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ABSTRACT OF THE THESIS

Numerical Analysis of Breakup of Electrified Jets

By

Kaartikey Misra

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Professor Manuel Gamero-Castaño, Chair

The natural instability and breakup of electrified cone jets leads to the formation of charged

droplets with size and charge distribution of the droplets governed by the physical properties

and electrospraying conditions under consideration. This thesis develops a leaky-dielectric

model to study the axisymmetric breakup of an electrified jet, using the phase field method

to treat interfacial phenomena. The model is used to analyze the breakup in a wide range

of the Taylor number (Γ), the Ohnesorge number (Oh) and the wavenumber relevant to

electrosprays operating in the cone-jet mode. The phase field technique accurately captures

the behavior of the jet after pinch-off and predicts the formation of primary and satellite

droplets. The numerical results are compared with existing experimental and numerical

studies, extending them to account for the formation of sub-satellite droplets. It is found that

for highly viscous jets, Oh≫ 1, the number of sub-satellite droplets generated increases with

the Taylor number when compared to low viscous jets, hence widening the size distribution of

droplets. At fixed Γ and Oh the primary droplets are charged to an approximately constant

ratio of the Rayleigh charge limit, regardless of the wave number. Furthermore, the primary

droplets are charged below the Rayleigh limit for Γ ≲ 1.5, and charged above the Rayleigh

limit when Γ ≳ 1.5. Thus, most primary droplets are expected to be unstable at Taylor

numbers exceeding 1.5.
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Chapter 1

Introduction

1.1 Overview

Electrosprays operating in the cone-jet mode [1, 2, 3] are characterized by the emission of

a stationary and long jet from the vertex of a liquid meniscus, resulting from the interplay

between an imposed electric field, the fluid dynamics of the liquid, and its surface tension.

The natural instability of the jet is suppressed by the accelerating effect of the electric

field, but once the latter becomes sufficiently weak away from the vertex, the jet becomes

unstable and breaks into charged droplets [4, 5]. The axisymmetric breakup of the stationary

jet produces droplets characterized by a narrow distribution of diameters with an average

that depends on the physical properties of the liquid and its flow rate. Figure 1.1 depicts this

description. Various technological applications benefit from such fine sprays (for a detailed

review see Gañán-Calvo et al. [6], Rosell-Llompart et al. [7]), making the study of the breakup

not only of fundamental but also of practical interest.

Depending on the properties of the working fluid, the radius of the cone-jets can vary any-

where from 5− 10µm down to 10nm. Therefore, a direct experimental measurement for the
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Figure 1.1: Schematic depicting electrospray operating in cone-jet mode

size distribution of charged droplets is usually not possible. Moreover, accurately simulating

the entire cone jet electrospray process (i.e. formation of Taylor cone, ejection of jet followed

by the formation of charged droplets) is usually cost consuming due to the different orders of

magnitude of length scale involved in the physics. Therefore, the problem of destabilization

and breakup of electrified jets is usually studied either using linear stability analysis (small

deformation), or a non-linear numerical approach (large deformation).

1.2 Background

Linear stability analyses consider an infinitely long cylindrical jet of radius Rj, and im-

pose a sinusoidal perturbation on the surface so that its position can be defined as R =

Rj(1 + ϵest+ikz/Rj), where s is the growth rate of the perturbation, k its specified wavenum-

ber, and ϵ an arbitrarily small number. The basic goal of the analysis is to find the range of

wavenumbers for which the growth rate is positive, i.e. which make the jet unstable. Fur-

thermore the wavenumber with fastest growth rate yields the diameter of the droplet most
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likely to be produced by the breakup, or modal droplet. Basset [8] analyzed the breakup

of an equipotential and inviscid jet subjected to axi-symmetric perturbations. Melcher [9]

extended Basset’s analysis by including both axisymmetric and non-axisymmetric perturba-

tions. Saville [10] included viscosity into the equipotential problem, and found that when

the viscosity is sufficiently high, the axisymmetric instability modes are damped and non-

axisymmetric modes dominate, leading to jet whipping [10, 11]. Mestel [12, 13] relaxed the

assumption of equipotential breakup and investigated the effect of surface charge and tan-

gential electrical stresses. López-Herrera et al. [14] used linear stability analysis to study the

deformation and breakup of jets with finite electrical conductivity, and the role of a down-

stream electrode. Wang [15] studied the breakup of jets with finite electrical conductivity

using both linear stability and non-linear analysis for jets surrounded by another viscous

medium in the Stokes limit.

Linear stability analysis can only probe the initial stages of the breakup, and the study

of phenomena dependent on large deformation such as the generation of satellite droplets

requires the use of non-linear numerical calculations. Setiawan and Heister [16] formulated

a non-linear boundary element algorithm (BEM) to study the axisymmetric breakup of an

inviscid and equipotential jet. They considered high electrification levels and observed the

formation of satellite droplets along with primary droplets. They calculated pinch-off times

and the sizes of primary and satellite droplets. López-Herrera et al. [17] extended the model

of Lee [18] to study the breakup of a viscous and equipotential jet at low electrification levels

and low-moderate viscosities. They calculated the sizes and charges of the primary and

satellite droplets for different wavenumbers. The numerical results were found to be in good

agreement with experimental data [1]. Collins et al. [19] studied the equipotential breakup of

a jet subjected to a radial electric field, for wide ranges of electrification and viscosity levels.

They showed that as the level of electrification increases, the size of the satellite droplet

increases monotonically, thereby reducing the size of primary droplets. They also showed

that for a fixed electrification level, the size of satellite droplets decreases as the viscosity
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increases, a trend also observed in the experiments of López-Herrera and Gañán-Calvo [1].

For high electrification, the charges carried by primary and satellite droplets can exceed the

Rayleigh [20] stability limit, leading to the possibility of the subsequent breakup of these

droplets. Collins et al. [19] also showed that satellite droplets are produced for electrified jet’s

in the Stoke’s limit. This feature is not observed in uncharged jets, but has been reported

when the jet is surrounded by a viscous medium [21, 22]. Wang and Papageorgiou [23]

studied the non-linear breakup of a perfect conducting viscous thread surrounded by another

viscous medium at zero Reynolds number. Nie et al. [24] developed a leaky-dielectric electro-

hydrodynamic (EHD) model to study the role of different charge relaxation mechanisms on

the pinch-off and formation of satellite droplets. A distinction must be made between the

implementation of the equipotential condition by several authors. It is always possible to

impose a constant potential on the surface of the jet, e.g. as in [19]. In this case the potential

field inside the jet is constant and does not need to be resolved, but the total charge in the

simulated section of the jet is not conserved. On the other hand, one can ensure quasi-

equipotentiality by including a conservation of charge equation in the model, imposing an

electric relaxation time much smaller than the breakup time, and solving for the potential

inside the jet. This approach ensures conservation of charge and therefore is more physical.

López-Herrera and Gañán-Calvo [1] and Li et al. [25] discuss in detail these two approaches.

Few non-linear models utilize the Volume of Fluid or the Level Set methods to study the

deformation and breakup of electrified jets. These phase field methods are useful to repro-

duce the formation of additional sub-satellite droplets after the first pinch-off. Eck et al. [26]

developed a phase field model for electrowetting. They coupled the Navier-Stokes equation

and electrostatic charge transport equations with the Cahn-Hilliard phase field equations.

For the EHD system in two and three dimensions, they proved the existence of weak solu-

tions for the governing dynamics of electrowetting. Lakdawala et al. [27] formulated a dual

grid level set method to study the breakup of conducting liquid threads of low viscosity

and electrification level. They showed that, for sufficiently long perturbations, sub-satellite
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droplets may also form along with the primary and satellite droplets. López-Herrera et al.

[28] developed a volume of fluid model to study the role of electrokinetic effects on the de-

formation and breakup of conducting jets when the breakup time is comparable or smaller

than the diffusion time scale.

