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Abstract

Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an 

earth-abundant copper catalyst under mild reaction conditions with high regio-, diastereo-, and 

enantiocontrol. The observed N2:N1 regioselectivity favors the more hindered nitrogen of the 

pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered 

aminocupration.

Catalytic functionalization of heterocycles presents a challenge with implications for 

the discovery and preparation of medcines.1,2 Pyrazoles, a type of nitrogen-containing 

heterocycle,3 rank fourth in occurrence among the most recent FDA-approved drugs (Figure 

1A).2d Given that hydroamination is an efficient approach to form C–N bonds,4,5 variants 
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that feature nitrogen-containing heterocycles warrant development.6 To date, pyrazoles 

undergo addition to allenes,6a,c alkynes,6b and dienes,6d,e albeit using precious metals 

(namely, Rh and Pd). As a promising alternative, Cu–amido complexes7 (first isolated 

and characterized by Gunnoe8a) catalyze the addition of amines to electron-deficient 

olefins,8c,d allenes,9b nitrostyrenes,9c and azabenzonorbornadienes.9d Despite this reactivity, 

no asymmetric variants were yet achieved (Figure 1B). In this study, we report a Cu-

catalyzed hydroamination with pyrazoles that provides chiral cyclopropyl motifs with high 

regio-, diastereo-, and enantiocontrol (Figure 1C).

The hydrofunctionalization of cyclopropenes represents a versatile strategy for accessing 

chiral cyclopropanes.10–12 Most relevant to our current study, Hou and co-workers disclosed 

the asymmetric coupling of cyclopropenes with secondary amines (e.g., morpholine, 

pyrrolidine, and dibenzylamines) by using a rare-earth metal catalyst (Sm).12d Buchwald and 

co-workers developed an enantioselective hydroamination of 1-silyl- or 1-aryl-substituted 

cyclopropenes using Cu–H catalysis,12h with O-benzoylhydroxylamines as oxidants13 and 

silanes as the stoichiometric reductant.14 We hypothesized that the deprotonation of pyrazole 

with a catalytic amount of base would generate a Cu–pyrazolate catalyst, which would 

undergo aminocupration to cyclopropenes (Figure 1C).15 Subsequent protodemetalation 

would produce cyclopropyl pyrazoles. If successful, this method would enable a novel and 

late-stage16 cyclopropylation of pyrazoles with high atom economy.17

To begin this study, we focused on the desymmetrization of achiral cyclopropene 1a with 

pyrazole (2a) to generate cyclopropyl pyrazole 3a, which bears two stereogenic centers. 

An initial experiment with Cu in the absence of ligands resulted in the formation of allylic 

pyrazole 5a (Figure 2A). Achiral ligands, such as rac-BINAP, led to the exclusive formation 

of the same undesired isomer 5a, likely via a ring-opening pathway12h,18 involving N–

H bond insertion into allylic carbene 5a′.19 Using commercial (IPr)CuCl offered high 

chemoselectivity to 3a (see the Supporting Information (SI)).9d However, efforts to generate 

chiral NHC–Cu complexes in situ from imidazolium salts provided 5a more favorably; we 

presume that the ring-opening pathway with CuCl outcompetes NHC carbene formation 

and ligation. Gunnoe observed enhanced Cu–N nucleophilicity with bulky electron-rich 

phosphine ligands compared to NHC ligands.8b,d We wondered whether bulky phosphine 

ligands would favor Cu–amido insertion over ring opening (Figure 2B). We found that bulky 

chiral phosphines (L1–L7) gave promising results. Among them, high enantioselectivity 

(90:10 er) and yield (90%) of 3a were observed using (R,R)-i-Pr-Duphos (L3). We observed 

improved enantioselectivity (94:6 er) with CH3CN as the solvent (see the SI). Although 

lowering the temperature to 0 °C improved the enantiomeric ratio, a longer reaction time (4 

days) was necessary. Therefore, we chose to explore the substrate scope at 30 °C.

