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Behavioral/Cognitive

Neural Mechanisms of Attentional Control for Objects:
Decoding EEG Alpha When Anticipating Faces, Scenes,
and Tools

Sean Noah,1,2 Travis Powell,2 Natalia Khodayari,2 Diana Olivan,2 Mingzhou Ding,3 and George R. Mangun1,2,4
1Department of Psychology, University of California, Davis, Davis, California 95616, 2Center for Mind and Brain, University of California, Davis,
Davis, California 95618, 3J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, and
4Department of Neurology, University of California, Davis, Sacramento, California 95817

Attentional selection mechanisms in visual cortex involve changes in oscillatory activity in the EEG alpha band (8–12Hz),
with decreased alpha indicating focal cortical enhancement and increased alpha indicating suppression. This has been
observed for spatial selective attention and attention to stimulus features such as color versus motion. We investigated
whether attention to objects involves similar alpha-mediated changes in focal cortical excitability. In experiment 1, 20 volun-
teers (8 males; 12 females) were cued (80% predictive) on a trial-by-trial basis to different objects (faces, scenes, or tools).
Support vector machine decoding of alpha power patterns revealed that late (.500 ms latency) in the cue-to-target foreper-
iod, only EEG alpha differed with the to-be-attended object category. In experiment 2, to eliminate the possibility that decod-
ing of the physical features of cues led to our results, 25 participants (9 males; 16 females) performed a similar task where
cues were nonpredictive of the object category. Alpha decoding was now only significant in the early (,200 ms) foreperiod.
In experiment 3, to eliminate the possibility that task set differences between the different object categories led to our experi-
ment 1 results, 12 participants (5 males; 7 females) performed a predictive cuing task where the discrimination task for dif-
ferent objects was identical across object categories. The results replicated experiment 1. Together, these findings support the
hypothesis that the neural mechanisms of visual selective attention involve focal cortical changes in alpha power not only for
simple spatial and feature attention, but also for high-level object attention in humans.

Key words: alpha; attention; decoding; EEG; objects; vision

Significance Statement

Attention is the cognitive function that enables relevant information to be selected from sensory inputs so it can be processed
in the support of goal-directed behavior. Visual attention is widely studied, yet the neural mechanisms underlying the selec-
tion of visual information remain unclear. Oscillatory EEG activity in the alpha range (8–12Hz) of neural populations recep-
tive to target visual stimuli may be part of the mechanism, because alpha is thought to reflect focal neural excitability. Here,
we show that alpha-band activity, as measured by scalp EEG from human participants, varies with the specific category of
object selected by attention. This finding supports the hypothesis that alpha-band activity is a fundamental component of the
neural mechanisms of attention.

Introduction
Selective attention is a fundamental cognitive ability that facili-
tates the processing of task-relevant perceptual information and
suppresses distracting signals. The influence of attention on per-
ception has been demonstrated in improvements in behavioral
performance (Posner, 1980) and changes in psychophysical tun-
ing curves (Carrasco and Barbot, 2019). In humans, these per-
ceptual benefits for attended stimuli co-occur with enhanced
sensory-evoked potentials (Van Voorhis and Hillyard, 1977;
Eason, 1981; Mangun and Hillyard, 1991; Eimer, 1996; Luck et
al., 2000) and increased hemodynamic responses (Corbetta et al.,
1990; Heinze et al., 1994; Mangun et al., 1998; Tootell et al.,
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1998; Martínez et al., 1999; Hopfinger et al., 2000; Giesbrecht et
al., 2003). In animals, electrophysiological recordings indicate
that sensory neurons responsive to attended stimuli have higher
firing rates than those of unattended stimuli (Moran and
Desimone, 1985; Luck et al., 1997), improved signal-to-noise in
information transmission (Mitchell et al., 2009; Briggs et al.,
2013), and increased oscillatory responses (Fries et al., 2001) that
support higher interareal functional connectivity (Bosman et al.,
2012).