1.3 Motivation

Existing non-linear analyses do not capture the liquid threads formed after pinch-off and

which may generate sub-satellite droplets [19, 23, 29, 30]. Moreover, most existing non-

linear analysis have imposed the constant-potential condition and usually study jets under

low or moderate levels of electrification. Motivated by this and the recent experimental

studies of cone-jets of liquids with high electrical conductivities [31, 32], the present article

develops a phase field, leaky-dielectric EHD model to study the axisymmetric breakup of an

electrified jet. The leaky dielectric model [33] uses a simplified electrokinetic approach that

assumes a complete relaxation of free charges at the interface of the free surface, leading

to a uniform electrical conductivity within the liquid bulk. Therefore, a key assumption

made in the leaky dielectric model is the hydrodynamic time scales are much larger than the

electric relaxation time. The model does not consider any potential variation in electrical

conductivity within the liquid (which may be relevant at the pinch-off region of the jet)

due to the leaky-dielectric nature of the model. The model does not consider the effect of

an imposed axial electric field, which is negligible in the breakup region of most cone-jets

[1, 17, 34, 35], and is not applicable to sinuous or whipping instabilities and ramified jet

breakups [6, 36].

The remainder of the thesis is organized as follows: Chapter 2 presents the existing linear

stability analysis results for electrified jet followed by the description of the non-linear model

developed along with the numerical procedure, finally we establish the connection between
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the sets of dimensionless numbers parametrizing the breakup and cone-jets. In Chapter 3 the

numerical solution is validated with existing experimental and numerical results. In Chapter

4 the breakup of electrified jets is investigated for selected wavenumbers and broad ranges

of the Ohnesorge and Taylor numbers. Concluding remarks and recommendations for the

future work are presented in Chapter 5.
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Chapter 2

Theoretical Analysis and Numerical

Model

2.1 Linear Stability Analysis

As discussed in Chapter 1, linear stability analysis of electrified jets can probe the initial

deformation stages of the jet, providing a range of wave-numbers (k) for which the jet is

unstable (and the associated growth-rates). This information is valuable as the analysis can

also predict the critical wavenumber (k∗) (hence the modal radius) of droplets with fastest

growth rate (minimum breakup-time).

Here, we will summarize the linear stability analysis of viscous jets performed by Chan-

drasekhar [37] which was extended by Gamero-Castaño and Hurby [5] to account for surface

charge, leading to electrostatic stresses. A cylindrical jet of radius Rj carrying a surface

charge density ρso is slightly perturbed such that it’s shape is given by:

S(z, t) = Rj(1 + ϵest+ikz) (2.1)

7



The jet is assumed to be perfectly conducting, therefore, the surface of the jet can be

approximated as an equipotential surface (i.e. no volumetric charge and electric field within

the bulk of the jet). Therefore, the pressure (p), velocity (ur, uz), surface charge (ρs) and

electric potential (V ) distribution can be written as:

p = po + ϵp1(r)e
st+ikz +O(ϵ2)

ur = ϵu1r(r)e
st+ikz +O(ϵ2)

uz = ϵu1z(r)e
st+ikz +O(ϵ2)

ρs = ρso + ϵρs1e
st+ikz +O(ϵ2)

V = Vo(r) + ϵV1(r)e
st+ikz +O(ϵ2)

(2.2)

The continuity, momentum and Laplace equation for electrostatics accounting for the first-

order term can be written as:

∂u1r
∂r

+
∂u1z
∂z

= 0

∂u1r
∂t

= −1

ρ

∂p1
∂r

+ ν(
1

r

∂

∂r
(r
∂u1r
∂r

) +
∂2u1r
∂z2

)

∂u1z
∂t

= −1

ρ

∂p1
∂z

+ ν(
1

r

∂

∂r
(r
∂u1z
∂r

) +
∂2u1z
∂z2

)

1

r

∂

∂r
(r
∂V

∂r
) +

∂2V

∂z2
= 0

(2.3)

The jet surface is subjected to kinematic boundary condition for the radial velocity:

ur(Rj) = ϵu1r(Rj)e
st+ikz =

D

Dt
S(z, t) = ϵRjse

st+ikz +O(ϵ2) (2.4)

The tangential and normal stress balance at the jet interface (r = S(z, t)) contribute to two
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additional boundary conditions:

νρ(
∂ur
∂z

+
∂uz
∂r

) = 0

p+
ρ2s
2εo

− 2νρ
∂ur
∂r

= γ(
1

R1

+
1

R2

)

(2.5)

Since a perfectly conducting jet is considered, the tangential electrostatic stresses are absent

as reflected in equation 2.5. Imposing a constant potential (zero for reference) at the jet

surface gives:

V (Rj) = 0 (2.6)

The solutions to continuity and momentum equations in 2.3 are given by (see Chandrasekhar

[37]):

p1 = AρRjIo(kr) (2.7)

u1r(r) = k[BI1(r

√
k2 +

s

ν
)− ARj

s
I1(kr)] (2.8)

u1z(r) = i[B

√
k2 +

s

ν
Io(r

√
k2 +

s

ν
)− ARjk

s
Io(kr)] (2.9)

In is the modified Bessel function of first kind with order n, A and B are constants of

integration. For the Laplace equation of electric potential, Vo is obtained by the potential

variation for a perfectly conducting cylinder and imposing zero potential on jet surface, while

V1(r) becomes the solution of Bessel equation (Gamero-Castaño and Hurby [5], Saville [10]):

9



V (r) =
ρso
εo
ln(

r

Rj

) + ϵ
ρso

Ko(kRj)εo
Ko(kr)e

st+ikz +O(ϵ2) (2.10)

Kn is the modified Bessel function of second kind with order n. From the electric potential

solution, the volumetric charge density can be solved by using the condition that, for a

cylindrical jet, ρs = −εo ∂V∂r |r=Rj
:

ρs = ρso(1− ε[1 +
kRjK

′
o(kRj)

Ko(kRj)
]est+ikz) +O(ϵ2) (2.11)

Using the solution for p, ur and uz for the tangential and normal stress balance (equation

2.5) we arrive at:

iϵ[BI1(Rj(2k
2 +

s

ν
)

√
k2 +

s

ν
)− 2

ARjk
2

s
I1(kRj)]e

st+ikz +O(ϵ2) = 0 (2.12)

ϵ[AρRjIo(kRj) +
ρsoρs1
εo

− 2νρk[B

√
k2 +

s

ν
Io(Rj

√
k2 +

s

ν
)− ARjk

s
Io(kRj)]

+(1− (kR2
j ))

γ

Rj

]est+ikz + (po +
ρ2so
2εo

− γ

Rj

) +O(ϵ2) = 0

(2.13)

Finally using the solutions given in equation (2.6), (2.7) and (2.8), the kinematic boundary

condition for the velocity along the radial direction can be simplified:

εk(BI1(Rj

√
k2 +

s

ν
)− ARj

s
I1(kRj)) = ϵRjse

st+ikz +O(ϵ2) (2.14)

Finally, the set of equations (2.11, 2.12, 2.13 and 2.14) can be used to eliminate A, B, ρs1, to

obtain the growth rate s as a function of wavenumber k. Using the definition y = Rj

√
k2 + s

ν

and x = kRj, the growth rate can be estimated from (Gamero-Castaño and Hurby [5]):

sRj

ν
= y2 − x2 (2.15)
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Figure 2.1: Linear stability analysis trends for the growth rate (s) with dimensionless wave-
number kRj for three different viscosity levels Oh2 = 0.1, 1, 10 and under different levels of
electrification Γ = 0, 0.3, 0.6 and 0.9

Oh2[2x2(x2 + y2)
I

′
1(x)

Io(x)
[1− 2xy

x2 + y2
I1(x)I

′
1(y)

I
′
1(x)I1(y)

]− (x4 − y4)] =

x(1− x2)
I1(x)

Io(x)
− Γ

xI1(x)

Io(x)
[1 +

xK
′
o(x)

Ko(x)
]

(2.16)

The Ohnesorge number Oh = µ/
√
γρRj is the ratio of between viscous time scale and inertial

time scale. The Taylor umber Γ = εoE
2
noRj/γ is the ratio between the normal electrostatic

stress to the surface tension stress, where Eno is the outward normal electric field on the

surface of the jet.

