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Abstract

Fitting the probability mass functions from analytical solutions of stochastic models of gene expression to the single-cell

count distributions of mRNA and protein molecules can yield valuable insights into mechanisms underlying gene

expression. Solutions of chemical master equations are available for various kinetic schemes but, even for the basic

ON-OFF genetic switch, they take complex forms with generating functions given as hypergeometric functions.

Interpretation of gene expression dynamics in terms of bursts is not consistent with the complete range of parameters

for these functions. Physical insights into the probability mass functions are essential to ensure proper interpretations

but are lacking for models considering genetic switches. To fill this gap, we develop urn models for stochastic gene

expression. We sample RNA polymerases or ribosomes from a master urn, which represents the cytosol, and assign

them to recipient urns of two or more colors, which represent time intervals in which no switching occurs. Colors of the

recipient urns represent sub-systems of the promoter states, and the assignments to urns of a specific color represent

gene expression. We use elementary principles of discrete probability theory to solve a range of kinetic models without

feedback, including the Peccoud-Ycart model, the Shahrezaei-Swain model, and models with an arbitrary number of

promoter states. In the last case, we obtain a novel result for the protein distribution. For activated genes, we show

that transcriptional lapses, which are events of gene inactivation for short time intervals separated by long active

intervals, quantify the transcriptional dynamics better than bursts. We show that the intuition gained from our urn

models may also be useful in understanding existing solutions for models with feedback. We contrast our models with

urn models for related distributions, discuss a generalization of the Delaporte distribution for single-cell data analysis,

and highlight the limitations of our models.

Introduction 1

Gene expression occurs in multiple steps [1]. The biochemical mechanisms of its steps are of great interest 2

[2–4]. In particular, a majority of studies have focused on switching of promoter states, transcription, and 3

translation [5]. Genes might be expressed at a uniform rate or transition between two or more states with 4

different rates of expression [6]. In the latter case, the transitions might be mediated by gene-specific 5

mechanisms such as interactions of the promoters with specific transcription factors or gene-independent 6

mechanisms such as DNA supercoiling [7–13]. When genes are in transcriptionally active states, mRNA 7

molecules might be produced, which might be translated further into proteins. Experimental data for the 8

distribution of mRNA/protein molecules in single cells could be harnessed for model selection out of a 9

candidate set of mechanistic models [14–16]. In this direction, numerous stochastic models of gene expression 10

have been developed to study a range of kinetic schemes [5,17–21]. Their analytical solutions for the probability 11

distributions of molecular counts have been obtained in many cases [16,22–43], and comparisons with single-cell 12

RNA-seq and single-molecule imaging data have facilitated inferences in mechanistic studies [6, 11, 23, 44–50]. 13
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An elementary model of constitutive gene expression uniformly allows transcription at all times [36,37]. 14

This is identical to the classical birth-and-death process, which results in the Poisson distribution for mRNA 15

molecules at stationary state [51]. A physically intuitive method to derive the mRNA distribution utilizes 16

an urn model, whereby the kinetic scheme of mRNA production (which, say, occurs with rate constant v0) 17

and degradation (say, with rate constant d0) is mapped to an urn scheme. To this end, one considers an 18

urn with balls of two colors —black and white. Let the proportion of black balls in the urn be π. As time 19

progresses, we sample balls one-at-a-time from the urn, i.e., we perform Bernoulli trials [51]. The outcome of 20

each trial, a black or white ball, corresponds to an outcome of transcription or no transcription in physical 21

terms, respectively. Each trial consists of drawing a ball, recording its color, replacing the ball in the urn, 22

and mixing the urn to prepare for the next trial. The probability of m black balls in, say, ntrials trials is 23(
ntrials

m

)
πm (1− π)

ntrials−m, which is a binomial distribution [51]. Let us say that we draw balls without taking 24

any break and the time duration per trial, ∆t is infinitesimal. The kinetic scheme is mapped to the urn 25

scheme by defining π = v0∆t, i.e., the proportion of black balls in the urn is the same as the probability of 26

transcription in ∆t time, which is v0∆t. Finally, the probability of observing m copies of mRNA molecules 27

is obtained as the probability of drawing m black balls in infinitely many trials during the mean lifetime 28

of mRNAs, d−1
0 , i.e., requiring that ntrials = d−1

0 /∆t is very large. Poisson distribution with the parameter 29

v0/d0 is the special case of the thus obtained binomial distribution when ∆t→ 0, i.e., when ntrials →∞ and 30

π → 0 such that πntrials = v0/d0 [51]. The steps of transcription and translation are mechanistically similar 31

and hence, the urn scheme for the Poisson process applies to both. The stationary state count of proteins 32

in a cell is given by a sum of random variables denoting the number of translations per mRNA molecule 33

that is produced in the time needed to reach stationarity. This results in the negative binomial distribution 34

for the count if the noise in transcriptions can be ignored (i.e., d0 � d1) [16,36] and the Neyman type A 35

distribution if not (i.e., d1 � d0) [38]. 36

The models for constitutive expression have been extended to include switching of promoter states 37

(henceforth, called a genetic switch regardless of the switching mechanism, which may be mediated by 38

transcription factors, or by other factors that may or may not be actively regulated). Peccoud and Ycart 39

studied a gene whose promoter switches between active and inactive states [32]. Shahrezaei and Swain 40

extended the Peccoud-Ycart model by accounting for translation and solved it assuming d0 � d1, where d1 is 41

the rate constant for protein degradation [16]. Numerous generalizations and extensions of these models exist 42

and many have been solved analytically, e.g., the leaky two-state model where the promoter switches between 43

two states with different levels of activity [22–24], multi-state models that consider a promoter with more 44

than two states [27,31,34,35,52], models with auto-regulation [25,26,30,33], etc. All of these models result 45

in probability generating functions that are related to the Kemp families of distributions, which have been 46

derived using various urn models of contagion and population heterogeneity, and as compound or mixture 47

distributions [53–55]. Notably, in each of their applications, the urn model has a distinct design, which is 48

systematically developed to capture the physical characteristics of the natural system under study. Their 49

distinctive features provide an intuitive mapping to the mechanisms behind their respective systems. These 50

urn models have proven fundamental to studies of their intended systems, have immense pedagogical value 51

and have been called a “standard expression” in statistical language [56–58]. For the system of a genetic 52

switch, while an approach of solving chemical master equations can provide analytical solutions for probability 53

distributions, physical insight into the solutions can be greatly facilitated by the application of urn models. 54

