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Abstract

Seeking the unknown dynamics obeyed by a particle gives rise to the de Broglie wave repre-

sentation, without the need for physical assumptions speci�c to quantum mechanics. The only

required physical assumption is conservation of momentum �. The particle, of mass m; moves

through free space from an unknown source-plane position a to an unknown coordinate x in an

aperture plane of unknown probability density pX(x), and then to an output plane of observed

position y = a+z. There is no prior knowledge of the probability laws p(a;M); p(a) or p(M); with

M the particle momentum at the source. It is desired to (i) optimally estimate a; in the sense of

a maximum likelihood (ML) estimate. The estimate is further optimized, by minimizing its error

through (ii) maximizing the Fisher information about a that is received at y. Forming the ML

estimate requires (iii) estimation of the likelihood law pZ(z); which (iv) must obey positivity. The

relation pZ(z) � ju(z)j2 � 0 satis�es this. The same u(z) conveniently de�nes the Fisher channel

capacity, a concept central to the principle of Extreme physical information (EPI). Its output u(z)

achieves aims (i)-(iv). The output is parametrized by a free parameter K. For a choice K = 0;

the result is u(z) = �(z), indicating classical motion. Or, for a �nite, empirical choice K = ~

(Planck�s constant), u(z) obeys the familiar de Broglie representation as the Fourier transform of

the particle�s probability amplitude function P (�) on momentum �: For a de�nite momentum �;

u(z) becomes a sinusoid of wavelength � = h=�; the de Broglie result.
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The famous De Broglie-Fourier (D-F) representation (32) [1] of a particle expresses the

particle�s probability amplitude function u(x) as a Fourier superposition [2] of waves in

momentum-component space �; as weighted by amplitudes P (�): These have respective

x�component wavelengths � = h=�, h =Planck�s constant. This D-F representation (or

"transformation") expresses a basic equivalence of the two spaces x and � in describing

quantum phenomena.

The D-F is often used as a given starting point of a development of quantum mechanics

[2],[3],[4],[5]. Indeed, to our knowledge, in the 80 yrs since de Broglie, no one has derived

the D-F representation. Perhaps this was because it is the expression par excellence of the

wave nature of matter, and therefore so fundamental as to be incapable of implication by

any prior physical principle. Clearly a new tack is needed.

During the past two decades many physical processes have been found to be derivable by

uses of principles of information. Here we utilize such a principle, with the aim of deriving

the D-F transformation and momentum-dependent wavelength. This is to be without the

prior assumption of any physical property that is unique to wave phenomena, including

di¤raction theory and (more to the point) quantum theory. Instead, the derivation uses a

principle of optimum information transmission, called EPI (see below), under an assumption

of conservation of momentum (Sec. I.D). The information in question is Fisher information

[6]. The derivation develops within the framework of an estimation problem for a speci�c

physical scenario.

General comment 1. But, is such a derivation possible? Does it not already presume

what it intends to derive? That is, the argument can be made that any attempt to derive

the D-F representation �a relation between probability amplitudes �must presume the ex-

istence of meaningful probability amplitudes, which in turn presumes quantum mechanics,

since quantum mechanics (or the closely related �eld of di¤raction optics) is the only scien-

ti�c �eld that uses the concept. However, this argument is moot, because (i) we de�ne and

use each probability amplitude as merely a mathematical quantity, whose squared modulus

conveniently de�nes a probability density function (PDF) obeying positivity PDF� 0. Also,
in fact (ii) R.A. Fisher used probability amplitudes to describe the frequencies of occurrence

of biological species [7], de�nitely outside the realm of quantum mechanics. Another conve-

nient mathematical property of an amplitude is that its gradient de�nes the Fisher channel

capacity (3), the very information that is used in the EPI principle.
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Regarding physical properties of the amplitudes, these arise only as a result of the deriva-

tion, after use of the EPI principle. For example, they are found to obey the D-F represen-

tation (32) and Heisenberg principle (38). Note also that, since we do not a priori assume

the Schrodinger wave equation (SWE), but, rather, derive it (subject to an additional as-

sumption), we are also not a priori assuming the Born interpretation that amplitudes are

probability amplitudes obeying the SWE. Rather, they are a priori merely mathematical

constructions that are later shown to obey the SWE. In essense, we derive the Born inter-

pretation.

General comment 2. It is useful to mention in one place the types of assumptions that are

made in deriving the D-F. The sole physical assumption is that of conservation of momen-

tum (Sec. I.D). There are also many mathematical assumptions made �of the particular

geometrical constraints (1) imposed by the experiment, lack of prior statistical knowledge

(Sec. II), a weak aperture amplitude (Sec. I.A), and analyticity (Secs. II.D, III.A and

IV.C). Although mathematical, these of course have strong physical rami�cations.

A synopsis of the overall approach is as follows.

I.A particle motion experiment is performed. The particle, of arbitrary mass m; travels

through the general system of Fig. 1, from object- to aperture- to image plane over some

trajectory. All indicated coordinates and momenta are vertical components, in the plane

of the paper. The experiment operates under special geometrical conditions usually called

�far-�eld�(1). The particle obeys unknown dynamics and is not tracked, so that neither its

(vertical) coordinate a nor its position x in the aperture plane are known. Its dynamics are

to be found. The particle�s �nal position y in the image plane is observed. Its net motion

a ! x ! y is a¤ected in some unknown way by an (also) unknown probability density

function PDF pX(x) � jU(x)j2 in the aperture, with jU(x)j << 1 (see General comment 2 )
and termed �weak.� Just beyond the aperture, the particle has a momentum value �0 with

vertical component �. As the sole explicitly physical assumption, the particle is assumed

to obey conservation of momentum at each point along path AB. By this property, a given

coordinate x in the aperture is found to be linear in the corresponding momentum value �

of the particle in the image plane.

II. There is a severe lack of prior information about the particle. Neither the particle�s

initial conditions a, M, nor any prior PDF p(a;M), pA(a) or p(M), are known. With such

a lack of knowledge, it is usual to seek a maximum likelihood (ML) solution. Based on
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an assumed analyticity property and the far-�eld conditions (1), the particle statistics in

the image plane are found to obey invariance to shift a. Tools of the ML approach are

this shift invariance property and the concept of �Fisher channel capacity�(3) of the system.

Conveniently, this information quantity is expressed in terms of the same complex amplitude

function A(x) (including the phase) that determines its PDF jA(x)j2. Depending upon EPI
application, the phase part can have, or not have, physical signi�cance (in our case, it will

have it, for a parameter value K 6= 0).
III. In general, ML assumes knowledge of the likelihood PDF pY (yja) = pZ(y�a) = pZ(z);

z = y�a; by the shift invariance proven in II. ML requires this PDF to be maximized through
choice of a. Hence, pZ(z) must �rst be estimated. This PDF is, as usual, represented as

a squared modulus, in particular pZ(z) � ju(z)j2 � 0 in terms of its amplitude law u(z).

Hence, u(z) must be found. By use of the small-amplitude approximation jU(x)j << 1

mentioned in I above, u(z) is found to relate linearly to U(x) via an integral transformation

u(z) � T [U(x)]. The transformation has an unknown kernel k(z; x) which, therefore, must
be found. It turns out to be most convenient to �rst estimate u(zjx), the image amplitude
due to a slit particle source located at position x. The EPI approach is chosen for this

task, because its estimates contain maximal information about the unknown parameter a

and, by implication, the unknown amplitude u(zjx). Prior knowledge that is used consists
of far-�eld conditions (1), and the small-amplitude approximation jU(x)j << 1 de�ned in I.
Also, linearity u(zjx) / U(x) is derived at Eq. (8).
IV. The information IX(x) about the unknown a at the slit position x is regarded as

�xed, but of unknown value (found in V below). The use of EPI �nds the unknown kernel

k(z; x) to obey (23). This, in turn, represents the transformation T [U(x)] as the �rst Born

approximation (24), if the weak amplitude U(x) is re-interpreted as a weak potential func-

tion. This is our �rst derived quantum property of the probability amplitudes heretofore

only de�ned mathematically as forming PDFs that obey positivity.