Figure 2.1 depicts the trends for growth rate for perfectly conducting jet as a function of the

wavenumbers. For uncharged jets, Γ = 0, the maximum unstable wavenumber corresponds
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to 1. Moreover, with increase in the electrification level of the jets, the jets are unstable over

a wider range of wavenumbers, therefore promoting smaller droplet size distributions. Linear

stability analysis also provides important detail about the maximum growth rate for a given

Oh and Γ numbers, therefore, predicting the size of the droplet most likely to result from the

natural breakup of the charged jet. The wavenumbers associated with maximum growth rate

would be termed as critical wavenumbers (k∗). Highly viscous jets have much smaller critical

wavenumbers when compared to jets with low viscous levels, therefore, suggesting the average

size of droplets in highly viscous jets would be much larger than the droplets produced at

low viscosity levels (considering same electrification level). Moreover, as the electrification

level of the jet increases, the critical wavenumber also becomes larger, suggesting that the

average size of droplets would be much smaller than uncharged jets. Chapter 4 will present

an in-depth analysis of the critical wavenumbers and their comparison with the non-linear

numerical model developed in the current thesis.

2.2 Non-Linear Model Formulation

For the numerical calculations, we assume a section of an infinitely long jet subjected to

periodic perturbations. The rationale of using this simplified assumption is that since we

consider only a section of real cone-jet, we use a periodic disturbance to a section of an

infinitely long hypothetical jet to study the characteristics and dynamics of the breakup of

the jet and formation of droplets (see Collins et al. [19]). Figure 2.2 depicts the schematic of

the problem, modeled in cylindrical {z, r} coordinates. The domain contains a liquid jet of

length λ (Fluid 2), separated from a surrounding liquid (Fluid 1) by an interface r = S(z, t).

Fluid 1 is further enclosed by a cylindrical electrode of radius Re. In its unperturbed state

the jet has a radius Rj and a net charge q distributed homogeneously on its surface, inducing

a normal electric field Eno
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Figure 2.2: Schematic of the problem and computational domain.

Eno =
q

2πε0Rjλ
. (2.17)

To study the stability of the system a small sinusoidal perturbation is added to the position

of the interface

S(z, 0) = Rj

(
1 + Acos

kz

Rj

)
, k =

2πRj

λ
(2.18)

In the numerical simulations we use A = 0.015 and Re = 12Rj. The relevant physical

properties of the fluids are the electrical conductivity Ki, relative permittivity εi, viscosity

µi, and density ρi, as well as the surface tension γ of the interface. The subscript i indicates

either Fluid 1 or 2.

The interface between the jet and the outer medium is modeled as a diffuse interface using
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the phase field method [38]. A continuous phase variable ϕ is defined throughout the domain,

varying from -1 to 1 between the bulks of Fluid 1 and Fluid 2 respectively, and fulfilling the

Cahn-Hilliard equation [38, 39, 40]. The phase variable changes rapidly across the narrow,

yet finite, thickness of the diffuse interface, so that the surface where ϕ = 0 defines the mean

interface S(z, t). The physical properties are defined as continuous functions of ϕ throughout

the domain. In particular, the density, the viscosity and the relative electrical permittivity

are defined as the weighted arithmetic mean of ϕ, whereas the electrical conductivity is

defined as its weighted harmonic mean [41, 42, 43]:

ρ = ρ1(
1− ϕ

2
) + ρ2(

1 + ϕ

2
), µ = µ1(

1− ϕ

2
) + µ2(

1 + ϕ

2
), (2.19)

ε = ε1(
1− ϕ

2
) + ε2(

1 + ϕ

2
),

1

K
=

1

K1

(
1− ϕ

2
) +

1

K2

(
1 + ϕ

2
). (2.20)

Fluid 1 consists of vacuum space, i.e. µ1 and ρ1 are zero while ε1 = 1; we set its electrical

conductivity to a very small value, K1 = 10−12S/m. The model solves for the velocity u,

pressure p, and volumetric charge ρe, the electric potential V (the electric field is simply

E = −∇V ), and the phase field variable ϕ as functions of position and time. These field

variables fulfill the equations of conservation of mass, momentum and charge, the Poisson

equation, and the Cahn-Hilliard equation. They are written in dimensionless form using

lc = Rj, tc =
√
ρ2R3

j/γ, vc = lc/tc, pc = ρ2v
2
c , Ec = Eno, and ρe,c = ε0Eno/Rj as the

characteristic scales for length, time, velocity, pressure, electric field and volumetric charge

respectively:

∇ · u = 0, (2.21)
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∂( ρ
ρ2
u)

∂t
+∇ · ( ρ

ρ2
uu) = −∇p+Oh∇ · µ

µ2

(∇u+∇uT )

+ΓFes + Fst, (2.22)

∂ρe
∂t

+∇ · ρeu =
1

Πt

∇ · K
K2

E, (2.23)

∇2V +∇V ·∇ε = −ρe, (2.24)

∂ϕ

∂t
+ u ·∇ϕ =

1

Pe
∇2ψ, ψ =

1

ξ
(ϕ2 − 1)ϕ− ξ∇2ϕ, (2.25)

where Fes is the electric body force [44]

Fes = ∇ · Te = ∇ · ε(EE − 1

2
I|E|2) = ρeE − 1

2
∇εE ·E, (2.26)

and Fst is the surface tension body force [39, 40]

Fst = ψ∇ϕ. (2.27)

ξ in the Cahn-Hilliard equation (2.25) is the dimensionless interface thickness parameter,

which provides a measure of the sharpness of the interface. In the sharp interface limit, the

diffuse interface thickness goes to zero. In practice, the phase variable and the velocity are

independent of the thickness parameter when the latter is sufficiently small, ξ ≲ 0.01− 0.03

[39].

Equations (2.21)-(2.27) include five dimensionless numbers: Oh, Γ, Πt, Pe and the relative

permittivity of the jet ε2. The Ohnesorge number is the ratio between the viscous time scale
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tµ = µ2Rj/γ, and the characteristic time scale tc

Oh =
µ2√
γρ2Rj

, (2.28)

and measures the relative importance of viscous and capillary stresses. The Taylor number

measures the relative importance between the electrostatic and capillary stresses

Γ =
εoE

2
noRj

γ
. (2.29)

Γ = 2 indicates that the capillary and electrostatic stresses fully balance each other in the

baseline jet, i.e. the pressure jump across the jet’s surface is zero. Πt is the ratio between

the characteristic time scale and the electrical relaxation time of Fluid 2

Πt =
te
tc

=
εo/K2√
ρ2R3

j/γ
. (2.30)

Πt is indicative of the speed with which the charge in the bulk of Fluid 2 migrates to the

surface as the jet deforms. Finally, the Peclet number measures the advection rate to the

diffusion rate in the Cahn-Hilliard equation:

Pe =
R3

j

ςγtc
. (2.31)

ς is the mobility parameter which we treat as a constant, such that for all the numerical

cases considered in the current study ς = (Rjξ)
2/pctc [45, 46]. Therefore, alternatively we

can define Pe = 1/ξ2.

The problem is axisymmetric and since we consider an infinitely long jet, we apply periodic

boundary conditions at z = 0 and z = λ. The boundary conditions for the electrical,
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hydrodynamic and phase field problems are:

ez ·E(r, 0, t) = 0, ez ·E(r, λ, t) = 0, V (Re, z, t) = 0, (2.32)

ez · u(r, 0, t) = 0, ez · u(r, λ, t) = 0, u(Re, z, t) = 0 (2.33)

∂(er · u(r, 0, t))
∂z

= 0,
∂(er · u(r, λ, t))

∂z
= 0, (2.34)

ez ·∇ψ = ez ·∇ϕ = 0 at z = 0, λ, er ·∇ψ = er ·∇ϕ = 0, at r = 0, (2.35)

Along the symmetry axis (r = 0) the boundary conditions are:

er · u(0, z, t) =
∂(ez · u(0, z, t))

∂r
= 0, er ·E = 0, er ·∇ψ = er ·∇ϕ = 0 (2.36)

er and ez represent the unit vectors in the radial and the axial directions.