With this mild protocol in hand, we evaluated the enantioselective coupling of various 

pyrazoles to cyclopropene 1a (Table 1). In general, high diastereoselectivity (>20:1) was 

observed, likely due to the large steric difference between methyl and phenyl substituents.20 

Symmetric pyrazoles afforded 3b–3i with high enantioselectivity (91:9–99:1 er) in 40–

94% yield. Introducing a methyl substituent on the pyrazole showed no significant effect 

on reactivity (3b), whereas more hindered dimethylated pyrazoles gave decreased yields 

(3h, 3i). Electron-withdrawing groups on pyrazoles were accommodated (3c–3f), although 
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we observed more undesired allylic pyrazole with cyano substitution (3e). In the case 

of unsymmetric pyrazoles, 65–90% yield, 92:8–99:1 er, and nitrogen regioselectivity 

(N2:N1 > 20:1) were observed (3j–3o). X-ray crystallographic analysis of 3j confirmed 

the coupling of cyclopropene with the more sterically hindered nitrogen of the pyrazole; 

this regioselectivity is rare in pyrazole functionalization.9d,21,22 Further NOE experiments 

confirmed similar regiocontrol for related pyrazole substrates (see the SI). Despite the 

presence of a competing amino group, 3l was isolated exclusively, showing a highly 

chemoselective cyclopropylation for pyrazole nitrogens.

Next, we investigated hydroamination using other heterocycles under the standard 

conditions. Pyridazinone (2p), a nitrogen-rich and medicinally relevant heterocycle,23 

provided 3p in 55% yield, 87:13 er, and >20:1 nitrogen regioselectivity. Indazole, a 

heterocycle used as an indole bioisostere,24 showed promising results. Chiral indazoles 

(3q–3t) were prepared in up to 66% yield with 89:11–92:8 er and nitrogen regioselectivity 

(3.1:1 to >20:1 rr).25 The coupling of 1a with indazoles required higher temperatures and 

resulted in lower regioselectivity, except for electron-withdrawing ester substitution (3t). 
Other nitrogen nucleophiles, such as imidazole, triazole, and aniline, exhibited no desired 

reactivity under standard conditions and warrant further development.9a

In addition, we studied the enantioselective hydroamination of pyrazole 2a with various 

cyclopropenes 1 (Table 2). The electronic properties of the phenyl ring on 1 have a 

negligible impact on the enantioselectivity and reactivity. Good yields (60–89%) and 

enantioselectivity (92:8–94:6 er) were observed with both electron-rich (4b, 4c, 4f, and 

4g) and electron-deficient (4d, 4e) substrates. Replacing the phenyl ring on 1 with 

other aromatic rings afforded the desired results. Both thiophenyl- (1h) and naphthyl-

substituted (1i) cyclopropenes resulted in high yields (74 and 96%, respectively) and 

enantioselectivities (93:7 er). The absolute configuration of compound 4i was confirmed 

by X-ray crystallographic analysis. An enhancement in enantioselectivity was observed 

with the incorporation of a methoxy substituent (1j, 96:4 er) or an amide substituent (1k, 

99:1 er) on the cyclopropene. X-ray crystallographic analysis of 4k suggested a potential 

directing group effect because pyrazole added cis to the amide substituent.12a Cyclopropenes 

with a spirocycle (1l) and an ethyl substituent (1m) both exhibited high reactivity (63–

80%) and enantioselectivity (94:6–95:5 er). Furthermore, a dialkyl-substituted cyclopropene 

(1n) provided product 4n in 80% yield with 89:11 er, although as a 1:1 mixture of 

diastereomers.12c,d,i

On the basis of our own observations and literature precedent, we propose a mechanism 

for this Cu-catalyzed hydroamination (Figure 3). The catalyst resting state is inactive off-

cycle copper dipyrazolate V. Dissociation of one pyrazolate releases active copper–amido 

catalyst I, which enters the catalytic cycle and binds to cyclopropene 1a. A subsequent cis-

aminocupration of π complex II forges the key C–N bond and provides cyclopropylcopper 

intermediate III.12e,15 Protodemetalation of III with DBU–H+ affords copper complex IV,26 

which then undergoes ligand exchange with pyrazole 2a to restart the catalytic cycle. 