V. The EPI output T [U(x)] � u(z) is parametrized by an arbitrary constant K: If K � 0,
then the particle behaves completely classically, with u(z) / �(z) implying no spread in

image positions. This option then predicts deterministic motion. Or, if K is kept �nite, u(z)

has �nite spread, and the particle behaves probabilistically. In the latter case, empirical

evidence demands that K have the particular value of Planck�s constant ~. Using the

known (via step I) proportionality between aperture coordinate x and particle momentum
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� leads to an e¤ective �pupil function�P (�) proportional to U(x): Pupil function P (�)

and an amplitude function u(z) are found to be Fourier transform mates (32). These are

parameterized by an arbitrary constant b1: De�ning b1 appropriately allows one to cancel

all particular experimental parameters from Fourier relations (32), casting them into the

universal D-F form. This is the second derived physical property of amplitude functions

that were de�ned (see General comment 1 above) as purely mathematical abstractions.

Knowledge of the D-F relation also allows the unknown information IX(x) to be found,

as quadratic in aperture position x [Eq. (35)]. A free parameter K of the solution is

shown to imply classical particle dynamics, and thus a classical trajectory, if K � 0, or

quantum dynamics if K � ~; an empirical choice. The derived D-F relation also predicts

a particle wavelength obeying � = h=�0. The D-F relation also allows the SWE (37) to be

derived after assuming, as well, conservation of energy (Sec. V.I). This is the third derived

physical property of our mathematical amplitude functions, and is equivalent to deriving

the well known Born interpretation (note: not scattering) of amplitude functions. Examples

of resulting ML estimates a are given in Sec. V.G.

VI. The D-F answer gives the Heisenberg uncertainty principle (38). This is the fourth

derived physical property found for the postulated probability amplitudes. The Heisenberg

principle is consistent with our assumed lack of prior knowledge of the particle�s input

position and momentum, since it implies that they couldn�t have been known. The classical,

K = 0 solution is found to be ill-de�ned if m! 0; or well-de�ned for large m.

The derivation depends upon two properties of the Fisher channel capacity I: (A) I is an

upper bound to the classical Fisher information; and (B) I is physically realizable. These

properties are crucial to allowing meaningful phase functions in EPI output amplitude laws.

The properties are proven, respectively, in Appendices A and B. These connections with

Fisher information constitute a �fth physically useful property (through physical applications

of EPI) of the postulated amplitude functions.

Details follow in corresponding sections I-VI and Appendices A,B.

I. PARTICLE EXPERIMENT

In Fig. 1 a particle obeying unknown dynamics moves through �xed apparatus, over

some unknown path SAB from an object or source plane to an intermediary aperture plane
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and on to an image or output plane. The paths SA and AB are �rst allowed to have any

generally curved, Feynman-type shapes, not necessarily the straight paths shown (used in

a later trigonometric analysis). A typically curving path is shown dashed in the �gure.The

particle has small mass m (on the atomic level or less), except in special cases taken up

later. For simplicity, the system in Fig. 1 operates at equal conjugates L in the analogous

sense of optical imaging (taken up below). At input point S the particle has a total vector

momentumM; which becomes some vector momentum �0 6=M generally at point A in the

image. The vertical component of �0 is �; as indicated. For simplicity, only the vertical

components of the motion are analysed, with all coordinates in the plane of the page. A

3D, and even (3+1)D, generalization of the experiment is probably straightforward. A 2D

version is sketched in Sec. V.5.

The particle is not tracked, so that the coordinates a,x and z; identifying positions S,A

and B, are unknown, as are the shapes of the paths SA and AB. As will become evident,

the system can more productively be regarded as a communication channel for transducing

individual coordinate values from plane to plane as a ! x ! y � a + z: That is, it

transduces informations, speci�cally information about the source position a. This suggests

R.A. Fisher�s form [6] of information in particular, whose use later turns out to be key to

the derivation.

The source coordinate a is to be estimated. Pursuing this estimate will automatically lead

to an estimate of the particle�s dynamics de�ned by u(z) and, then, to the required de Broglie

wave representation. For the purpose of estimating a, the image position y is observed (see

eye in Fig. 1).

A. Unknown amplitudes; potentials

The particle obeys a PDF pX(x) � jU(x)j2 in the aperture of Fig. 1, where U(x)

is an unknown, generally complex, aperture amplitude (see General comment 1 at outset

of paper). The PDF is, ideally, perfectly compressed longitudinally, so as to in�uence the

particle trajectory only within the aperture plane AC. In practice, pX(x) inevitably has some

longitudinal extensions beyond the aperture on either side. These could be accomodated by

the approach, but, for simplicity, are assumed to quickly and continuously go to zero (see

also related e¤ect in Appendix B). Also, pX(x) is assumed small, pX(x) << 1 (see General
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comment 2 ). An example is a Gaussian with very large �. Then the amplitude jU(x)j is
small as well, and termed �weak�as convenient terminology. The analysis will show that, for

�nite m, U(x) enforces both the familiar Born quantum scattering [8] upon the particle and

the D-F transformation (32); or, for mass m!1, a deterministic de�ection to the image
point B. These familiar alternatives are automatic consequences of the approach, through

the action of a free parameter K.

Between the planes of Fig. 1, the particle travels in free space, with potential � � 0.

B. Far-�eld approximation

The system obeys special geometrical length inequalities typically called the �far �eld

approximation.� Here the (vertical) image coordinates z; a are small compared to a typical

aperture position x, and all coordinates are small compared to the conjugate distance L:

z; a << x and z; a; x << L: (1)

These inequalities are also sometimes called the �small angle�approximation, since the an-

gles �; �0 in Fig. 1 are then small (as will be shown). Although conditions (1) are purely

geometrical in nature, they will prove to be vital to many of the derivations to follow.

C. Analogous optical experiment

The geometry of Fig. 1 also follows that of a famous gedanken �optical di¤raction ex-

periment�[9] that is often used to introduce quantum ideas. In the optical experiment the

�particle�is a photon. We shall often use the optical aspect of this experiment as a guide

to suggest corresponding particle properties. For example, the unknown (dashed) paths SA

and AB are de�ned, by di¤raction theory [10], to obey a condition of �stationary phase.�

However, neither this fact nor any other that is unique to either di¤raction theory or quan-

tum theory will be used in establishing the particle�s trajectory. Indeed, the single physical

assumption about the particle that is made is that, because potential � = 0 in the space

between A and B, momentum is conserved in this space. Note that this property is obeyed

by either classical or quantum particles.

Also, the analysis will be purely computational, with the aim of optimally estimating
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FIG. 1: Particle experiment. A particle travels on an unknown trajectory (shown as dashed where

it possibly departs from given straight paths) from an unknown source point S to an aperture plane

A, and then to an image plane B. With free �elds � = 0 en route, what is the relation between

the unknown particle amplitude laws U(x) in plane A and u(z) in plane B?

unknowns of the experiment. Information theory will be used in, by now, a standard way,

to determine the required probability amplitude function of the estimation approach. The

computed result will be of interest in having, as well, the physical signi�cance of establishing

the D-F transform and wavelength.

D. Linear relation between z and momentum

A key result of di¤raction optics is that, in Fig. 1, the vertical component � of the photon

momentum is approximately linearly related to its aperture coordinate position x. This is

shown next to follow, as well, for our material particle experiment.

As in [3],[9], assume that some �xed, but necessarily approximate x(�) relation connects

a given coordinate x with the vertical momentum de�ned as � � mv; v the velocity at x.

Note that x(�) has to be approximate since, in principle, all possible momenta could emenate

from the point A. In the optical experiment, the method of stationary phase is used to �nd

the dominant such momentum, which lies along the straight path AB. In our particle case

of unknown dynamics, stationary phase cannot be used. The approximate nature is also

required by the Heisenberg uncertainty principle (38). If x were exactly a known function
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of �; then both could be exactly known simultaneously, violating the principle. We will

ultimately derive (38), and not assume its form here (but, of course, cannot violate it

either!) What is the approximate relation between x and �?