We solve the electro-hydrodynamic and phase field equations using the commercial COM-

SOL Multiphysics software. We use the built-in laminar flow, electrostatics and phase field

interface, which uses a finite element solver in the weak form representation. The volumet-

ric charge conservation equation cannot be incorporated with built-in interfaces, therefore,

we manually define a weak form charge conservation equation using PDE interface. Addi-

tionally, we include the electrostatic (Fes) and surface tension (Fst) volumetric forces in the

momentum equation as forcing terms. The equations are solved in COMSOL’s weak formu-
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lation framework. The phase variable ϕ is discretized using a cubic-order Lagrange element;

u, V and ρe are discretized using quadratic-order Lagrange elements; and p is discretized

using a linear Lagrange element. We use the parallel sparse solver MUMPS for marching

the solution in time. MUMPS uses a second-order backward differential formulation scheme

with variable time step. The time stepping is computed using the Courant–Friedrichs–Lewy

condition. When needed (e.g. to analyze the results), the position of the surface is computed

as the loci where ϕ = 0 by interpolation. For spatial discretization we use a triangular grid

with grid size h.

Initially, a homogeneous volumetric charge ρeo = 2 in Fluid 2 is allowed to relax to the

perturbed interface (2.18) by only solving the electric problem (u ≡ 0). Once the charge

is relaxed, the full set of equations is solved yielding the evolution of the jet and eventual

breakup into droplets. The time-dependent simulations are solved using a parallel sparse

direct solver, MUMPS with Backward Differential Formulation (BDF) for running the time

stepping. In all simulations we use uniform meshing for the jet with node spacing h, such

that 1/h = 33. The thickness parameter for the phase field model is set such that ξ = 0.5h.

We have verified that for ξ = 1/100 and ξ = 1/66, the numerical results are independent of

the grid size. The simulations are done at fixed values of Πt, Pe and ε2, and varying the

Taylor number, the Ohnesorge number, and the wavenumber to study the effects of these

parameters. We set Πt = 0.02 and ε2 = 12.2, which are the values associated with the

ionic liquid EMI-Im and whose cone-jets have been characterized in detail [31]; the small

Πt value is typical of cone-jets of highly conducting liquids, suggesting that under these

electrospraying conditions the charge in the bulk rapidly relaxes to the surface and the

breakup is quasi-equipotential. We set Pe = 4356, which is equivalent to using a thickness

parameter ξ = 1/66. In Appendix A, we validate conservation of charge within the simulation

domain while letting the jet deform and break into droplets. The maximum variation is

within 1%-1.7% of the total charge.
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2.3 Connection Between the BreakupModel and Cone-

Jets of Highly Conducting Liquids

The solution of the breakup model is a function of Γ, Oh and Πt. In order to apply the

model to electrosprays, it is useful to express these dimensionless numbers in terms of those

commonly used in the parametrization of cone-jets, namely the dimensionless flow rate ΠQ

and the electric Reynolds number ReK :

ΠQ =
ρ2K2Q

γε0
, (2.37)

ReK =

(
ρ2εoγ

2

µ3
2K2

)1/3

. (2.38)

ReK is a grouping of physical properties, while ΠQ also contains the flow rate Q. Both sets

of dimensionless numbers can be related using well-established scaling laws for the electric

current I of a cone-jet and the radius of the jet at the breakup [6]

I ∼= α (γK2Q)
1/2 = α

(
ε0γ

2

ρ2

)1/2

ΠQ
1/2, (2.39)

RJ
∼= β

(
ρ2εoQ

3

γK2

)1/6

= β
µ2
2

ρ2γ
ReK

2ΠQ
1/2, (2.40)

and by noting that the dominant mechanism for charge transport in the jet is convection

of the surface charge σ, which makes it possible to estimate the electric field normal to the

surface of the jet

Eno =
σ

εo
=

RJI

2εoQ
∼=
αβ

2

ρ
1/2
2 γ

εo1/2µ2

ReK
−1. (2.41)
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The factors α and β are the dimensionless constants for the current and radius of the cone

jet, respectively, which have been shown to be relatively insensitive to the operational con-

ditions of electrosprays in the cone-jet mode (see for example [6]). The factor α is easily

computed from experimental data: α = 2.6 fits well data for many liquids in a wide range of

operational conditions [6], and has been reproduced by numerical models [47]. The factor β

is more difficult to obtain, because it requires measuring radii of jets that often are submi-

crometric. Recently, values for highly conducting liquids have been inferred [31, 32] using an

experimental technique developed by Gamero-Castaño [48]. For example, 0.27 ≤ β ≤ 0.31

in cone-jets of EMI-Im in the current range 230 nA ≤ I ≤ 450 nA, at 21 oC emitter tem-

perature [31]. Equations (2.28) - (2.30), (2.40) and (2.41) yield the relationship between the

two sets of dimensionless numbers:

Γ ∼=
α2β3

4
Π

1/2
Q , (2.42)

Oh ∼=
(
βΠ

1/2
Q Re2K

)−1/2

(2.43)

Πt =
(
βΠ

1/2
Q

)−3/2

, (2.44)

making it possible to estimate the ranges of Γ, Oh and Πt of cone-jets.
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Chapter 3

Model Validation

We validate the phase-field model with the numerical results and experiments reported by

López-Herrera and Gañán-Calvo [1]. These authors measure the sizes and charges of pri-

mary and satellite droplets resulting from imposed axisymmetric perturbations with different

wavenumbers, 0.5 < k < 0.9, at moderate and small Taylor and Ohnesorge numbers, Γ ≤ 0.9

and Oh ≤ 0.271, and nearly equipotential conditions (Πt ∼ 3× 10−5).

Figure 3.1 shows the solution of our model and the comparison with [1], for Oh = 0.079 and

Γ = 0.9. Throughout the remainder of the thesis, we use the following nomenclature for the

droplets: primary droplet, PD, refers to the larger droplets formed at z = 0 and z = λ;

satellite droplet SD refers to the droplet that would contain the fluid and charge separated

from the primary droplets by the initial pinch-off; this section of fluid may split into two or

more droplets if there is a second pinch-off, producing a larger satellite droplet centered at

z = λ/2 and referred to as S, and smaller sub-satellite droplets of decreasing size referred to

as S1, S2 ... formed between the PD and the S droplets.

Figure 3.1(a) shows the evolution of the jet for k = 0.7, leading to the formation of a satellite

droplet in addition to the primary droplet. The shape of the satellite droplet oscillates due
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Figure 3.1: a) Evolution of the jet for Oh = 0.079, Γ = 0.9 and k = 0.7, the axial axis is
normalized by λ; b) radii of primary and satellite droplets, comparison between the solution
of the phase field model (PF) and the experimental and numerical data (LHGC) of López-
Herrera and Gañán-Calvo [1] for Oh = 0.079, Γ = 0.9; c) charge of primary droplets; and
d) charge of satellite droplets. Charges are normalized with the charge of the droplet at the
Rayleigh limit.

22



to the slow viscous dissipation of its internal flow. Figure 3.1(b) compares the radii of

the primary and satellite droplets. The radius Rd of a droplet is deduced from its volume

right after pinch-off. The agreement between our calculations and the experiments and

calculations of López-Herrera and Gañán-Calvo [1] is excellent. As the wavenumber increases

the sizes of the primary and satellite droplets decrease monotonically, a trivial trend resulting

from the volume of the jet yielding both droplets, 2π2R2
j/k, and the volume of the satellite

being a small fraction of it. Figures 3.1(c) and 3.1(d) compare the charge of the primary

and satellite droplets expressed as a fraction of the Rayleigh limit,

QRay = 8π
√
εoγR3

d. (3.1)

When the charge of a droplet is above the Rayleigh limit, the droplet becomes unstable and

fragments into smaller droplets. The primary droplet is charged to a nearly constant fraction

of the Rayleigh limit regardless of the wavenumber, while in the case of the satellite droplet

this ratio increases modestly for decreasing wavenumber. Collins et al. [19] also found this

trend in their equipotential study. Experimental images by López-Herrera and Gañán-Calvo

[1] (see figure 9 in [1]) depicts how the primary droplet is much more radially elongated as

the electrification level increases for the same viscosity level, a trend also observed in the

numerical simulations. The thread connected to the primary droplet would subsequently

undergo pinch-off forming the satellite droplet.