Mechanistic studies that led to the proposed mechanism are discussed below.
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To probe the mechanism, we studied the kinetic profile using variable-time normalization 

analysis (VTNA) (see the SI).27 We observed a first-order dependence on both cyclopropene 

(1a) and the copper catalyst. We found an inverse-first-order dependence on pyrazole (2a), 

and a fractional order (0.5) for DBU. Our lab has previously identified negative fractional 

orders of thiols in Rh-catalyzed hydrothiolations, which we attributed to the coordination of 

multiple thiols to an off-cycle catalyst resting state.12g,28 Given the coordinating ability of 

pyrazoles, we propose that pyrazole (1a) is involved in the formation of the off-cycle copper 

resting state with a 2:1 relative ratio of pyrazole per copper center. In the Heck coupling, 

Blackmond and co-workers observed that the order in Pd catalyst varied between first order 

and fractional order (0.5), depending on the amount of catalyst monomer released from an 

off-cycle dimer.29 By performing VTNA at higher copper loadings, we observed an apparent 

fractional order (0.5) in copper (Figure 4A), which suggests the possibility of a Cu dimer 

off-cycle resting state.30

We then performed 31P NMR studies to study the catalyst resting state (see the SI). Through 

monitoring the chemical shift of L3 in the reaction of cyclopropene 1a with pyrazole 

2a, we identified a plausible catalyst resting state at −2.4 ppm, which was replaced by 

another species bearing a singlet at −4.7 ppm when the transformation was near completion. 

NMR titrations31 using stoichiometric catalyst, DBU, and pyrazole suggest the former 

resonance to be a Cu–Duphos–pyrazolate species32 and the latter to be a Cu–Duphos–DBU 

complex. These NMR studies provide evidence for the dual role of DBU, acting as a base to 

deprotonate the pyrazole and as a ligand to copper.26 The apparent fractional order of DBU 

may arise from its multiple roles in proton transfer and ligation.

Efforts to characterize the resting state under high copper concentrations led us to the 

serendipitous observation of trimeric copper species VI. X-ray crystallographic analysis 

revealed the unique structure where the central copper bridges two neighboring Cu–Duphos 

complexes via four pyrazolates (Figure 4B). The reactivity of this crystal was then tested 

under otherwise standard conditions, where the desired product was isolated in 20% yield 

with 94:6 er. Due to an unexpected partial oxidation during crystallization, the central 

copper appears divalent, which accounts for the lowered reactivity. The structure of VI 
supports the feasibility of copper–pyrazolates.32

A deuterium labeling experiment was conducted under the standard conditions using 

deuterated cyclopropene d-1a and indazole 2q (Figure 4C). Analysis of d-3q shows 

exclusively syn proton incorporation relative to indazole. The results support the idea that 

C–N bond formation is an inner-sphere cis-aminocupration, as opposed to an outer-sphere 

nucleophilic addition,7e followed by a retentive protodemetalation.

Although a four-centered 1,2-migratory insertion of cyclopropene into the Cu–N bond 

was initially envisioned, the N2:N1 regioselectivity observed suggests that aminocupration 

may occur via a 1′,6′-migratory insertion (Figure 5A). In the proposed five-centered 

mechanism,33 the less-hindered nitrogen (N1) coordinates with copper, and the C–N bond is 

forged between the cyclopropane and the more-hindered nitrogen atom (N2). Moreover, this 

mechanistic rationale is in line with Lee’s observations on pyrazole hydroamination.9d
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To explore the unique regioselectivity, we performed a density functional theory (DFT) 

analysis of the Cu–L3-catalyzed coupling of cyclopropene 1a and pyrazole 2j to yield 

3j. DFT calculations were performed at the M06–2X/6–311+G** PCM(MeCN)//M06–2X/

6–31G* level of theory,34–36 as implemented in Gaussian 16.37 The transition structures 