As was mentioned, the generally curved (dashed) path shape AB in Fig. 1 is some

unknown path. The path, and angles �0 and �; are next approximately found in steps (i)

and (ii). The key consideration will be the zero potentials � = 0 in the intervening spaces.

(i) We now show that, for the given problem, the actual path AB must be the indicated

straightline path. Assume that the particle�s vector momentum �0 is conserved at each point

of this path, owing to the free �eld � = 0 in that space. (This is the sole explicitly physical

knowledge that is used.) Hence its vertical component � is conserved as well.

Since the preceding argument holds at each position along the point along AB, at each

point the vertical component of momentum has the same value �: Let �00 denote a local slope

value anywhere along curve AB. By the conservation of momentum, the vertical component

� = �0 sin �
00: This has two consequences: (a) The local slope angle �00 is constant over the

curve AB, so that AB is a straight line. (b) The particular values � (at A) and �0 (at B) of

�00 obey � = �0 sin � = �0 sin �0: Consequently � = �0 = sin�1(�=�0):

(ii) In Fig. 1, simple trigonometry gives tan �0 = (z+a+x)=L � x=L by the two inqualities
(1). Also, by the second inequality (1), tan �0 is small, so that �0 is small and consesquently

tan �0 � sin �0 � �0 � x=L: Also, from (i), �=�0 must be small so that � = �0 � (�=�0):

Then �=�0 � x=L or x � (�=�0)L: In summary, owing to postulated conservation of

momentum at each path position between A and B, and because of the geometrical far-�eld

approximations (1), the aperture coordinate x of the particle approximates proportionality

to its momentum component �.

As an aside, in Sec. II.D below we prove that the image amplitude u(z) obeys shift invari-

ance. It is well known that such shift invariance implies, by Noether�s theorem, conservation

of momentum, suggesting that we did not have to assume conservation of momentum here.

However, Noether�s theorem holds in a scenario where the Lagrangian of the particle dynam-

ics is known, and we cannot know the Lagrangian at this elemental stage of the development.

See also the end of Sec. VI.A on this.
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E. Data equation

Path AB, with coordinate x! y; is to a �nal point of position

y = a+ z (2)

in the image plane B. Position y is observed (see eye in Fig. 1) as a datum. The detector

of y is taken to be ideal, not adding noise to the reading. However, the nature of z is

of interest. It is taken to be a random vertical-component jiggle that is induced by the

interaction between the aperture amplitude and the particle. Thus, in general y departs

from a by some randomly unknown amount z.

Our initial aim is to �nd a, given the imperfect datum y. The form of Eq. (2) indicates

that, intuitively, knowledge of y contains �information�about the value of a. Thus, given y,

one should be able to estimate a to some extent. This is usually called a �reverse problem�,

as distinguished from the �direct problem�of predicting y from a known value a.

F. Trial analytical estimate of a

If the particle were known to be moving classically, we could �rst try a direct analytical

approach to �nding a. That is, the datum could be modeled as obeying a relation y =

F (a; L) + z where function F is known, and z is as above. Then, for small enough z, one

could in principle invert F to obtain an approximate, direct-inverse solution a � F�1(y; L).
Obviously, however, the larger the random component z is the worse an approximation this

would be (even excluding error caused by the assumption of classical motion).

To judge how bad an e¤ect this is, consider just the �nal particle trajectory, x ! y:

In the corresponding optical analogy experiment of a given thin lens, in the geometrical

approximation a photon striking position x in the lens travels to a known position y in

the image plane via basically Snell�s law. However, the reverse problem of inferring x

from a known y is more challenging. Indeed the very aim of a good lens design U(x) is to

achieve near-stigmatic imagery, for which many di¤erent aperture positions x give rise to

the observed y. Also, of course, the random nature of the component z of y adds in further

uncertainty.
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G. ML estimate

Because the particle dynamics are unknown, we drop the trial assumption of classical

dynamics in Sec. I.F. In fact, we regard the dynamics u(z) as something to be ultimately

estimated, along with a. Conveniently, it turns out that the two can be estimated simul-

taneously. Because of its important properties of optimality [11],[12], we �rst seek an

ML estimate of a given the datum y. This is de�ned as the solution a to the problem

pY (yja) = max :, where pY (yja) is the PDF on y in the presence of �xed a. This PDF is of-
ten called the �likelihood law.� It must be known in order to seek the ML answer. Although

ML solutions are generally statistical in nature, they can give simple analytic inverses, such

as a = F�1(y; L) mentioned above. For example, given one datum, an ML solution is often

(e.g., in case of additive noise) just the datum itself [11], irrespective of any other statistical

quantity. We carry through on the ML approach. First, some factors a¤ecting the approach

are discussed.

II. UNKNOWN INITIAL CONDITIONS

Let the particle�s initial conditions be totally unknown, i.e., neither the values (a;M)

nor their joint probability law p(a;M) nor marginal laws p(a); p(M) are known. Recall that

using ML requires us to form the likelihood law pY (yja): Ordinarily this could be found using
known rules of statistics: �rst randomly sampling a and M values from a probability law

p(a;M), then randomly sampling a representative x from these and, �nally, a representative

y from the x. However, p(a;M) is unknown, and we do not know the particle dynamics

connecting a and x. Hence, this procedure is ill-de�ned. As a further complication, from

another viewpoint (Sec. VI.A), choosing particular laws pA(a); p(�) could in fact lead to

inconsistencies. Is there an alternative approach that is, instead, well-de�ned?

A. Central question

Thus, the central question posed by this paper is:
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Given image position y, what mathematically can be said about the unknown a and

u(z) in the complete absence of knowledge of initial conditions and particle dynamics?

In summary, our ML approach will have to estimate the likelihood law pY (yja) under
extremely nebulous conditions: the complete absence of knowledge of initial conditions; and

no knowledge of the dynamics obeyed by the particle.

B. Use of complex amplitude functions

The likelihood law pY (yja) can be found by the use of the EPI principle (Secs. III,IV).
EPI generally gives an output that is a complex amplitude functionA(x) � jA(x)j exp[i�(x)];
with corresponding probability p � jA(x)j2 : (General comment 1 discussed the dual moti-
vation behind using amplitude functions.) It accomplishes this through use of a concept

of classical estimation, called Fisher information [6],[11],[12]. In particular, EPI uses the

Fisher channel capacity

I � 4
Z
dx jA0(x)j2 ; p � jA(x)j2 ; A0(x) � dA=dx: (3)

Thus, I and p are expressed in terms of the same unknown function, A(x). Conveniently,

this allows the EPI principle, which depends upon I and p, to be solved straightforwardly

for A(x). From this point on, each I (and J below) represents a channel capacity. It has

the following properties.

The channel capacity is (i) de�ned to be an upper bound to the actual Fisher information:

See Appendix A; (ii) equals the Fisher information in one-dimensional problems [5]; (iii) is

a physically realizeable upper bound (Appendix B); and, most important for our purposes,

(iv) is sensitive to the phase pro�le �(x) of the particle. For example, use in (3) of an all-

phase amplitude function A(x) � exp(i�(x)) directly gives I = 4
R
dx�02(x). This explicitly

shows strong sensitivity to the local phase gradients �0(x):

However, note that allowing an amplitude A(x) to have a phase function �(x) does not

force the resulting EPI outputs A(x) to have meaningful phase. The outputs predict the

particle�s dynamics, and these can turn out to be classical (e.g., obeying Einstein gravitation)
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or quantum, depending upon case [4],[5],[13]. The latter has well-de�ned phase, the former

does not.

Our �nal EPI output will be the amplitude function u(z) in the image plane: The latter

will be shown to obey the SWE, Eq. (37), which of course has a well-de�ned phase function

for su¢ ciently small particle mass m. Under this condition, solving the SWE for the phase

function is generally a well-posed mathematical problem.