Figure 3.2 reproduces the analysis in Fig. 3.1 under more viscous conditions, Oh = 0.271,

and equal electrification level, Γ = 0.9. Figure 3.2(a) shows that after the initial pinch-off

separating the primary droplet and the satellite droplet, the retracting threads connected to

the latter undergo a subsequent pinch-off that forms sub-satellite droplets. We observe this

for all wavenumbers considered, 0.55 ≤ k ≤ 0.8. Figure 3.2(b) compares the radii of PD

and SD droplets. There is again excellent agreement between the phase field model and [1].

Moreover, the size of the SD droplets is slightly smaller than in the less viscous breakup.
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Figure 3.2: a) Evolution of the jet for Oh = 0.271, Γ = 0.9 and k = 0.7, the axial axis is
normalized by λ; b) radii of primary and satellite droplets, comparison between the solution
of the phase field model (PF) and the experimental and numerical data (LHGC) of López-
Herrera and Gañán-Calvo [1] for Oh = 0.271, Γ = 0.9; c) charge of primary droplets (PD); d)
charge of ”Satellite Droplet” SD; (e) radius of the satellite (S) and sub-satellite (S1) droplets;
and (f) charge of the satellite (S) and sub-satellite (S1) droplets. Charges are normalized
with the charge of the droplet at the Rayleigh limit.
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Figure 3.3: Experimental images obtained by López-Herrera and Gañán-Calvo [1] for Oh =
0.271 and Γ = 0.9 showing (a) The primary and satellite droplets; (b) 1-4 different stages of
the breakup of satellite droplet ”SD” (figure reproduced with permission, © 2004 Cambridge
University Press)

Figure 3.2(c) shows that the primary droplets are charged below the Rayleigh limit, although

at a slightly higher fraction than for Oh = 0.079; the SD droplets is now slightly smaller

and takes less charge from the original jet section.

In their experimental study, López-Herrera and Gañán-Calvo [1] found that the SD droplets

underwent subsequent breakups, however, they did not present the charge carried by them

and simply argued that this subsequent breakup was a consequence of their charge levels

exceeding the Rayleigh limit. Figure 3.3 depicts the experimentally obtained image where

the authors claim that the satellite droplet undergoes subsequent fission as a result of ”SD”

being above the Rayleigh limit (see figure 3.3vb, snapshots 1-4 showing the disintegration

of SD droplet). Numerically, figure 3.2(d) shows that the SD droplets are indeed charged

above the Rayleigh limit. However, as evident from Fig. 3.2(a), this section of the jet

resulting from the first pinch-off splits into additional droplets before it becomes spherical,

with charges and diameters that can be quantified. Figure 3.2(e) depicts the radius of

the satellite droplets S and S1 resulting from the second pinch-off, and Fig. 3.2(f) shows

their charge levels. Interestingly, the second pinch-off reduces the charging level of both

satellite droplets compared to the original SD droplet, so that the droplets actually forming
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remain below the Rayleigh limit. This observation is also evident from the experimental

image depicted in figure 3.3 (a) which shows that ”SD” did disintegrate into ”S” and ”S1”

droplets. However, we argue that the conclusion made in this prior experiment that ”SD”

did undergo Rayleigh fission is not accurate, as evident from the numerical simulations the

retracting thread joining the Primary droplet (PD) with the Satellite droplet (SD) underwent

natural instability to form subsatellite droplets which are below the Rayleigh limit.

In summary, previous studies [1, 19] have shown that the charge carried by the SD droplets

increases with the Ohnesorge number (at constant Taylor number and wavenumber); the

phase field model reproduces this too, and in addition shows that these SD droplets undergo

additional pinch-offs during the jet breakup phase, yielding smaller droplets with charge

levels (expressed as a fraction of the Rayleigh limit) smaller than that of the SD parent

droplet. Chapter 4 will show that for higher electrification levels the satellite droplets S

produced by the second pinch-off may exceed the Rayleigh limit.
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Chapter 4

Role of Oh and Γ on Jet Breakup

4.1 Jet Breakup with Low Viscous Effect

We next study the breakup of jets with reduced viscous effects, Oh = 0.1, at varying levels

of electrification and wavenumbers, 0 ≤ Γ ≤ 3 and 0.5 ≤ k ≤ 1.

Figure 4.1 depicts the evolution of the breakup at representative Taylor numbers and wavenum-

bers. For uncharged jets, Figure 4.1(a), the jet initially deforms with the radial velocity being

negative at z = λ/2. This is because in the early stages of the deformation, z = λ/2 ex-

periences the maximum capillary pressure. The pressure difference between z = λ/2 and

z = 0 drives the early deformation of the jet pushing the fluid towards the ends of the jet

section. As the deformation proceeds the radial velocity at z = λ/2 reverses its direction

at t = 17 (k=0.5), leading to the formation of a satellite droplet [19, 27, 36]. Figure 4.1(b)

depicts the deformation and breakup for an electrification level Γ = 1. In this case the

reversal in the sign of the radial velocity of the interface at z = λ/2 occurs at an earlier

stage due to the additional normal electric stresses acting on the interface, which leads to

a greater bulge at z = λ/2. Subsequently, the jet breaks and forms satellite droplets larger
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Figure 4.1: Evolution of breakups with small viscous effects, Oh = 0.1, for two wavenumbers
k = 0.5 and k = 0.8, and several electrification levels: a) Γ = 0; b) Γ = 1; c) Γ = 2; and d)
Γ = 3.
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than in the uncharged breakup. It is worth noting that, for Γ = 0 and Γ = 1, only PD and

SD droplets are formed for all the wavenumbers studied; i.e. we do not observe subsatellite

droplets. Figures 4.1(c) and 4.1(d) depict the deformation and breakup of highly charged

jets (it is worth restating that the electrostatic stress fully balances the capillary pressure in

the nominal jet when Γ = 2). For Γ = 2 and k = 0.5, the retracting threads formed at the

pinch-off undergo an additional breakup leading to the formation of sub-satellite droplets.

For Γ = 3 and k = 0.5 the radial velocity reversal at z = λ/2 occurs at a much earlier

stage due to the larger electrostatic stresses. The breakup differs in this case in that the

first pinch-off actually happens in the thread attached to the S droplet, rather than near the

PD droplet. Subsequently and as depicted in the first row in Figure 4.1(d), the retracting

thread joined to the primary droplet undergoes a second pinch-off leading to the formation

of an S1 droplet. Therefore, highly charged jets with long wavelengths lead to the formation

of sub-satellite droplets even at low viscosities.

Figure 4.2(a) depicts the time at the first pinch-off, which can be regarded as the breakup

time. For 0.6 < k < 1, the breakup time decreases at increasing Taylor number, a trend also

observed by Collins et al. [19] and Lakdawala et al. [27]. Moreover, the wavenumber with

minimum breakup time increases with the Taylor number, i.e. the modal droplet becomes

smaller at increasing electrification level. Figures 4.2(b) and 4.2(c) show the radius of the

primary and satellite droplets. At fixed wavenumber the radius of the primary droplet

decreases at increasing Taylor number because of the earlier reversal in the radial velocity

of the interface, which increases the size of the satellite droplet. Sub-satellite droplets are

not formed at either Γ = 0 or Γ = 1, and start to appear at Γ = 2 and sufficiently long

wavelengths. Figure 4.2(d) depicts the charge carried by the primary droplet as a fraction

of the Rayleigh limit. As already observed in Figures 3.1 and 3.2, this ratio is relatively

independent of the wavenumber, and increases with the Taylor number. Primary droplets

exceed the Rayleigh limit for Γ ≳ 1.5, an important result for predicting the stability of

primary droplets in low viscous breakups. Figure 4.2(e) shows the charges carried by the
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Figure 4.2: Results of the phase field model for breakups with small viscous effects, Oh = 0.1,
as a function of the Taylor number and wavenumber: a) time at first pinch-off; b) radius of
primary droplets; c) radius of S and S1 satellite droplets; d) charge of the primary droplet
relative to its Rayleigh limit; (e) charge of the S and S1 satellite droplets relative to their
Rayleigh limit; (f) fraction of the total charge carried by the satellite droplets.
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satellite droplets. Although subsatellite droplets are being formed, the S droplets are above

the Rayleigh limit for Γ ≥ 2 and the longer wavelengths. On the other hand the S1 droplets

are always charged below the Rayleigh limit. Finally, Figure 4.2(f) shows the fraction of the

total charge carried by the satellite droplets.

