





ê3 +




where each element block, ei, follows Eq. 8.28. The mass and stiffness sub-matrices

are 9× 9 elemental matrices overlapping in the three rows and columns in the upper and

lower corners. The gravity and boundary condition matrices are tall 9× 1 with three rows

overlapping with the next element. Wherever blocks overlap, the terms from each element
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are added together, yielding the following nodal stencil for the i’th internal node:

µl0
30


−I3 2I3 8I3 2I3 −I3

2I3 16I3 2I3

−I3 2I3 8I3 2I3 −I3





r̈2j−3

r̈2j−2

r̈2j−1

r̈2j

r̈2j+1

r̈2j+2

r̈2j+3



=

1

6


−qj−1I3 8qj−1I3 (−7qj−1 − 7qj) I3 8qjI3 −qjI3

8qjI3 −16qjI3 8qjI3

−qjI3 8qjI3 (−7qj − 7qj+1) I3 8qj+1I3 −qj+1I3



+
2
√

3

3


0 ∆qj−1I3 (∆qj −∆qj−1) I3 −∆qjI3 0

−∆qjI3 0 ∆qjI3

0 ∆qjI3 (∆qj+1 −∆qj) I3 −∆qj+1I3 0






r2j−3

r2j−2

r2j−1

r2j

r2j+1

r2j+2

r2j+3



+
µl0
6
g


2I3

4I3

2I3

 ê3

Assembling into a global matrix again yields the same matrix equation as in Eq. 8.12,

where now the state vector, Xstr, of size (6N + 3) × 1, the gravity matrix, Gstr, of size
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(6N + 3)× 3, and boundary condition vector, Bstr, of size (6N + 3)× 1, are defined as:

Xstr =


r1

...

r2N+1

 , Gstr =
µl0
6
g



I3

4I3

2I3

4I3

...

4I3

2I3

4I3

I3



, Bstr =



−f1

0

...

0

f2N+1


(8.30)

and the mass matrix, Mstr , a (6N+3)×(6N+3) matrix, is a symmetric block pentadiagonal

matrix defined as:

Mstr =
µl0
30



4I3 2I3 −I3 0

2I3 16I3 2I3 0

−I3 2I3 8I3 2I3 −I3

0 2I3 16I3 2I3 0

. . . . . . . . . . . . . . .

0 2I3 16I3 2I3 0

−I3 2I3 8I3 2I3 −I3

0 2I3 16I3 2I3

0 −I3 2I3 4I3



(8.31)

and the stiffness matrix Kstr, also (6N+3)×(6N+3), is defined as a sum of a pentadiagonal

and tridiagonal matrix:
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Kstr =
1

6



−7q1I3 8q1I3 −q1I3 0

8q1I3 −16q1I3 8q1I3 0

−q1I3 8q1I3 − (7q1 + 7q2) I3 8q2I3 −q2I3

0 8q2I3 −16q2I3 8q2I3 0

. .
.

. .
.

. .
.

. .
.

. .
.

0 8qN−1I3 16qN−1I3 8qN−1I3 0

−qN−1I3 8qN−1I3 −
(
7qN−1 + 7qN

)
I3 8qN I3 −qN I3

0 8qN I3 −16qN I3 8qN I3

0 −qN I3 8qN I3 −7qN I3



+
2
√

3

3



∆q1I3 −∆q1I3 0

−∆q1I3 0 ∆q1I3

∆q1I3 (∆q2 −∆q1) I3 −∆q2I3

.
.
.

.
.
.

.
.
.

∆qN−1I3
(
∆qN −∆qN−1

)
I3 −∆qN I3

−∆qN I3 0 ∆qN I3

0 ∆qN I3 −∆qN I3


(8.32)

8.4.3 c0 String Boundary Conditions

Similar to the linear shape function, there are two c0 boundary conditions that need

to be addressed: the position boundary condition at each end of the string. Like with the

linear shape function, the c0 fixed boundary condition at the first node can be enforced by

artificially setting the acceleration to zero using model reduction. Removing the rows and
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columns of the global system of equations associated with r1, yields Eq. 8.16, but now:

X′str =


r2

...

r2N+1

 , G′str =
µl0
6
g



4I3

2I3

4I3

...

4I3

2I3

4I3

I3



, B′str =



0

...

0

f2N+1


,

M′
str, now a 6N × 6N matrix, is:

M′
str =

µl0
30



16I3 2I3 0 0

2I3 8I3 2I3 −I3

0 2I3 16I3 2I3 0

−I3 2I3 8I3 2I3 −I3

. . . . . . . . . . . . . . .

0 2I3 16I3 2I3 0

−I3 2I3 8I3 2I3 −I3

0 2I3 16I3 2I3

0 −I3 2I3 4I3



(8.33)
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and K′str, now a 6N × 6N sum of symmetric pentadiagonal and tridiagonal matrices, is:

K′str =
1

6



−16q1I3 8q1I3 0 0

8q1I3 − (7q1 + 7q2) I3 8q2I3 −q2I3

0 8q2I3 −16q2I3 8q2I3 0

. . .
. . .

. . .
. . .

. . .

0 8qN−1I3 16qN−1I3 8qN−1I3 0

−qN−1I3 8qN−1I3 − (7qN−1 + 7qN ) I3 8qN I3 −qN I3

0 8qN I3 −16qN I3 8qN I3

0 −qN I3 8qN I3 −7qN I3



+
2
√

3

3



0 ∆q1I3 0

∆q1I3 (∆q2 −∆q1) I3 −∆q2I3

−∆q2I3 0 ∆q2I3

. . .
. . .

. . .

∆qN−1I3 (∆qN −∆qN−1) I3 −∆qN I3

−∆qN I3 0 ∆qN I3

0 ∆qN I3 −∆qN I3


(8.34)

Similar to with the linear shape function, the final string node, r2N+1, needs to incorporate

the forces and coupling from the rigid body by adding the second equation in Eq. 7.13

to the final row of Eq. 8.12. r (l) is again substituted for r2N+1 and f2N+1 = f(l) from

Eq. 8.3. Augmenting the system with the third equation of Eq. 7.13 the rotation vector

kinematic relationship given in Eq. A.8 (˙̃ri = −Ω̂r̃i), and expanding the state to convert

from a second order to first order ODE yields:

M′Ẋ
′
= K′X′ + G′ê3 + B′ (8.35)
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where X′, now (12N + 12)× 1, G′, now (12N + 12)× 3, and B′, now (12N + 12)× 1, are:

X′ =



r2

...

r2N+1

ṙ2

...

ṙ2N+1

Ω

r̃1

r̃2

r̃3



, G′ =
µl0
6
g



0

...

0

4I3

2I3

...

4I3(
1 + 6m

µl0

)
I3

6m
µl0

ρ̂cR
T

0

0

0



, B′ =



0

...

0

0

...

0

−mRΩ̂
2
ρc

0

0

0

0



, (8.36)

where M′, now (12N + 12)× (12N + 12) is the same as Eq. 8.20, but the identity matrix

in the top corner is now of size 6N for the conversion from a second order to first order

ODE, and M′′
str is the same as M′

str from Eq. 8.33 with the exception of the last element
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in the last row:

M′′
str =

µl0
30



16I3 2I3 0 0

2I3 8I3 2I3 −I3

0 2I3 16I3 2I3 0

−I3 2I3 8I3 2I3 −I3

. . . . . . . . . . . . . . .

0 2I3 16I3 2I3 0

−I3 2I3 8I3 2I3 −I3

0 2I3 16I3 2I3

0 −I3 2I3

(
4 + 30m

µlo

)
I3



. (8.37)

K′, also (12N + 12)× (12N + 12) , has K′str, from Eq. 8.34 embedded in it:

K′ =



I6N

K′str

−Ω̂Π

−Ω̂

−Ω̂

−Ω̂


(8.38)

where the top 6N rows are the conversion from second order to first order differential

equation, the next 6N rows are the discretized string nodes, the (12N + 1)’th row is third

equation of Eq. 7.13, and the final nine rows are the vector kinematic relationship given in

Eq. A.8. Note the nonlinear coupling term in B for the final string node where it attaches

to the rigid body. In addition to the stiffness matrix, the mass matrix needs to be built

every time-step iteration, as it includes the rotation matrix which changes in time.
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8.4.4 c1 String Boundary Conditions

Since the string is a continuous body, there exist N − 1 slope, or c1 boundary

condition between elements. The linear shape functions are incapable of enforcing the c1

spatial continuity boundary condition, whereas it is possible with quadratic shape functions.

The c1, or slope boundary condition between elements can only be enforced using

Lagrangian multipliers. Lagrangian multipliers enforce a constraint equation, fi(q, t) by

multiplying the partial derivative of each constraint equation in Pfaffian, or configuration

form (fi(q, t) = 0), by the Lagrange multipliers, λi, summed and subtracted from Hamilton’s

principle of least action in Eq. 7.11 [106,118]:

δS = δ

∫ t2

t1

L (q, q̇, t) dt− δ
∫ t2

t1

p∑
i=1

m∑
k=1

λiaikδqidt = 0 (8.39)

where p is the number of constraint equations, m is the number of generalized coordinates,

and aik = ∂fi
∂qk

. Applying to Eq. 8.16 results in the modified equations of motion:

M′
strẌ

′
str = K′strX

′
str + G′strê3 + B′str −

p∑
i=1

λi
δfi
δqk

(8.40)

Addressing the string element derivative boundary condition (c1 boundary), the

constraint equation is derived by setting the spatial derivative of one element equal to that

of the next element:

rk
′|ζ=1 = rk+1′|ζ=−1

where k is the element number. The constraint needs to be enforced on both the first and

second derivative for model consistency. Using Eq. 8.25, rearranging, and taking the time
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derivative twice gives the Pfaffian form:

fi = ṙ2j−1 − 4ṙ2j + 6ṙ2j+1 − 4ṙ2j+2 + ṙ2j+3 = 0

fi+N−1 = r̈2j−1 − 4r̈2j + 6r̈2j+1 − 4r̈2j+2 + r̈2j+3 = 0

(8.41)

Augmenting Eq. 8.35 with the 6(N − 1) constraint equations, three for each degree

of freedom at the inter-element boundaries, into Eq. 8.40 yields:

MẊ = KX + Gê3 + B (8.42)

where X, G, B, K are X′, G′, B′, and K′, respectively from Eq. 8.36 and Eq. 8.38,

augmented with 6(N − 1) rows of zeros:

X =

X′

0

 , G =

G′

0

 , B =

B′

0

 , K =

K′

0

 , (8.43)

and M is now:

M =

 M′ LT

L 0

 (8.44)

where L is a 6(N − 1)× (12N + 12) sized matrix defined as:

L =

 L′ 0 0

0 L′ 0

 (8.45)

where the first 3(N − 1) rows are for the velocity constraints, the second set of 3(N − 1)

rows for the acceleration constraints, the first and second column block 0’s are of size
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3(N − 1)× 6N , the last column block 0 is 3(N − 1)× 12 and L′ is 3(N − 1)× 6N defined

as:

L′ =



−4I3 6I3 −4I3 I3

I3 −4I3 6I3 −4I3 I3 0

. . . . . . . . . . . . . . .

0 I3 −4I3 6I3 −4I3 I3

I3 −4I3 6I3 −4I3 I3


(8.46)

8.5 Conclusion

In this chapter, one dimensional linear and quadratic shape functions models were

developed for the three dimensional elastic string rigid body pendulum. Using the proper

Galerkin finite element method enabling the weighted residual integral yielded a linear

shape function model that was analytically solvable. In contrast, the quadratic shape

function model is unsolvable, and requires Gaussian quadrature to evaluate the weighted

residual integral. For both models, the c0 boundary conditions were applied at the pivot

via model reduction, where the rows and columns associated with those coordinates are

removed. At the other end of the string, the rigid body equations of motion were augmented

to the formulations. For the quadratic shape function model, the c1 boundary, or string

slope boundary can be enforced. A constraint equation was developed, and enforced using

Lagrange multipliers. Both models were augmented into first order differential equations,

in order to use Runge-Kutta for time marching.
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Chapter 9

Three Dimensional Pendulum

Experimental Validation

This chapter presents the results of simulating the linear and quadratic shape

function formulations, as well as the experimental validation work performed.

The remainder of the chapter is organized as follows. Section 9.1 presents the

numerical example model problem. Section 9.2 presents the setup and key results from

experimental validation. Section 9.3 summarizes the key conclusions.

9.1 Numerical Model Problem

A straightforward model problem to compare and analyze the linear and quadratic

shape function formulations is the three dimensional elastic string pendulum described in

Fig. 7.1.
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9.1.1 Setup

Using the formulations described in Section 8, and the fourth order Runge-Kutta

numerical time-marching scheme, a numerical simulation was performed using both the

linear and quadratic shape function formulations [54]. The string is 5.875 m long, with a

diameter of 4.7 mm, a linear density of µ = 0.03 kg
m

, and a Young’s modulus of E = 57.64

MPa, such that EA = 1 kN. One end of the string is attached to the pivot at the X,

Y, and Z coordinate (0, 0, 0), and the initial condition of the rigid body attachment is

located at (−0.1456,−5.7318,−1.1417) m, to replicate the experimental testing initial

conditions described in Section 9.2. The string is discretized into five elements, with the

initial locations specified by the hanging catenary cable equation [66, 67, 69]. The rigid

body is initially oriented such that the êb3 body fixed coordinate vector is co-linear with

the global frame coordinate vector ê2. The rigid body parameters were chosen to match

that of the experimental setup described in Section 9.2. The vector to the center of mass

from the attachment point, is ρ =

[
0.0 0.0 0.03752

]T
m in body coordinates, and the

matrix representation of the inertia tensor is:

Π =


1161.58 −3.31 9.51

−3.31 1171.85 93.23

9.51 93.23 369.85

 kg

m2
,

and the mass of the rigid body is specified as 0.432 kg, with no initial rotational velocity.

The simulation time-step for the fourth order Runge-Kutta method is set to 0.0001 seconds.

9.1.2 Results

The results of a 4.5 second simulation of the linear shape function formulation of the

model problem are shown in Fig. 9.1, showing the shape of the string and rigid body every
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Figure 9.1: Three dimensional pendulum simulation with five linear shape function
elements, showing snapshots every 0.1 seconds in the range of a) 0.0 to 1.5 seconds for
the initial drop, b) 1.5 to 3.0 seconds for the upswing, and c) 3.0 to 4.5 seconds for the
second drop back down.

0.1 seconds. In Fig. 9.1a, the rigid body is released, swings down with a small amount

of extension at the bottom of the swing. In Fig. 9.1b, the pendulum continues its apex

and then reverses direction. Because the shape functions are linear, the elements are also

linear, forming kinks and sharp corners in the string, as evident at the top of the upswing.

In Fig. 9.1c, the rigid body swings back down, and starts to swing back up. There are

some clear string dynamics captured that are evident by the changing concavity, or slope

of the string, noticeable at the bottom of the downswing before the upswing starts.