Alternatively, in the opposite limit of m ! 1 , the problem of solving the SWE for

the phase is known to be an ill-posed mathematical problem (Sec. V.H.3). That is, as

m ! 1 we can expect the dynamics obeyed by u(x) to approach a classical limit. This

will be veri�ed by the EPI approach, since it will give both (i) a classical particle solution

and (ii) a quantum solution as alternatives. Interestingly, even if quantum solution (ii) is

chosen, it goes continuously into the classical solution (i) in the limit of large particle mass

(Sec. V.H.3), since then the phase can be ignored, i.e. regarded as irrelevent or unphysical

�of course the viewpoint of classical mechanics.

C. Unknown amplitudes of problem

As we found, the PDF pZ(z) is needed in order to form the ML estimate we seek. Random

�uctuations z in the image plane obey an unknown PDF pZ(z) � ju(z)j2 � 0 in terms of a
complex amplitude law u(z). Possible �uctuations z even exist when the particle can only

leave the aperture at a given, �xed position x. These follow an unknown PDF pZ(zjx) �
ju(zjx)j2 ; whose corresponding amplitude law u(zjx) is de�ned by (11). Amplitude U(x) is
likewise regarded as unknown. For a su¢ ciently weak U(x), the resulting amplitude u(z)

will turn out to obey a �rst Born approximation (24) [8]. An optical analogy to U(x) is that

of the amplitude in the exit aperture of an unknown lens system [8],[10],[11].

D. Property of shift invariance

We next show that the amplitude uY at any image coordinate value y is invariant to

o¤-axis shift a of the source, obeying
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uY (yja) � uZ(y � aja) � u(zja) = u(zj0) � u(z); and (4)

pY (yja) � pZ(y � aja) � pZ(zja) = pZ(zj0) � pZ(z) = ju(z)j2

for corresponding density functions. This will be for su¢ iciently small values of the relative

shift a=L. In each line, the �rst equality de�nes new amplitudes and densities uZ ; pZ by the

use of (2); the second equality is again by (2); the third is by the assumed invariance to shift

a; and the fourth is a matter of notation. The �fth, on the 2nd line, de�nes pZ(z) as an

unknown PDF. The optical analogy to u(z) is that of the point amplitude function, which

likewise does not change appreciably in modulus or phase within its isoplanatic region [10]

of shifts a.

Before presenting the quantitative proof, we argue from intuition. By Fig. 1, the source

S is o¤ axis by an angular amount a=L. Hence, since a=L << 1; even for a �nite shift a the

source S is angularly o¤ axis by a negligable amount. Moreover, as shown in the Derivation

to follow, the longitudinal shift due to �nite a is, by comparison, negligable (second-order

in a=L). Therefore a �wave�from S e¤ectively sees the same aperture function U(x) for any

shift a, and its output wave u(z) is independent of a.

1. Derivation

An increased shift a o¤ axis causes both an angular and a longitudinal shift about the

aperture. The angular is by amount a=L � a�; and the longitudinal is by the relative amount
(
p
L2 + a2�L)=L � 0:5(a=L)2 = 0:5a2�: This is of second order in angle a� which, by (1), is

already a very small number and, hence, negligable compared to the �rst-order dependence

a� just found for the angular shift. Hence the longitudinal shift may be ignored.

To facilitate the angular analysis we de�ne angular coordinates y� � y=L; z� � z=L;

and an angular amplitude function u�(y�ja�): This relates to uY (yja) as uY (yja) =

L�1=2u�(y�ja�); where factor L�1=2 is needed to satisfy normalization of the correspond-
ing PDF ju�(y�ja�)j2 � p�(y�ja�). Let u�(y�ja�) � u��(y� � a�ja�) de�ne a new, shifted,
angular amplitude law u��: Therefore, combining, uY (yja) = L�1=2u��(y� � a�ja�), or

uY (yja) = L�1=2u��(z�ja�)
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by Eq. (2).

Consider, for �xed z�;the dependence of u��(z�ja�) upon shift a�: By de�nition (4),
amplitude u��(z�j0) does not depend upon angular shift. It is reasonable, then, that for a
small such shift a�; u��(z�ja�) should only depart from u��(z�j0) by a small amount, and
larger for larger shifts. Or, u��(z�ja�) should be analytic over small shifts about the shift
a� = 0: Then we may expand it as a Taylor series of powers of a�: Consequently, the last

set-out equation becomes uY (yja) = L�1=2 [u��(z�j0) + u0��(z�j0)a� + :::] ; where the prime
denotes a derivative @=@a� and dots stand for terms in quadratic and higher powers of a�:

By far-�eld conditions (1), although linear shift a may be �nite a� is very small. There-

fore we may drop all terms beyond the �rst, giving simply uY (yja) = L�1=2u��(z�j0): But
uY (yja) � u(zja) by the top Eq. (4). Also, by normalization of corresponding PDFs,

L�1=2u��(z�j0) = u(zj0): Consequently u(zja) = u(zj0) � u(z): The amplitude obeys shift
invariance, con�rming the top Eq. (4). Then, by modulus-squaring, so does the PDF

pZ(zja); giving the bottom Eqs. (4). In summary, the shift invariance follows from an

argument of analyticity and the far-�eld conditions (1). Shift invariance gives the following

immediate bene�t.

E. E¤ectively a� = 0

Since the unknown amplitude law u(z) obeys shift-invariance relations (4), we can model

u(z) as being formed in e¤ectively the presence of an on-axis system a� = 0:This simpli�es

the analysis. Even though a is still �nite (and to be found), the size of information IZ(a) �

formed by (3) with z and u(z) replacing the generic x and A(x) �is independent of both a�

and a. Hence, we can denote IZ(a) as IZ(0): Also, U(x) is by de�nition independent of the

size of a, so that by (3) again we may denote IX(a) � IX(0): In summary, the informations
at the positions of the transition a! x! y (or z) of the particle are now denoted as

J( a
�(a)
)! IX(0)

U(x)

! IZ(0):
u(z)

(5)

Note that information IZ(0) about a is still �nite, even though its level does not depend

upon a. It is the observable y that provides this information to the observer, via y = a+ z.

In (5), the amplitude law de�ning each level of information about a is denoted below it.

Thus, by (3), the information J(a) for an observer in the object plane is thereby in�nite.

15



However, its values after transitions to x and then y are �nite, owing to the fact that

Fisher information decreases or remains constant [4],[5] after any transition. In fact the two

informations will turn out to be equal.

F. ML estimate

What approach should be used for estimating a; given the unknown nature of its prior

probability law p(a)? We use the standard maximum-likelihood (ML) value [6],[11],[12]. As

in the above, this satis�es pY (yja) = maximum, and so we need to �nd the likelihood law

pY (yja). Now, as a probability density, pY (yja) must obey positivity pY (yja) � 0. Hence,

we seek an estimate that obeys this constraint. One important way of accomplishing this is

to use (4), pY (yja) = ju(y � a)j2 � 0 by construction. This is an arbitrary but reasonable
choice, and it requires that we �rst estimate the amplitude law u(z).

III. EPI APPROACH

As discussed in Sec. I.G, the ML estimate a is to be the solution to a problem pY (yja) =
max : Then by (4) we must know the PDF pZ(z) and, consequently, its amplitude function

u(z):This is addressed here and in Sec. IV.

We choose to estimate u(z) by use of a principle of Extreme physical information or

EPI [4],[5],[13],[14],[15],[16],[17],[18],[19]. This is a variational principle I � J � extremum
through variation of the amplitude u(z). In general, I � J is the acquired information about
an unknown parameter a in received data (see Sec. II.B). Hence J is its maximum possible

level at the data source. In real-coordinate z cases, as here, the extremum is a minimum.