Most models of selective attention posit that top-down atten-
tional control signals arising in higher-level cortical networks
bias processing in sensory systems (Nobre et al., 1997; Kastner et
al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000; Corbetta
and Shulman, 2002; Petersen and Posner, 2012). However, pre-
cisely how top-down signals influence sensory processing within
sensory cortex remains unclear. One possible mechanism involves
the modulation of EEG alpha oscillations (8–12Hz). When covert
attention is directed to one side of the visual field, the alpha signal is
more strongly suppressed over the contralateral hemisphere
(Worden et al., 2000; Sauseng et al., 2005; Thut et al., 2006;
Rajagovindan and Ding, 2011). This lateralized alpha reduction is
thought to reflect an increase in cortical excitability in task-relevant
sensory neurons to facilitate the processing of upcoming stimuli
(Romei et al., 2008; Jensen and Mazaheri, 2010; Klimesch, 2012). A
link between top-down activity in the frontal-parietal attentional
control system and alpha in sensory cortex has been suggested by
studies using transcranial magnetic stimulation to control regions
(Capotosto et al., 2009, 2017), simultaneous EEG-fMRI studies
(Zumer et al., 2014; Liu et al., 2016) and magnetoencephalography
(Popov et al., 2017).

Although the majority of studies of the role of alpha in selec-
tive visual attention have focused on spatial attention, alpha
mechanisms may be more general (Jensen and Mazaheri, 2010).
Selective attention to low-level visual features—motion versus
color—has also been shown to modulate alpha that was localized
to areas MT and V4 using EEG modeling in humans (Snyder
and Foxe, 2010). Therefore, it appears that attention-related
alpha modulation can occur at multiple early sensory-processing
levels in the visual system, with the locus of alpha modulation
functionally corresponding to the type of visual information
being targeted by attention. It is unknown whether the alpha
mechanism is also involved in attentional control over higher
levels of cortical visual processing, such as attention to objects. In
the present study, we tested the hypothesis that alpha modulation
is a mechanism for selective attention to objects by recording
EEG from participants performing an anticipatory object atten-
tion task using the following three categories of objects: faces,
scenes, and tools. Using EEG decoding methods, we provide
support for this hypothesis by revealing object-specific modu-
lations of alpha during anticipatory attention to different
object categories.

Materials and Methods
Overview
The present study consisted of three experiments. Experiment 1 is the
main experiment in which we tested whether EEG alpha-band topogra-
phies could be differentiated between object-based attention conditions.
Analysis of EEG data included topographic power difference map con-
struction and support vector machine (SVM) decoding of alpha-band
power to quantitatively assess whether the EEG alpha band contained in-
formation about the object category being attended. In experiments 2
and 3, we tested two alternative interpretations of our results from
experiment 1. In particular, in experiment 2, we tested whether decoding

accuracy in the preparatory period between the cue onset and the target
onset found in experiment 1 might have been based on differences in the
sensory processes evoked in the visual system by the different cue stim-
uli, because the physical stimulus properties of the cues for the three dif-
ferent object attention conditions differed from one another (triangle vs
square vs circle). In experiment 3, we investigated whether differences in
alpha topography across object attention conditions in experiment 1
may have been the result of different task sets across the three object
attention conditions, rather than reflecting object-based attention mech-
anisms in visual cortex.

Participants
All participants were healthy undergraduate volunteers from the
University of California, Davis; had normal or corrected-to-normal
vision; gave informed consent; and received course credit or monetary
compensation for their time. In experiment 1, EEG data were recorded
from 22 volunteers (8 males; 14 females). Two volunteers opted to dis-
continue their participation midway through the experiment; data
from the remaining 20 participants (8 males; 12 females) were used
for all analyses. In experiment 2, EEG data were recorded from 29
undergraduates; datasets from 4 participants were rejected on the basis
of irreconcilable noise in the data or subject noncompliance, yielding
a final dataset from 25 participants (9 males; 16 females) that was
used for further decoding analysis. In experiment 3, EEG data were
recorded from 12 volunteers (5 males; 7 females). Datasets from two
participants were rejected on the basis of irreconcilable noise in the
EEG data, yielding a final dataset of EEG data from 10 participants
(5 males and 5 females) that was used for further decoding analysis.