In comparison, as shown in Fig. 9.2, the exact same simulation was run with the

quadratic shape function formulation, again showing the shape of the string and rigid

body every 0.1 seconds. The smoothness of the string has now been fixed due to the c1

boundary condition enforcement. The string dynamics on the second downswing are also

more evident now.

Perhaps more indicative of the improvements gained from using the quadratic shape

function formulation is the energy transfer between kinteic and potential, as shown in Fig

9.3. The simulation time was extended to 10 seconds, and the trade-off between kinetic

and potential energy are clearly evident, as the potential energy decreases/increases as
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Figure 9.2: Three dimensional pendulum simulation with five quadratic shape function
elements, showing snapshots every 0.1 seconds in the range of a) 0.0 to 1.5 seconds for
the initial drop, b) 1.5 to 3.0 seconds for the upswing, and c) 3.0 to 4.5 seconds for the
second drop back down.

the kinetic energy increases/decreases. As seen in Fig. 9.3a, the linear shape function

introduces numerical instabilities, initially seen in the string elastic potential energy spiking

at 5.8 seconds, and then again after 7.5 seconds. In contrast, the quadratic shape function

formulation does not spike, with the energy transfer continuing smoothly. The main

drawback of the increased accuracy shape function is the increase in simulation time.

Running Matlab on a 3.1 Ghz Dual Core Intel I7 processor, the linear shape function

formulation simulation lasted only 32.6 seconds for the 10 second pendulum simulation

with five elements, whereas the quadratic shape function formulation required 71.2 seconds

Figure 9.3: Energy transfer between kinetic and potential for the rigid body and elastic
string for a) linear shape function formulation with five elements and b) quadratic shape
function formulation with five elements.
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Figure 9.4: Elastic string length simulation results for a) linear shape function for-
mulation with five elements and b) quadratic shape function formulation with five
elements.

for the same setup. The string length results for the linear and quadratic simulations are

shown in Fig. 9.4. The instability of the linear shape function formulation is clearly see

as the stretch and contraction of the string increase with time. This counteracts what a

real-world pendulum would do, as it would eventually slow down due to damping, with the

string length settling at a steady state length. Interestingly, the simulation string length

goes into a compression state, where the overall length is less that the initial 5.875 m, even

for the quadratic shape function. In those regions, the force density was artificially set to 0,

since no compression is allowed for a string. However, this violates the assumption for not

using a bending formulation (tension above a 0.5 N threshold). The addition of bending,

or drag to the tether model may alleviate some of these instabilities.

9.2 Experimental Validation

9.2.1 Test Setup

An indoor elastic string rigid body pendulum experiment was developed in order to

validate the simulation model, and tune the parameters of the string. The experimental

setup is shown in Fig. 9.5. An instrumented pivot is mounted to the ceiling of a 7 m
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Figure 9.5: Experimental setup showing the pivot and rigid body. The pivot is mounted
to the ceiling, and is capable of measuring tether tension and angle. The rigid body is a
three dimensional printed object with motion tracking markers attached to it and an
internal removable mass.

tall high bay. The pivot has a load cell and potentiometer angle sensor to measure the

string reaction force, and the angle of departure. A 5.875 m long coaxial cable, specifically

chosen for the tethered UAV-USV application, is mounted to the pivot. At the other end,

a modular rigid body is mounted, with an internal, replaceable weight. Attached to the

string, the pivot, and the rigid body are motion capture tracking markers. The rigid body

is hoisted to an altitude of 6 m, approximately 10 degrees below horizontal, and dropped.

The motion capture system accurately measures the position of the rigid body, pivot, and

38 string nodes. A total of nine different experiments were performed, three each with

three different rigid body masses (0.443 kg, 0.669 kg, and 1.123 kg).

9.2.2 Results

A typical result for an experimental trial using the 0.443 kg mass rigid body is

shown in Fig. 9.6. The experimental results are very similar to those of the simulation,

implying that the parameters of the model are reasonable. However, as can be seen by

the decreased apex of the upswing in comparison to the simulation, there is significantly

more drag on the experimental setup than in the simulation. This can be attributed to
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Figure 9.6: Three dimensional pendulum experiment, showing snapshots every 0.1
seconds in the range of a) 0.0 to 1.5 seconds for the initial drop, b) 1.5 to 3.0 seconds
for the upswing, and c) 3.0 to 4.5 seconds for the second drop back down.

friction in the pivot, as well as wind drag on the string. A reasonable addition to the

simulation model would be to add the non-conservative forces due to drag on the string

dependent on the velocity, FD = 1
2
ρ v2CD A, where ρ is the density of air, v is the speed

of the tether through air, A is the cross-sectional area of the string, and CD is the drag

coefficient [119,120]. The similarity between the experiment and the simulation point to

the simulation model accuracy being decent enough to leverage for further development.

9.3 Conclusion

The linear and quadratic shape function formulations of the three dimensional

elastic string pendulum were simulated. The quadratic shape function clearly showed longer

stability for the same number of elements, however, required twice as much computation time.

A motion capture experiment validated the simulation parameters, but also demonstrated

some significant un-modeled damping in the simulation. Adding in a non-conservative

damping term can likely improve the simulation model to perfectly match the experiment.

The key result here is that the simulation parameters for the UAV-USV team are reasonable.
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Chapter 10

Future Work

While the results presented in this dissertation are significant, a few improvements

are in progress. Section 10.1 presents a new departure angle measurement prototype. Section

10.2 presents a non-GPS relative position measurement prototype UAV payload. Section

10.3 details future on water experimental validation. Section 10.4 details the extension of

the dynamic model and numerical simulation to include an Arbitrary Lagrangian Eulerian

formulation. Section 10.5 summarizes the key conclusions.

10.1 Departure Angle Measurement

As detailed in Section 6.1.3, the developed angle measurement approach has a

significant deadband which also tends to color the measurement. While the dynamic

behavior of the departure angle tends to dissuade its usage for feedback, a better angle

measurement method and mechanical design may lead to some unknown benefits. As such,

a follow on prototype design using a lasar scanner is shown in Fig. 10.1. Testing and

evaluation of this approach will be performed in the near future.
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Figure 10.1: Smart reel prototype version 2, leveraging a laser scanner to measure the
departure angle

10.2 Non-GPS relative position sensing

A common goal for military operations is to have the ability to function in a limited

or restricted GPS environment. A custom optical relative positioning system (ORPS) UAV

payload has been developed as shown in Fig. 10.2. A three axis gimbal points a camera

and laser range finder at the USV. Using a 2D barcode and a reflective target on the

deck of the USV, a range estimate can be found. Using the UAV pose, gimbal pose, and

barometric altitude, the range can be converted to relative position, and passed into the

control scheme described in Section 4.2.

10.3 On water experimental evaluation

On water experimentation are planned for the existing system, the new laser angle

measurement system, and the optical relative position system are planned. The Naval

Surface Warfare Center Carderock’s MASK facility will be used for indoor motion capture

experimentation, where controlled waves can be created up to 1.2 m heave, representative
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Figure 10.2: Optical relative positioning system gimbal payload. A camera and laser
point are controlled to point at the USV, and determine an accurate range estimate

of Sea State 3. The experimental test setup is shown in Fig. 10.3. A small boat will be

secured in the center of the wave tank, and the UAV surrogate will be mounted to the

catwalk near the 20 m tall ceiling. Following, indoor testing with the UAV will also be

Figure 10.3: NSWC MASK facility test setup. The new protoype winch and ORPS
payload will be evaluated in the near future in the controlled wave pool.
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performed.

10.4 Simulation model

The greatest remaining challenge is how to accurately model the tether-winch

interface boundary condition. Specifically, the changing tether length in relation to elements

size, number, and mass due to the reel-in and payout behavior of the winch. Previous

attempts have been made to model the interaction by adding a Carnot Energy loss term at

the price of decreased accuracy [117]. Two other methods attempted to keep the boundary

condition fixed while varying the nominal element length [88,108] or maintained the nominal

element length and added or subtracted elements as the tether length changed [109]. These

approaches lead to inaccuracies, numerical errors, or instability in the interpolation, and

ultimately, the simulation model.

An adaptive fluid-structure interaction modeling method called Arbitrary Lagrangian-

Eulerian (ALE) approaches a similar non-linear interface with a mixture of two meth-

ods [111,112]. Specifically, leveraging finite element and finite volume methods for a hybrid

formulation, such that the grid points can be moved within the fluid. The mesh grid

shown in Fig. 10.4 compares a standard Eulerian finite element formulation with an ALE

formulation for a prosthetic aortic valve fluid-structure interface [112].

Applying the ALE method to the tether winch boundary would allow for the tether

length and mass to change by relocating the nodes effected locally, without interpolating

and creating numerical instabilities. Incorporating the ALE method to the winch/tether

interface, well-developed accurately modeled UAV dynamics [121] and well-known wind

interaction methods [122], the complete tethered UAV – USV team can be accurately

modeled. Compared to typical numerical simulation research of challenging environments,

the unique opportunity to validate any model developed will be possible due to the
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Figure 10.4: Example of a comparison of typical Eulerian meshing methods vs.
Arbitrary Lagrangian Eulerian methods for a prosthetic aortic valve [111].

experimental environment already developed. Following the development and validation of

the complete UAV-USV team simulation environment, new tether management controllers

can be developed leveraging more complex control techniques. An especially interesting

approach is to use an H-∞ state space control methodology [123]. The approach sets hard

limits by exponentially increasing the control cost to infinity as the state of the system

gets near those limits. The obvious limits in this case would be an easily measured tether

departure angle that dips too low and could foul with the USV, and an acceptable tension

level, also easily measured.

10.5 Conclusion

The work presented in this dissertation is by no means complete, and many continued

efforts exist in different directions to continue the progress and work. A new mechanical

prototype has been developed for testing a laser departure angle measurement approach. A

UAV camera-laser gimbal payload has been developed to provide non-GPS relative position

measurements. Continued experimentation at the indoor wave pool facility will take the

next steps in validation. Finally, the simulation models will continue to be improved by
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implementing the winch dynamics, specifically focusing on an ALE approach for simulating

the tether length change.
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Chapter 11

Conclusion

This dissertation considered the mission of an UAV tethered to a small USV. The

tether doubles as a power umbilical and communications link, providing unlimited flight

duration and secure data transfer while limiting mobility. Contrary to the majority

of existing tethered UAV work which assumes a taut tether for dynamic stability, this

dissertation addressed the challenge of tether management for a slack, hanging tether in a

dynamic ocean environment up to sea state 4 on the Douglas scale.

For controlled laboratory experimentation, a testing platform capable of replicating

wave and boat motion was developed for land-based testing, reducing costs and the design

iteration cycle time. The alternative, of relying on weather conditions to test in specific

sea states is too costly, time limiting, and dangerous. Chapter 2, presented the design

of a novel, low-cost, 3-PSR parallel mechanism capable of replicating the full scale range

of boat motion up to sea state 4: up to 2.2 m heave, 32◦ roll, and 35◦ pitch. A design

parameter optimization was presented to maximize the roll-pitch workspace. A three-axis

interpolation approach was presented to accurately generate a desired path through the

roll-pitch workspace. The 3-PSR parallel mechanism was fabricated and experimentally

validated using an IMU. The mechanism was extensively used during experimental testing,
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and has proven to be a valuable resource.

For semi-slack hanging tether control, a reference model is necessary. Chapter 3

analyzed the static catenary hanging cable problem and developed a model-based approach

for tether management driven by relative position and tether length. A recommended

relative flying position was presented considering robustness to vertical motion of the USV.

An approximate model was presented in the form of a low order polynomial. This provides

a computationally inexpensive approach for determining a reference tether length, angle, or

tension. The proposed model allows for a large range of flying positions while decreasing

tether tension at the UAV, ultimately lowering overall power consumption, increasing flight

altitude, payload capacity, and decreasing safety margin requirements.

Chapter 4 developed a tether management prototype design, relative position

estimator, and control system for autonomous tether management. The prototype is

capable of measuring tether length, departure angle, and tension. With the goal of outdoor

operation, a Kalman filter model is developed to fuse a slow, 4 Hertz RTK dGPS relative

position measurement with fast, 100 Hertz inertial measurements, to output a fast, 100

Hertz estimate of the relative position, relative velocity, and inertial sensor bias. A relative

velocity-based gain scheduled controller was developed to smooth out any errors and

discontinuities seen in the Kalman filter output at low relative velocities.

Chapter 5 described the phased testing procedure. The experimental approach was

split into three stages: UAV surrogate, indoor flight, and outdoor flight testing in order to

first validate the controller and mechanical prototype, tune and validate the estimation

filter, and then evaluate the RTK dGPS solution.

Chapter 6 presented the results from experimental testing. The system was experi-

mentally validated through indoor motion capture experimentation and outdoor RTK dGPS

experimentation. Indoor experimentation, using a UAV surrogate for a perfectly known,

controlled environment, demonstrated the developed estimator and controller greatly reduce
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tether tension and forces on the UAV compared to taut tether control. Indoor flight testing

successfully showed decoupling of USV heave motion from UAV altitude and position, while

also demonstrating a similar UAV altitude and position range compared to un-tethered

flight. Finally, outdoor flight testing using a dGPS and an IMU-based Kalman filter solution

to measure relative position showed the feasibility in an unknown dynamic environment.

A hanging tether management system can extend longevity, decrease power consumption,

extend mission duration, increase flight altitude, and decrease the required thrust safety

margins of the UAV.

Chapter 7 presented a complete derivation of the equations of motion for an elastic

string rigid body pendulum, fixed reel elastic string rigid body pendulum, and moving

reel elastic string rigid body pendulum. Leveraging Hamilton’s principle of least action

for the continuous string, extensive use of IBP, Leibniz’s rule, Green’s theorem, and the

line integral, the proper determination of the variation of the associated Lagrangian was

presented. Extending the Hamilton’s principle to include the variation of non-conservative

virtual work enabled the addition of external forces such as the applied moment on the

winch. Finally, the equations of motion were determined.

In Chapter 8, the continuous body PDE was discretized via the Galerkin finite

element method, developing a formulation for one dimensional linear, and quadratic shape

functions. While the linear shape function formulation can be solved analytically, the

quadratic shape function formulation required Gaussian quadrature. The c0 and c1 boundary

conditions were applied via model reduction, and Lagrange multipliers, respectively. The

first order ODE matrix equations were developed in order to simulate the system using the

Runge-Kutta time marching scheme.

Chapter 9 discussed the simulation results, and compared them to experimental three

dimensional pendulum motion capture experiments performed to validate the developed

numerical model. The quadratic shape function formulation retains stability, where the
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linear shape function formulation introduces numerical instabilities. The quadratic shape

function simulation formulations show similarities with the real world experiments, but

also leaves some room for improvement, specifically requiring the introduction of damping.

Chapter 10 described the extensions of this dissertation. An updated mechanical

winch prototype was presented. An optical relative position sensing gimbal payload for

the UAV is being developed. On-water experimentation was discussed, and the upcoming

simulation approach leveraging ALE was presented. The continuation of this dissertation

looks promising.