Yet, to the best of our knowledge, urn schemes with well-defined mapping to models considering genetic 55

switches are still lacking. 56

In this article, we develop an urn model approach to address this gap. We demonstrate its utility 57

by applying it to diverse kinetic schemes with genetic switches and deriving stationary state probability 58

distributions of mRNA and protein counts. Central to our approach are two principles. First, while 59

transcriptions and translations are affected by promoter state transitions, arrivals of RNA polymerases or 60

ribosomes occur with fixed rate constants independent of the transitions. In other words, the promoter 61

state determines whether these arrivals result in gene expression, but none of the promoter states exclude 62

polymerases or ribosomes from arriving (Fig. 1a). Second, while there is heterogeneity in promoter activity 63

over long time intervals, i.e., a promoter switches between active and inactive states, in short intervals, the 64

activity is homogeneous. Hence, we map each kinetic model that we consider to an urn model with a master 65
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Figure 1. The urn scheme for a system with active and inactive states. (a) Three sample trajectories of

a gene expression system. The black balls at the heads of spikes are birth factors, which represent RNA polymerases

for models of mRNA counts and ribosomes for models of protein counts. The colored bar along the x-axis gives the

state of the promoter at different time points, with the red color indicating the active state, grey color indicating the

inactive state and Tstat denoting the time scale for stationarity. Births are observed if birth factors arrive when the

promoter is active. The illustrative examples here consider birth factor arrivals as a Poisson process with 20 expected

arrivals in Tstat = 20 s, k0 = 0.3 s−1, and k1 = 0.2 s−1. (b) The master urn represents the cytosol of a cell and

contains black and white balls, which represent birth factors and solutes other than the birth factors, respectively.

Each trial consists of a random sampling of black balls from this urn. (c) The recipient urns of red and grey colors

represent time intervals with the promoter in the active (ON) or inactive (OFF) states, respectively. Each trial consists

of a random ordering of these urns as shown at the bottom. The boundary of each recipient urn is marked with a

black dot. (d) A trial concludes with a random assignment of the black balls sampled from the master urn to the

recipient urns. Assignments to red recipient urns are counted as births. In keeping with the trajectories in a, these

trials consider birth factor arrivals as a Poisson process with 20 expected arrivals in Tstat = 20 s, six red urns and four

grey urns.

urn (cytosol) and a set of recipient urns of two or more colors (time intervals; see Fig. 1b,c). Each trial in 66

our urn scheme consists of two steps. By virtue of the first principle, the first step of sampling balls (RNA 67

polymerases or ribosomes) from the master urn is done independently of considerations for promoter state 68

transitions. By utilizing the second principle, we devise recipient urns such that each of them represents a 69

time interval with homogeneous promoter activity. In the second step, we assign the balls sampled from 70

the master urn to the recipient urns. We show that the probability distributions of counts of the mRNA 71

and protein molecules from a broad range of models without feedback are identical to that of the balls in 72

the recipient urns of a specific color, say red, which represents the active time intervals (Fig. 1d). If the 73

sampling distribution of balls from the master urn is a Poisson distribution and there are recipient urns of 74

two colors, our urn scheme yields the solution of Peccoud and Ycart. If the sampling distribution is negative 75

binomial instead, the urn scheme yields the solution of Shahrezaei and Swain. If there are urns of more than 76

two colors, it yields the solutions for models with multiple promoter states. Our approach yields intuitive 77

solutions for the probability distributions in all cases, and physical interpretations of the parameters of the 78

solutions of the Peccoud-Ycart and Shahrezaei-Swain models. Using a simplified version of the model of 79

Kumar et al. [33] as an example, we illustrate that the intuition gained from our analysis of models without 80

feedback may also be useful in understanding the existing solutions of models with feedback. Additionally, 81

we validate the urn schemes by proving that they yield the same probability distributions as the chemical 82

master equations, and by comparing their simulations with simulations of the corresponding kinetic schemes. 83
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Our urn model yields the probability distribution of protein counts for a model with an arbitrary promoter 84

architecture and one active state. This distribution is also a member of the Kemp families of distributions, 85

and has a p+1Fp generalized hypergeometric function as its generating function for a model with p promoter 86

states. Approximation of one of our solutions leads to the interpretation of active transcription dynamics in 87

terms of transcriptional lapses, which we define as short-lived events of transcriptional inactivation separated 88

by relatively long active intervals. We find that transcriptional lapses are a more accurate description of 89

expression dynamics than transcriptional bursts if the promoter spends more time in the active state than in 90

the inactive state (henceforth called activated expression regardless of whether there are any factors regulating 91

the activation or not). Additionally, we discuss a generalization of the Delaporte distribution to fit single-cell 92

data in cases where a priori knowledge about the activation status of genes is lacking, and highlight the 93

current limitations of our models. 94

Results 95

The urn scheme 96

Sampling from the master urn 97

The master urn represents the cytosol and contains balls of two colors — black and white (Fig. 1b). Each 98

black ball represents a birth factor, which we define to be the RNA polymerase for mRNAs and the ribosome 99

for proteins. The white balls represent solutes other than the birth factor. From this urn, we sample black 100

balls over one mean lifetime of the mRNA or protein depending on the time scale, Tstat for the intended 101

solution to reach stationarity. The sampling process is defined by the kinetic process under consideration. 102

Most models of transcription implicitly assume that the rate constant for RNA polymerases to collide with 103

the promoter site does not vary with time but whether a colliding polymerase successfully binds the promoter 104

and transcribes the gene depends on the promoter state. Hence, the number of arrivals follows the Poisson 105

distribution, say with mean µ per mRNA lifetime and the urn scheme for Poisson process applies for sampling 106

balls that represent RNA polymerases. We denote the probability distribution of the count, m1 of polymerase 107

arrivals in one mRNA lifetime as Pois (lm1
|µ), which also denotes the sampling distribution of black balls 108

from the master urn for mRNA distributions (see Supplementary Section 1.1 for a detailed derivation of the 109

Poisson distribution using the urn model). On the other hand, most models of translation assume that an 110

mRNA molecule is degraded much faster than its protein counterparts, and that in its negligibly short lifetime, 111

it binds a geometrically distributed number of ribosomes resulting in a burst of proteins. In our urn scheme, 112

we draw a geometrically distributed number of ribosomes for each potential event of transcription. Hence, the 113

cumulative count, m2 of ribosome arrivals on mRNAs over one protein lifetime follows the negative binomial 114

distribution with parameters α and β, which represent the number of potential transcriptions in one protein 115

lifetime and the mean number of ribosomes that bind to each mRNA, respectively (the interpretation of α 116

is given in more detail later). We denote this NB (lm2
|α, β) (see Supplementary Section 1.2 for a detailed 117

derivation of the negative binomial distribution using the urn model). 118

Assignment to the recipient urns 119

Each recipient urn represents a time interval with a fixed rate constant for gene expression. Each urn has 120

one of two or more colors, with the number of colors dependent on the number of promoter states (Fig. 121