Experimental design
The study used a within-subjects design. In experiments 1 and 3, we
investigated the distributions of EEG alpha power at the scalp, as a func-
tion of attended object category, in an anticipatory cued attention task
with three categories of objects (faces, scenes, and tools). In experiment
2, we investigated the distributions of EEG alpha power at the scalp dur-
ing the postcue period when the three object categories were not
attended in advance. Details of the cued object-based attention task, the
noncued task, and the statistical analyses are presented in the following.

Statistical analysis
Behavioral response data were analyzed with a gamma-distributed gen-
eralized linear mixed model (Lo and Andrews, 2015) with a random
effect of subject and fixed effects of object category and cue validity to
quantitatively assess the effect of cue validity on reaction time (RT).

Differences in EEG alpha power scalp topographies as a function of
cue condition were statistically analyzed using an SVM decoding
approach and a nonparametric cluster-based permutation test and
Monte Carlo simulation. A cluster-based statistical test was used to con-
trol for multiple-comparison issues that arise when t tests are performed
at all time points over the epoch (Bae and Luck, 2018). The details of the
statistical test for EEG alpha power are described in the following.

Experiment 1
Apparatus and stimuli. Participants were comfortably seated in an elec-
trically shielded, sound-attenuating room (ETS-Lindgren). Stimuli were
presented on a VIEWPixx/EEG LED monitor (model VPX-VPX-2006A,
VPixx Technologies) at a viewing distance of 85 cm, vertically centered
at eye level. The display measured 23.6 inches diagonally, with a native
resolution of 1920 � 1080 pixels and a refresh rate of 120Hz. The re-
cording room and objects in the room were painted black to avoid
reflected light, and it was dimly illuminated using DC lights.

Each trial began with the pseudorandomly selected presentation of
one of three possible cue types for 200 ms (1° � 1° triangle, square, or
circle, using PsychToolbox; Brainard, 1997; Fig. 1A). Valid cues
informed participants which target object category (face, scene, or tool,
respectively) was likely to subsequently appear (80% probability). Cues
were presented 1° above the central fixation point. Following pseudoran-
domly selected stimulus-onset asynchronies (SOAs; 1000–2500 ms)
from cue onset, target stimuli (5° � 5° square image) were presented at
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fixation for 100 ms. On a random 20% of trials, the cues were invalid,
incorrectly informing participants about the upcoming target object cat-
egory. For these invalid trials, the target image was drawn with equal
probability from either of the two noncued object categories. All stimuli
were presented against a gray background. A white fixation dot was con-
tinuously present in the center of the display.

Target images (Fig. 1B) were selected from 60 possible images for
each object category. All target images were gathered from the Internet.
Face images were front-face, neutral expression, white-ethnicity faces,
cropped and placed against a white background (Righi et al., 2012). Full-
frame scene images were drawn from the University of Texas at Austin
natural scene collection (Geisler and Perry, 2011) and campus scene col-
lection (Burge and Geisler, 2011). Tool images, cropped, and placed
against a white background, were drawn from the Bank of Standardized
Stimuli (Brodeur et al., 2014). A pseudorandomly distributed intertrial
interval (ITI; 1500–2500 ms) separated target offset from the cue onset
of the next trial. Each set of 60 object images comprised 30 images of the

following different subcategories: male/female faces, urban/natural
scenes, and powered/nonpowered tools.