In summary, the primary contributions of this dissertation include:

1. A novel 3-PSR mechanism capable of replicating the pitch, roll, and heave motion of

a boat in sea state 4 (see Chapter 2),

2. A catenary hanging cable theory-based model to determine a reference tether length,

angle, or tension for maximum heave robustness (see Chapter 3),

3. A relative velocity-based gain scheduled tether management controller (see Chapter

4.2),

4. A Kalman filter model to estimate relative altitude, fusing a slow, relative altitude

differential GPS measurement with fast inertial measurements (see Chapter 4.4),

5. The experimental validation of the heave robustness model, filter and controller (see

Chapter 6),

6. The derivation of the partial differential equations of motion of a continuous three

dimensional elastic string pendulum and UAV-USV team (see Chapter 7), and

7. The development and experimental validation of a quadratic shape function simulation

model (see Chapter 8 and Chapter 9).
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Appendix A

Math Proofs and Theorems

In this appendix, pertinent mathematical relationships and their proofs will be

presented.

A.1 Cross Product, Skew Symmetric Matrix Identi-

ties

Define the hatmap (x̂) as a skew symmetric matrix mapping of the cross product

for any vector x ∈ R3 as [93,94]:

x̂ =


0 −x3 x2

x3 0 −x1

−x2 x1 0


x× y = x̂y

x̂T = −x̂.

(A.1)
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Proof:

x× y =


x2y3 − y2x3

x3y1 − y3x1

x1y2 − y1x2



=


0 −x3 x2

x3 0 −x1

−x2 x1 0



y1

y2

y3


= x̂y

The cross product anti-commutative relationship can be expressed as:

a× b = −b× a

âb = −b̂a.
(A.2)

The mixed product identity can be expressed as:

y · x̂z = ẑy · x. (A.3)
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Proof:

y · x̂z =


y1

y2

y3

 ·


0 −x3 x2

x3 0 −x1

−x2 x1 0



z1

z2

z3



=


y1

y2

y3

 ·

x2z3 − x3z2

x3z1 − x1z3

x1z2 − x2z1


= (x2y1z3 − x3y1z2) + (x3y2z1 − x1y2z3) + (x1y3z2 − x2y3z1)

=


y3z2 − y2z3

y1z3 − y3z1

y2z1 − y1z2

 ·

x1

x2

x3



=


0 −z3 z2

z3 0 −z1

−z2 z1 0



y1

y2

y3

 ·

x1

x2

x3


y · x̂z = ẑy · x

The hat map of a cross product can be expressed as:

x̂ŷ − ŷx̂ = (x× y)∧ . (A.4)
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Proof:

x̂ŷ − ŷx̂ =


0 −x3 x2

x3 0 −x1

−x2 x1 0




0 −y3 y2

y3 0 −y1

−y2 y1 0

−


0 −y3 y2

y3 0 −y1

−y2 y1 0




0 −x3 x2

x3 0 −x1

−x2 x1 0



=


−x2y2 − x3y3 x2y1 x3y1

x1y2 −x1y1 − x3y3 x3y2

x1y3 x2y3 −x1y1 − x2y2



−


−x2y2 − x3y3 x1y2 x1y3

x2y1 −x1y1 − x3y3 x2y3

x3y1 x3y2 −x1y1 − x2y2



=


0 x2y1 − x1y2 x3y1 − x1y3

x1y2 − x2y1 0 x3y2 − x2y3

x1y3 − x3y1 x2y3 − x3y2 0



=


x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1


∧

x̂ŷ − ŷx̂ = (x× y)∧

A.2 Rotation Matrix Kinematic Relationship

The derivative of a rotation matrix R is defined as:

Ṙ = RΩ̂. (A.5)
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Proof:

The rotation matrix R, is in the special orthogonal group (R ∈ SO(3)), such that:

RRT = RTR = I.

Taking the time derivative and rearranging yields:

Ṙ
T
R + RT Ṙ = 0

−Ṙ
T
R = RT Ṙ,

which implies that −Ṙ
T
R is a skew symmetric matrix. In this case, the skew symmetric

matrix is of the angular rates [93]:

Ω̂ = RT Ṙ. (A.6)

Solving for Ṙ yields:

Ṙ = RΩ̂.
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A.3 Rotation Vector Kinematic Relationship

Define R as three row vectors, or RT as three column vectors:

R =


r̃T1

r̃T2

r̃T3

 , RT =

[̃
r1 r̃2 r̃3

]
. (A.7)

The matrix kinematic relationship from Eq. A.5 becomes:

˙̃ri = ˆ̃riΩ = −Ω̂r̃i i = 1, 2, 3 (A.8)

Proof:

Starting with Eq. A.5, multiplying out, transposing, and simplifying using the definition of

a cross product yields:
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Ṙ = RΩ̂
˙̃r
T

1

˙̃r
T

2

˙̃r
T

3

 =


r̃T1

r̃T2

r̃T3




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



=


r11 r12 r13

r21 r22 r23

r31 r32 r33




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



=


ω3r12 − ω2r13 ω1r13 − ω3r11 ω2r11 − ω1r12

ω3r22 − ω2r23 ω1r23 − ω3r21 ω2r21 − ω1r22

ω3r32 − ω2r33 ω1r33 − ω3r31 ω2r31 − ω1r32




˙̃r
T

1

˙̃r
T

2

˙̃r
T

3


T

=


ω3r12 − ω2r13 ω1r13 − ω3r11 ω2r11 − ω1r12

ω3r22 − ω2r23 ω1r23 − ω3r21 ω2r21 − ω1r22

ω3r32 − ω2r33 ω1r33 − ω3r31 ω2r31 − ω1r32


T

[
˙̃r1

˙̃r2
˙̃r3

]
=


ω3r12 − ω2r13 ω3r22 − ω2r23 ω3r32 − ω2r33

ω1r13 − ω3r11 ω1r23 − ω3r21 ω1r33 − ω3r31

ω2r11 − ω1r12 ω2r21 − ω1r22 ω2r31 − ω1r32


=

[̃
r1 ×Ω r̃2 ×Ω r̃3 ×Ω

]
=

[
ˆ̃r1Ω ˆ̃r2Ω ˆ̃r3Ω

]
⇒ ˙̃ri = ˆ̃riΩ, i = 1, 2, 3.
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A.4 Variation of Rotation Matrix

The variation of a rotation matrix can be expressed as:

δR = Rη̂ (A.9)

where η̂ ∈ SO(3), or η ∈ R3 denotes a variation of skew symmetric matrices that vanishes

at to, and tf .

Proof:

The variation of the Rotation matrix is defined as:

δR =
d

dε

∣∣∣∣
ε=0

(Rε)

where the variation form of a rotation matrix (SO(3)) can be expressed using the matrix

exponential [93]:

Rε = Reεη̂ (A.10)

where ε ∈ R. η̂ is of the form of a skew symmetric matrix, but the vector η can be thought

of as a typical variation δqi. Taking the variation of the rotation matrix:

δR =
d

dε

∣∣∣∣
ε=0

(Rε)

=
d

dε

∣∣∣∣
ε=0

(
Reεη̂

)
= Reεη̂η̂

∣∣
ε=0

= Rη̂

Splitting the rotation matrix into row vectors as with the derivation of the rotation vector
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kinematic relationship, Eq. A.8 yields:

δr̃i = ˆ̃riη, i = 1, 2, 3 (A.11)

A.5 Variation of R Matrix with Pre- and Post-

multiplied Vectors

∫ tf

to

x · δRydt =

∫ tf

to

xT δRydt =

∫ tf

to

ŷRTx · ηdt (A.12)

Proof:

The variation of R is actually the variation of three vectors as in Eq. A.7:

∫ tf

to

x · δRydt =

∫ tf

to

xT δ




r̃T1

r̃T2

r̃T3


 ydt

=

∫ tf

to

(
x1δr̃

T
1 y + x2δr̃

T
2 y + x3δr̃

T
3 y
)
dt

=

∫ tf

to

3∑
i=1

xiδr̃
T
i ydt

=

∫ tf

to

3∑
i=1

xiy
T δr̃idt

=

∫ tf

to

3∑
i=1

xiy · δr̃idt

where xi is the scalar quantity i’th term of the x vector , and dot product notation is used.

δr̃Ti y can be transposed because the result is a scalar (aTb = bTa). Inserting the vector

159



variation of the rotation matrix definition from Eq. A.11 (δr̃i = ˆ̃riη) yields:

∫ tf

to

x · δRydt =

∫ tf

to

3∑
i=1

xiy · ˆ̃riηdt

=

∫ tf

to

−
3∑
i=1

xiy · η̂r̃idt

=

∫ tf

to

−
3∑
i=1

xiˆ̃riy · ηdt

=

∫ tf

to

3∑
i=1

xiŷr̃i · ηdt

Where the hatmap identity from Eq. A.2 (âb = −b̂a) was used in the first and third step,

and the skew dot product identity from Eq. A.3 (y · x̂z = ẑy · x) was used in the second

step. Expanding out the sum and simplifying yields:

∫ tf

to

x · δRydt =

∫ tf

to

(x1ŷr̃1 + x2ŷr̃2 + x3ŷr̃3) · ηdt

=

∫ tf

to

[
ŷr̃1 ŷr̃2 ŷr̃3

]
x · ηdt

=

∫ tf

to

ŷ

[̃
r1 r̃2 r̃3

]
x · ηdt∫ tf

to

xT δRydt =

∫ tf

to

ŷRTx · ηdt.

A.6 Variation of Angular Velocity

The variation of the angular velocity vector can be expressed as:

δΩ = η̇ + Ω× η

δΩ = η̇ + Ω̂η.

(A.13)
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Proof:

Much like the variation of a rotation matrix, the variation of the skew symmetric mapping

of the angular velocity is defined as [93]:

δΩ̂ =
d

dε

∣∣∣∣
ε=0

(
Ω̂
ε
)
.

Ω̂
ε

can be defined using the rotation matrix kinematic relationship from Eq. A.5:

Ω̂
ε

= RεT Ṙ
ε

=
(
e−εη̂RT

) (
Ṙeεη̂ + εReεη̂ ˆ̇η

)
= e−εη̂RT Ṙeεη̂ + εe−εη̂RTReεη̂ ˆ̇η

= e−εη̂Ω̂eεη̂ + εe−εη̂eεη̂ ˆ̇η

= e−εη̂Ω̂eεη̂ + εˆ̇η

where, in the first step, RεT and Ṙ
ε

come from transposing and taking the time derivative

using the chain rule of the matrix exponential in Eq. A.10, respectively (RεT = e−εη̂RT

and Ṙ
ε

= Ṙeεη̂ + εReεη̂ ˆ̇η). In the third step, Ω̂ is substituted for RT Ṙ using Eq. A.6

(Ω̂ = RT Ṙ), and R ∈ SO3 such that RTR = I. In the final step, the matrix exponential

simplifies as e−XeX = e−X+X = e0 = I. Applying the Taylor expansion of the matrix

exponential (e−εη̂ = I3x3 − εη̂ +O (ε2)) yields:

Ω̂
ε

=
(
I3x3 − εη̂ +O

(
ε2
))

Ω̂
(
I3x3 + εη̂ +O

(
ε2
))

+ εˆ̇η

Ω̂
ε

= Ω̂ + ε
(

ˆ̇η + Ω̂η̂ − η̂Ω̂
)

+O
(
ε2
)
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Disregarding terms O (ε2) and higher, taking the variation, and using the skew symmetric

matrix identity from Eq. A.4
(
x̂ŷ − ŷx̂ = (x× y)∧

)
results in:

δΩ̂ =
d

dε

∣∣∣∣
ε=0

(
Ω̂
ε
)

= ˆ̇η + Ω̂η̂ − η̂Ω̂

= ˆ̇η + (Ω× η)∧ .

Converting the skew symmetric matrices back into vectors again using the inverse of Eq.

A.1 (called a vee map [93]) yields:

δΩ = η̇ + Ω× η

δΩ = η̇ + Ω̂η.
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A.7 Calculus Theorems

The following calculus tools are needed for the derivation of the dynamics with a

reel:

• Leibniz rule is used for taking the derivative of an integral when one or more of the

limits of the integral are functions of the derivative variable [124–127]:

d

dx

(∫ b(x)

a(x)

f (x, t) dt

)
= f (x, b (x)) · d

dx
b (x)− f (x, a (x)) · d

dx
a (x)

+

∫ b(x)

a(x)

∂

∂x
f (x, t) dt

(A.14)

• Green’s Theorem states that double integral over a body is equal to the line integral

around the border [125–127], as seen in Fig. A.1:

∮
C

(Ldx+Mdy) =

∫∫
D

(
∂M

∂x
− ∂L

∂y

)
dxdy (A.15)

• Line Integral is defined as, parameterized over [a, b] [125–127]:

∮
C

f (r) ds =

∫ b

a

f (r (t)) |ṙ (t)|dt (A.16)
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Figure A.1: Green’s theorem
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Appendix B

Lagrangian Derivation

In this appendix, the complete derivation of the Lagrangian is presented for the

three dimensional elastic string rigid body pendulum.

B.1 Rigid Body Kinetic Energy

Taking the derivative of Eq. 7.5 yields:

ṙQ = ṙ (l) + Ṙ (ρ + ρc)

= ṙ (l) + RΩ̂ (ρ + ρc)

(B.1)

where the ·̂ operator denotes a skew symmetric matrix mapping of the cross product of

a three dimensional vector defined in Eq. A.1, and the derivative of a rotation matrix

(Ṙ = RΩ̂) is defined in Eq. A.5. Note that the vectors ρ and ρc are constant in the body

fixed frame, and therefore their derivative is zero, ρ̇ = 0 and ρ̇c = 0. Inserting Eq. B.1

back into Eq. 7.3, using the definition of a dot product, transposing and expanding gives:
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Trb =

∫
Body

1

2

(
ṙ (l) + RΩ̂ (ρ + ρc)

)
·
(

ṙ (l) + RΩ̂ (ρ + ρc)
)
dm

=

∫
Body

1

2

(
ṙ (l) + RΩ̂ (ρ + ρc)

)T (
ṙ (l) + RΩ̂ (ρ + ρc)

)
dm

=

∫
Body

1

2

(
ṙ (l)T + (ρ + ρc)

T Ω̂
T
RT
)(

ṙ (l) + RΩ̂ (ρ + ρc)
)
dm

=

∫
Body

1

2
ṙ (l)T ṙ (l) +

1

2
(ρ + ρc)

T Ω̂
T
RT ṙ (l) +

1

2
ṙ (l)T RΩ̂ (ρ + ρc)

+
1

2
(ρ + ρc)

T Ω̂
T
RTRΩ̂ (ρ + ρc) dm.