1c). We defer the mathematical exposition of our urn scheme to a later section. Here, it suffices that at 122

stationary state, the length of time interval captured by an urn is the same for all the urns and represents 123

the characteristic time scale of promoter state transitions. Furthermore, the total time captured by the 124

set of recipient urns equals Tstat. For a genetic switch with two states, let grey and red urns represent the 125

inactive and active states, respectively. Also, say ngrey and nred represent the numbers of grey and red 126

urns, respectively. At stationary state, nred and ngrey are fixed and their permutations represent samples of 127

state-transition trajectories. The interaction of the time points of arrivals of birth factors with the promoter 128

state transitions determines the outcome of interest, which is the number of births (Fig. 1d). In the urn 129

model parlance, we capture this by assigning the black balls from the master urn to the recipient urns. If a 130
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Figure 2. Kinetic schemes for gene expression with switching of promoter states. (a) The Peccoud-Ycart

model considers a promoter that switches between inactive and active states with rate constants k0 and k1. The active

state transcribes with rate constant v0 and mRNAs are degraded with rate constant d0. (b) The Shahrezaei-Swain

model builds on the Peccoud-Ycart model by accounting for translations of mRNAs with rate constant v1 and

degradation of proteins with rate constant d1. (c) The leaky two-state model generalizes the Peccoud-Ycart model

by replacing the inactive state with a leaky state that transcribes with rate constant v0λ. (d) Cao et al. consider

a promoter that transitions between three states — g1, g2 and g3. In state g1, neither the transcription factor nor

the RNA polymerase are bound to the promoter. In state g2, the transcription factor is bound to the promoter and

in state g3, both the polymerase and the transcription factor are bound. State g3 releases the polymerase with rate

constant v0, which results in transcription and translations as well as a transition to g2. In addition, the model allows

reversible transitions between g1 and g2 with rate constants k1 and k2, transition from g2 to g3 with rate constant k3
and transition from g3 to g1 with rate constant k2.

ball is assigned to a red urn, a birth is observed. The outcome of interest is the number of balls assigned 131

to the red urns collectively. Since the times of arrivals of birth factors are independent of the trajectory 132

of promoter state transitions, the process of assigning balls to the recipient urns allows equal likelihood of 133

assignment to all urns. Let us say that in an experiment, we sample m+ i black balls from the master urn. 134

The probability that a random assignment to the recipient urns results in exactly m balls assigned to the red 135

urns is given by a negative hypergeometric distribution. To see this, note that the number of ways to divide 136

m+ i balls in nred + ngrey urns is
(
nred+ngrey+m+i−1

m+i

)
, which is the same as the number of ways to permute 137

m+ i identical balls and nred +ngrey− 1 identical dividers [51]. Of these,
(
nred+m−1

m

)(
ngrey+i−1

i

)
are such that 138

exactly m balls are assigned to the red urns. Hence, the probability of the outcome m is the ratio of this 139

quantity to the total number of ways to assign m+ i balls. We denote the resulting negative hypergeometric 140

distribution as NH (lm 7→ nred|lm+i 7→ {nred, ngrey}), where ‘7→’ represents the process of assignment (see 141

Supplementary Section 2). 142

Application to the Peccoud-Ycart model 143

The Peccoud-Ycart model for probability distribution of mRNA counts considers a promoter that can exist 144

in active and inactive states (Fig. 2a). Using the urn model parlance here, the black balls represent RNA 145

polymerases. To observe an outcome of m1 transcriptions, the sample drawn from the master urn must 146

contain m1 or more black balls, say m1 + i1 with i1 ≥ 0. The probability of this event is Pois (lm1+i1 |µ). 147

Given m1 + i1 balls, nred red recipient urns and ngrey grey recipient urns, the probability that exactly m1 148
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balls are assigned to the red urns is NH (lm1
7→ nred|lm1+i1 7→ {nred, ngrey}). The joint probability of m1 149

balls assigned to the red urns and i1 to the grey urns is given by the product of the said Poisson and negative 150

hypergeometric distributions. A marginal of the joint probability yields the probability of m1 transcriptions, 151

P (lm1
7→ nred|µ, nred, ngrey) =

∞∑
i1=0

Pois (lm1+i1 |µ)×NH (lm1
7→ nred|lm1+i1 7→ {nred, ngrey}) . (1) 152

153

Its generating function is given in terms of the Kummer’s hypergeometric function of the first kind, 154

1F1

[ nred
nred+ngrey ;µ(z − 1)

]
, which is formally identical to the solution of Peccoud and Ycart (see Supple- 155

mentary Section 3.1 for the proof). We defer the mapping of the kinetic parameters to parameters of the urn 156

model to a later section. 157

Application to the Shahrezaei-Swain model 158

Similarly to the Peccoud-Ycart model, the Shahrezaei-Swain model considers transcriptionally inactive and 159

active states but also accounts for translation to solve for the probability distribution of protein counts 160

(Fig. 2b). Hence, for urn modeling in this case, we let the black balls represent ribosomes. To observe 161

m2 translations, the sample drawn from the master urn must contain m2 + i2 black balls with i2 ≥ 0, 162

which happens with probability NB (lm2+i2 |α, β). Once again, we consider nred red recipient urns and ngrey 163

grey recipient urns, but in this case they represent translationally active or inactive intervals, respectively. 164

Note that a subset of recipient urns that represented transcriptionally active time intervals in the case of 165

Peccoud-Ycart model might not receive any polymerase arrivals, which renders them translationally inactive. 166

Hence, nred and ngrey have a different mapping to the kinetic parameters than in case of the Peccoud-Ycart 167

model, as we show later. Regardless, given nred and ngrey, the probability of m2 translations follows from 168

similar arguments as before, 169

P (lm2
7→ nred|α, β, nred, ngrey) =

∞∑
i2=0

NB (lm2+i2 |α, β)×NH (lm2
7→ nred|lm2+i2 7→ {nred, ngrey}) .

(2)

170

171

The generating function for this distribution is given in terms of the Gaussian hypergeometric function, 172

2F1

[ α, nred
nred+ngrey

;β(z − 1)
]
, which is formally identical to the solution of Shahrezaei and Swain (see Supple- 173

mentary Section 3.2 for the proof). 174

Application to the leaky two-state model 175

The leaky two-state model for mRNAs considers two states with the rate constants of transcription differing 176

by a constant factor, say λ (Fig. 2c). Let the expected numbers of arrivals of RNA polymerase in one 177

mRNA lifetime be µλ and µ in the leaky and fully active states, respectively, with 0 < λ < 1. Since we 178

consider a model for probability distribution of mRNA counts, the black balls drawn from the master urn 179

represent RNA polymerases. In this case, we consider two parallel experiments in our urn scheme, which 180

represent the contributions of a constitutive component with the expected value of µλ, and a regulated 181

component with the expected value of µ (1− λ), i.e., the component of gene expression under control of the 182

genetic switch. In the first experiment, we draw a sample of m1,a black balls from the master urn with the 183

probability Pois
(
lm1,a

|µλ
)
, which represents the leakage that is unaffected by promoter state transitions. 184

Hence, with respect to this sample, all recipient urns are red and all of it is counted towards transcriptions. 185

In the second experiment, we draw a sample of m1,b + i1 balls from the master urn with the probability 186

Pois
(
lm1,b+i1 |µ− µλ

)
, which represents the regulated component of polymerase arrivals. This experiment 187

proceeds as described earlier for the Peccoud-Ycart model and allows us to derive the probability of m1,b 188

transcriptions from the regulated component by substituting m1 with m1,b and µ with µ (1− λ) in Eq. 1. 189