EEG recording. Raw EEG data were acquired with a 64-channel
Brain Products actiCAP active electrode system (Brain Products), and
digitized using a Neuroscan SynAmps2 input board and amplifier
(Compumedics). Signals were recorded with Scan 4.5 acquisition soft-
ware (Compumedics) at a sampling rate of 1000Hz and a DC to 200Hz
online bandpass. Sixty-four Ag/AgCl active electrodes were placed in fit-
ted elastic caps using the following montage, in accordance with the
international 10–10 system (Jurcak et al., 2007): FP1, FP2, AF7, AF3,
AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT9, FT7, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6,
T8, TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10, P7, P5,
P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, PO9, O1, Oz, O2,
and PO10; with channels AFz and FCz assigned as ground and online
reference, respectively. Additionally, electrodes at sites TP9 and TP10
were placed directly on the left and right mastoids. The Cz electrode was
oriented to the vertex of each participant’s head by measuring anterior to
posterior from nasion to inion, and right to left between preauricular
points. High-viscosity electrolyte gel was administered at each electrode
site to facilitate conduction between electrode and scalp, and impedance
values were kept at ,25 kV. Continuous data were saved in individual
files corresponding to each trial block of the stimulus paradigm.

EEG preprocessing. All data preprocessing procedures were com-
pleted with the EEGLAB MATLAB toolbox (Delorme and Makeig,
2004). For each participant, all EEG data files were merged into a sin-
gle dataset before data processing. Each dataset was visually inspected
for the presence of bad channels, but no such channels were observed.
The data were Hamming window sinc FIR (finite impulse response)
filtered (1–83Hz), and then downsampled to 250Hz. Data were alge-
braically rereferenced to the average of all electrodes, and then further
low-pass filtered to 40Hz. Data were epoched from 500 ms before cue
onset to 1000 ms after cue onset, so that anticipatory data from all tri-
als could be examined together. Data were visually inspected to flag
and reject trials with blinks and eye movements that occurred during
cue presentation. Independent component analysis decomposition
was then used to remove artifacts associated with blinks and eye
movements.

EEG analysis. We used a power spectral density procedure, with the
Matlab periodogram(x) function (window length, 500 ms; step length, 40
ms), to extract alpha-band power for each electrode, and for each partici-
pant and cue condition. Alpha-band power was calculated as an average
of power from 8 to 12Hz. Within each participant and cue condition,
power spectral density results were computed on individual trials and
then averaged across trials. Averaged power spectral density results were
used to visually examine alpha-band power topographies across cue
conditions.

We implemented a decoding analysis to quantitatively assess whether
object attention was systematically associated with changes in phase-in-
dependent alpha-band power topography across conditions. This analy-
sis routine was adapted from a routine to decode working memory
representations from scalp EEG (Bae and Luck, 2018).

Decoding was performed independently at each time point within
the epochs. We implemented our decoding model with the Matlab fite-
coc(x) function to use the combination of an SVM and error-correcting
output coding (ECOC) algorithms. A separate binary classifier was
trained for each cue condition, using a one-versus-one approach, with
classifier performance combined under the ECOC approach. Thus,
decoding was considered correct when the classifier correctly deter-
mined the cue condition from among the three possible cue conditions,
and chance performance was set at 33.33% (one-third).

The decoding for each time point followed a sixfold cross-validation
procedure. Data from five-sixths of the trials, randomly selected, were
used to train the classifier with the correct labeling. The remaining one-
sixth of the trials was used to test the classifier, using the Matlab predict
(x) function. This entire training and testing procedure was iterated 10
times, with new training and testing data assigned randomly in each iter-
ation. For each cue condition, each participant, and each time point,
decoding accuracy was calculated by summing the number of correct

Figure 1. A, Example trial sequence for the attention task. Each trial began with the pre-
sentation of a symbolic cue that the subjects were taught predicted (80%) a specific object
category. Following an anticipation period (cue-to-target) varying from 1.0 to 2.5 s, a picture
of an object (face, scene, or tool) was presented. On 20% of the trials, one of the two uncued
target pictures was presented. Subjects were required to make a rapid-accurate discrimina-
tion of aspects of the pictures in both the expected and unexpected conditions (see text for
details). B, Examples of target images presented in the attention task. Face, scene, and tool
pictures were selected from online databases.
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labelings across trials and iterations, and
dividing by the total number of labelings.