Because the end result is a scalar, the second term can be transposed and combined with

the third term, and the fourth term simplifies since R ∈ SO(3) and RTR = I, yielding:

Trb =
1

2
mṙ (l)T ṙ (l) +

∫
Body

ṙ (l)T RΩ̂ (ρ + ρc) dm+

∫
Body

1

2
(ρ + ρc)

T Ω̂
T
Ω̂ (ρ + ρc) dm

=
1

2
mṙ (l)T ṙ (l) +

∫
Body

ṙ (l)T RΩ̂ (ρ + ρc) dm+

∫
Body

1

2

(
Ω̂ (ρ + ρc)

)T
Ω̂ (ρ + ρc) dm

=
1

2
mṙ (l)T ṙ (l) + mṙ (l)T RΩ̂ρc +

∫
Body

−1

2

(
(ρ + ρc)

∧Ω
)T

(ρ + ρc)
∧Ωdm

=
1

2
mṙ (l)T ṙ (l) + mṙ (l)T RΩ̂ρc +

∫
Body

−1

2
ΩT (ρ + ρc)

∧ (ρ + ρc)
∧Ωdm

=
1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ

where
∫

Body
ρdm = 0 and

∫
Body

dm = m for the second term. The skew symmetric identities

from Eq. A.2 (âb = −b̂a) and Eq. A.1 (x̂T = −x̂) were used for the third term. The

matrix representation of the inertia tensor is defined as [93,106]:

Π = −
∫

Body

(ρ + ρc)
∧ (ρ + ρc)

∧ dm, (B.2)
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noting that expressing the matrix representation of the inertia tensor in the body coordinates

produces:

Π =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 .

where Jii are the principle moments of inertia, and Jij are the products of inertia.

B.2 String Potential Energy

The tangential strain, ε, or relative length change produced by stress (∆l
l

), is formally

defined for a continuous body as [93,128,129]:

ε = lim
∆so→0

∆s (so)−∆so
∆so

ε = lim
∆so→0

∆s (so)

∆so
− 1

ε = s′ (so)− 1

(B.3)

where ()′ denotes the spatial partial derivative ( ∂
∂so

). The tangential unit vector êt is

required to determine the spatial partial derivative:

êt =
∂r (so)

∂s (so)

êt =
∂r (so)

∂so

∂so
∂s (so)

êt =
r′ (so)

s′ (so)
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Because êt has unit length:

s′ (so) = ‖r′ (so)‖2. (B.4)

Inserting Eq. B.3 and Eq. B.4 into Eq. 7.7 yields the potential energy of the string:

Vstring =

∫ l

0

1

2
EAε2 − µr (so) · gdso

Vstring =

∫ l

0

1

2
EA (s′ (so)− 1)

2 − µr (so) · gdso

Vstring =

∫ l

0

1

2
EA (‖r′ (so)‖2 − 1)

2 − µr (so) · gdso.
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Appendix C

Hamilton’s Principle Variation

Derivations

In this appendix, the complete derivation of the equations of motion are presented

for the thee dimensional elastic string rigid body pendulum, the fixed reel elastic string

rigid body pendulum, and the moving reel elastic string rigid body pendulum.

C.1 Elastic String - Rigid Body Pendulum

Inserting the Lagrangian from Eq. 7.10 into Hamilton’s principle of least action

from Eq. 7.11 yields:

δS =δ

∫ tf

t0

(
1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ +

∫ l

0

1

2
µṙ (so) · ṙ (so) dso

+mr (l) · g + mRρc · g +

∫ l

0

{
−1

2
EA (‖r′ (so)‖2 − 1)

2
+ µr (so) · g

}
dso

)
dt = 0.

(C.1)

Each term will be evaluated individually:
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1. δ
∫ tf
t0

1
2
mṙ (l) · ṙ (l) dt

Taking the variation yields:

δ

∫ tf

t0

1

2
mṙ (l) · ṙ (l) dt =

∫ tf

t0

1

2
mδ (ṙ (l) · ṙ (l)) dt

=

∫ tf

t0

1

2
m (δṙ (l) · ṙ (l) + ṙ (l) · δṙ (l)) dt

=

∫ tf

t0

1

2
m (2ṙ (l) · δṙ (l)) dt

=

∫ tf

t0

mṙ (l) · δṙ (l) dt.

Because δṙ (l) is undefined, IBP in time is required, (IBP:
∫ b
a
udv = uv|ba −

∫ b
a
vdu

with u = mṙ (l) and dv = δṙ (l)):

δ

∫ tf

t0

1

2
mṙ (l) · ṙ (l) dt = mṙ (l) ·

�
��

��*0
δr (l)|tft0 −

∫ tf

t0

mr̈ (l) · δr (l) dt

The term above cancels to zero because δr (l) is defined as a variation that vanishes

at t0 and tf , resulting in:

δ

∫ tf

t0

1

2
mṙ (l) · ṙ (l) dt = −

∫ tf

t0

mr̈ (l) · δr (l) dt (C.2)

2. δ
∫ tf
t0

mṙ (l) ·RΩ̂ρcdt
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Taking the variation yields:

δ

∫ tf

t0

mṙ (l) ·RΩ̂ρcdt =

∫ tf

t0

mRΩ̂ρc · δṙ (l) + mṙ (l) · δ
(
RΩ̂ρc

)
dt

=

∫ tf

t0

mRΩ̂ρc · δṙ (l) + mṙ (l) · δRΩ̂ρc + mṙ (l)T Rδ
(
Ω̂ρc

)
dt

=

∫ tf

t0

mRΩ̂ρc · δṙ (l) + mṙ (l) · δRΩ̂ρc −mṙ (l)T Rρ̂c · δΩdt,

where the chain rule was used in the first and second step since ṙ (l), R and Ω are

time dependent. In the second step, ṙ (l) was transposed to convert from dot product

notation. In the final step, the hatmap identity given in Eq. A.2 (x̂y = −ŷx) was

used before taking the variation of Ω. Because δṙ (l) is again undefined in the first

term of the variation, IBP in time (
∫ b
a
udv = uv|ba −

∫ b
a
vdu) is again required, with

u = mRΩ̂ρc, dv = δṙ (l):

∫ tf

t0

mRΩ̂ρc · δṙ (l) dt = mRΩ̂ρc ·��
�
��*0

δr (l)|tft0 −
∫ tf

t0

d

dt

(
mRΩ̂ρc

)
· δr (l) dt

= −
∫ tf

t0

mṘΩ̂ρc · δr (l) dt−
∫ tf

t0

mR
d

dt

(
Ω̂ρc

)
· δr (l) dt

= −
∫ tf

t0

mRΩ̂Ω̂ρc · δr (l) dt+

∫ tf

t0

mR
d

dt
(ρ̂cΩ) · δr (l) dt

= −
∫ tf

t0

mRΩ̂
2
ρc · δr (l) dt+

∫ tf

t0

mRρ̂cΩ̇ · δr (l) dt

where δr (l) is defined to vanish at t = t0 and t = tf , the chain rule is used for the

time derivative, the hatmap identity defined in Eq. A.2 (x̂y = −ŷx) is used to take

the derivative of Ω, and the kinematic relationship defined in Eq. A.5 (Ṙ = RΩ̂) is

inserted for the derivative of the rotation matrix.

For the second term of the variation, following the same derivation as in Eq. A.12
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(
∫ tf
t0

x · δRydt =
∫ tf
t0

ŷRTx · ηdt) yields:

∫ tf

t0

mṙ (l) · δRΩ̂ρcdt =

∫ tf

t0

m
(
Ω̂ρc

)∧
RT ṙ (l) · ηdt

where η is a variation of skew symmetric matrices.

For the third term of the variation, rearranging yields:

−
∫ tf

t0

mṙ (l)T Rρ̂c · δΩdt = −
∫ tf

t0

mρ̂Tc RT ṙ (l) · δΩdt

=

∫ tf

t0

mρ̂cR
T ṙ (l) · δΩdt

where the ṙ (l)T Rρ̂c term is transposed due to the fact that the result of the dot

product is a scalar, and using the skew symmetric matrix identity defined in Eq. A.1

(x̂T = −x̂). Inserting the definition of the variation of the angular velocity from Eq.

A.13 (δΩ = η̇ + Ω̂η) and multiplying terms out yields:

−
∫ tf

t0

mṙ (l)T Rρ̂c · δΩdt =

∫ tf

t0

mρ̂cR
T ṙ (l) ·

(
η̇ + Ω̂η

)
dt

=

∫ tf

t0

mρ̂cR
T ṙ (l) · η̇dt+

∫ tf

t0

mρ̂cR
T ṙ (l) · Ω̂ηdt.

Because η̇ is undefined, IBP in time is required (
∫ b
a
udv = uv|ba −

∫ b
a
vdu, with

u = mρ̂cR
T ṙ (l), and dv = η̇). Inserting the kinematic relationship given in Eq. A.5
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(Ṙ
T

= −Ω̂RT ):

∫ tf

t0

mρ̂cR
T ṙ (l) · η̇dt = mρ̂cR

T ṙ (l) ·��
�>

0
η|tft0

−
∫ tf

t0

mρ̂cR
T r̈ (l) · ηdt−

∫ tf

t0

mρ̂cṘ
T

ṙ (l) · ηdt

= −
∫ tf

t0

mρ̂cR
T r̈ (l) · ηdt+

∫ tf

t0

mρ̂cΩ̂RT ṙ (l) · ηdt

Using the skew symmetric matrix identity defined in Eq. A.1 (x̂T = −x̂), and the

skew dot product identity from Eq. A.3 (y · x̂z = ẑy · x) yields:

∫ tf

t0

mρ̂cR
T ṙ (l) · Ω̂ηdt = −

∫ tf

t0

mρ̂cR
T ṙ (l) · η̂Ωdt

= −
∫ tf

t0

mΩ̂ρ̂cR
T ṙ (l) · ηdt.

Combining yields the third term of the variation:

−
∫ tf

t0

mṙ (l)T Rρ̂c · δΩdt =∫ tf

t0

(
−mρ̂cR

T r̈ (l) + mρ̂cΩ̂RT ṙ (l)−mΩ̂ρ̂cR
T ṙ (l)

)
· ηdt.

Combining all three variation terms yields:

δ

∫ tf

t0

mṙ (l) ·RΩ̂ρcdt =

∫ tf

t0

{(
−mRΩ̂

2
ρc + mRρ̂cΩ̇

)
· δr (l)

+

(
m
(
Ω̂ρc

)∧
RT ṙ (l)−mρ̂cR

T r̈ (l)

+mρ̂cΩ̂RT ṙ (l)−mΩ̂ρ̂cR
T ṙ (l)

)
· η
}
dt.
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Rearranging and simplifying terms yields:

δ

∫ tf

t0

mṙ (l) ·RΩ̂ρcdt =

=

∫ tf

t0

{(
−mRΩ̂

2
ρc + mRρ̂cΩ̇

)
· δr (l)

+

(
−mρ̂cR

T r̈ (l) + m

[(
Ω̂ρc

)∧
+ ρ̂cΩ̂− Ω̂ρ̂c

]
RT ṙ (l)

)
· η
}
dt

=

∫ tf

t0

{(
−mRΩ̂

2
ρc + mRρ̂cΩ̇

)
· δr (l)

+

−mρ̂cR
T r̈ (l) + m

���
���

���
���

���:
0[

Ω̂ρ̂c − ρ̂cΩ̂ + ρ̂cΩ̂− Ω̂ρ̂c

]
RT ṙ (l)

 · η
 dt

where the skew symmetric identity from Eq. A.4 (x̂ŷ − ŷx̂ = (x× y)∧) canceled out

the terms inside the square brackets, resulting in:

δ

∫ tf

t0

mṙ (l) ·RΩ̂ρcdt =

∫ tf

t0

{(
−mRΩ̂

2
ρc + Rρ̂cΩ̇

)
· δr (l)−mρ̂cR

T r̈ (l) · η
}
dt.

(C.3)

3. δ
∫ tf
t0

1
2
Ω ·ΠΩdt

Taking the variation yields:
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δ

∫ tf

to

1

2
Ω ·ΠΩdt =

∫ tf

to

1

2
(Ω ·ΠδΩ + δΩ ·ΠΩ) dt

=

∫ tf

to

ΠΩ · δΩdt

=

∫ tf

to

Π ·Ω ·
(
η̇ + Ω̂η

)
dt

=

∫ tf

to

ΠΩ · η̇dt−
∫ tf

to

ΠΩ · η̂Ωdt

= ΠΩ�
��>

0
η|tfto −

∫ tf

to

ΠΩ̇ · ηdt−
∫ tf

to

Ω̂ΠΩ · ηdt

where the variation of the angular velocity from Eq. A.13 (δΩ = η̇ + Ω̂η) was

inserted, and the cross product relationship from Eq. A.2
(
âb = −b̂a

)
was used

to switch the hat map and expand. Again, because η̇ is undefined, IBP in time

(IBP:
∫ b
a
udv = uv|ba −

∫ b
a
vdu, with u = Π · Ω and dv = η̇) is required. The skew

dot product identity from Eq. A.3 (y · x̂z = ẑy · x) was used for the final two steps.

Because η is defined as a variation that vanishes at to and tf , the final variation of

the third term results in:

δ

∫ tf

t0

1

2
Ω ·ΠΩdt =

∫ tf

to

(
−ΠΩ̇− Ω̂ΠΩ

)
· ηdt. (C.4)

4. δ
∫ tf
t0

∫ l
0

1
2
µṙ (so) · ṙ (so) dsodt
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Taking the variation yields:

δ

∫ tf

t0

∫ l

0

1

2
µṙ (so) · ṙ (so) dsodt =

∫ tf

t0

∫ l

0

1

2
µ (δṙ (so) · ṙ (so) + ṙ (so) · δṙ (so)) dsodt

=

∫ tf

t0

∫ l

0

1

2
µ (2ṙ (so) · δṙ (so)) dsodt

=

∫ tf

t0

∫ l

0

µṙ (so) · δṙ (so) dsodt

=

∫ l

0

∫ tf

t0

µṙ (so) · δṙ (so) dtdso

=

∫ l

0

(
µṙ (so) ·����

�:0
δr (so)|tft0 −

∫ tf

t0

µr̈ (so) · δr (so) dt

)
dso

where the integral order can be swapped because the string is a fixed length and the

boundary conditions do not change in time. Since δṙ (so) is undefined, IBP in time

(IBP:
∫ b
a
udv = uv|ba −

∫ b
a
vdu with u = µṙ (so) and dv = δṙ (so)) is required. The

first term cancels to zero because δr (so) is defined as a variation that vanishes at t0

and tf . After swapping the integral order back again yields the final variation of the

fourth term:

∫ tf

t0

δ

∫ l

0

1

2
µṙ (so) · ṙ (so) dsodt = −

∫ tf

t0

∫ l

0

µr̈ (so) · δr (so) dsodt. (C.5)

5. δ
∫ tf
t0

mr (l) · gdt

Taking the variation yields:

δ

∫ tf

t0

mr (l) · gdt =

∫ tf

t0

mg · δr (l) dt (C.6)

where the order was switched due to the dot product.

6. δ
∫ tf
t0

mRρc · gdt
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Taking the variation yields:

δ

∫ tf

t0

mRρc · gdt =

∫ tf

t0

mg · δRρcdt.