Therefore, for a given level of source information J; our EPI output u(z) will convey data

containingmaximum received information. In fact, it will attain the maximum possible value

I = J here. By the Cramer-Rao inequality e2 � 1=I; where e2 is the mean-square error in
the estimated a. Then with our I maximal, the mean-squared error e2 tends to be minimal,

re�ecting a high level of accuracy in both the ML estimate of a and (by implication) the

amplitude u(z) forming the estimate. In general, EPI derives out of a premise that nature

is stable, and tends to convey information in a maximally coherent manner [19].

An important property of the Fisher channel capacity is that it is sensitive to the phase of
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the amplitude function involved (see below (3)). This allows it to serve as a bridge between

classical and quantum physics. Depending upon application, the EPI solution can follow

either classical or quantum physics (see, e.g., Sec. V.H). In fact, in our case both choices

will hold, depending upon the chosen size of a free parameter K and the mass m of the

particle.

A. Prior knowledge of type A, and weak-�eld approximation

Any approach to quantifying a physical e¤ect requires at least some prior knowledge

about the e¤ect. In general, EPI classi�es prior knowledge into three de�nite types [13]

A,B and C. These de�ne a descending order of accuracy in EPI outputs. We use a type A

approach, the �A�standing for an �abduction�in the sense of a universal truth. Here the EPI

outputs are correct to within some speci�ed range of application, such as inequalities (1).

Thus, we can expect EPI to give an accurate output u(z) within the con�nes of assumptions

(1). The type A prior knowledge is that of conservation of momentum (Sec. I.D) over path

AB.

As preliminary to the use of EPI, we have to quantify, as generally as possible, the image

amplitude u(z) that will result from a given source amplitude U(x). The amplitude u(z)

at a �xed point z must depend upon U(x) over its entire range of points x, i.e. as some

functional u(z) =
R
dx0F [z; x0; U(x0)]: The ultimate aim of EPI will be, then, to estimate

the function F . Note that the left side of the preceding equation has the unit of amplitude,
and hence to balance units on the right side F could be linear in U(x0): This is quanti�ed

next.

For brevity, use the notation U(x0) � U: Assume that, at any �xed x0 and z, F is an

analytical function of U about the amplitude value U = 0: (See General comment 2 at

outset.) This will allow the above balancing of units argument to hold. By the analyticity,

over a su¢ ciently small range of values U , F = F(z; x0; 0)+(@F=@U)U + :::+ higher-order
terms in U . Of these terms, the �rst F(z; x0; 0) must not contribute since it would give a
nonzero u(z) even in the absence of a source U(x). Also, the coe¢ cient (@F=@U) and those
of higher powers are evaluated at U = 0, and hence are only functions of z; x0: For example,

we can denote (@F=@U) � k(z; x0); some unknown �kernel�function of its arguments.
By the weak-�eld approximation jU j << 1 (Sec. I.A) the higher-order terms of F are neg-
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ligable. Then, from all these considerations, only the linear term k(z; x0)U in F contributes,
giving as its integral

u(z) =

Z
dx0U(x0)k(z; x0) � T [U(x)]: (6)

The integration x0 is over the aperture. Hence, the problem to be attacked by EPI is now

reduced to �nding functional T , or equivalently, the general kernel function k(z; x0):This is

a decisive step since T will ultimately become the de Broglie Fourier relation we seek.

Note that no prior assumption of unitarity has been used to establish (6). In fact, by the

use of EPI the kernel k(z; x0) in (6) will be derived by EPI to have the unitary form (23),

with (24) expressing the unitary transform.

B. Aperture slit

Let the aperture have �nite extension x0 on the symmetric interval (�x0=2,x0=2): Tem-
porarily consider the case where a slit is placed at a position x in the aperture,

U(x0) = x0U(x)�(x
0 � x) and u(z) � u(zjx); (7)

the latter chosen notation for "if x". (We could equally well have used a comma, as u(z; x).)

Also, note that the factor x0 is needed in (7) to balance its units, since, by
R x0=2
�x0=2 dx

0�(x0) = 1;

�(x0) � l�1, i.e., it has units of length�1: (However, x0 will drop out of consideration later.)
The given particle passes through the arbitrary, unknown point x en route to image space,

where the resulting amplitude u at any z is contingent upon the �xed x, thus the notation

u(zjx).
Eqs. (6) and (7) together give

u(zjx) = x0
Z
dx0U(x0)�(x0 � x)k(z; x0) = x0U(x)k(z; x) (8)

by the sifting property of the delta function. This relation will be used below in order to

�nd k(z; x).
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IV. EPI PROBLEM

We continue with the special case of a slit at a �xed position x. Here, there is a transition

x! z from a �xed slit position x to a random image position z. In this "if x" scenario, the

EPI output due to transition (9) will be the amplitude function u(zjx). Also, informations
(5) are now appropriately designated as IX(0) � IX(x) and IZ(0) � IZ(x);emphasizing the
contingency upon x. The information transition is

IX(x)! IZ(x); (9)

where IX(x) is a �xed but unknown number formed by plugging the unknown U(x) into (3).

We �nd next how U(x) and IX(x) relate, respectively, to u(z) and IZ(x):

A. Variational problem

In general, an EPI problem describes an information transition J ! I; via a principle

I � J = extrem: Quantities J and I are generally functionals [4],[5] of an unknown system
amplitude function. Here we are tracking the information from the single slit position x to

a general point z along the trajectory, with e¤ective source and data informations denoted

as IX(x) and IZ(x), where I =< IZ(x) > and J =< IX(x) > : The problem is then

IZ(x)� IX(x) = extrem:; I =< IZ(x) >; J =< IX(x) > (10)

for a general �xed value of x, with u(zjx) to be varied to obtain the extremum. The two
average informations I and J will later be found to be equal.

B. Shift-invariance revisited

The shift-invariance condition (4) holds for any aperture function U(x), and therefore for

our particular case of a slit aperture centered on x. Here the 2nd line of (4) becomes

pY (yja; x) � pZ(y � aja; x) = pZ(y � ajx) � pZ(zjx) � u�(zjx)u(zjx): (11)
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In this x-conditional case, the information IZ(x) directly becomes the general form (3)

with A(x) � u(zjx);
IZ(x) = 4

Z
dzu�0(zjx)u0(zjx): (12)

Primes 0 denote a derivative @=@z: The information (12) de�nes the left-most input into

principle (10). The other information, IX(x); is found next.

C. Information in aperture

Informations are generally positive if the physical coordinates a; x; y; z are real [4],[5], as

here. Hence, the unknown but �xed information IX(x) in the aperture obeys IX(x) � 0: This
allows us to represent IX(x) � 4f 2(x); with f some real function. But, since slit parameters
a and L, are also �xed, more generally IX(x) = 4f 2(x; a; L), with f to be found. However,

as was discussed following (5), the level of Fisher information is independent of the shift a:

Then f ! f(x; L) so that

IX(x) = 4f
2(x; L) = 4f 2(x; L)

Z
dzu�(zjx)u(zjx); (13)

where additionally we used the normalization property of the PDF pZ(zjx). (We could
have instead tried the normalization of pX(x) over x�space, but this would not work in
implementing the variational problem (10), which must contain functionals IZ(x); IX(x)

over the same space, and IZ(x) in (12) is already over z�space.) Function f(x; L) is to be
found from the EPI solution.

It is interesting that the solution u(zjx) to extremum principle (10) will actually give an

extremum value of zero (Sec. V.F), i.e. the minimum possible, so that IZ(x) � IX(x) = 0.
Information is conserved at each end of the trajectory AB from aperture to image plane.