(TSs) for aminocupration, namely, the five-centered TS versus the four-centered TS, were 

pursued for formation of both the N2 and N1 isomers of 3j (Figure 5B). We discovered 

that the five-centered aminocupration leading to addition at N2 represents the lowest-energy 

TS (Figure 5B, TSCA-N2). This favorable transition structure (TSCA-N2) has a C–Cu bond 

forming at 2.22 Å, a C–N bond occurring at 2.31 Å, and a Cu–N bond remaining intact at 

1.99 Å. An analogous TS leading to the minor N1 regioisomer shows the coordination of 

N2 to copper and C–N bond formation from N1 (TSCA-N1); this pathway is 2.7 kcal/mol 

higher in energy than TSCA-N2. These predictions are consistent with the experimentally 

observed N2:N1 regioselectivity. Finally, addition of pyrazole 2j into cyclopropane 1a via a 

1,2-migratory insertion mechanism is disfavored for the TSs leading to both regioisomers 

of 3j; the TSs for insertion of N1 and N2 (TSMI-N1 and TSMI-N2) are higher in energy than 

TSCA-N2 by 13.6 and 16.1 kcal/mol, respectively.

In summary, hydroamination presents an attractive approach for the enantioselective 

coupling of cyclopropenes and pyrazoles. Chiral N-cyclopropyl pyrazoles and structurally 

related heterocycles are prepared using an earth-abundant copper catalyst under mild 

reaction conditions with high regio-, diastereo-, and enantiocontrol. Mechanistic studies 

suggest a unique 1′,6′-migratory insertion. This Cu–amido strategy complements the 

Cu–hydride approach to hydroamination and will guide future studies of N-heterocycle 

functionalization.
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Figure 1. 
Asymmetric hydroamination of cyclopropenes with pyrazoles.
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Figure 2. 
Reaction optimization using bisphosphine ligands. aReaction conditions: 1a (0.12 mmol), 2 
(0.10 mmol), Cu(CH3CN)4PF6 (5 mol%), chiral ligand (6 mol%), toluene (0.4 mL), 30 °C, 

6–24 h. Yields of isolated products are given. Enantiomeric ratios (er) were determined by 

SFC analysis on a chiral stationary phase. bThe reaction was performed using CH3CN at 30 

°C for 6 h. cThe reaction was performed using CH3CN at 0 °C for 4 days.
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Figure 3. 
Proposed catalytic cycle.
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Figure 4. 
Mechanistic studies.
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Figure 5. 
Proposed C–N bond formation pathways and TSs for the favored five-centered 1′,6′-
migratory insertion of N2 (TSCA-N2) and the higher energy, disfavored four-centered 1,2-

migratory insertion of N2 (TSMI-N2).
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Table 1.

Scope of Pyrazoles and Other N-Heterocycles.

a
Reaction conditions: 1a (0.12 mmol), 2 (0.10 mmol), Cu(CH3CN)4PF6 (5 mol%), L3 (6 mol%), CH3CN (0.4 mL), 30 °C, 6–12 h. Yields of 

isolated products are given. Nitrogen regioisomeric ratios (N2:N1) were determined based on isolated yields and NOE experiments. Diastereomeric 

ratios (dr) were determined from 1H NMR analysis of the reaction mixtures. Enantiomeric ratios (er) were determined by SFC analysis on a chiral 
stationary phase.

b
24 h.

c
The reaction was performed at 60 °C.
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Table 2.

Scope of Cyclopropenes

a
Reaction conditions: 1 (0.12 mmol), 2a (0.10 mmol), Cu(CH3CN)4PF6 (5 mol%), L3 (6 mol%), CH3CN (0.4 mL), 30 °C, 6–12 h. Yields of 

isolated products are given. Diastereomeric ratios (dr) were determined from 1H NMR analysis of the unpurified reaction mixtures. Enantiomeric 
ratios (er) were determined by SFC analysis on a chiral stationary phase.

b
1:1 dr.
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