Following the same derivation as in Eq. A.12 (
∫ tf
t0

x · δRydt =
∫ tf
t0

ŷRTx · ηdt) yields:

δ

∫ tf

t0

mRρc · gdt =

∫ tf

t0

mρ̂cR
Tg · ηdt (C.7)

7. δ
∫ tf
t0

∫ l
0
−1

2
EA (‖r′ (so)‖2 − 1)2 dsodt

Taking the variation yields:

δ

∫ tf

t0

∫ l

0

−1

2
EA (‖r′ (so)‖2 − 1)

2
dsodt

=

∫ tf

to

∫ l

0

−1

2
EAδ

(
(‖r′ (so)‖2 − 1)

2
)
dsodt

=

∫ tf

to

∫ l

0

−EA (‖r′ (so)‖2 − 1) δ (‖r′ (so)‖2 − 1) dsodt.

Continuing just the variation term yields:

δ (‖r′ (so)‖2 − 1) = δ
(√

r′ (so) · r′ (so)− 1
)

=
δ (r′ (so) · r′ (so))
2
√

r′ (so) · r′ (so)

=
r′ (so) δr′ (so) + δr′ (so) r′ (so)

2‖r′ (so)‖2

=
2r′ (so) δr′ (so)

2‖r′ (so)‖2

δ (‖r′ (so)‖2 − 1) =
r′ (so)

‖r′ (so)‖2

· δr′ (so) .
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Substituting back in and rearranging yields:

δ

∫ tf

t0

∫ l

0

−1

2
EA (‖r′ (so)‖2 − 1)

2
dsodt

=

∫ tf

to

∫ l

0

−EA (‖r′ (so)‖2 − 1)
r′ (so)

‖r′ (so)‖2

· δr′ (so) dsodt

=

∫ tf

to

∫ l

0

−EA‖r
′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so) · δr′ (so) dsodt.

Because δr′ (so) is undefined, IBP in space (IBP:
∫ b
a
udv = uv|ba −

∫ b
a
vdu with

u = −EA‖r
′(so)‖2−1
‖r′(so)‖2 r′ (so) and dv = δr′ (so)) is required.

δ

∫ tf

t0

∫ l

0

−1

2
EA (‖r′ (so)‖2 − 1)

2
dsodt

=

∫ tf

to

{
−EA‖r

′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so) · δr (so)
∣∣l
0

+

∫ l

0

EA

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)′
· δr (so) dso

}
dt

Only half of the first term above cancels to 0 as only δr (0) = 0 due to the boundary

condition at the fixed end, while δr (l) 6= 0, resulting in:

δ

∫ tf

t0

∫ l

0

−1

2
EA (‖r′ (so)‖2 − 1)

2
dsodt

=

∫ tf

to

{
−EA‖r

′ (l)‖2 − 1

‖r′ (l)‖2

r′ (l) · δr (l)

+

∫ l

0

EA

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)′
· δr (so) dso

}
dt.

(C.8)

8. δ
∫ tf
t0

∫ l
0
µr (so) · gdsodt
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Taking the variation yields:

δ

∫ tf

t0

∫ l

0

µr (so) · gdsodt =

∫ tf

t0

∫ l

0

µg · δr (so) dsodt. (C.9)

Inserting Eq. C.2 through Eq. C.9 into Eq. C.1 yields the completed variation for

the three dimensional elastic string pendulum:

δS = δ

∫ tf

t0

(
1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc +

1

2
Ω ·ΠΩ +

∫ l

0

1

2
µṙ (so) · ṙ (so) dso

+mr (l) · g + mRρc · g +

∫ l

0

{
−1

2
EA (‖r′ (so)‖2 − 1)

2
+ µr (so) · g

}
dso

)
=

∫ tf

to

∫ l

0

(
−µr̈ (so) + µg + EA

(
‖r′ (so)‖2 − 1

‖r′ (so)‖2

r′ (so)

)′)
· δr (so) dso

+

(
−mr̈ (l) + mg − EA‖r

′ (l)‖2 − 1

‖r′ (l)‖2

r′ (l)−mRΩ̂
2
ρc + mRρ̂cΩ̇

)
· δr (l)

+
(
−Π · Ω̇− Ω̂ΠΩ + mρ̂cR

Tg −mρ̂cR
T r̈ (l)

)
· η dt = 0.

(C.10)
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C.2 Fixed Reel - Elastic String - Rigid Body Pendu-

lum

Inserting the Lagrangian from Eq. 7.23 into the Extended Hamilton’s principle of

least action from Eq. 7.24 yields:

δS = δ

∫ tf

t0

(
1

2

(
µsd +

md

2

)
ṡ2
d +

∫ l

sd

1

2
µṙ (so) · ṙ (so) dso +

1

2
mṙ (l) · ṙ (l) + mṙ (l) ·RΩ̂ρc

+
1

2
Ω ·ΠΩ + µ (sd − b) rD · g + µgd2

(
cos

(
sd − b

d

)
− 1

)
+ mr (l) · g

+mRρc · g +

∫ l

sd

{
−1

2
EA (‖r′ (so)‖2 − 1)

2
+ µr (so) · g

}
dso +WNC

)
dt = 0.

(C.11)

Each term will be evaluated individually:

1. δ
∫ tf
t0

1
2

(
µsd + md

2

)
ṡ2
ddt

Taking the variation yields:

δ

∫ tf

t0

1

2

(
µsd +

md

2

)
ṡ2
ddt =

∫ tf

t0

((
µsd +

md

2

)
ṡdδṡd +

1

2
µṡ2

dδsd

)
dt

Because δṡd is undefined for the first term, IBP in time is required, (IBP:
∫ b
a
udv =

uv|ba −
∫ b
a
vdu with u =

(
µsd + md

2

)
ṡd and dv = δṡd) yields:

∫ tf

t0

(
µsd +

md

2

)
ṡdδṡddt

=
(
µsd +

md

2

)
ṡd��

��*0
δsd|

tf
t0 −

∫ tf

t0

(
µsds̈dδsd +

md

2
s̈dδsd + µṡ2

dδsd

)
dt

= −
∫ tf

t0

((
µsd +

md

2

)
s̈d + µṡ2

d

)
δsddt
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yields the variation of the first term of Eq. C.11:

δ

∫ tf

t0

1

2

(
µsd +

md

2

)
ṡ2
ddt =

∫ tf

t0

(
−
(
µsd +

md

2

)
s̈d − µṡ2

d +
1

2
µṡ2

d

)
δsddt

=

∫ tf

t0

(
−
(
µsd +

md

2

)
s̈d −

1

2
µṡ2

d

)
δsddt

(C.12)

2. δ
∫ tf
t0

∫ l
sd

1
2
µṙ (s0) · ṙ (s0) ds0dt

The second term of Eq. C.11 looks very similar to the derivation from Section C.1,

but the lower limit on the integral (sd) is a function of time which makes it impossible

to switch the order of the integral. In this case, first use Leibniz rule given in Eq.

A.14 to take the variation [124–126]:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

−1

2
µṙ
(
s+
d

)
· ṙ
(
s+
d

)
δsddt+

∫ tf

t0

∫ l

sd

µṙ (s0) · δṙ (s0) ds0dt

where s+
d is the material point just outside the guide way exit. For the second term, sd

in the limit of the integral prevents swapping the integral order for IBP. In order to use

Green’s theorem given in Eq. A.15, ṙ (s0)·δṙ (s0) needs to be determined [110,125–127].

Using the chain rule and rearranging yields:

d

dt
(ṙ (s0) · δr (s0)) = ṙ (s0) · δṙ (s0) + r̈ (s0) · δr (s0)

ṙ (s0) · δṙ (s0) =
d

dt
(ṙ (s0) · δr (s0))− r̈ (s0) · δr (s0) .
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Substituting into the equation above gives:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

−1

2
µṙ
(
s+
d

)
· ṙ
(
s+
d

)
δsddt

+

∫ tf

t0

∫ l

sd

µ
∂

∂t
(ṙ (s0) · δr (s0)) ds0dt−

∫ tf

t0

∫ l

sd

µr̈ (s0) · δr (s0) ds0dt

A boundary condition can be applied at the guide way entrance. The guide way,

given by rG = r (sd), is inertially fixed, implying ṙG = 0. Using the chain rule and

rearranging yields:

ṙG = ṙ
(
s+

d

)
+ r′

(
s+
d

)
ṡd = 0

ṙ
(
s+
d

)
= −r′

(
s+
d

)
ṡd

(C.13)

Substituting into the equation above gives:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

−1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
δsddt

+

∫ tf

t0

∫ l

sd

µ
∂

∂t
(ṙ (s0) · δr (s0)) ds0dt−

∫ tf

t0

∫ l

sd

µr̈ (s0) · δr (s0) ds0dt

Use Green’s theorem given in Eq. A.15
(∮

C
(Ldx+Mdy) =

∫∫
D

(
∂M
∂x
− ∂L

∂y

)
dxdy

)
on the second term (with x = s0, y = t, M = 0, and L = µṙ (s0) · δr (s0)) and the

definition of a line integral given in Eq. A.16 (
∮
C
f (r) ds =

∫ b
a
f (r (t)) |ṙ (t)|dt) for

the four edges parameterized by [t0, tf ]× [sd, l]:
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(a) t = t0, s0 ∈ [sd (to) , l]:

∮
C

µṙ (s0) · δr (s0) ds0 = 0

because δr (s0) = 0 for t = to.

(b) t = tf , s0 ∈ [sd (to) , l]:

∮
C

µṙ (s0) · δr (s0) ds0 = 0

because δr (s0) = 0 for t = tf .

(c) t ∈ [to, tf ], s0 = sd (t):

∮
C

µṙ (s0) · δr (s0) ds0 =

∫ tf

t0

µṙ
(
s+
d

)
· δr
(
s+
d

)
ṡddt

where s+
d is the material point just outside the guide way exit. The guide

way entrance boundary condition can be applied again. The guide way, given

by rG = r (sd), is inertially fixed, implying ṙG = 0. Using the chain rule and

rearranging yields:

δrG = δr
(
s+
d

)
+ r′

(
s+
d

)
δsd = 0

δr
(
s+
d

)
= −r′

(
s+
d

)
δsd

(C.14)

Substituting Eq. C.13 and Eq. C.14 into the equation above yields:

∮
C

µṙ (s0) · δr (s0) ds0 =

∫ tf

t0

µṡ2
dr′
(
s+
d

)
· r′
(
s+
d

)
δsddt
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(d) t ∈ [to, tf ], s0 = l:

∮
C

µṙ (s0) · δr (s0) ds0 =
���

���
���

��:0∫ tf

t0

µṙ (l) · δr (l) l̇dt

because s0 = l is constant, and l̇ = 0. This corresponds to a fixed connection at

the rigid body (no reel on the rigid body).

which gives us the variation of the second term of Eq. C.11:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

{
−
∫ l

sd

µr̈ (s0) · δr (s0) ds0

−1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
δsd + µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
δsd

}
dt

which simplifies to:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

{
−
∫ l

sd

µr̈ (s0) · δr (s0) ds0 +
1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
δsd

}
dt

(C.15)

3. δ
∫ tf
t0

1
2
mṙ (l) · ṙ (l) dt

The third term follows the same derivation as the first term in Section C.1

δ

∫ tf

t0

1

2
mṙ (l) · ṙ (l) dt = −

∫ tf

t0

mr̈ (l) · δr (l) dt (C.16)

4. δ
∫ tf
t0

mṙ (l) ·RΩ̂ρcdt
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The fourth terms follow the same derivation as the second term in Section C.1:

δ

∫ tf

t0

mṙ (l) ·RΩ̂ρcdt =

∫ tf

t0

{(
−mRΩ̂

2
ρc + mRρ̂cΩ̇

)
· δr (l)−mρ̂cR

T r̈ (l) · η
}
dt.

(C.17)

5. δ
∫ tf
t0

1
2
Ω ·ΠΩdt

The fifth term follows the same derivation as the third term in Section C.1:

δ

∫ tf

t0

1

2
Ω ·ΠΩdt =

∫ tf

to

(
−ΠΩ̇− Ω̂ΠΩ

)
· ηdt. (C.18)

6. δ
∫ tf
t0
µ (sd − b) rG · gdt

The only varying parameter is sd. Taking the variation yields:

δ

∫ tf

t0

µ (sd − b) rG · g =

∫ tf

t0

µ (rG · g) δsddt. (C.19)

7. δ
∫ tf
t0
µgd2

(
cos
(

sd−b
d

)
− 1
)
dt

The only varying parameter is sd. Taking the variation yields:

δ

∫ tf

t0

µgd2

(
cos

(
sd − b

d

)
− 1

)
dt =

∫ tf

t0

−µgd2 sin

(
sd − b

d

)
1

d
δsddt

= −
∫ tf

t0

µgd sin

(
sd − b

d

)
δsddt.

(C.20)

8. δ
∫ tf
t0

mr (l) · gdt
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The eighth term follows the same derivation as the fifth term in Section C.1:

δ

∫ tf

t0

mr (l) · gdt =

∫ tf

t0

mg · δr (l) dt (C.21)

9. δ
∫ tf
t0

mRρc · gdt

The ninth term follows the same derivation as the sixth term in Section C.1, repeating

Eq. C.7:

δ

∫ tf

t0

mRρc · gdt =

∫ tf

t0

mρ̂cR
Tg · ηdt (C.22)

10.
∫ l

sd
−1

2
EA (‖r′ (so)‖2 − 1)2 dso

The terms inside the spatial integral of Eq. C.11 need to follow the Leibniz rule in

Eq. A.14

( d
dx

(∫ b(x)

a(x)
f (x, t) dt

)
= f (x, b (x)) · d

dx
b (x)− f (x, a (x)) · d

dx
a (x) +

∫ b(x)

a(x)
∂
∂x
f (x, t) dt,

with a (x) = sd, b (x) = l, and f (x, t) = −1
2
EA (‖r′ (so)‖2 − 1)2):

δ

∫ tf

to

{∫ l

sd

−1

2
EA

(
(‖r′ (s0)‖2 − 1)

2
)
ds0

}
dt

=

∫ tf

to

{(
1

2
EA

(
‖r′
(
s+
d

)
‖2 − 1

)2
)
δsd −

∫ l

sd

δ

(
1

2
EA

(
(‖r′ (s0)‖2 − 1)

2
)
ds0

)}
dt

The second term then follows a similar derivation to that of the seventh term in

Section C.1, but with δr
(
s+
d

)
6= 0. Starting with the result of IBP:
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∫ tf

to

∫ l

sd

δ

(
−1

2
EA

(
(‖r′ (s0)‖2 − 1)

2
))

ds0dt

=

∫ tf

to

{
−EA‖r

′ (s0)‖2 − 1

‖r′ (s0)‖2

r′ (s0) · δr (s0)
∣∣l
sd

+

∫ l

sd

EA

(
‖r′ (s0)‖2 − 1

‖r′ (s0)‖2

r′ (s0)