We averaged together the decoding
results for all 10 iterations to examine
decoding accuracy across participants at ev-
ery time point in the epoch. At any given
time point, above-chance decoding accu-
racy suggests that alpha topography con-
tains information about the attended object
category. However, a comparison of decod-
ing accuracy to chance, by itself, is not suf-
ficient for assessing whether an inference
made on the basis of decoding accuracy is
reliable. Although a one-way t test of
decoding accuracies across subjects against
chance would provide a t value and a statis-
tical significance result for the time point in
question, conducting the same test at each
of the 375 time points included in our
epoch would require a correction for multi-
ple corrections that would result in overly
conservative statistical tests. Therefore,
following the study by Bae and Luck
(2018), we used a Monte Carlo simulation-
based significance assessment to reveal stat-
istically significant clusters of decoding
accuracies.

By the Monte Carlo statistical method,
decoding accuracy was assessed against a
randomly chosen integer (1, 2, or 3), repre-
senting an experimental condition, for each
time point. A t test of classification accu-
racy across participants against chance was
performed at each time point for the shuf-
fled data. Clusters of consecutive time
points with decoding accuracies deter-
mined to be statistically significant by t test
were identified, and a cluster t mass was
calculated for each cluster by summing the
t values given by each constituent t test.
Each cluster t mass was saved. This proce-
dure was iterated 1000 times to generate a
distribution of t masses to represent the
null hypothesis that a given cluster of t
masses from our decoding analysis was
likely to have been found by random
chance. The 95% cutoff t mass value was
determined from the permutation-based
null distribution and used as the cutoff
against which cluster t masses calculated
from our original decoding data could be
compared. Clusters of consecutive time
points in the original decoding results
with t masses exceeding the permutation-
based threshold were deemed statistically
significant.

We performed the same decoding routine on phase-independent
EEG oscillatory activity in the theta range (4–7Hz), beta range (16–
31Hz), and gamma range (32–40Hz) to test the hypothesis that object
attention-based modulations of EEG activity are specific to the alpha
range. For filtering EEG data to the beta and gamma band, we set the
minimum filter order to be three times the number of samples in the ex-
perimental epoch. For filtering to the theta band, we set the minimum
filter order to be two times the number of samples, because the duration
of the epoch was not long enough to allow a filter order three times the
number of samples.

Procedure. Participants were instructed to maintain fixation on the
center of the screen during each trial and to anticipate the cued object
category until the target image appeared. They were further instructed to

indicate the target image object subcategory (e.g., male/female) with a
button press as quickly and accurately as possible on target presentation,
using the index finger button for male (face), nature (scene), and pow-
ered (tool), and to press the middle finger button for female (face), urban
(scene), and nonpowered (tool). Responses were only recorded during
the ITI between target onset and the next trial. Trials were classified as
correct when the recorded response matched the target image subcate-
gory, and incorrect when the response did not match or when there was
no recorded response. Each experiment block included 42 trials, lasting
;3 min. Each participant completed 10 blocks of the experiment.

Experiment 2
The recording and analysis protocols were identical to those of experi-
ment 1. Given that the purpose of this experiment was to test whether

Figure 2. Behavioral measures of attention in experiment 1. A, Box plots of reaction time data for invalid and valid trials for
20 subjects, averaged across attention (object) conditions. Thick horizontal lines inside boxes represent median values. First and
third quartiles are shown as lower and upper box edges. Vertical lines extend to most extreme data points excluding outliers.
Dots above plots represent outliers, which were defined as any value greater than the third quartile plus 1.5 times the interquar-
tile range. Subjects were significantly faster overall for cued (valid) objects than uncued (invalid) objects. B, Reaction times for
valid and invalid trials separately for each attention condition. Subjects were significantly faster for cued (valid) objects than
uncued (invalid) objects for each object category.
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decoding accuracy in the preparatory period between the cue onset and
the target onset might have been based on differences in the sensory
processes evoked in the visual system by the different cue stimuli, we
modified experiment 1 by making the cues nonpredictive of the upcom-
ing target category. In keeping with this modification, we instructed par-
ticipants that the cue shape was not informative and that the cue
presentation was simply to alert them that the target stimulus would
soon appear. Participants were not explicitly instructed to ignore the cue
shape. While the time course of differences in sensory responses in scalp
EEG filtered to alpha-band frequencies is difficult to gauge, on the basis
of the previous literature (Bae and Luck, 2018), we predicted that even
for alpha, any differentiable stimulus-evoked sensory activity would be
restricted to a window of time within 200 ms after the cue onset. Each
participant completed 10 blocks of the experiment, with each block com-
prising 42 trials.