The overall outcome of interest is m1 = m1,a +m1,b. Its probability is given by the convolution rule and has 190

a generating function that is the product of the generating functions for Pois
(
lm1,a

|µλ
)

and that for the 191

regulated component, i.e., eµλ(z−1)
1F1

[ nred
nred+ngrey ;µ (1− λ) (z − 1)

]
, which is consistent with the solution of 192
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Cao and Grima [22]. Note that previously, we have shown in the context of a model for the lac operon of E. 193

coli that this generating function can be viewed as a convolution of contributions from a leaky sub-system of 194

Lac repressor-bound states and transitions to the repressor-free state [24]. A recent manuscript also utilizes 195

an identical concept [59]. In this section, we have shown that the same concept is easily accommodated in 196

the framework of our urn model. Further, the distribution of proteins from a leaky two-state model can be 197

derived similarly. 198

Application to models with multiple states 199

Analytical solutions are available for models with more than two but a fixed number of promoter states [27,34] 200

as well as those with an arbitrary number of states [31]. Next, we consider the model by Cao et al., 201

where the promoter exists in three states, say g1, g2 and g3 with g3 being active (Fig. 2d). For the 202

mRNA counts, the sampling distribution of m1 + i1 + j1 balls (RNA polymerases) from the master urn is 203

Pois (lm1+i1+j1 |µ), where i1, j1 ≥ 0. We account for the additional promoter state by adding another layer 204

of recipient urns. First, we divide the balls between urns that correspond to the sub-system of state g1, 205

and the sub-system of g2 and g3 collectively (grouping the promoter states into the sub-system of state g2, 206

and the sub-system of g1 and g3 collectively is also allowed). Let there be nblue blue and nppl purple urns 207

for these sub-systems, respectively. Then, the probability of assigning m1 + i1 balls to the purple urns is 208

NH (lm1+i1 7→ nppl|lm1+i1+j1 7→ {nppl, nblue}). The balls assigned to the purple urns are further re-assigned 209

to another layer of red and grey recipient urns — nred and ngrey in number, respectively. Let the grey and red 210

urns represent the states g2 and g3, respectively (or the states g1 and g3, respectively, if purple urns represent 211

the sub-system of g1 and g3). The outcome of interest, assignment of m1 balls to the red recipient urns has 212

the probability NH (lm1
7→ nred|lm1+i1 7→ {nred, ngrey}). Hence, the probability of m1 transcriptions is 213

P (lm1
7→ nred|µ, nred, ngrey, nppl, nblue) =

∞∑
i1=0

∞∑
j1=0

Pois (lm1+i1+j1 |µ)× 214

NH (lm1+i1 7→ nppl|lm1+i1+j1 7→ {nppl, nblue})× 215

NH (lm1
7→ nred|lm1+i1 7→ {nred, ngrey}) , (3) 216

which has a generalized hypergeometric function, 2F2

[ nred, nppl

nred+ngrey, nppl+nblue
;µ(z − 1)

]
as its generating function 217

(see Supplementary Section 3.3 for the proof). This solution can be extended to the protein distribution for 218

a model with two inactive and one active promoter states by replacing the Poisson distribution with the 219

negative binomial distribution. This yields the solution by Cao et al. [27] (see Supplementary Section 3.4 for 220

the proof). It can be extended to a model of an arbitrary number of promoter states with all but one inactive 221

by adding additional layers of recipient urns. Then, if sampling from the master urn follows the Poisson 222

distribution, we get the solution by Zhou and Liu for the probability distribution of mRNA counts [31] (see 223

Supplementary Section 3.5 for the proof). Once again, if sampling from the master urn follows the negative 224

binomial distribution, we get the solution for protein counts (see Supplementary Section 4). Note that Qiu 225

et al. [35] provide a procedure to iteratively obtain binomial moments of various orders for a model with 226

arbitrary promoter architecture, which could be used to obtain analytical values for probabilities of the 227

resulting protein counts. However, they do not provide an explicit expression for the probability distribution. 228

To the best of our knowledge, for a model considering an arbitrary number, say p, of promoter states with all 229

but one inactive, our derivation of the probability distribution of protein counts and its generating function 230

as a generalized hypergeometric function with p + 1 numerator and p denominator parameters is a novel 231

result. This distribution is also a member of the Kemp families of distributions (see Supplementary Section 4 232

for the proof). 233

Relationship between the kinetic and urn model parameters 234

We have shown that our urn model yields probability distributions that are formally identical to those from 235

kinetic models. In this section, we obtain the relationship between parameters of the kinetic and urn models. 236

To this end, say, we follow a cell in real time starting at time t = 0 when the gene system under consideration 237
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is at stationary state (e.g., Fig. 1a shows trajectories of three cells). We define that event Em occurs when m 238

births are observed in a time interval given by the time scale, Tstat for reaching stationarity (e.g., the top 239

panel in Fig. 1a illustrates the event E2). Let M be a random variable representing the number of arrivals of 240

birth factors in Tstat time (the number of black balls in any trajectory shown in Fig. 1a), {T1, T2, ..., TM} be 241

the random variables representing the time points of arrivals (x-coordinates of the spikes in Fig. 1a), and 242

RON be a random variable representing the set of time points when the promoter is active (set of all the 243

time points in red colored segments along the x-axis in any trajectory shown in Fig. 1a). Then, Em occurs 244

when
∑M
`=1 1T`∈RON = m, where 1T`∈RON is an indicator variable that equals 1 if T` ∈ RON and 0 otherwise. 245

For this to happen, there must be at least m arrivals of the birth factors in total, i.e., M = m+ i such that 246

i ≥ 0. Given that this condition is met, there must be exactly m arrivals during the active time intervals, 247

i.e.,
∑m+i
`=1 1T`∈RON

= m. Essentially, we find that the event of m births can be decomposed into two simpler 248

events, whose probabilities can be derived separately. Next, let us define Rred as the counterpart of RON in 249

the urn space (Fig. 1d). In other words, Rred is the subset of time points from the set [0, Tstat] that fall in 250

red urns for a sample permutation of the recipient urns. Say, Eurn,m represents the event
∑M
`=1 1T`∈Rred

= m. 251

Then, we must choose nred and ngrey such that P (Em) = P (Eurn,m). 252

For the Peccoud-Ycart model, Tstat = d−1
0 and RNA polymerases function as the birth factors. As we 253

mentioned, the sampling of polymerases from the master urn can be modeled as a Poisson process, which 254

yields µ = v0/d0. Next, we solve for nred and ngrey. Since the T`’s are independent of each other, P (T`1 ∈ RON) 255

is independent of P (T`2 ∈ RON) for `1 6= `2. Hence, P (Em) = P (Eurn,m) if P (T` ∈ RON) = P (T` ∈ Rred) 256

for all `. Let the rate constants for promoter state transitions be k0 and k1 (Fig. 2a). At stationary state, 257