Figure 4.3(a) shows the electric potential, with arrows representing the direction and strength

of the electric field, when the radial velocity of the interface at z = λ/2 becomes zero before

reversing its direction, together with profiles of the radial velocity, axial velocity, potential

and normal component of the electric field along the surface. The radial velocity at this time

displays minima at z = 0.35λ and z = 0.65λ, which starts creating the curvature for the

satellite droplet that will eventually form. The electric potential along the surface is nearly

constant, i.e. the jet can be regarded equipotential to a good approximation, as should be

expected from the small value of Πt; furthermore, the potential has very slightly dropped

from its initial value of 1 at this point. The electric field on the surface at z = 0.25λ and

z = 0.75λ is partially shielded by the inward bending of the surface, and hence its normal

component displays local minima at these points, while there are local maxima at z = 0, λ/2

and λ. Figure 4.3(b) depicts the same variables immediately before the first pinch-off. The

electric potential along the surface is slightly lower near the pinch-off, a feature also observed

by López-Herrera and Gañán-Calvo [1], because the capillary time associated with the local

radius of the surface becomes comparable to the electric relaxation time. The radial velocity

displays two distinct minima, which later separate the primary and sub-satellite S1 droplets

from the satellite S droplet. Figure 4.3(c) includes three snapshots with mappings of the

electric potential after the first pinch-off, including the formation of a sub-satellite droplet.

The maximum values of the normalized electric field on the S and S1 droplets are 1.98 and

2.37 respectively, and occur at the farthest point from the axis. In particular, the S1 droplet

features the maximum value of the electric field at any point and time of the calculation.

Figure 4.4 depicts the evolution of the breakup leading to the formation of a sub-satellite
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Figure 4.3: Electric potential map and radial velocity, axial velocity, potential and normal
component of the electric field on the surface, for Oh = 0.1, Γ = 2 and k = 0.7: a) solution
at t = 13.7 coinciding with zero radial velocity at z = λ/2; b) solution just before pinch-off.
c) Electric potential maps before (t = 16.6), near (t = 16.95), and after (t = 17.9) the second
pinch-off. The last inset shows the maxima of the electric field.

32



Figure 4.4: Retracting thread and sub-satellite formation process for k = 0.5, Γ = 2 and
Oh = 0.1

droplet (k = 0.5, Γ = 2, Oh = 0.1). A tapered thread connecting the primary droplet and

the soon-to-be satellite droplet is severed by the first pinch-off, and retracts towards the SD

droplet due to the higher pressure in the tapered end. However, the thread does not fully

collapse into the bulk of the liquid, but it starts to elongate backwards toward the primary

droplet (see third inset). This thread eventually undergoes a second pinch-off, leading to the

formation of the S and S1 droplets.

4.2 Jet Breakup with High Viscous Effect

Figures 4.5-4.8 reproduce the same simulations as in Section 4.1, but for a large Ohnesorge

number exemplifying dominant viscous effects, Oh = 10. The geometry of the deforming

jet displays several differences with respect to the Oh = 0.1 case. In the absence of electri-

fication, Figure 4.5(a), no satellite or sub-satellite droplets form. Since inertial effects are

negligible, the pressure remains maximum at z = λ/2 until pinch-off, preventing the forma-

tion of satellite droplets [19, 49]. Figure 4.5(b) shows the evolution for a Taylor number of

one. In this case satellite and sub-satellite droplets form, not driven by inertia but by the

electrostatic pressure in the vicinity of z = λ/2. At the larger Taylor numbers shown in

Figures 4.5(c) and 4.5(d), Γ = 2 and Γ = 3, three distinct sub-satellite droplets are formed
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Figure 4.5: Evolution of breakups with high viscous effects, Oh = 10, for two wavenumbers
k = 0.5 and k = 0.8, and several electrification levels: a) Γ = 0; b) Γ = 1; c) Γ = 2; and d)
Γ = 3. 34



along with the primary and satellite droplets for k = 0.5, and single sub-satellite droplets

are formed for the shorter jet section, k = 0.8. The mechanism for the formation of the

initial SD droplet is different when compared to the Oh = 0.1 case. At small Ohnesorge

number the SD droplet is connected to the primary droplets by a tapered thread, whereas at

large Ohnesorge number the thread joining the primary and SD droplets is slender and thin.

The slender thread coupled with the lack of inertial effects leads to the formation of multi-

ple sub-satellite droplets. The breakup behavior is qualitatively similar to that observed in

prior studies of highly viscous and uncharged jets (Stoke’s limit) surrounded by a fluid of

comparable viscosity [21, 22, 29, 30].

The times of the first pinch-off, Figure 4.6(a), are over one order of magnitude larger than

in Fig. 4.2(a). tµ rather than tc is the appropriate characteristic time for describing the

dynamics because inertial effects are negligible, but since we continue using tc to normalize

time the breakup times are much larger than one. Note also that for a given Taylor number,

the wavenumber with minimum breakup time decreases at increasing Onhesorge number.

Thus, the wavelength that produces the modal primary droplet increases with the importance

of viscous effects, while the intensity of electrification has the opposite effect. The radius of

the primary droplets, Figure 4.6(b), displays a similar trend as in the low viscosity regime,

i.e. the size of the primary droplet decreases as the level of electrification increases due to

the larger electric stresses on the interface which leads to the formation of larger satellite

droplets. Figure 4.6(c) depicts the radii of the S and S1 droplets (no satellite droplets are

formed for Γ = 0). We only display the radius of S1 sub-satellite droplet, although two

additional sub-satellites are formed for k = 0.5; for all the other wavenumbers only the S1

sub-satellite droplet forms. The size of the S droplets for a given Γ is smaller in the high

viscous regime than in the low viscous regime. This trend could be explained by the fact that

in the low viscous case, along with the electric stresses, inertial effects also help in pushing

the fluid to the satellite droplet, hence increasing its size. This additional inertial mechanism

is not present at Oh≫ 1. The trends for the charge of the different droplets relative to the
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Figure 4.6: Results of the phase field model for breakups with high viscous effects, Oh = 10,
as a function of the Taylor number and wavenumber: a) time at first pinch-off; b) radius of
primary droplets; c) radius of S and S1 satellite droplets; d) charge of the primary droplet
relative to its Rayleigh limit; (e) charge of the S and S1 satellite droplets relative to their
Rayleigh limit; (f) fraction of the total charge carried by the satellite droplets.
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Figure 4.7: Electric potential map and radial velocity, axial velocity, potential and normal
component of the electric field on the surface, for Oh = 10, Γ = 2 and k = 0.7: a) solution
at t = 453 coinciding with zero radial velocity at z = λ/2; and b) solution just before pinch-
off. c) Electric potential maps before (t = 538), at (t = 554), and after (t = 568) second
pinch-off. The last inset shows the location and values of electric field maxima.
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Figure 4.8: Formation of sub-satellite droplet from the retracting slender thread for Oh = 10,
Γ = 2 and k = 0.5. z/λ = 0 depicts the primary droplet location and z/λ = 0.5 depicts the
location of the satellite droplet.

Rayleigh limit, Figures 4.6(d) and 4.6(e), are similar to the low viscosity case. Again, in

Figure 4.6(d) we include results for Γ = 1.5 indicating that this value of the Taylor number

separates primary droplets that are above (Γ ≳ 1.5) and below (Γ ≲ 1.5) the Rayleigh

limit, i.e. droplets that are unstable and stable. Interestingly, this stability condition for

the primary droplets is largely independent of the wavenumber and the Onhesorge number.