)′
· δr (s0) ds0

}
dt

=

∫ tf

to

{
−EA‖r

′ (l)‖2 − 1

‖r′ (l)‖2

r′ (l) · δr (l) + EA
‖r′
(
s+
d

)
‖2 − 1

‖r′
(
s+
d

)
‖2

r′
(
s+
d

)
· δr
(
s+
d

)
+

∫ l

sd

EA

(
‖r′ (s0)‖2 − 1

‖r′ (s0)‖2

r′ (s0)

)′
· δr (s0) ds0

}
dt

Plugging this into the results of the Leibniz rule step yields:

δ

∫ tf

to

∫ l

sd

−1

2
EA (‖r′ (s0)‖2 − 1)

2
ds0dt =∫ tf

to

{(
1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
))

δsd − f (l) · δr (l)

+f
(
s+
d

)
· δr
(
s+
d

)
+

∫ l

sd

(f ′ (s0)) · δr (s0) ds0

}
dt

where

f (x) = EA

(
‖r′ (x)‖2 − 1

‖r′ (x)‖2

r′ (x)

)
(C.23)

is the elastic string tension at point x. Apply the inertially fixed guide way exit

condition given in Eq. C.14
(
δr
(
s+
d

)
= −r′

(
s+
d

)
δsd

)
to
∫ tf
t0

f
(
s+
d

)
· δr
(
s+
d

)
dt yields

the tenth term of Eq. C.11:
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δ

∫ tf

to

∫ l

sd

−1

2
EA (‖r′ (s0)‖2 − 1)

2
ds0dt =∫ tf

to

{(
1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)
− f
(
s+
d

)
· r′
(
s+
d

))
δsd

−f (l) · δr (l) +

∫ l

sd

(f ′ (s0)) · δr (s0) ds0

}
dt

(C.24)

11.
∫ l

sd
µr (so) · gdso

The terms inside the spatial integral of Eq. C.11 need to follow the Leibniz rule in

Eq. A.14

( d
dx

(∫ b(x)

a(x)
f (x, t) dt

)
= f (x, b (x)) · d

dx
b (x)− f (x, a (x)) · d

dx
a (x) +

∫ b(x)

a(x)
∂
∂x
f (x, t) dt,

with a (x) = sd, b (x) = l, and f (x, t) = µr (so) · g) :

δ

∫ tf

to

∫ l

sd

µr (s0) · gds0dt = −
∫ tf

to

µr
(
s+
d

)
· gδsd +

∫ l

sd

δ (µr (s0) · g) ds0dt

= −
∫ tf

to

µr
(
s+
d

)
· gδsd +

∫ l

sd

µg · δr (s0) ds0dt

(C.25)

where the first term of the Leibniz rule goes to zero because d
ds0

(l) = 0, and s+
d denotes

the string point just outside the reel guide way.

12. δ
∫ tf
t0
WNCdt

There are three nonconservative forces that need to be accounted for: the string

velocity discontinuity at the guide way, the guide way normal or restraint force, and

the control moment on the reel.

(a) String Velocity Discontinuity: Because the string is inextensible when it is

spooled up on the reel, and extensible when it is deployed, there exists a velocity

discontinuity at the guide way exit. The magnitude of the guide way string
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velocity at the guide way exit, given in Eq. C.13, just inside (r
(
s−d
)
) and outside

(r
(
s+
d

)
) the guide way is:

‖ṙ
(
s−d
)
‖2 = ‖−r′

(
s−d
)

ṡd‖2

‖ṙ
(
s+
d

)
‖2 = ‖−r′

(
s+
d

)
ṡd‖2

Inside the guide way, the string is inextensible, meaning ‖r′
(
s−d
)
‖2 = 1. Outside

the guide way, the string is extensible, ‖r′
(
s+
d

)
‖2 = 1 + ε+, where ε+ represents

the strain in the string just outside the guide way:

‖ṙ
(
s−d
)
‖2 = ‖−r′

(
s−d
)

ṡd‖2 = |ṡd|

‖ṙ
(
s+
d

)
‖2 = ‖−r′

(
s+
d

)
ṡd‖2 =

(
1 + ε+

)
|ṡd|

Therefore, the string speed instantaneously changes by ε+|ṡd| at the guide way.

This can be considered a plastic impact, resulting in the following nonconservative

virtual work:

δWplastic = Qδsd = −1

2
µε2ṡ2

dδsd

= −1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
dδsd

(C.26)

where Q is defined in Eq. C.58, and the derivation based on plastic impact given

in Section C.4.

(b) Guide way normal force The nonconservative virtual work from the guide way

is defined as the normal force keeping the tether attached to the reel multiplied

over the distance of the tether:

δWnormal = Nδsd
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where N is defined as the elastic strain force just outside the guide way:

N = −1

2
EA

(
ε+
)2

N = −1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)

Combining gives the virtual work done by the tether normal force at the guidway:

δWnormal = −1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)
δsd (C.27)

(c) Control moment due to the reel motor: The nonconservative virtual work from

the reel motor is defined as the force on the tether multiplied over the distance

of the tether:

δWmotor =
u

d
δsd (C.28)

where u is the motor torque, and d the radius of the drum.

Combining the three nonconservative virtual work terms in Eq. C.26, Eq. C.28,

and Eq. C.27 yields the final term of Eq. C.11:

δWNC = δWplastic + δWnormal + δWmotor

=

(
−1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d −

1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)

+
u

d

)
δsd.

(C.29)

Inserting Eq. C.12, Eq. C.15 through Eq. C.22, Eq. C.24, Eq. C.25, and Eq. C.29

into Hamilton’s Principle from Eq. C.11 yields:
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δS =

∫ tf

t0

{(
−
(
µsd +

md

2

)
s̈d −

1

2
µṡ2

d +
1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
+µ (rD · g)− µgd sin

(
sd − b

d

)
+
���

���
���

���
��:

1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)
− µr

(
s+
d

)
· g

−f
(
s+
d

)
· r′
(
s+
d

)
− 1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d −
���

���
��

���
���:

1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)

+
u

d

)
δsd

+
(

mRρ̂cΩ̇−mr̈ (l)−mRΩ̂
2
ρc + mg − f (l)

)
· δr (l)

+
(
−mρ̂cR

T r̈ (l)−ΠΩ̇− Ω̂ΠΩ + mρ̂cR
Tg
)
· η

+

∫ l

sd

(
∂

∂s0

f (s0) + µg − µr̈ (s0)

)
· δr (s0) ds0

}
dt = 0

Simplifying the terms multiplied by δsd, inserting the relationship x · x = (‖x‖2)2 for

r′
(
s+
d

)
· r′
(
s+
d

)
, and r

(
s+
d

)
= rG yields:

∫ tf

t0

{(
−1

2
µṡ2

d +
1

2
µ
(
‖r′
(
s+
d

)
‖2

)2
ṡ2
d −

1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d

−
(
µsd +

md

2

)
s̈d + µ (rD − rG) · g − µgd sin

(
sd − b

d

)
− f
(
s+
d

)
· r′
(
s+
d

)
+

u

d

)
δsd

+
(

mRρ̂cΩ̇−mr̈ (l)−mRΩ̂
2
ρc + mg − f (l)

)
· δr (l)

+
(
−mρ̂cR

T r̈ (l)−ΠΩ̇− Ω̂ΠΩ + mρ̂cR
Tg
)
· η
}
dt

+

∫ l

sd

(
∂

∂s0

f (s0) + µg − µr̈ (s0)

)
· δr (s0) ds0

}
dt = 0
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Factoring like terms and expanding 1
2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d on the first line yields:

∫ tf

t0

1

2
µṡ2

d (−1 +
(
‖r′
(
s+
d

)
‖2

)2 −
(
‖r′
(
s+
d

)
‖2 − 1

)2
)
δsddt

=

∫ tf

t0

1

2
µṡ2

d

(
−1 +���

���
��:(

‖r′
(
s+
d

)
‖2

)2 −����
��

��:(
‖r′
(
s+
d

)
‖2

)2
+ 2‖r′

(
s+
d

)
‖2 − 1

)
δsddt

=

∫ tf

t0

µṡ2
d

(
‖r′
(
s+
d

)
‖ − 1

)
δsddt

(C.30)

The final combined variation for the fixed reel elastic string rigid body pendulum:

∫ tf

t0

{(
−
(
µsd +

md

2

)
s̈d + µ (rD − rG) · g − µgd sin

(
sd − b

d

)
−f
(
s+
d

)
· r′
(
s+
d

)
+ µṡ2

d

(
‖r′
(
s+
d

)
‖2 − 1

)
+

u

d

)
δsd

+
(

mRρ̂cΩ̇−mr̈ (l)−mRΩ̂
2
ρc + mg − f (l)

)
· δr (l)

+
(
−mρ̂cR

T r̈ (l)−ΠΩ̇− Ω̂ΠΩ + mρ̂cR
Tg
)
· η
}
dt

+

∫ l

sd

(
∂

∂s0

f (s0) + µg − µr̈ (s0)

)
· δr (s0) ds0

}
dt = 0

(C.31)
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C.3 Moving Reel - Elastic String - Rigid Body Pen-

dulum / UAV

Inserting the Lagrangian from Eq. 7.38 into the Extended Hamilton’s principle of

least action from Eq. 7.24 yields:

δS = δ

∫ tf

t0

(
1

2
(mb + md + µsd) (ṙD · ṙD) +

1

2

(
µsd +

md

2

)
ṡ2
d +

1

2
Ωb ·ΠbΩb

+
1

2
muṙ (l) · ṙ (l) + muṙ (l) ·RuΩ̂uρc +

1

2
Ωu ·ΠuΩu

+ (mb + md + µsd) rD · g + µd2

(
1− cos

sd − b

d

)
êb1 · g − µd2 sin

sd − b

d
êb3 · g

+

∫ l

sd

(
1

2
µṙ (s0) · ṙ (s0)− 1

2
EA (‖r′ (s0)‖2 − 1)

2
+ µr (s0) · g

)
ds0

+mu (r (l) + ρc) · g +WNC) dt = 0.

(C.32)

Each term will be evaluated individually:

1. δ
∫ tf
t0

1
2

(mb + md + µsd) (ṙD · ṙD) dt

Taking the variation yields:

δ

∫ tf

t0

1

2
(mb + md + µsd)ṙD · ṙDdt

=

∫ tf

t0

(mb + md + µsd) ṙD · δṙDdt+

∫ tf

t0

1

2
µṙD · ṙDδsddt

This term with mb and md need IBP, and follows the derivation in Section C.1,

mirroring Eq. C.2:

∫ tf

to

(mb + md) ṙD · δṙDdt = −
∫ tf

to

(mb + md) r̈D · δrDdt
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The part of the first term with sd also needs IBP (IBP:
∫ b
a
udv = uv|ba −

∫ b
a
vdu with

u = µsdṙD and dv = δṙD),

∫ tf

to

µsdṙD · δṙDdt = µsdṙD�
��*0

δrD|
tf
t0 −

∫ tf

to

µsdr̈D · δrDdt−
∫ tf

to

µṡdṙD · δrDdt

Combining results in:

δ

∫ tf

to

(mb + md + µsd)ṙD · ṙDdt (C.33)

=

∫ tf

to

− (mb + md + µsd) r̈D · δrD − µṡdṙD · δrD +
1

2
µṙD · ṙDδsddt

(C.34)

2. δ
∫ tf
t0

1
2

(
µsd + md

2

)
ṡ2
ddt:

This term follows the derivation for the reel given in Section C.2 mirroring Eq. C.12:

δ

∫ tf

t0

1

2

(
µsd +

md

2

)
ṡ2
ddt =

∫ tf

t0

(
−
(
µsd +

md

2

)
s̈d −

1

2
µṡ2

d

)
δsddt (C.35)

3. δ
∫ tf
t0

1
2
Ωb ·ΠbΩbdt:

This term follows the same derivation as the third term in Section C.1, mirroring Eq.

C.4:

δ

∫ tf

t0

1

2
Ωb ·ΠbΩbdt =

∫ tf

to

(
−ΠbΩ̇b − Ω̂bΠbΩb

)
· ηbdt. (C.36)

4. δ
∫ tf
t0

1
2
muṙ (l) · ṙ (l) dt:
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This term follows the derivation in Section C.1 for the first term, mirroring Eq. C.2:

δ

∫ tf

t0

1

2
muṙ (l) · ṙ (l) dt = −

∫ tf

to

mur̈ (l) · δr (l) dt (C.37)

5. δ
∫ tf
t0

muṙ (l) ·RuΩ̂uρcdt:

This term follows the derivation in Section C.2, mirroring Eq. C.3:

δ

∫ tf

t0

muṙ (l) ·RuΩ̂uρcdt

=

∫ tf

t0

{(
−muRuΩ̂

2

uρc + muRuρ̂cΩ̇u

)
· δr (l)−muρ̂cR

T
u r̈ (l) · ηu

}
dt.

(C.38)

6. δ
∫ tf
t0

1
2
Ωu ·ΠuΩudt:

This term follows the same derivation as the third term in Section C.1, mirroring Eq.

C.4:

δ

∫ tf

t0

1

2
Ωu ·ΠuΩudt =

∫ tf

to

(
−ΠuΩ̇u − Ω̂uΠuΩu

)
· ηudt. (C.39)

7. δ
∫ tf
t0
− (mb + mr + µsd) rd · gdt

Taking the variation via chain rule yields:

δ

∫ tf

t0

− (mb + md + µsd) rd · gdt =

∫ tf

t0

− (mb + md + µsd) g · δrD − µrd · gδsddt

(C.40)
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8. δ
∫ tf
t0
µd2

(
1− cos sd−b

d

)
êb1 · gdt

Because êb1 varies in orientation, before taking the variation, it is helpful to convert

to global coordinates via êb1 = Rbê1. Taking the variation via chain rule yields:

δ

∫ tf

t0

µd2

(
1− cos

(
sd − b

d

))
g ·Rbê1dt

=

∫ tf

t0

µd2

(
1− cos

(
sd − b

d

))
g · δRbê1 + µd sin

(
sd − b

d

)
Rbê1 · gδsddt

The first term follows the derivation given in Eq. A.12 (
∫ tf
to

x·δRydt =
∫ tf
to

ŷRTx·ηdt):

δ

∫ tf

t0

µd2

(
1− cos

(
sd − b

d

))
g ·Rbê1dt

=

∫ tf

t0

−µd2

(
cos

(
sd − b

d

)
− 1

)
ˆ̂e1R

T
b g · ηb + µd sin

(
sd − b

d

)
Rbê1 · gδsddt

(C.41)

where ˆ̂e1 =


0 0 0

0 0 −1

0 1 0

 is the skew symmetric mapping of the ê1 vector.