Finally, we require function IX(x) to be analytic about positions x centered on x = 0:

Thus, IX(x) and its derivatives must be �nite at x = 0. This makes intuitive sense, since

IX(x) represents the contribution of the aperture point x to the information about a, and

there is nothing about position x = 0 that would make it convey in�nite information, i.e.,

be a pole. (To the contrary, it will be found that IX(0) = 0:) We may note in this respect

that Fisher information is always an analytic function of the parameters [20] (speci�cally,

quadratic in x [Eqs. (35)]). But most importantly, since IX(x) = 4f 2(x; L) then f(x; L) is

itself analytic about point x = 0. This will be key to subsequently �nding f(x; L).
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D. Euler-Lagrange output

Using Eqs. (12) and (13) in principle (10) then de�nes u(zjx) as the solution to the
variational problem

IZ(x)� IX(x) =
Z
dzu�0(zjx)u0(zjx)� f 2(x; L)

Z
dzu�(zjx)u(zjx) = extrem: (14)

(after division by 4): As usual, the solution is provided by an Euler-Lagrange equation

@

@z

�
@L
@u�0

�
=
@L
@u�

, u � u(zjx); where L = u�0u0 � f 2u�u (15)

is the integrand of (14). See also [16] for a related problem using Fisher information.

Combining Eqs. (15) directly gives the di¤erential equation

u00(zjx) = �f 2(x; L)u(zjx): (16)

The primes denote derivatives @=@z: This is a stationary-state wave equation governing the

amplitude u(zjx): Note that the fully x-dependent shape of the function f 2(x; L) will later
come into play.

E. Linearity condition, and solution

Linearity u(zjx) / U(x) was derived at (8). The solution to Eq. (16) that satis�es this
is directly

u(zjx) = CU(x) exp [if(x; L)z] ; (17)

for some constant C. This may be easily veri�ed by trial substitution into (16).

Note that (17) has resulted without assuming prior knowledge of quantum properties.

Thus, its phase part f(x; L)z is not presumed to have physical signi�cance. Any such

signi�cance will have to result from the dynamics that are implied by (17).

F. Kernel k(z; x)

Eqs. (8) and (17) can be equated, giving
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u(zjx) = x0U(x)k(z; x) = CU(x) exp [if(x; L)z] : (18)

Then the kernel is known as

k(z; x) = C exp [if(x; L)z] ; (19)

for convenience absorbing a factor x�10 into C. Using (19) in (6) gives

u(z) = C

Z
dx0U(x0) exp [if(x0; L)z] : (20)

The analytic function f(x; L) is to be found. Note that once this is done, the likelihood

amplitude function u(z) is known from (20).

G. Expansion for f(x0; L)

We found in Sec. IV.C that function f(x; L) is analytic about x = 0. Also, by (1), x=L

is small. Hence, as in Sec. II.D, we can take advantage of these properties by re-expressing

f(x; L) as some function b(x=L; L): This must likewise be analytic around point x=L = 0.

Thus, over some non-trivial range of values x=L, function b(x=L; L) obeys a power series

f(x; L) � b(x=L; L) = b(0; L) + b0(0; L)(x=L) + 1
2
b00(0; L)(x=L)2 + ::: (21)

Primes denote derivatives @=@(x=L) and the zeros mean as evaluated at x=L = 0: By (1),

x=L is small, so that second- and higher-power terms in (21) are insigni�cant. The result is

f(x; L) = b0 + b1x=L; b0 � b(0; L) = const.; b1 � b0(0; L) = const. (22)

The constants b0; b1 can generally depend upon the constants �0; L and one or more universal

physical constants. Also, by (19) and (22) the kernel k(z; x) is

k(z; x) = C exp (ib0z + ib1xz=L) = C exp (ib0z) exp (ib1xz=L) (23)

Then, by (6) and (23),

u(z) exp (�ib0z) � û(z) = C
Z
dx0U(x0) exp (ib1zx

0=L) (24)
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where û(z) is simply u(z) o¤set by the linear phase �ib0z. Also, the constant C may be

found by demanding that the PDF jû(z)j2 obey normalization, given that jU(x0)j2 does as
well. Squaring and integrating out (24) in this way gives

C = (2�L)�1=2b
1=2
1 : (25)

We next evaluate the constant b0 which, from de�nition (21), is some �xed function of L.

Multiplying both sides of (24) by exp(�ib1zx=L) and integrating dz gives a shifted function
U(b0 + b1x=L); and hence a shifted PDF pX(b0 + b1x=L): This predicts that all PDFs with

the same L are universally shifted by the same amount b0:This result is inconsistent with

the system property of shift invariance previously found, and also with empirical evidence,

so that

b0 = 0; and û(z) = u(z) (26)

by (24).

For our weak amplitude function jU(x0)j << 1; and if U(x0) is now regarded as a scattering
potential, (24) determines u(z) as obeying familiar �rst Born-approximation scattering [8].

However, for purposes of analysis, we continue regarding U(x0) as a probability amplitude.

V. FINAL DE BROGLIE FOURIER FORM

A. Change of coordinate

By Sec. I.D, coordinate x is linear in the momentum �; obeying

x � (�=�0)L; dx = (L=�0) d�; (27)

provided L is large. Then by (24)-(27),

u(z) =

�
Lb1
2��20

�1=2 Z
d�U (L�=�0) exp(ib1z�=�0): (28)

Since the exponent in (28) must be unitless, b1has the unit of length�1; denoted as b1 � l�1:
Also, in (28), the argument (L�=�0) of U has the unit of position, which checks.
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B. Probability amplitude for momentum

We have yet to de�ne the required probability amplitude P (�) on the momentum (no-

tation P adapted by analogy with the lens "pupil" function in the corresponding optical

analogy). This must be proportional to U; obeying P (�) � BU (L�=�0) for some constant
B. Requiring that the PDF jP (�)j2 integrate to unity, assuming jU (L�=�0) j2 does, �xes
B =

p
L=�0: This gives

P (�) =
p
L=�0U (L�=�0) : (29)

Then (28) becomes

u(z) =

s
b1
2��0

Z
d�P (�) exp(ib1z�=�0): (30)

As another units check, each side of (30) has the same unit l�1=2 (since PDF ju(z)j2 � l�1;
and using the above unit for b1 � l�1 and that P � ��1=2).

C. Fixing b1 / �0

We note that (30) contains the particular experimental momentum value �0, and an

unidenti�ed parameter b1: With the usual aim of maximally broadening the scope of appli-

cation of a theoretical study, we ask whether �0 in (30) can be somehow cancelled, thereby

recasting it as a universal Fourier-transform result. Since �0 occurs in (30) only as ratio

b1=�0 (in two places), to attain the desired cancellation b1 must obey

b1 � �0=K; K = const., (31)

with K a new constant. In addition, (30) does not depend upon any other parameters

a; L;M of the experiment. Then this choice of b1 gives the result (30) universal applicability.

Hence, as a working hypothesis, we require such universal applicability, and let b1 have this

value. Will it lead to physically valid predictions?

D. Resulting De Broglie-Fourier representation

Using (31) in (30) gives the main result of the paper,
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u(z) =
1p
2�K

Z
d�P (�) exp (iz�=K) ; with P (�) =

1p
2�K

Z
dzu(z) exp (�iz�=K) (32)

as the direct inverse. These lack any dependence upon factors a; L or �0, thereby achieving

our goal of establishing a universal Fourier relation of quantum mechanics. They also

de�ne the unitary transformation pair we set out to �nd in Sec. III.A. Thus, transform

relations (32) have been formed as predictions of the overall approach (including the working

hypothesis of the preceding subsection). As a bonus, unitarity also implies [5,11] the validity

of the very EPI approach we used.

Of course relations (32) have also been abundantly veri�ed over the past 80 yrs, verifying

the overall calculation, with the empirically chosen value

K � ~: (33)

Eqs. (32), (33) are then the De Broglie-Fourier transform pair that is the main result of the

paper.

However, as shown below, a value K � 0 is another physically meaningful choice. This
choice will yield a particle that obeys classical mechanics. Note that the choice (33) has the

required units of momentum � length mentioned above.
In summary, if we require the result (30) to represent a universal law of quantum me-

chanics, the particular answers (31)-(33) follow. The result (32) will support both classical

and quantum descriptions of the particle, depending upon choice of the empirically de�ned

constant K.