P (T` ∈ RON) = k0/k0+k1. To derive P (T` ∈ Rred), let wred and wgrey represent the time duration captured 258

by each of the red and grey urns, respectively, and min (wred, wgrey) be the minimum of the two. Then, for T` 259

close to the boundaries of the set [0, Tstat], i.e. for T` less than min (wred, wgrey) away from the boundaries, 260

P (T` ∈ Rred) = nred/nred+ngrey. This is because all of the duration from t = 0 to min (wred, wgrey) is contained 261

within a single urn, which can either be red or grey. On the other hand, for an arbitrary choice of T`, 262

P (T` ∈ Rred) = nredwred/(nredwred+ngreywgrey). In other words, the probability that a randomly chosen time 263

point falls in a red urn is given by the fraction of time in the interval [0, Tstat] that is covered by the red urns. 264

At stationary state, whether T` falls in Rred should be the same for all T`, which requires wred = wgrey. Let us 265

replace wred, wgrey with w. Now, if we were to arbitrarily pick a polymerase arrival and shift the corresponding 266

T` to the left or right by a fixed amount (say, by grabbing one of the spikes in Fig. 1d), whether the shifted 267

spike still falls in an urn of the same color depends on w. In simple words, while there is temporal heterogeneity 268

in transcriptional activity over long periods, in short time windows around any event of polymerase arrival, 269

transcriptional activity is homogeneous. Given a suitable choice of w, these time windows can be modeled as 270

if they were composed of urns of the same color. w is determined by the transient time scale for switching 271

of transcriptional activity, which is w = (k0 + k1)
−1

(see the section on reversible unimolecular reactions 272

in McQuarrie [60] for derivation of the transient time scale). Finally, for P (T` ∈ RON) = P (T` ∈ Rred), 273

nred/nred+ngrey = k0/k0+k1. Since, w (nred + ngrey) = d−1
0 , we obtain nred = k0/d0 and ngrey = k1/d0. Essentially, 274

we find that nred and ngrey are equal to the rate constants for the promoter to switch to the active and 275

inactive states, respectively, scaled with respect to the mRNA degradation rate constant. By replacing these 276

parameter values in Eq. 1, we retrieve the analytical solution of Peccoud and Ycart. 277

Shahrezaei and Swain solved a kinetic model for protein production assuming d0 � d1, which implies 278

Tstat = d−1
1 . In this case, ribosomes function as the birth factors and for the system to be active for protein 279

production, the gene must be transcriptionally active and RNA polymerase arrivals must occur. In other 280

words, if we start our observation with the promoter in the transcriptionally inactive state, the waiting time 281

for transition to the translationally active state is greater than k−1
0 . In the remaining part of this section, 282

we first derive the rate constant for translational activity, and then apply the approach described above to 283

obtain nred and ngrey for the Shahrezaei-Swain model. To this end, let us pick a time point randomly as 284

t = 0. Next, we define p0 (t) as the probability that the gene is transcriptionally inactive at time t and no 285

mRNA has been produced in time [0, t]. Similarly, p1 (t) is the probability that the gene is transcriptionally 286
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active at time t but no mRNA has been produced in time [0, t]. Then, 287

dp0 (t)

dt
= k1p1 (t)− k0p0 (t) , (4) 288

d [p0 (t) + p1 (t)]

dt
= −v0p1 (t) . (5) 289

We are interested in the time scale at which p (t) = p0 (t) + p1 (t) approaches 0, i.e., the time scale at which 290

the marginal probability of no mRNA production decays to 0. To this end, Eqs. 4-5 can be combined to get 291

a second order differential equation, 292

d2p (t)

dt2
+ (v0 + k0 + k1)

dp (t)

dt
+ v0k0p (t) = 0, (6) 293

which admits solutions of the form e−t/t̃, where t̃ > 0 is a characteristic time scale of the system. Substituting 294

e−t/t̃ in Eq. 6 yields a quadratic equation, with the roots 295

t̃−1 ≡ 1

2

(
v0 + k0 + k1 ±

√
(v0 + k0 + k1)

2 − 4v0k0

)
. (7) 296

Inverse of the larger of the roots, i.e. the slow time scale (say, t̃s) gives the waiting time for mRNA production 297

and the inverse of the smaller one yields the fast time scale (say, t̃f ). We interpret t̃−1
f as the rate constant 298

for occurrence of any event, i.e., promoter state transition or polymerase arrival. For example, if we know 299

that a polymerase arrival occurs at any time point t, it is likely that there will be no arrival in the time 300

window
(
t, t+ t̃f

)
because the polymerase arrival occurs as fast as the fast time scale of the system allows. 301

Now, we can derive the relationship between the kinetic and urn model parameters in terms of these time 302

scales. First, we sample ribosomes from the master urn, such that for each t̃f time window in Tstat, we draw 303

a geometrically distributed number of ribosomes. The geometric distribution has the mean β = v1/d0 and 304

we draw α = Tstat/t̃f geometrically distributed samples. Hence, the probability distribution for a sample of 305

m2 + i2 ribosomes is given by the negative binomial distribution with the said values for α and β. Next, we 306

distribute these in the red and grey recipient urns. Similarly to arrivals of polymerases, arrivals of ribosomes 307

are independent of each other. We can use the same method as described for Peccoud-Ycart model to derive 308

nred and ngrey. The difference is that here, red urns represent translationally active time windows. Hence, 309

their number is given by nred = t̃−1
s /d1 and ngrey = (k0+k1−t̃−1

s )/d1, which are the rate constants for the system 310

to switch to the translationally active and inactive states, respectively, scaled with respect to the protein 311

degradation rate constant. By using these parameter values in Eq. 2, we retrieve the solution of Shahrezaei 312

and Swain. 313

For the mRNA distribution from the leaky two-state model, the µ, nred and ngrey parameters have the 314

same interpretations and relationship to the kinetic parameters as in the Peccoud-Ycart model. For the 315

mRNA distribution from the model of Cao et al. in Eq. 3, µ = v0/d0 also has the same interpretation as in 316

the Peccoud-Ycart model. Further, the above results suggest that the nred, ngrey, nppl, and nblue parameters 317

correspond to the rate constants for switching between sub-systems of the promoter states scaled with respect 318

to the mRNA degradation rate constant. However, deriving the expressions for these parameters in terms of 319

the kinetic parameters based on the intuitive arguments presented above is challenging. The relationships 320

between the urn and kinetic model parameters can be obtained by comparing Eq. 3 with the solution available 321

in Cao et al. [27]. 322

Solving the urn model using the inclusion-exclusion principle 323

In the previous sections, we have written the probability of exactly m1 assignments to the red urns out of a 324

sample of m1 + i1 balls from the master urn directly as a negative hypergeometric distribution. The same 325

probability could be written from an alternative perspective, where we start with the probabilities for at 326

least i1 assignments to the grey urns, at least i1 + 1 assignments to the grey urns, . . . , at least i1 +m1 − 1 327

assignments to the grey urns and all i1 +m1 assignments to the grey urns. Then, we combine these as an 328
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Figure 3. The dynamics of transcription for activated genes involve transcriptional lapses. (a) The

transcriptional dynamics of repressed genes are characterized by short-lived periods of activity (bursts) and that of

activated genes by short-lived periods of inactivity (lapses). (b) Stationary state probability of m1 mRNAs obtained

from exact solution of the Peccoud-Ycart model (solid line) and its limiting forms for transcriptional lapses (rectangles)

and bursts (triangles). Both the panels show the probabilities in the activated case, when k0 is 10 times k1 (top) or