Experiment 3
The recording and analysis protocols were
identical to those of experiment 1. The pur-
pose of this experiment was to investigate
whether differences in alpha topography
across object attention conditions in experi-
ment 1 may have been the result of differ-
ent task sets across the three object
attention conditions, rather than reflecting
object-based attention mechanisms in vis-
ual cortex. Specifically, in the attend-face
condition of experiment 1, participants
were instructed to discriminate whether the
presented face was male or female, and to
indicate their choice using a button box
with two buttons under the index finger
and middle finger. In the attend-scene con-
dition, the task was to discriminate urban
from natural scenes using the same two
buttons, and in the attend-tool condition,
the task was to discriminate powered from
nonpowered tools using the same two but-
tons. Because the categories being discrimi-
nated were different across the different
cue conditions (male/female, urban/natu-
ral, power tool/hand tool), it is possible that
participants were preparing different task
sets across the different cue conditions dur-
ing the preparatory period. After being pre-
sented with a triangle cue, for example, a
participant would need to cognitively map
their index finger response to the identifica-
tion of a male face and their middle finger
response to the identification of a female
face, whereas this mapping would be differ-
ent if the participant were presented with a
square cue. These different task sets and
mappings from visual cortex to motor
response preparation could possibly have
been driving the different alpha scalp top-
ographies over the preparatory period.

This explanation is not mutually exclu-
sive of our interpretation that alpha scalp
topographies reflect differential preparatory
attentional biasing in object category-selec-
tive visual areas, but, given the design of
experiment 1, there is no way to know
whether one, the other, or both are
reflected in the differing alpha patterns.
Therefore, we conducted an experiment
that equated the task across all object atten-
tion conditions to eliminate any task set
differences that were present in the original
experiment. Based on our model that alpha

is a mechanism for selective attention to objects in visual cortex, in this
new design we should still observe different patterns of alpha signals for
preparatory attention to object categories, which should be revealed in
successful decoding late in the cue-to-target period.

Apparatus and stimuli. The general structure of the paradigm for
experiment 3 followed the paradigm of experiment 1. On each trial, a
cue shape appeared, indicating the object category to attend. Cue shapes
were identical to those in experiment 1. As before, a preparatory period
followed the cue, and then a stimulus image appeared. An ITI separated
the stimulus image and the onset of the next trial. Behavioral responses
were collected during this ITI. SOA and ITI ranges were kept the same
as in experiment 1.

The behavioral task for this experiment was to determine, on each
trial, whether the briefly presented target image belonging to the cued
object category (faces, scenes, or tools) was in focus or blurry. Unlike

Figure 3. Topographic difference maps for alpha power in experiment 1. A, Difference maps for anticipatory attention to faces
minus scenes. Alpha topography difference plot for attend-face minus attend-scene condition, averaged over participants, for four
time windows relative to cue onset. The topographic difference maps are shown only until 1000 ms after cue onset, when the
shortest latency targets could appear. The view of these difference maps is from behind the head. See text for description. B,
Difference maps for anticipatory attention to faces minus tools. Alpha topography difference plot for attend-face minus attend-
tool condition, averaged over participants. C, Difference maps for anticipatory attention to tools minus scenes. Alpha topography
difference plot for attend-tool minus attend-scene condition, averaged over participants.
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experiments 1 and 2, the stimuli to be discriminated were composites of
an image belonging to the target category superimposed with an image
belonging to a noncued, distractor category. Crucially, both the target
image and the distractor image in the blend could be in focus or blurry
independent of each other; therefore, the task could not be performed
solely on the basis of attending to and responding to the presence or ab-
sence of blur (see experiment 3 Results for example).