E. de Broglie wavelength

The use of primed coordinates �0 and a pupil function P (�0) = �(�0 � �) in the �rst
Eq. (32) describes the case of a particle with de�nite x-component momentum �: The delta

function sifts out an amplitude function obeying proportionality u(z) / exp(iz�=~); this

repeats itself at points z+2�n~=�; n = 1; 2; ::: The minimal z�distance for repetition is for
n = 1. This de�nes, respectively, an x�component wavelength and its usual reciprocal-space
[8] wavenumber kx; as
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� = h=�; kx � 2�=� = �=~: (34)

The latter expression derives from the �rst. It also is one component of the usual vector

expression k = �0=~ of the de Broglie hypothesis in wavenumber space. This vector relation

may be derived in 2D, in analogous steps to the EPI approach beginning in Sec. 3 and

ending at (34). This is for the space (x;w) lateral to the imaging axis of Fig. 1, with

coordinate w (not shown) at right angles to the page.

In summary, the de Broglie wave result (32),(34) followed from the requirements of

universality preceding Eq. (31) and the periodic behavior noted above (34).

F. Resulting informations

With b1 determined by (31), and by use of (22), (26) and (33) in (13), the information at

the aperture point x is

IX(x) = 4f
2(x; L) = (~L)�2 (2�0x)2 ; with �J(x) � jU(x)j2(~L)�2 (2�0x)2 (35)

de�ning an information density by de�nition (10) of total information J: Thus, the infor-

mation density about a increases quadratically with x, as modulated by the local aperture

intensity jU(x)j2:
This has a parallel in the optical analog to Fig. 1 that we discussed: It is long known [10]

that the outer (high x) zones of a lens permit higher resolution of a source position a than do

the inner zones. By (35), �J(x) likewise tends to carry a locally higher level of information

about the value of a. Conversely, the innermost zone at x = 0 contributes only a real, DC

amount to i(z), which has zero phase and hence cannot provide phase shift information

proportional to a. This is again con�rmed by the prediction (35) that IX(0) = �J(0) = 0:

Eq. (35) gave the solution for the aperture information IX(x). What is the resulting

image information IZ(x)? From the �rst Eq. (35), and (22), (31) and (33), we obtain

IZ(x) = IX(x): Then also, by (10), I = J , i.e., both locally and (now) overall there is

conservation of information from aperture to image plane. This is also intuitively correct,

since the intervening space over path AB is free space. Note that the equality of the two

informations is the most direct way of stating the truism that position space and momentum

space contain equivalent information about the phenomenon (here, parameter a).
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It is interesting that result (35) also con�rms past results where Fig. 1 describes a

quantum scenario in particular. There [4,5] the aperture (called the �source�) information

had value J = 4 < �2 > =~2: Here, (35) gives, by use of the identity x=L = �=�0 (Sec.

I.D.(ii)), IX(x) = (2�=~)2: Next, by the material above Eq. (10), the full information

J = hIX(x)i : Thus the last two equations give

J = 4 < �2 > =~2;

con�rming the previous value for J .

G. ML solutions

The original aim of the calculation was to ML estimate position a, which is by de�nition

the a obeying pZ(y � a) � ju(y � a)j2 = max : It is most convenient to work from Eq. (24).

This and Eqs. (31),(32) give a condition on a of

����Z dxU(x) exp [iB(y � a)x]
����2 = max; B � �0=~L (36)

after a factor j exp[ib0(y � a)]j2 = 1 becomes irrelevent. In general, the solution a to (36)

depends upon the form of U(x). As examples, if U(x) is Gaussian, the ML solution is simply

a = y, the data value. Or, if U(x) = exp(ix=X) over some interval of length X; the ML

solution is a = y + (~=�0)(L=X): Notice that the units of this solution balance as those of

length l:

H. Limiting cases K

We next show that, depending upon the sizes of K and m, the EPI outputs (32), (35)

give either quantum mechanics, with well-de�ned phase information; or classical mechanics

without the phase.

1. Limit as K ! 0

The �rst Eq. (32) has an interesting limit. By inspection, for any aperture pro�le P (�);

as K ! 0 the function u(z) collapses inward, toward a delta function �(z). Essentially
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only the value z = 0 is approached, a deterministic limit. This is con�rmed by the use of

A(z) � u(z) / �(z) in de�nition (3), giving I � IZ = 1 (e.g., as easily shown in Gaussian

case u(z)). By the Cramer-Rao inequality [11],[12] e2 = 1=IZ ; the resulting mean-square

error e2 in the estimate of a approaches zero. Then, by (2), the observation y = a perfectly.

Also, use of K = 0 (replacing ~) in (35) gives IX(x) =1, meaning that the aperture plane
likewise contains perfect knowledge about a. Thus the mathematics are saying that in the

limit K ! 0 the entire trajectory of the particle from object plane to aperture plane to

image plane is deterministic, following a known trajectory. The particle acts classically,

and by pZ(z) � ju(z)j2 ! �(z) = �(y � a); the ML estimate a de�ned as maximizing
ju(y � a)j2 becomes simply y, the datum. This solution is discussed further in Sec. VI.A.

2. K taken as �nite

For K �nite, as discussed above (33) any empirical investigation of the problem would

�nd that K = ~. Using this in (32) then shows that u(z) and P (�) obey the De Broglie-

Fourier representation. Here, u(z) generally has meaningful phase. A famous exception is

as follows.

3. Limit as mass m!1

We found at (33) and (34) that the particle has an e¤ective wavelength � = 2�~=� = h=�:

Then using � = mv; v the velocity, gives � = h=mv so that, for given v; as m ! 1
the wavelength � ! 0 : Hence, the oscillations of the SWE (see (37) below) become

ever tighter, and the equation approaches being mathematically ill-posed. However, by

Ehrenfest�s theorem these oscillations can be eliminated out of an appropriate averaging

process, yielding classical mechanics. The well-known price paid is that all phase information

is lost.

In summary, a particle with very large mass will have large momentum compared to h

(or even to any �nite K), resulting in a very small wavelength and, therefore, complete loss

of phase information. Here the phase function predicted by the EPI output is ill-de�ned

and irrelevent. This is the usual de�nition of a classical particle. Hence, as m ! 1 the

quantum solution resulting from the use of K = ~ becomes e¤ectively a classical K = 0
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solution.

I. SWE

At this point we have achieved the intended goals of deriving the Born approximation

(24) and the de Broglie wave hypothesis (32)-(34). However, for completeness, we now show

how the SWE follows from the preceding. An additional physical assumption, that of energy

conservation, is now required.

The preceding EPI calculation was for the special scenario of a slit aperture U(x) at x

�xed. We now allow for a fully open aperture U(x), all x. Consequently u(z) replaces u(zjx)
in (12), with I � 4

R
dzu�0(z)u0(z), and J = 4 < �2 > =~2 from the preceding. Assume, in

addition, conservation of energy W = �2=2m + V (z); where W is a �xed energy value and

V (z) is a known potential function (not shown) in the image plane of Fig. 1. Then the new

EPI principle I�J = extremum has a Lagrangian L = 4ju0(z)j2�(8m=~2)(W�V (z))ju(z)j2;
and its Euler-Lagrange solution (15) is [4,5]

u00(z) +
2m

~2
(W � V (z))u(z) = 0: (37)

Note that the shift-invariance (4) we assumed for the system is, in fact, re�ected in this

result, which manifestly does not depend on a: This SWE has well-de�ned solutions [3] for

su¢ ciently small mass m (atomic level or less).

VI. DISCUSSION

We have shown that the ordinary statistical problem of �nding an ML estimate of a source

position a requires knowledge of the system likelihood law pY (yja) or, to foster positivity,
knowledge of its underlying amplitude law u(y � a) = u(z). The latter is estimated, via

EPI, to be the D-F transform (32) of the aperture function P (�). This and the SWE (37)

have some further important rami�cations, discussed next.
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A. Could the �hidden variables�have been known?