100 times k1 (bottom) with k1 = 0.01 s−1, v0 = 0.05 s−1 and d0 = 0.005 s−1. The peaks from the transcriptional

burst model appear at m1 � 10 for both the panels.

alternating sum using the principle of inclusion-exclusion to write the probability of exactly m1 assignments to 329

the red urns (see Supplementary Section 5). For the Peccoud-Ycart model, this approach yields an expression 330

for P (lm1
7→ nred|µ, nred, ngrey) that is the mth

1 coefficient in the Maclaurin series expansion of Kummer 331

transformation of the Peccoud-Ycart solution, eµ(z−1)
1F1

[ ngrey

nred+ngrey
;−µ(z − 1)

]
with µ = v0/d0, nred = k0/d0 332

and ngrey = k1/d0. This way of representing the Peccoud-Ycart solution leads to an interpretation of the 333

transcriptional dynamics in terms of transcriptional lapses as we show next, and contrast with the dynamics 334

of transcriptional bursts [61]. 335

For a repressed gene with k1/d0 � 1, the hypergeometric function, 1F1

[ nred
nred+ngrey ;µ(z − 1)

]
reduces to 336

the generating function for the negative binomial distribution, [1− µ(z−1)/ngrey]
−nred [62]. Here, µ/ngrey is 337

interpreted as the mean number of mRNAs produced when the promoter switches to the active state (burst 338

size), nred as the frequency of switching to the active state (burst frequency), and the hypergeometric 339

function is the generating function for the Peccoud-Ycart solution. In Supplementary Section 6.1, we use 340

a perturbation theoretic approach to show that this is valid for k1 � k0. Using this limiting form of the 341

hypergeometric function, when k0 � k1, i.e., for an activated gene, eµ(z−1)
1F1

[ ngrey

nred+ngrey
;−µ(z − 1)

]
reduces 342

to eµ(z−1) [1 + µ(z−1)/nred]
−ngrey (see Supplementary Section 6.2 for proof). Hence, in both the activated and 343

repressed scenarios, the limiting form of the Peccoud-Ycart solution has a term of the kind [1− β (z − 1)]
−α

, 344

which is the generating function for a negative binomial distribution if α, β > 0. However, β ≡ µ/ngrey > 0 in 345

the repressed limit but β ≡ −µ/nred < 0 in the activated limit. Hence, this term is not consistent with the 346

interpretation of transcriptional dynamics in the activated case as being bursty and [1 + µ(z−1)/nred]
−ngrey

347

is not a probability distribution. We interpret the dynamics in the activated case as one that is composed 348

of transcriptional lapses, whereby the gene is expressed with the rate constant v0 for majority of the time 349

and for short-lived intervals, there is a lapse in transcriptional activity brought about by switching of the 350

promoter states (Fig. 3a). To the best of our knowledge, this is a novel interpretation of activated expression 351

dynamics. In Fig. 3b, we show that for an activated gene, the approximation in terms of transcriptional 352
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lapses is in significantly better agreement with the exact solution than that in terms of transcriptional bursts. 353

This approximation might be useful in fitting single-cell data for activated genes. 354

Interpretation of existing solutions for models with feedback 355

In the previous sections, we analyzed models that did not consider feedback loops. Hence, our assumption 356

that the numbers of red and grey recipient urns is fixed and independent of the number of black balls sampled 357

from the master urn was valid. In the presence of feedback mediated by say, the protein products of the gene 358

under consideration, the rate of switching between promoter states depends on the number of proteins in the 359

cell. In the urn model parlance, the numbers of recipient urns of different colors and the number of black 360

balls assigned to the red urns are interdependent. As a consequence, the steps of sampling from the master 361

urn and assignment to the recipient urns cannot be performed independently. Due to this limitation, our urn 362

model needs to be developed further to account for dependence between the two steps and thereby, to account 363

for feedback, which will be subject of future work. Despite this, it is noteworthy that solutions of models 364

with feedback are also given in terms of hypergeometric functions [25, 26, 30, 33, 63]. This is expected because 365

the models with feedback admit Peccoud-Ycart model for mRNAs and Shahrezaei-Swain model for proteins 366

as their special cases. Hence, solutions in presence of feedback reduce to the solutions of the Peccoud-Ycart 367

and Shahrezaei-Swain models when the parameters related to the feedback mechanism are ignored. Note that 368

if a feedback model considers two active states, upon ignoring feedback, its solution reduces to the solution of 369

leaky two-state model instead. For example, if the binding rate constant for proteins to the promoter is zero 370

in the model of Kumar et al. [33], we retrieve the solution to the leaky two-state model. Importantly, this 371

means that we can write series expansions of the solutions of models with feedback in a way that some of the 372

terms can be interpreted as the negative hypergeometric and Poisson/negative binomial probability terms 373

that appear in solutions of the Peccoud-Ycart and Shahrezaei-Swain models. In addition, there may be other 374

terms, which originate due to feedback. We call these feedback-dependent “correction” terms. We find that 375

these terms might also be physically interpretable. Here, we discuss the solution to a simplified version of 376

the model of Kumar et al. as an illustrative example (see Supplementary Section 7 for details). This model 377

generalizes the Shahrezaei-Swain model by allowing the protein product of a gene to inactivate its promoter 378

by binding to it, which is in addition to a basal rate of inactivation independent of the protein product (see 379

Supplementary Figure 1). Using the solution in Kumar et al., we expand the probability of m2 proteins as 380

follows, 381

∞∑
k2=0

[ ∞∑
i2=0

NB (lm2+i2+k2 |α, β)×NH (lm2+k2 7→ nred|lm2+i2+k2 7→ {nred, ngrey})