Finally, note that the fraction of the total charge that is carried by satellite droplets is

reduced in a breakup dominated by viscous effects (compare Figures 4.6(f) and 4.2(f)).

The surface profiles and electric potential maps in Figure 4.7 display similar trends to the

Oh = 0.1 case. At any given time, the surface is equipotential to a good approximation. In

fact, our definition of Πt overestimates the time constant for charge relaxation, because tµ

is the correct characteristic time for the evolution of the jet at high Ohnesorge number, and

tµ ≫ tc. The electric field is normal to the surface of the jet, and displays local maxima at the

centers of the primary and subsatellite droplets with an absolute maximum on the smallest

subsatellite. In Figure 4.7(b) for a time close to the first pinch-off we note a distinct feature

connected to the formation of subsatellite droplets: in addition to the typical local minima

of the radial velocity at z = 0.2λ and z = 0.8λ leading to the location of the first pinch-off,

two additional local minima appear at z = 0.4λ and z = 0.6λ which lead to the thinning of

the retracting thread and eventually to a second pinch-off and sub-satellite droplets. Similar

38



features are also observed in the axial velocity profile.

Figure 4.8 depicts the breakup behavior of the retracting thread for Γ = 2 and k = 0.5.

Although the retracting thread moves towards the satellite droplet, the thread is detached

from the satellite droplet by a second pinch-off and subsequently undergoes additional pinch-

offs to form subsatellite droplets. When compared with the breakup in Figure 4.7(c) for the

same Taylor number and smaller wavenumber, k = 0.7, the behavior is similar but the longer

thread produced by the smaller wavenumber leads to a larger number of subsatellite droplets.

4.3 Droplet Stability Criteria

For a perfectly conducting inviscid cylinder, the critical Rayleigh stability limit is given by

ΓRay = 1.5 [20]. We make additional simulation runs for the low viscosity (Oh = 0.1) and

high viscosity (Oh = 10) regime for Γ = 1.5 (only for wavenumbers of 0.5 and 0.8).

Figure 4.9 depicts the charge of the primary (PD) and satellite (S) droplets for different

wavenumbers and viscosity regime discussed in the current article. As evident from figure

4.9, for Γ ≤ 1.5, the droplets formed after the breakup of the jet are always below the

Rayleigh charge limit, with the droplets formed for Γ = 1.5 being very close to the Rayleigh

charge limit (approximately 3-4 percent below the Rayleigh charge limit). It must be noted

that, while figure 4.9 only depicts the charge carried by primary and satellite droplets, the

sub-satellite droplets are also below the Rayleigh charge limit. As shown in Chapter 2 and

in prior numerical studies [1, 17, 19], for high viscosity cases the SD droplets could exceed

the Rayleigh limit for Γ ≤ 1.5; however, the number of sub-satellite droplets also increases

with the increase in viscosity levels, bringing the total charge carried by the satellite (and

sub-satellite) droplets below the Rayleigh limit for all the viscosity regimes.

Consequently, we may conclude that for Γ ≤ 1.5, the wide distribution in the size of droplets

39



Figure 4.9: (a) Charge of the primary droplet (PD) and; (b) charge of satellite droplet (S)
with respect to Rayleigh charge limit for different k, Oh and Γ values.

in the high viscosity regime favors the stability of the droplets. All these trends, however

are only valid below the critical Taylor number ΓRay. Recent experimental results by Yang

et al. [50] confirms the predictions made by the phase-field model, as evident from figure

4 (a) and (b) of Yang et al. [50] for Γ = 0.99 the primary and satellite droplets appear to

be stable and do not unndergo any further fission. However for Γ = 1.63, the droplets are

evidently unstable and undergo subsequent fission.

4.4 Jets with maximum growth rates

As discussed in Chapter 2, the mode of the diameter distribution of primary droplets can

be estimated with a linear stability analysis of the breakup, which yields the wavenumber

of maximum growth rate, also known as the critical wavenumber k∗, as a function of Γ and

Oh. The jet section associated with the critical wavenumber is expected to evolve into the

modal primary droplet. Figure 4.10 shows k∗(Γ, Oh) for two Ohnesorge numbers, 10 and
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Figure 4.10: Droplet radius (predicted from the associated critical wavenumber (k∗) as a
function of the Taylor number obtained with linear stability theory. Comparison with two
wavenumbers of fastest pinch-off (phase field model), and the radius RIB

Ray of the droplet
charged at the Rayleigh limit and having the jet’s charge-to-mass ratio.

100, as well as the associated droplet diameter [31]. For the large values of the Ohnesorge

and Taylor numbers, the critical wavenumber does not depend on the Ohnesorge number

and is only a function of the Taylor number. Figure 4.10 also plots the radius of the droplet

that, having the charge-to-mass ratio of the undisturbed jet, is charged at the Rayleigh limit

[31]:

RIB
Ray

Rj

= (9/Γ)1/3. (4.1)
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Figure 4.11: Phase field model prediction for wavenumbers associated with maximum
growth-rate for different Taylor numbers- (a) normalized radius of the primary droplet along
with the modal radius suggested by linear stability analysis, (b) normalized radius of satellite
(S) and sub-satellite droplet (S1), (c) dimensionless charge carried by primary and satellite
droplet, (d) fraction of total charge carried by the satellite droplet.

This curve indicates that, in the absence of satellite droplet formation, the modal droplet

would be above the Rayleigh limit for Γ ≥ 1.54, a trend also observed from the non-linear

breakup model and previous studies [50]. Figure 4.10 also includes the radius of the primary

droplets with the fastest pinch-off time for Γ = 1 and Oh = 10 , and for Γ = 2 and Oh = 10,

interpolated from Figure 4.6(a). These two points are near the k∗(Γ, Oh) curve, supporting

the use of linear stability analysis to estimate the modal wavenumber in the natural breakup.

Figure 4.11 summarizes the solution of the non-linear breakup model for droplets in the
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Stokes limit Oh = 50. The radii of the main droplets predicted by the non-linear model,

Figure 4.11(a), is smaller than the critical radius obtained with linear stability analysis

because of the formation of satellite droplets at all flow rates (low Taylor numbers, corre-

sponding to smaller critical wavenumber), Figure 4.11(b). The difference with the critical

radius is small because the volume of the satellite droplet is a small fraction of the volume of

the jet section; this fraction becomes smaller as the critical wavenumber, or equivalently the

Taylor number, increase. The breakup produces satellites droplets at all beam currents, and

sub-satellite droplets only near the minimum flow rate (Γmin = 1.2). Since the formation of

sub-satellites is enhanced by increasing electrification and decreasing wavenumber, their ab-

sence for Γ > 1.5 suggests that the decreasing value of the critical wavenumber at increasing

Taylor number is preventing the otherwise expected proliferation of sub-satellite droplets.

Figure 4.11(c) shows that the primary droplets are charged above the Rayleigh limit for

Γ ≳ 1.5, while the satellite droplets are always below the Rayleigh limit, with the maximum

charge level achieved at close to Γ = 1.5. Since at fixed Taylor and Ohnesorge numbers

all primary droplets are approximately charged at the same fraction of the Rayleigh limit

regardless of the wavenumber, most primary droplets of electrosprays operating at flow rates

such that Γ > 1.5 will be charged above the Rayleigh limit (see equation 2.42 which relates

flow rate ΠQ ∼ Γ2). Therefore, we expect the fragmentation of primary droplets caused by

Coulomb explosions to be common in electrosprays with relatively high flow rates. Figure