The entire calculation assumed that the initial conditions for the particle are unknown,

including its position and velocity at t = 0. But, in fact, physically, could the latter have

been known? We choose here the more interesting (quantum) case K = ~:

Standard deviations ��;�z are often used to measure the uncertainties in momentum

� and position z of a particle. Fourier relations (32) give rise to uncertainties ��;�z that

may be shown [21] to obey a Heisenberg uncertainty principle

���z � ~=2: (38)

This of course holds for any conjugate pair of position and momenta, e.g. in the object plane

of Fig. 1. Thus, the particle momentumM and position a there could not have been known

with arbitrary accuracy. Therefore our problem groundrules that such knowledge is to be

missing was not merely hypothetical but, actually, demanded physically. This gives deeper

meaning to the assumption of missing initial conditions. See also below.

We temporarily return to hypothetical cases where K is �nite and not necessarily of value

~: The a¤ect of mass m!1 on a �nite-K solution was taken up in Sec. V.H.3. Here we

examine the opposite limit m ! 0. At the source S, the particle momentum M is of size

M = mv; where v is its velocity. Therefore, for an uncertainty �� inM , taking di¤erentials

gives �v = ��=m:Then by (38) with ~ = K as here,

�v�z � K=2m: (39)

Thus, precise knowledge of (now) the velocity v and position z in the object plane could

likewise not have been available. In fact the use of classical mechanics requires knowledge

of velocity (rather than momentum) and position as initial conditions. In the limit m ! 0

(39) indicates errors in these initial conditions become ever larger. Therefore a classical

approach would have been ill-posed, with the resulting datum y departing from its ideal

value a by some randomly large noise amount z. As a result, for particles on the atomic

level or smaller, our classical-alternative ML alternative answer taking K = 0 in the EPI

output (Sec. V.H.1) becomes uselessly inaccurate. Only the quantum ML solution, with

K = ~, remains tenable for such particles. (The opposite case of m ! 1 was discussed in

Sec. V.H.3)
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Alternatively, the uncertainty principle (39) indicates that in cases of large or macroscopic

masses the K = 0 alternative would be useful. As was discussed in Sec. V.H.1, this is the

classical-mechanics solution to the problem.

In summary of the preceding, with large mass the classical solution K = 0 is the accurate

choice, whereas with small mass only the quantum solution, with K = ~, is the accurate

solution.

Parenthetically, we note that were the groundrules of the problem di¤erent, with PDFs

p(a); p(�) now known, they would of course have to satisfy the inequality (38). It is possible

to construct such PDFs, e.g. the well-known case [3] where both are Gaussian. However,

this de�nes a new estimation problem, with di¤erent prior knowledge than as assumed in

this paper. We do not know what the new ML answers for a and pZ(z) would be.

In Sec. I.D, even despite the knowledge of shift invariance, Noether�s theorem was not

used to imply conservation of momentum. Rather, the conservation was postulated. In [22]

the authors discuss circumstances under which known symmetry implies, via Noether, a

conservation law. These can be quite involved and generally require additional physical

assumptions. On this basis, we do not use Noether.

VII. CAPSULE SUMMARY

A full summary I.-VI is given at the outset. The following, shorter overview may be

useful: We seek to ML-estimate (Sec. I.G) the input source position a of a particle that

obeys unknown dynamics as it travels through the apparatus of Fig. 1. There is a complete

absence of prior knowledge of initial conditions (Secs. II, II.A). The only prior physical

assumption about the particle dynamics is that of conservation of momentum (Sec. I)

along path AB. Forming the ML estimate requires that the particle�s likelihood amplitude

function u(z) (Secs. II.C,D) be known; see also the General comments 1,2 at the outset

of the paper. Because the EPI principle (Secs. III,IV) maximizes the received level I of

information about a, and outputs a maximally informative u(z), EPI is chosen for this task.

Depending on the value of a free parameter K, the output u(z) is found to obey either the

Fourier representation (32) (K �nite, Secs. V.D,E,H) or Dirac �(z) behavior (K � 0; Sec.
V.H.1). These, respectively, correspond to either quantum-like or classical motion for the

particle. The particular empirical choice K � ~, Planck�s constant, in (32) makes it the fully
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quantum D-F relation we sought, with (34) now the x�component de Broglie wavelength.
Geometrical far-�eld assumptions (1) are extensively used, as are assumptions of analyticity

and a small-amplitude mathematical approximation (Sec. I.A).

APPENDIX A: FISHER CHANNEL CAPACITY

Consider the shift-invariant Fisher channel-capacity measure

I � 4
Z
dxu�0u0; u0 � du=dx (A1)

in a space x: We show that it is a channel capacity, i.e. an upper bound

I � If (A2)

to the Fisher information

If �
Z
dxp02=p; p � u�u: (A3)

First, since p is real, p0 = u�u0 + u�0u � 2Re(u�u0) is likewise real. From the latter and

the far-right (A3)

p02=p =
[2Re(u�u0)]2

u�u
: (A4)

Then, the theorem (A2) will follow if we can show that, at each x, the integrand of (A1),

and (A4), obey

u�0u0 � [Re(u�u0)]2

u�u
(A5)

(the factors 4 cancelling out). Cross-multiplying, (A5) is valid if

ju�u0j2 � [Re(u�u0)]2: (A6)

But, by de�nition of the modulus-square, ju�u0j2 = [Re(u�u0)]2 + [Im(u�u0)]2: Since both

these right-hand terms are positive, (A6) follows. QED.

But, can the Fisher channel capacity (A1) be physically realized? That is, can form (A1)

for the channel capacity equal the If for a physically meaningful scenario?
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APPENDIX B: REALIZATION OF FISHER CHANNEL CAPACITY

The concept of Fisher channel capacity would have limited real import if it could not

be realized by physical systems. We show here that EPI solutions can, in fact, physically

achieve their channel capacities.

Generally let the particle amplitude function u(x) � q1(x) + iq2(x); where q; q2 are real.
Any u(x) achieving channel capacity (A1) for its If is one where the real and imaginary parts

q1(x); q2(x) do not overlap in x. (An example is separated triangle functions q1(x); q2(x):)

The reader can easily verify this, by using this separated u(x) in (A3), giving

If = 4

Z
dx(q021 + q

02
2 ) = 4

Z
dxu�0u0: (B1)

All cross terms have dropped out of the latter, because of the non-overlap property. QED.

However, does such a non-overlapping amplitude distribution satisfy the requirements

of (say) quantum mechanics? Consider a generally time-dependent wave function 	(x; t)

solution of the time-varying SWE. The rules of quantum mechanics [3] require that any

such wave function 	(x; t) have continuously varying amplitude and phase at each x and t.

This should then hold as well for its value 	(x; 0), where 	(x; 0) � u(x) � q1(x) + iq2(x)

preceding. Amplitude 	(x; 0) is, in fact, an input boundary-value condition to be imposed

upon the SWE [3]. But, for spatially non-overlapping functions q1(x); q2(x); the phase �(x)

in particular, cannot be everywhere continuous. For example, let the domain of the real

part q1(x) be all x � 0; and that of the imaginary part q2(x) be x � 0: Then the phase

�(x) � tan�1[q2(x)=q1(x)] = 0 for x < 0; but is �=2 for x > 0; with a discontinuity at

x = 0 (where the two separated regions touch). The requirement of continuity is therefore

violated. Can it somehow be retrieved?

We take recourse in the concept of a �generalized function�[23]. In particular, slightly

blur each of q1(x); q2(x) by convolution with a Gaussian (say) of variance �2: This has the

physical signi�cance of a slight coarse graining operation due to increased disorder. After

the convolution, the two amplitude functions slightly overlap, so that the phase is now well

de�ned at all x, including x = 0. However, since the two amplitude functions are no longer

strictly separated, (B1) is no longer strictly obeyed. The overlap gives a small contribution

to a cross term. Hence, we simply use cases where �2 is nonzero, but small, i.e. �2 ! 0.

This now de�nes a pair of generalized amplitude functions q1(x); q2(x) with the required

33



properties in the limit. QED
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