]
×
(
m2 + k2

m2

)
ρk2

C
, (8)

where C is a normalization constant, and ρ = r/(d1+r) such that r is the rate constant for binding to the 382

promoter and d1 is the rate constant for protein degradation (see Supplementary Section 7). If d1 � r, 383

the proteins are likely to degrade before binding to the promoter. In that sense, ρ represents the feedback 384

efficiency, i.e., higher degradation rate leads to smaller ρ. Some of the terms in Eq. 8 can now be interpreted 385

in terms of our urn model. Say, we sample m2 + i2 + k2 black balls (ribosomes) from the master urn, which 386

occurs with the probability NB (lm2+i2+k2 |α, β). Assign the balls to the red and grey urns (translationally 387

active and inactive intervals, respectively), such that m2 +k2 are assigned to the red urns, which happens with 388

the probability NH (lm2+k2 7→ nred|lm2+i2+k2 7→ {nred, ngrey}). Summing the product of the said negative 389

binomial and negative hypergeometric probability functions over all values of i2 gives the probability of 390

m2 + k2 assignments to the red urns (terms inside square brackets in Eq. 8). To interpret the remaining 391

terms
(
m2+k2
m2

)
ρk2

C , note that the effect of negative feedback is to switch the state of the promoter from active 392

to inactive for some of the time intervals when the promoter would otherwise be active. Hence, if negative 393

feedback were added to the Shahrezaei-Swain model, we would find that some of the m2 + k2 ribosomes that 394

are assigned to the red urns may not result in protein production. The likelihood of such a failure to produce 395

protein is proportional to the feedback efficiency, ρ. If exactly k2 ribosomes out of the m2 + k2 assigned to 396

the red urns fail, we would observe m2 proteins produced in the duration of the time scale for stationarity. 397

Summing over all possible values of k2 and normalizing yields the probability function for m2 counts in Eq. 398

8. Note that since we do not have an urn model that directly accounts for feedback, the correction terms, 399
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which are collectively
(
m2+k2
m2

)
ρk2

C , do not constitute a probability distribution, although our interpretation is 400

reminiscent of the binomial distribution
(
m2+k2
m2

)
ρk2(1− ρ)

m2 . Further development of our urn model may 401

provide better interpretations of probability expressions resulting from models with feedback. 402

Validation by comparisons with stochastic simulations of the kinetic models 403

Besides proofs in Supplementary Section 3, we validated our urn models by comparisons with simulations 404

of the kinetic models. We simulated the reaction schemes in Fig. 2 using the optimized direct method 405

implementation of the Gillespie’s stochastic simulation algorithm [64]. We performed 105 realizations of each 406

model and saved the count distributions of mRNAs and proteins at the end of 36000 s in simulation time. We 407

saved distributions from simulating each model for three choices of parameters (see Supplementary Tables 1-4 408

for the parameter values). To compare with, we simulated the corresponding urn schemes of sampling black 409

balls from the master urn and assigning them to recipient urns. For example, for the Peccoud-Ycart model, 410

we sampled a random number from a Poisson distribution, which represented the number of black balls from 411

the master urn, and randomly assigned the balls to recipient urns of red and grey colors as described earlier 412

(see links for additional data containing the R scripts). We performed 105 realizations of the urn scheme in 413

each case. We computed the urn model parameters for simulations from the kinetic parameters using the 414

relationships in Supplementary Section 8 and rounded the fractional values for numbers of recipient urns to 415

their nearest integer. Our test cases included instances when the nearest integers were 0, in which case we 416

used the value of 1 instead to ensure at least one recipient urn of each color. In each case, we saved the count 417

distributions of balls in red urns. 418

We compared the count distributions resulting from simulations of the urn and kinetic models (Fig. 4). 419

In majority of the cases, we observed that the two were in good agreement. Figs. 4a-d show the comparisons 420

for the Peccoud-Ycart model, the Shahrezaei-Swain model, the leaky two-state model, and the model of Cao 421

et al. as shown in Figs. 2a-d, respectively. We found that for fractional values of ngrey close to 0, the count 422

distributions from the urn and the kinetic models were substantially different (see the plots labelled PY-3, 423

SS-3, and L2S-3 in Figs. 4a-c, respectively). Due to the restriction that we can simulate the urn model 424

only if ngrey is a positive integer, we must replace fractional ngrey with its nearest integer. However, the 425

nearest integer of the exact value of ngrey in the PY-3, SS-3 and L2S-3 cases is 0. Setting ngrey to 0 would 426

render the gene without promoter switching. Hence, we set ngrey to 1. A criterion for bimodality of count 427

distributions in these kinetic models is that the sojourn time of the promoter in both active and inactive 428

states (e.g., 1/k0 and 1/k1 for the Peccoud-Ycart model) be larger than or same order of magnitude as the 429

time scale for stationarity (e.g., 1/d0 for the Peccoud-Ycart model) [24]. In other words, one of the criteria is 430

that nred and ngrey be less than 1. However, in urn model simulations, the minimum value that nred and 431

ngrey can take is 1. Hence, we did not observe bimodal distributions in urn model simulations. Collectively, 432

from these simulations, we find that the count distributions from simulations of the urn schemes agree with 433

those from the corresponding kinetic schemes. 434

Discussion 435

Comparison with existing models for the Kemp families of distributions 436

All problems concerning probabilities could be addressed using urn models [57]. However, it is a non-trivial 437

task to develop physically meaningful urn schemes for any given system, even if solutions for the probability 438

distributions of interest were known. This is because many different models can give rise to identical 439

distributions [56]. Indeed, this is true for distributions resulting from models considering genetic switches, 440

which are related to the Kemp families of distributions that are well-known in the urn modeling literature [65]. 441

A general feature of some of the models that lead to such distributions is that in a series of trials, multiple 442

instances of the same outcome tend to occur in close succession. This could result due to the presence of 443

contagion or population heterogeneity in the stochastic process under consideration [54]. We consider a known 444

model for each and discuss how they differ from models considering genetic switching. The Pólya-Eggenberger 445

urn model studies the spread of contagious diseases [56]. In this model, one considers a finite urn with a 446
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Figure 4. Count distributions from simulations of the urn models agree with those from simulating

the corresponding kinetic models. Each plot is showing the observed frequencies (p̂) of counts of mRNAs (m1) or

proteins (m2) in distributions from simulations of the urn (red circles) and kinetic models (black solid line). The panels

a,b,c, and d correspond to results for the Peccoud-Ycart model (PY), the Shahrezaei-Swain model (SS), the leaky

two-state model (L2S), and the model of Cao et al. (CG), respectively. For the parameter values, see Supplementary

Tables 1-4.

pre-specified number of white and black balls, and draws balls from the urn randomly and one at a time. The 447

drawn ball is replaced along with additional balls of the same color, which increases the probability of drawing 448

this color in the next trial. This process simulates the spread of pathogens once they appear in a population. 449

However, in the models without feedback, such contagion does not exist because the concentrations of birth 450

factors do not change with time. Hence, the process of replacing a ball with additional balls of the same 451

color is not physically meaningful. Alternatively, Gurland considered a compound Poisson process, which is a 452

Poisson process with a rate parameter that is also a random variable due to heterogeneity of the population 453

in consideration [54]. For example, consider a constitutively expressed gene in a population of cells such that 454

the rate of RNA polymerase arrival at the promoter varies from cell to cell. If the rate parameter depended 455

on a random variable with Beta distribution, the probability distribution of the corresponding mRNA counts 456

would be identical to the solution of the Peccoud-Ycart model. It is noteworthy that this interpretation has 457

been recently utilized to fit single-cell RNA-seq data [45,46]. However, the Peccoud-Ycart model, like most 458

mechanistic models of gene expression, is solved for a homogeneous population with a fixed rate of polymerase 459

arrivals. Hence, the interpretation as a compound Poisson process is not consistent with its kinetic scheme. 460