Twenty percent of trials were invalidly cued, allowing us to assess the
effect of cue validity on behavioral performance. For the invalid trials,
the stimulus image was a composite of an image from a randomly cho-
sen noncued object category, superimposed with a black-and-white
checkerboard. The checkerboard could also be blurry or in focus inde-
pendent of the object image. Participants were instructed that whenever
they encountered a trial where the blended stimulus did not include an
image belonging to the cued object category, but instead contained only
one object image and a checkerboard overlay, then they had to indicate
whether the noncued object image in the stimulus was blurry or in focus.
We predicted that participants would be slower to respond on invalidly
cued trials, analogous to the behavioral effect of validity observed in
cued spatial attention paradigms.

The stimulus images spanned a square 5° � 5° of visual angle. To
create blurred images, Gaussian blur with an SD of 2 was applied to the
images.

All three object categories included 40 different individual images.
On each trial, random images were drawn to produce the composite
stimulus image. Scene and tool images were drawn from the same image
sets as those for the original experiment. However, face images were
drawn from a different image set (Ma et al., 2015) because the face
images used in the original experiment were not of high enough resolu-
tion to yield reliably noticeable differences in blurred versus nonblurred
conditions. All face images were cropped to ovals centered on the face
and placed against a white background.

Unlike scene images, which contained visual details spanning the
entire 5° � 5° square, face and tool images were set against white back-
grounds and so did not contain visual information up to all the image
boundaries. Therefore, to eliminate the possibility that participants could
use cue information to focus spatial attention instead of object-based

attention to perform the blurry/in focus discrimination on any trial
where a face or tool image was included in the composite stimulus, the
position of that face or tool image was randomly jittered from the center.

Procedure. Participants were instructed to respond as quickly as they
could to the target stimulus, making it vital that the participants engaged
preparatory attention toward the cued object category during the prepar-
atory period. All participants were trained with at least 126 trials of the
task and were able to achieve at least 60% response accuracy before per-
forming it under EEG data collection; to achieve this, stimulus duration
was adjusted on an individual participant basis during the initial training
phase. Experiment 3 was conducted in the same laboratory environment
as the original experiment, and environmental setup variables were
equated to those of the original experiment.

Each participant completed 15 blocks of the experiment, with each
block comprising 42 trials, which represented, on average, 210 more tri-
als per subject than experiment 1.

Results
Experiment 1
Behavioral results
Observed response accuracies were high and uniform across all
object conditions and validity conditions (invalid face, 96.6%; in-
valid scene, 97.1%; valid face, 96.8%; valid scene, 96.7%; valid
tool, 93.1%) with the exception of the invalid attend-tool condi-
tion (87.5%), which we address below.

To determine whether our task elicited a behavioral attention
effect, we compared RT for target discriminations between val-
idly and invalidly cued trials. We observed faster mean RTs for
valid trials than for invalid trials, averaging across conditions
(Fig. 2A) and for each condition separately (Fig. 2B).

To quantitatively assess the effect of cue validity on RT, we fit
a gamma-distributed generalized linear mixed model to the RT
data (Lo and Andrews, 2015). We found a significant effect of va-
lidity (valid vs invalid, p, 0.001). The model also revealed a

Figure 4. Alpha-band decoding accuracy in experiment 1. Decoding accuracy of alpha-band activity over the epoch, across participants. The horizontal red line represents chance decoding
accuracy. The solid time-varying line is the across-subject mean decoding accuracy at each time point, and the shaded area around this line is the SEM. The gray shading denotes the precue pe-
riod, and the orange shaded segment represents the anticipatory period between cue onset (0 ms) and the earliest target onset (1000 ms). The turquoise dots denote time points that belong
to statistically significant clusters of decoding accuracy, as determined by Monte Carlo assessment.
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significant main effect of object category (p, 0.001) due to the
slower overall reaction times in the tool category. Thus, subjects
were less accurate and slower in their responses to the tool cate-
gory. Despite these slight performance decrements for the tool
category, there was nonetheless a significant behavioral attention
effect for the tool category, providing evidence that the subjects
used all three cue types to prepare to discriminate and respond to
the upcoming objects.