9. δ
∫ tf
t0
−µd2 sin sd−b

d
êb3 · gdt

Similar to the last term, because êb3 varies in orientation, before taking the variation,

it is helpful to convert to global coordinates via êb3 = Rbê3. Taking the variation via

chain rule yields:
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δ

∫ tf

t0

−µd2 sin

(
sd − b

d

)
g ·Rbê3dt =∫ tf

t0

−µd2 sin

(
sd − b

d

)
g · δRbê3 − µd cos

(
sd − b

d

)
Rbê3 · gδsddt

The first term follows the derivation given in Eq. A.12 (
∫ tf
to

x·δRydt =
∫ tf
to

ŷRTx·ηdt):

δ

∫ tf

t0

− µd2 sin

(
sd − b

d

)
g ·Rbê3dt

=

∫ tf

t0

−µd2 sin

(
sd − b

d

)
ˆ̂e3R

T
b g · ηb −µd cos

(
sd − b

d

)
Rbê3 · gδsd

}
dt

(C.42)

where ˆ̂e3 =


0 −1 0

1 0 0

0 0 0

 is the skew symmetric mapping of the ê3 vector.

10. δ
∫ tf
t0

∫ l
sd

1
2
µṙ (s0) · ṙ (s0) ds0dt:

This term follows the same derivation, using Leibniz’s rule and Green’s theorem

given in Section C.2 for the second term. However the application of the boundary

conditions are different because the reel is not inertially fixed, resulting in Eq. C.15

before applying boundary conditions:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt =

∫ tf

t0

{
−
∫ l

sd

µr̈ (s0) · δr (s0) ds0

−1

2
µṙ
(
s+
d

)
· ṙ
(
s+
d

)
· δsd + µṙ

(
s+
d

)
· δr
(
s+
d

)
ṡd

}
dt
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The guide way boundary condition can be applied to simplify some terms. However,

in this case, the guide way, given by rG = r (sd) =
(
rd + Rbρg

)
, is no longer inertially

fixed. Using the chain rule:

ṙG = ṙ
(
s+
d

)
+ r′

(
s+
d

)
ṡd = ṙD + Ṙbρg

= ṙD + RbΩ̂bρg

= ṙD −Rbρ̂gΩb

where the Kinematic relationship given in Eq. A.5, and the identity from Eq. A.2

was used to swap the hat map. Similarly, using the chain rule for the variation:

δrd = δr
(
s+
d

)
+ r′

(
s+
d

)
δsd = δrD + δRbρg

Solving for ṙ
(
s+
d

)
and δr

(
s+
d

)
yields the guide way boundary conditions:

ṙ
(
s+
d

)
= −r′

(
s+
d

)
ṡd + ṙD −Rbρ̂gΩb

δr
(
s+
d

)
= −r′

(
s+
d

)
δsd + δrD + δRbρg

(C.43)

Plugging the boundary condition in for
∫ tf
t0
−1

2
µṙ
(
s+
d

)
· ṙ
(
s+
d

)
δsddt and

∫ tf
t0
µṙ
(
s+
d

)
·

δr
(
s+
d

)
ṡddt yields:
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δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

{
−
∫ l

sd

µr̈ (s0) · δr (s0) ds0

− 1

2
µ
(
−r′
(
s+
d

)
ṡd + ṙD −Rbρ̂gΩb

)
·
(
−r′
(
s+
d

)
ṡd + ṙD −Rbρ̂gΩb

)
· δsd

+µ
(
−r′
(
s+
d

)
ṡd + ṙD −Rbρ̂gΩb

)
·
(
−r′
(
s+
d

)
δsd + δrD + δRbρg

)
ṡd

}
dt

Multiplying only the first term inside the parenthesis for the first set of boundary

conditions, all the terms for the second set of boundary conditions and simplifying

terms (via swapping the hatmap, and applying the rotation matrix variation identity

in Eq. A.12 (
∫ tf
to

x · δRydt =
∫ tf
to

xT δRydt =
∫ tf
to

ŷRTx · ηdt) yields:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

{
−
∫ l

sd

µr̈ (s0) · δr (s0) ds0

+

(
−1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
+ µṡdṙD · r′

(
s+
d

)
− µṡdRbρ̂gΩb · r′

(
s+
d

)
−1

2
µ
(
ṙD −Rbρ̂gΩb

)
·
(
ṙD −Rbρ̂gΩb

))
δsd(

µṡ2
dr′
(
s+
d

)
· r′
(
s+
d

)
− µṡdṙD · r′

(
s+
d

)
+ µṡdRbρ̂gΩb · r′

(
s+
d

))
δsd

+
(
−µṡ2

dr′
(
s+
d

)
+ µṡdṙD − µṡdRbρ̂gΩb

)
· δrD(

−µṡ2
dρ̂gR

T
b r′
(
s+
d

)
+ µṡdρ̂gR

T
b ṙD − µṡdρ̂

2
gΩb

)
· ηbdt

199



simplifying terms results in:

δ

∫ tf

t0

∫ l

sd

1

2
µṙ (s0) · ṙ (s0) ds0dt

=

∫ tf

t0

{
−
∫ l

sd

µr̈ (s0) · δr (s0) ds0(
1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
− 1

2
µ
(
ṙD −Rbρ̂gΩb

)
·
(
ṙD −Rbρ̂gΩb

))
δsd

+
(
−µṡ2

dr′
(
s+
d

)
+ µṡdṙD − µṡdRbρ̂gΩb

)
· δrD

+
(
−µṡ2

dρ̂gR
T
b r′
(
s+
d

)
+ µṡdρ̂gR

T
b ṙD − µṡdρ̂

2
gΩb

)
· ηbdt

(C.44)

11. δ
∫ tf
t0

∫ l
sd
−1

2
EA (‖r′ (s0)‖2 − 1)2 ds0dt:

This term follows the same derivation given in Section C.2 resulting in Eq. C.24, but

also with different boundary condition due to the moving reel. Starting from the

result of the Leibniz rule before the boundary conditions are applied yields:

δ

∫ tf

to

∫ l

sd

−1

2
EA (‖r′ (s0)‖2 − 1)

2
ds0dt

=

∫ tf

to

{(
1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
))

δsd − f (l) · δr (l)

+f
(
s+
d

)
· δr
(
s+
d

)
+

∫ l

sd

(f ′ (s0)) · δr (s0) ds0

}
dt

where again f (x) = EA
(
‖r′(x)‖2−1
‖r′(x)‖ r′ (x)

)
is the tether tension at point x.

Applying the guide way boundary condition from Eq. C.43 yields:
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δ

∫ tf

to

∫ l

sd

−1

2
EA (‖r′ (s0)‖2 − 1)

2
ds0dt

=

∫ tf

to

{(
1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)
− f
(
s+
d

)
· r′
(
s+
d

))
δsd

− f (l) · δr (l) + f
(
s+
d

)
· δrD + ρ̂gR

T
b f
(
s+
d

)
· ηbdt

+

∫ l

sd

(f ′ (s0)) · δr (s0) ds0

}
dt

(C.45)

12. δ
∫ tf
t0

∫ l
sd
µr (s0) · gds0dt

This term follows the same derivation as in Section C.2, for the eleventh term given

in Eq. C.25, repeated here:

δ

∫ tf

to

∫ l

sd

µr (s0) · gds0dt = −
∫ tf

to

µr
(
s+
d

)
· gδsd +

∫ l

sd

µg · δr (s0) ds0dt (C.46)

13. δ
∫ tf
t0

mur (l) · gdt

This term follows the same derivation as the fifth term in Section C.1, repeating Eq.

C.6 here:

δ

∫ tf

t0

mur (l) · gdt =

∫ tf

t0

mug · δr (l) dt (C.47)

14. δ
∫ tf
t0

muRuρc · gdt

This term follows the same derivation as the sixth term in Section C.1, repeating Eq.
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C.7:

δ

∫ tf

t0

muRuρc · gdt =

∫ tf

t0

muρ̂cR
T
u g · ηudt (C.48)

15. δ
∫ tf
t0
WNCdt

There are five nonconservative forces that need to be accounted for: the string velocity

discontinuity at the guide way, the guide way normal or restraint force, the control

moment on the reel, the UAV overall applied thrust force, and the UAV overall

applied moment. The first two follow the same derivation as in Section C.2, and the

control moment has an added term due to the rotation of the body.

(a) String Velocity Discontinuity:

The string velocity discontinuity can again be considered as a plastic impact,

resulting in the following nonconservative virtual work, with the same derivation

resulting in Eq. C.26:

δWPlastic = Qδsd = −1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
dδsd (C.49)

where Q is defined in Eq. C.58, and the derivation based on plastic impact given

in Section. C.4.

(b) Guide way normal force:

The nonconservative virtual work from the guide way is defined as the normal

force keeping the tether attached to the reel multiplied over the distance of the

tether, with the same derivation given in Eq. C.27, repeated here:

δWNormal = −1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)
δsd (C.50)
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(c) Control moment due to the reel motor:

The nonconservative virtual work from the reel motor is defined as the force on

the tether multiplied over the virtual displacement of the tether plus the dot

product of the moment applied to the rigid body rotation with the varitation of

the rotation matrix ηb, similar to the derivation given in Eq. C.28, yielding:

δWmotor =
u

d
δsd − uêb2 · ηb (C.51)

where u is the motor torque, and d the radius of the drum.

(d) UAV normal force and applied moment

The nonconservative virtual work from the UAV normal force is defined as the

dot product of the normal force (FUAV) from all the UAV’s rotors in the direction

of the orientation and the variation of the position vector r (l). The virtual work

from the UAV applied moment is defined as the dot product of the moment on

each axis (τUAV =

[
τφ τθ τψ

]T
) with the variation of the rotation matrix, ηu :

δWUAV = −FUAVêu3 · δr (l) + τUAV · ηu

Inserting the definition of the body fixed coordinate (êu3 = Ruê3):

δWUAV = −FUAVRuê3 · δr (l) + τUAV · ηu (C.52)

Combining the four nonconservative virtual work terms in Eq. C.49, Eq. C.51, Eq.

C.50, and Eq. C.52 yields:
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WNC = δWPlastic + δWNormal + δWmotor + δWUAV

=

(
−1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d −

1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)

+
u

d

)
δsd

− uê2 · ηb − FUAVRuê3 · δr (l) + τUAV · ηu

(C.53)

Inserting Eq. C.34 through Eq. C.42, Eq. C.44 through Eq. C.48, and Eq. C.53

into the variation equation from Eq. C.32 yields:

δS =

∫ tf

t0

{(
− (mb + md + µsd) r̈D − µṡdṙD − µṡ2

dr′
(
s+
d

)
+ µṡdṙD − µṡdRbρ̂gΩb

+ (mb + md + µsd) g + f
(
s+
d

))
· δrD

+

(
−ΠbΩ̇b − Ω̂bΠbΩb − µṡ2

dρ̂gR
T
b r′
(
s+
d

)
+ µṡdρ̂gR

T
b ṙD − µṡdρ̂

2
gΩb

− µd2 sin

(
sd − b

d

)
ˆ̂e3R

T
b g − µd2

(
cos

(
sd − b

d

)
− 1

)
ˆ̂e1R

T
b g

+ ρ̂gR
T
b f
(
s+
d

)
− uê2

)
· ηb

+

(
1

2
µṙD · ṙD −

(
µsd +

md

2

)
s̈d −

1

2
µṡ2

d +
1

2
µṡ2

dr′
(
s+
d

)
· r′
(
s+
d

)
− 1

2
µ
(
ṙD −Rbρ̂gΩb

)
·
(
ṙD −Rbρ̂gΩb

)
+ µrd · g

− µd cos

(
sd − b

d

)
Rbê3 · g + µd sin

(
sd − b

d

)
Rbê1 · g

+
��

���
���

���
���:

1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)
− µr

(
s+
d

)
· g − f

(
s+
d

)
· r′
(
s+
d

)
− 1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d −
��

���
���

���
���:

1

2
EA

((
‖r′
(
s+
d

)
‖2 − 1

)2
)

+
u

d

)
δsd

+

∫ l

sd

(−µr̈ (s0) + f ′ (s0) + µg) · δr (s0) ds0

+
(

muRuρ̂cΩ̇u −mur̈ (l)−muRuΩ̂
2

uρc − f (l) + mug − FUAVRuê3

)
· δr (l)

+
(
−muρ̂cR

T
u r̈ (l)−ΠuΩ̇u − Ω̂uΠuΩu + muρ̂cR

T
u g + τ

)
· ηu

}
dt
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Applying the same simplification as in Eq. C.30,

∫ tf

t0

(
−1

2
µṡ2

d +
1

2
µṡ2

d‖r′
(
s+
d

)
‖2 −1

2
µ
(
‖r′
(
s+
d

)
‖2 − 1

)2
ṡ2
d

)
δsddt

=

∫ tf

t0

µṡ2
d

(
‖r′
(
s+
d

)
‖ − 1

)
δsddt

yields the final variation:

δS =

∫ tf

t0

{(
− (mb + md + µsd) r̈D − µṡdṙD − µṡ2

dr′
(
s+
d

)
+ µṡdṙD − µṡdRbρ̂gΩb

+ (mb + md + µsd) g + f
(
s+
d

))
· δrD

+

(
−ΠbΩ̇b − Ω̂bΠbΩb − µṡ2

dρ̂gR
T
b r′
(
s+
d

)
+ µṡdρ̂gR

T
b ṙD − µṡdρ̂

2
gΩb

− µd2 sin

(
sd − b

d

)
ˆ̂e3R

T
b g − µd2

(
cos

(
sd − b

d

)
− 1

)
ˆ̂e1R

T
b g

+ ρ̂gR
T
b f
(
s+
d

)
− uê2

)
· ηb

+

(
1

2
µṙD · ṙD −

(
µsd +

md

2

)
s̈d + µṡ2

d

(
‖r′
(
s+
d

)
‖2 − 1

)
− 1

2
µ
(
ṙD −Rbρ̂gΩb

)
·
(
ṙD −Rbρ̂gΩb

)
+ µrd · g

− µd cos

(
sd − b

d

)
Rbê3 · g + µd sin

(
sd − b

d

)
Rbê1 · g

− µr
(
s+
d

)
· g

− f
(
s+
d

)
· r′
(
s+
d

)
+

u

d

)
δsd

+

∫ l

sd

(−µr̈ (s0) + f ′ (s0) + µg) · δr (s0) ds0

+
(

muRuρ̂cΩ̇u −mur̈ (l)−muRuΩ̂
2

uρc − f (l) + mug − FUAVRuê3

)
· δr (l)

+
(
−muρ̂cR

T
u r̈ (l)−ΠuΩ̇u − Ω̂2ΠuΩu + muρ̂cR

T
2 g + τUAV

)
· ηu

}
dt

(C.54)
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C.4 Carnot Energy Loss via Plastic Work at Guide

Way

To handle the discontinuity in the string speed at the guide way, a Carnot Energy loss

term using a plasticity based derivation can be used [110,130]. Assume the difference in the

speed is due to an infinitesimal plastic work, or mass joining together. From conservation

of momentum:

(M + dm) u′ = Mu + dmv

where u′ is the speed of the combined mass, and u and v are the initial speeds prior to

collision. Lets first show:

(M + dm) (M− dm) = M2 − dm2

Discard terms O
(
dm2

)
or greater because dm is infinitesimally small:

(M + dm) ≈ M2

(M− dm)

Plug in and solve for u′, again discarding terms O
(
dm2

)
or greater:

u′ ≈ (M− dm)

M2
(Mu + dmv)

u′ ≈ u− dm

M
u +

dm

M
v +

�
��*

≈0

dm2

M2
v
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u′ ≈ u +
dm

M
(v − u) (C.55)

The kinetic energy before the collision:

T =
1

2
dmv2 +

1

2
Mu2

and after the collision:

T ′ =
1

2
(M + dm) u′2

Plugging in u′ from Eq. C.55 and again ignoring terms O
(
dm2

)
or greater:

T ′ ≈ 1

2
(M + dm)

(
u + (v − u)

dm

M

)2

≈ 1

2
(M + dm)

u2 + 2 (v − u) u
dm

M
+ (v − u)2�

��*
≈0

dm2

M2


≈ 1

2
Mu2 +

1

2
dmu2 + (M + dm)

dm

M

(
uv − u2

)
≈ 1

2
Mu2 +

1

2
dmu2 +

dm +
��
�*≈0

dm2

M

(uv − u2
)

≈ 1

2
Mu2 +

1

2
dmu2 + dm

(
uv − u2

)
T ′ ≈ 1

2
Mu2 − 1

2
dmu2 + dmuv.
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An approximation for the change in kinetic energy is:

∆T ≈ T ′ − T =
1

2
Mu2 − 1

2
dmu2 + dmuv − 1

2
dmv2 − 1

2
Mu2

= −1

2
dmu2 + dmuv − 1

2
dmv2

= −1

2
dm
(
u2 − 2uv + v2

)
∆T ≈ T ′ − T = −1

2
dm (u− v)2

(C.56)

where dm = µṡd and (u− v) = εṡd is the string speed discontinuity yielding:

∆T ≈ −1

2
µε2ṡ3

d. (C.57)

The power corresponding to the energy dissipation rate is defined as the Carnot energy

loss term, Q multiplied by the speed of the tether:

∆T = Qṡd

which yields the Carnot energy loss term:

Q = −1

2
µε2ṡ2

d. (C.58)
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Appendix D

Shape Functions and Galerkin

Method for Three Dimensional

Elastic String Pendlulum

In this appendix, the one dimensional linear and quadratic shape functions applied

to the three dimensional elastic pendulum will be derived.