Implications for analysis of single-cell data 461

Our study provides helpful insights for single-cell data analysis. First, we find that the urn model parameters 462

are related to the time scales of switching between sub-systems of the promoter states. Particularly, in the 463

case of the Shahrezaei-Swain model, the numerator parameters of the Gaussian hypergeometric generating 464

function are related to the fast time scale and the waiting time for transcriptions. To the best of our 465

knowledge, these parameters have not been ascribed physical interpretations previously. Our interpretations 466

would facilitate mechanistic understanding from analysis of single-cell data for proteins if the data were 467

fit using the Shahrezaei-Swain solution. Second, the field has recently witnessed a rapid development of 468

single-cell technologies and parallel advances in analytical solutions of models incorporating mechanistic 469

details of gene expression [27,66,67]. As such, solutions of the detailed models would likely be utilized for 470
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analyzing single-cell data in the future. We find that solutions of disparate mechanistic models (e.g., the 471

models of Cao et al. and Karmakar [27, 34]) may result in identical distributions if they involve the same 472

number of timescales for switching between the sub-systems of promoter states. Hence, if a probability 473

distribution yields good fits to data on mRNA or protein counts, it indicates that the number of time scales 474

represented in the distribution is adequate to describe the gene system. Additional data must be collected 475

to distinguish between the mechanistic models leading to these time scales as well as to assess whether the 476

probability distribution might have resulted from the presence of features such as contagion or population 477

heterogeneity in the system. Further insights in this direction could be gained from existing statistical 478

literature to distinguish between such features [68]. Finally, we note that in some cases, the researchers 479

utilize the negative binomial distribution to fit their data [11]. This could be motivated by the challenges 480

of computing hypergeometric functions for the complete range of parameter values [69]. Furthermore, the 481

parameters of negative binomial distribution have well-understood interpretations as the burst size and 482

frequency of expression. We find that at least for activated genes, the transcriptional dynamics are better 483

described in terms of transcriptional lapses. In the general case, it might be worthwhile to consider a 484

distribution with the generating function eµ(z−1) [1− β (z − 1)]
−α

to fit the data. If all the parameters, α, β 485

and µ were non-negative, this is a Delaporte distribution, which could be interpreted in terms of a leaky 486

two-state model with transcriptional bursts (see Supplementary Section 6) [65]. If β were allowed to be 487

negative, the parameters could be interpreted in terms of a leaky two-state model with transcriptional lapses. 488

Limitations 489

Limitations of our approach are worth considering. First, as the mechanistic models grow in complexity, 490

identifying the relationship between the urn model and kinetic parameters becomes a challenging task. We 491

found the probability distribution for protein counts from a model with arbitrary promoter architecture but 492

did not derive the corresponding relationships between the urn and kinetic parameters. It will be interesting 493

to address this gap in future studies. Despite this limitation, our approach complements the chemical master 494

equation approach by providing an intuitive alternative to derive the probability distributions. Second, our 495

model assumes that birth factors arrive independently of each other and that there are no feedback loops. 496

If these assumptions do not hold, the birth factors cannot be assigned to the recipient urns independently 497

of each other and the numbers of recipient urns of different colors are not independent of the counts of 498

births. Nevertheless, the solution for a model with feedback could be viewed as correction terms combined 499

with the solution for its simplified version that ignores feedback (see Results and Supplementary Section 7). 500

Further, we note that, like most models that have been solved analytically, our model implicitly assumes 501

that the reactants and catalysts needed for gene expression such as tRNAs, amino acids, ribonucleotides, 502

etc. are available in sufficient quantity [5]. In the future, generalizations of our model might be able to relax 503

these assumptions. Third, our model makes physical sense only if the parameters such as nred and ngrey 504

are integer-valued. This might not be true for arbitrary values of the kinetic parameters. In this case, the 505

factorial functions appearing in our expressions must be replaced by gamma functions as done for the urn 506

model of the negative binomial distribution [16]. This results in probability distributions identical to the 507

solutions of chemical master equations, as evidenced by our proofs in Supplementary Section 3. Furthermore, 508

the replacement of factorial functions with gamma functions is justifiable. Since our models consider a 509

natural system, the resulting probability distributions should be continuous with respect to the parameters. 510

Hence, the function that replaces the factorial function for positive and non-integer parameter values should 511

interpolate the factorials of natural numbers. Of the many functions that can interpolate the factorial 512

function, that the gamma function is the correct replacement is consistent with the well-known fact that they 513

commonly appear in the context of systems involving integrals with exponentially decaying functions [70]. In 514

our case, the models of gene expression that we study rely on the Markovian assumption of a memoryless 515

process, whereby the time to switch a promoter state is exponentially distributed (for example, see the 516

solution of Eq. 6). This would lead to exponential terms within integrals of the chemical master equations, 517

and thereby the gamma function in expressions of probability distributions. If the Markovian assumption is 518

violated, extension to non-integer parameters using the gamma function may not apply with the urn model 519

in its current form. Fourth, we provide physical interpretations of parameters of the probability distributions, 520

but we have not addressed the challenges with fitting them to data. This can be an issue due to the presence 521
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of hypergeometric functions in expressions and deserves attention in the future studies. 522

Conclusion 523

We developed an urn model and applied it to study a broad range of stochastic models of gene expression with 524

promoter switching. Our urn model generalizes the classical birth-death model by considering the regulation 525

of births. The classical model makes no distinction between arrivals of birth factors and births, as all arrivals 526

cause births. However, in the presence of regulation, as in the case of genetic switches, arrivals of birth factors 527

do not result in births if they occur when genes are inactive. Hence, we reinterpret the classical scheme of 528

births as a scheme to sample birth factors from a master urn, which represents the cytosol of a cell. Next, we 529

note that despite temporal heterogeneity in expression activity of genes over long time intervals, there is 530

homogeneity in short intervals. We use this concept to devise recipient urns of two or more colors, which are 531

discretized time intervals with the promoter existing in a single sub-system of its states for the duration of 532

each urn. Then, we assign the birth factors to the recipient urns and count the assignments to urns of a 533

specific color as births. Given physically intuitive choices of sampling distribution from the master urn and 534

the numbers of recipient urns for each color, our model yields probability distributions that are identical 535

to solutions of a range of kinetic models. We describe the physical principles that lead to our urn scheme 536

and provide kinetic interpretations for the urn model parameters. Finally, we discuss our approach in the 537

broader context of urn models and single-cell data analysis as well as highlight its limitations. We conclude 538

by noting that the solutions from chemical master equations are obtained in terms of generating functions 539

and physical intuition into origins of the expressions for probability distributions have thus far been limited 540

for models with genetic switches. Our model facilitates direct interpretation of the probability expressions, 541

which underscores its significance for pedagogical purposes and to interpret results from data fitting. The 542

physical insights developed in this work will facilitate the adoption of the analytical solutions in single-cell 543

studies. 544
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