4.11(d) depicts the fraction of total charge carried by the satellite droplets. It is evident

that for highly charge jets, the primary droplets would be carrying majority of the total

charge primarily because of the large critical wavenumbers associated with the high electrifi-

cation levels, therefore, leading to much smaller satellite droplets (if any). It is worth noting

that, since this study deals with high electrification level, it is possible that, for large Γ, the

jet undergoes whipping instability (i.e. the jet breakup won’t be axi-symmetric anymore),

therefore the model can potentially fail for extreme electrification levels.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have developed a leaky-dielectric phase field model to study the deformation and breakup

of electrified jets of finite conductivity, performing calculations in wide ranges of the Taylor

number, the Ohnesorge number and the wavenumber. The phase-field method allows us to

accurately model the deformation of the jet beyond the first pinch-off, and therefore makes

it possible to study the formation of sub-satellite droplets. However, one of the caveats

of the phase field model or perhaps any level set method is the use of finite thickness of

the artificial diffuse interface. There could be an inherent possibility (specifically for highly

viscous regime) that there exists significantly smaller sub-satellite droplets whose size is

smaller than the diffuse interface thickness ξ which cannot be resolved by the numerical

model. However, since in our calculations ξ = 1/66, this potential loss in information for

significantly smaller sub-satellite droplets is not detrimental. We draw the following main

conclusions:

1. There is an excellent agreement between the solution of the phase field model and
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the experimental and numerical results of López-Herrera and Gañán-Calvo [1]. The

radius of the satellite droplet increases at decreasing Ohnesorge number for fixed Taylor

number and wavenumber. For high Ohnesorge number, the satellite droplet SD would

be above the Rayleigh limit even at relatively low values of the Taylor number, but it

does not form because the retracting liquid threads tend to undergo additional pinch-

offs that distribute the charge into sub-satellite droplets at charge level below the

Rayleigh limit. This phenomenon can only be observed with a phase-field model like

the one developed in this article.

2. The Ohnesorge number plays a key role in the size distribution of the droplets. In a

highly viscous breakup, the satellite droplet is connected to the primary droplet by a

long and slender thread, which undergoes additional pinch-offs to create sub-satellite

droplets. This feature also exists at low Ohnesorge number and high Taylor number.

However, due to the shape of the retracting thread and inertia, fewer sub-satellite

droplets are produced.

3. The Taylor number also plays a key role in the size distribution of the droplets. Ir-

respective of the importance of viscous effects, an increasing level of electrification

increases the size of the satellite droplet and hence reduces the radius of the primary

droplet. Moreover, the formation of sub-satellite droplets is enhanced by increasing

electrification levels.

4. We show that the value 1.5 for the Taylor number separates primary droplets that

are above the Rayleigh limit and would be unstable (Γ ≳ 1.5), from primary droplets

that are below the Rayleigh limit (Γ ≲ 1.5), regardless of the wavenumber and the

Ohnesorge number.

5. We present formulae for relating the dimensionless numbers parametrizing the phase

field model (Γ, Oh and Πt) with those parametrizing the state of a cone-jet (ΠQ and

ReK), in order to apply it to the natural breakup of cone-jets.
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5.2 Future Work

There are many areas which still need clarity and further investigation. Two evident

directions worth exploring are:

First, from the numerical calculations it is clear that the charged primary droplets are

above the Rayleigh limit for ΓR > 1.5. Therefore, these primary droplets are expected

to undergo fission, where they break into smaller charged droplets. This mechanism

allows the primary droplet to shed a large fraction of charge thereby, bringing them

below the Rayleigh limit. The final size distribution of the progeny droplets formed

after the Rayleigh fission and charging level of the parent and progeny droplets is

unknown for these primary droplets. Current model could not account for this fission

mechanism.

Secondly, for highly charged jet (large Γ) the jet undergoes whipping instability, where

the electrostatic forces acting on the jet surface are strong enough to induce lateral

instability. The current model is only limited to axisymmetric breakup of electrified

jets; therefore, the whipping instability cannot be predicted with the current model.

Whipping instability is the primarily more evident for electrosprays operating at high

flow rates. Unfortunately, to the best of our knowledge, there are no non-linear studies

which can accurately account for the whipping instabilities. One way to extend the

current analysis is performing a three-dimensional numerical simulations for the highly

electrified jets, to predict the critical operational parameters when the whipping in-

stability is initiated along with predicting the droplet size/charge distributions under

whipping conditions.
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Appendix A

Role of outer electrode and charge

conservation

We test the role of the position of the outer grounded electrode on the dynamics of the

deformation and breakup of the electrified jet. For all the simulation results reported in the

current article, the outer grounded electrode is located such that Re = 12. Without changing

other parameters we run tests by locating the outer electrode such that Re = 80. Figure A.1

depicts the profile of the deformation and breakup of the jet for Oh = 10, Γ = 2 and k = 0.9

for the two electrode positions. The profiles of the jet are superimposed on one-another for

the same time t. From figure A.1 we can deduce that the electrode at Re = 12 is sufficiently

far for this parameter to have a negligible effect on the solution. Note that the electric field

on the surface of the nominal jet does not depend on the position of the electrode, because

we are fixing the Taylor number by fixing the volumetric charge density in the jet. Provided

that the outer electrode is sufficiently far away from the jet, the exact position does not have

an effect on the dynamics of the breakup.

The initial dimensional volumetric charge in the jet is calculated with the imposed Taylor
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Figure A.1: Comparison between the profile of the interface of the jet for Γ = 2, Oh = 10
and k = 0.9 when the grounded electrode is placed far away from the jet (Re = 80) and
when Re = 12.

number. For the surface of a cylinder with surface charge density σ, the dimensional electric

field on the surface of the cylinder is given as:

E(Rj) =
σ

εo
(A.1)

Therefore, the dimensional surface charge density is obtained from the Taylor number as:

σ =

√
Γεoγ

Rj

(A.2)

We subsequently obtain the initial volumetric charge density ρeo from the surface charge

density as ρeo = 2σe/Rj. The dimensionless initial volumetric charge density therefore is

ρeo = 2. ρeo is initially distributed uniformly in the domain 0 < r < 1 + Acos(kz) at t < 0.

Since the electrical conductivity of the jet (fluid 2) is much higher than the outside passive

medium (fluid 1). The charges relax along the mean interface at t = 0. At t = 0, the

electric field variation along the radial direction could be analytically approximated by the
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Figure A.2: (a) Electric field variation along the radial direction after the charge relaxation
process (at t = 0) predicted using the phase-field model and it’s comparison with the analyt-
ical expression. (b) normalized volumetric charge density along the mean interface at t = 0.

expression of electric field variation of a perfectly conducting cylinder, given as:

|E(r < 1)| = 0;

|E(r ≥ 1)| = 1

r

 (A.3)

Figure A.2 depicts the electric field variation along the radial direction predicted using the

phase-field model after the charges have relaxed along the mean-interface at t = 0 and it’s

comparison with the analytical expression A.3. Since the phase field method is continuous

interface method, the electric field in the proximity of r = 1 has a continuous and finite

slope, however, it compares well with the analytical expression. Figure A.2 (b) depicts the

normalized volumetric charge density.

Since, we apply periodic boundary condition in the domain of the simulation at z = 0 and

z = λ, the total charges along one wavelength of the jet should be conserved. Figure A.3

depicts the total charge variation in the entire simulation geometry for different cases. Figure
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Figure A.3: The total charge in the simulation domain normalized by the initial total charge
for different time instants during the deformation-breakup process. (A) refers to the time
instant when the size and charges of the primary and satellite droplet is made. (B) refers to
the time instant when the size and charges are measured for sub-satellite droplets. Figure
(a) k = 0.6, Γ = 2, Oh = 10, (b) k = 1, Γ = 2, Oh = 10, (c) k = 0.6, Γ = 3, Oh = 10, (d)
k = 0.7, Γ = 3, Oh = 10.
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A.3(a) depicts the total charge variation for Oh = 10, Γ = 2 and k = 0.6, the arrows (A)

and (B) depict the time instant at which the charges on the droplets are calculated (right

after respective pinch-off). After pinch-off there is a loss in the total charge in the geometry.

However, since we are only limited to measuring the charges just after each pinch-off process.

The charges measured are within a 1− 1.7% error range and hence the present setup along

with the numerical validation with prior experimental results gives us confidence in our

numerical measurements. However, after the formation of primary, satellite and sub-satellite

droplets we cannot capture the Rayleigh instability process of the droplets which are above

the Rayleigh limit, as the charges fail to be conserved in our simulation domain for extended

periods after break-up.
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