D.1 One Dimensional Linear Shape Function

A natural coordinate ζ ∈ [0, 1] is defined in each element as a point between two

node points as seen in Fig. D.1. The un-stretched length of the string up to that point is

equal to the sum of the previous (i− 1) elements, along with the fraction of the current

element:

so = l0 (i− 1) + l0ζ
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Figure D.1: First order shape function

where l0 is the nominal element length. Solving for ζ yields:

ζ =
1

l0
(so − l0 (i− 1)) .

Taking the derivative with respect to so yields:

dζ

dso
=

1

l0

dso = l0dζ.

(D.1)

The one dimensional linear shape functions are defined as:

S1 (ζ) = 1− ζ

S2 (ζ) = ζ.

(D.2)

The position of any point in the element is defined as:

r (ζ) = S1 (ζ) ri + S2 (ζ) ri+1

r (ζ) = (1− ζ) ri + ζri+1,
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and the second time derivative as:

r̈ (ζ) = (1− ζ) r̈i + ζ r̈i+1.

D.2 Linear shape functions as weighting functions

Using the two shape functions as weights, the weighted residual integral in terms of

ζ given in Eq. 8.9 can be evaluated analytically.

1. For w (ζ) = S1 (ζ) = 1− ζ :

µl0

∫ 1

0
(1− ζ) ((1− ζ) r̈i + ζ r̈i+1 − g) dζ + qi (ri+1 − ri)

∫ 1

0
(−1) dζ − f (ζ) (1− ζ)|10 = 0

µl0

∫ 1

0

((
1− 2ζ + ζ2

)
r̈i +

(
ζ − ζ2

)
r̈i+1 − (1− ζ) g

)
dζ − qi (ri+1 − ri)− fi+1��

��: 0
(1− 1) + fi (1− 0) = 0

µl0

((
ζ − ζ2 +

ζ3

3

)
r̈i +

(
ζ2

2
−
ζ3

3

)
r̈i+1 −

(
ζ −

ζ2

2

)
g

)∣∣∣∣1
0

− qi (ri+1 − ri) + fi = 0

µl0

(
1

3
r̈i +

1

6
r̈i+1 −

1

2
g

)
− qi (ri+1 − ri) + fi = 0

2. For w (ζ) = S2 (ζ) = ζ :

µl0

∫ 1

0

ζ ((1− ζ) r̈i + ζ r̈i+1 − g) dζ + qi (ri+1 − ri)

∫ 1

0

(1) dζ − f (ζ) (ζ)|10 = 0

µl0

∫ 1

0

((
ζ − ζ2

)
r̈i + ζ2r̈i+1 − ζg

)
dζ + qi (ri+1 − ri)− f i+1 (1) + f i�

�>
0

(0) = 0

µl0

((
ζ2

2
− ζ3

3

)
r̈i +

ζ3

3
r̈i+1 −

ζ2

2
g

)∣∣∣∣1
0

+ qi (ri+1 − ri)− f i+1 = 0

µl0

(
1

6
r̈i +

1

3
r̈i+1 −

1

2
g

)
+ qi (ri+1 − ri)− f i+1 = 0

Combining yields a system of two equations, one for each node of the element, with

the following elemental stencil:
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µl0
6

2I3 I3

I3 2I3


 r̈i

r̈i+1

 = qi

−I3 I3

I3 −I3


 ri

ri+1

+
µl0
2
g

I3

I3

 ê3 +

−f i

f i+1

 . (D.3)

D.3 One Dimensional Quadratric Shape Function

A natural coordinate ζ ∈ [−1, 1] is defined as a point in one element spanning three

nodes as seen in Fig. D.2. The un-stretched length of the string up to any point in the

Figure D.2: Second order shape function on [-1 ,1]

element is equal to the sum of the previous j − 1 elements, along with the fraction of the

current element:

so = l0 (j − 1) +
l0
2

(ζ + 1)

where l0 is the nominal element length. Solving for ζ yields:

ζ =
2

l0
(so − l0 (j − 1))− 1.
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Taking the derivative with respect to so yields:

dζ

dso
=

2

l0

dso =
l0
2
dζ.

(D.4)

The one dimensional quadratic shape functions are defined as:

S1 (ζ) =
ζ2 − ζ

2

S2 (ζ) = 1− ζ2

S3 (ζ) =
ζ2 + ζ

2
.

(D.5)

The position of any point in the element is defined as:

r (ζ) = S1 (ζ) r2j−1 + S2 (ζ) r2j + S3 (ζ) r2j+1

r (ζ) =

(
ζ2 − ζ

2

)
r2j−1 +

(
1− ζ2

)
r2j +

(
ζ2 + ζ

2

)
r2j+1,

(D.6)

and the second time derivative as:

r̈ (ζ) =

(
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
r̈2j+1. (D.7)

D.4 Quadratic shape functions as weights

Unlike the one dimensional linear shape function, the stiffness terms of the quadratic

shape function weighted integral can not be solved analytically. Gauss Quadrature, as

defined in Eq. 8.4, is applied to the weighted residual integral in terms of ζ, given in Eq.
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8.27. For two point Gauss Quadrature, x1 = −1√
3
, x2 = 1√

3
, and wi = 1, yielding:

EA

l0

∫ 1

−1

(
1−

l0

‖l (ζ)‖2

)
l (ζ)

dw (ζ)

dζ
dζ

= (1)
EA

l0

1−
l0

‖l
(
−1√

3

)
‖2

 l

(
−1
√

3

)
dw (ζ)

dζ

∣∣∣∣∣∣
ζ=−1√

3

+ (1)
EA

l0

1−
l0

‖l
(

1√
3

)
‖2

 l

(
1
√

3

)
dw (ζ)

dζ

∣∣∣∣∣∣
ζ= 1√

3

= q−j l

(
−1
√

3

)
dw (ζ)

dζ

∣∣∣∣
ζ=−1√

3

+ q+
j l

(
1
√

3

)
dw (ζ)

dζ

∣∣∣∣
ζ= 1√

3

(D.8)

where the two node Gaussian Quadrature biased elemental force density terms, q−j and q+
j

are defined as:

q−j =
EA

l0

1− l0

‖l
(
−1√

3

)
‖2

 , q+
j =

EA

l0

1− l0

‖l
(

1√
3

)
‖2

 (D.9)

Inserting Eq. D.8 back into Eq. 8.27 yields the weighted residual integral for the one

dimensional quadratic element in a form that is analytically solvable:

µl0
2

∫ 1

−1

w (ζ)

((
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
r̈2j+1 − g

)
dζ

+ q−j l (ζ)
dw (ζ)

dζ

∣∣∣∣
ζ=−1√

3

+ q+
j l (ζ)

dw (ζ)

dζ

∣∣∣∣
ζ= 1√

3

− f (ζ)w (ζ)|1−1 = 0
(D.10)

Prior to evaluating, l (ζ) needs to be determined from Eq. 8.26 at both quadrature points:

l

(
−1√

3

)
=

(
2
−1√

3
− 1

)
r2j−1 +

(
−4
−1√

3

)
r2j +

(
2
−1√

3
+ 1

)
r2j+1

=
1

3

((
−3− 2

√
3
)

r2j−1 + 4
√

3r2j +
(

3− 2
√

3
)

r2j+1

)
l

(
1√
3

)
=

(
2

1√
3
− 1

)
r2j−1 +

(
−4

1√
3

)
r2j +

(
2

1√
3

+ 1

)
r2j+1

=
1

3

((
−3 + 2

√
3
)

r2j−1 − 4
√

3r2j +
(

3 + 2
√

3
)

r2j+1

)
(D.11)

Using the three shape functions as weights, evaluating the integral for the mass terms,

evaluating the stiffness terms at the Gaussian Quadrature points, and addressing any
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boundary conditions yields:

1. For w (ζ) = S1 (ζ) = ζ2−ζ
2

:

• Mass and acceleration terms:

µl0

2

∫ 1

−1
w (ζ)

((
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
r̈2j+1 − g

)
dζ

=
µl0

2

∫ 1

−1

(
ζ2 − ζ

2

)((
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
r̈2j+1 − g

)
dζ

=
µl0

4

∫ 1

−1

((
ζ4 − 2ζ3 + ζ2

2

)
r̈2j−1 +

(
−ζ4 + ζ3 + ζ2 − ζ

)
r̈2j +

(
ζ4 − ζ2

2

)
r̈2j+1 −

(
ζ2 − ζ

)
g

)
dζ

=
µl0

4

((
ζ5

10
−

2ζ4

8
+
ζ3
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−
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−
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(
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3
−
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g
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2
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1
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1
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1

6
g

)

= µl0
[

2
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I3
1
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I3 − 1
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I3

]
r̈2j−1

r̈2j

r̈2j+1

− µl0

6
g

• Stiffness terms: dw(ζ)
dζ

= ζ − 1
2

q−j l (ζ)
dw (ζ)

dζ

∣∣∣∣
ζ=−1√

3

+ q+
j l (ζ)

dw (ζ)

dζ

∣∣∣∣
ζ= 1√

3

= q−j l (ζ)

(
ζ −

1

2

)∣∣∣∣
ζ=−1√

3

+ q+
j l (ζ)

(
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1

2

)∣∣∣∣
ζ= 1√

3

= q−j l

(
−1
√

3

)(
−1
√

3
−

1

2

)
+ q+

j l

(
1
√

3

)(
1
√

3
−

1

2

)
= q−j

(
7 + 4

√
3

6
r2j−1 +

−4− 2
√

3

3
r2j +

1

6
r2j+1

)
+ q+

j

(
7− 4

√
3

6
r2j−1 +

−4 + 2
√

3

3
r2j +

1

6
r2j+1

)

=

(
q−j

6

[(
7 + 4

√
3
)
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(
−8− 4

√
3
)
I3 I3

]
+
q+
j

6
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√
3
)
I3

(
−8 + 4

√
3
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• Elemental boundary conditions:

− f (ζ)w (ζ)|1−1 = − f (ζ)
ζ2 − ζ

2

∣∣∣∣1
−1

= −f2j−1
�
�
���1− 1

2
+ f2j−1

1 + 1

2

= f2j−1

2. For w (ζ) = S2 (ζ) = 1− ζ2 :

• Mass and acceleration terms:

µl0

2

∫ 1

−1
w (ζ)

((
ζ2 − ζ

2

)
r̈2j−1 +

(
1− ζ2

)
r̈2j +

(
ζ2 + ζ

2

)
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)
dζ

=
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2

∫ 1

−1

(
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2
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(
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2
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)
dζ
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2
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2
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(
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)
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+
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2
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(
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dζ
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2
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−
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3
g
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• Stiffness terms: dw(ζ)
dζ

= −2ζ

q−j l (ζ)
dw (ζ)

dζ

∣∣∣∣
ζ=−1√

3

+ q+
j l (ζ)

dw (ζ)

dζ

∣∣∣∣
ζ= 1√

3

= q−j l (ζ) (−2ζ)
∣∣
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3

+ q+
j l (ζ) (−2ζ)
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3
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(
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3
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3

)
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(
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3

)(
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3

)
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(
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√
3

3
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8

3
r2j +
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√

3

3
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)

+ q+
j

(
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√
3

3
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8

3
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√

3
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(
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3
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√
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√
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√
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)

I3 8I3

(
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√
3
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
• Elemental boundary conditions:

− f (ζ)w (ζ)|1−1 = − f (ζ)
(
1− ζ2

)∣∣1
−1

= −f2j���
��:(1− 1) + f2j���

��:(1− 1)

= 0

3. For w (ζ) = S1 (ζ) = ζ2+ζ
2

:
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• Mass and acceleration terms:

µl0

2

∫ 1

−1
w (ζ)

((
ζ2 − ζ

2

)
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(
1− ζ2

)
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(
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2
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dζ
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2
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6
g

• Stiffness terms: dw(ζ)
dζ

= ζ + 1
2

q−j l (ζ)
dw (ζ)

dζ
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• Elemental boundary conditions:

− f (ζ)w (ζ)|1−1 = − f (ζ)
ζ2 + ζ

2

∣∣∣∣1
−1

= −f2j+1
1 + 1

2
+ f2j+1

�
�
���1− 1

2

= −f2j+1

Combining these leads to a system of three equations, one for each node of the
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element:

µl0
30


4I3 2I3 −I3

2I3 16I3 2I3

−I3 2I3 4I3


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j

6
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√
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√
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√
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(
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√
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(
−8− 4

√
3
)

I3

(
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√
3
)
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


r2j−1

r2j
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 = 0.

Rearranging the stiffness terms yields:

µl0
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− µl0
6
g
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4I3
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0
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+
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6
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−I3 I3 0

I3 0 −I3
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r2j

r2j+1

 = 0.

Define an elemental force density, qj, and a bias, ∆qj as:

qj = q+
j + q−j

∆qj = q+
j − q−j
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and the stencil for the j’th element results in:
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