Alpha topography results
To qualitatively assess whether the pat-
tern of alpha power across electrodes
was different for anticipatory attention
to the three cued categories of objects,
we inspected topographic plots of
alpha power for each object condition
at different time periods following the
cues, but before the onset of the target
stimuli. In order to highlight differen-
ces between the alpha topographies
between conditions and to control for
nonspecific effects of behavioral arousal,
we created pairwise alpha topography
difference maps of one object-attention
condition subtracted from another
object-attention condition.

We observed that differences in
alpha topography between object con-
ditions emerged and evolved over
the anticipatory (cue-to-target) period
(Fig. 3). In the attend-face minus
attend-scene topographies (Fig. 3A),
we observed increased alpha power
over the left posterior scalp and
decreased alpha power over the right
posterior scalp during the course of the
anticipatory period, with the lateraliza-
tion becoming most prominent at lon-
ger postcue latencies. In the attend-
face minus attend-tool topographies
(Fig. 3B), the pattern was similar at the
longest latencies, but was more vari-
able in intermediate periods of time. In
the attend-tool minus attend-scene
topographies (Fig. 3C), the pattern of
alpha differences was distinctive from
those involving attend-face conditions;
at the longest postcue latencies, the
pattern of alpha power over the scalp
was reversed from that in the other dif-
ference maps, with alpha power being
higher over the left than the right pos-
terior scalp. Overall, the presence of
these differences among conditions
is consistent with variations in the
underlying patterns of cortical alpha
power during anticipatory attention to
faces, scenes, and tools. However,
given the variability across subjects,
and the inherent difficulty in quantify-
ing difference maps between subjects
across attention conditions, we turned
to the method of EEG decoding to
quantify the differences in alpha power
across the conditions that are qualita-
tively described in the foregoing.

SVM decoding results
SVM decoding results (Fig. 4) revealed statistically significant
decoding accuracies in two clusters of time points around the
range of 500–800 ms postcue and pretarget (Fig. 4, turquoise
dots). Decoding accuracies in the range of �100 to 1200 ms

Figure 5. Decoding for different EEG frequency bands in experiment 1. A, The same SVM decoding procedure and Monte Carlo
statistical procedure that was used for analyzing the alpha-band data were applied to the theta band (4–7 Hz). B, The same
decoding pipeline was applied to the beta band (16–31 Hz), revealing no statistically significant clusters of above-chance decod-
ing accuracy in the preparatory period. C, The same decoding pipeline was also applied to the gamma band (32–40 Hz) and, sim-
ilarly, revealed no statistically significant clusters of above-chance decoding accuracy in the preparatory period.
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around the onset of the cue did not reach the threshold for statis-
tical significance.

SVM decoding results for theta, beta, and gamma-band oscil-
latory EEG activity revealed no statistically significant decoding
in the anticipatory period (Fig. 5).

Experiment 2
We observed a statistically significant cluster of above-chance
decoding accuracy time points in the cue presentation window
only. No further clusters of significantly above-chance decoding
occurred anywhere from 200 to 1000 ms (Figs. 6).

The results of this control experiment argue against the possi-
bility that the late-period alpha-band decoding we observed in
our original experiment was simply a result of differential bot-
tom-up sensory processes across the three cue conditions.
Because the paradigm for experiment 2 was identical to the para-
digm of experiment 1 in every respect other than the cue validity,
and because we ran the same SVM decoding pipeline on the
alpha-band EEG data from experiment 2, as we did in experi-
ment 1, we could directly assess whether the pattern of decoding
results we obtained from the original experiment was attributable
to bottom-up sensory processes.

We collected data from more participants for experiment 2
than we did for our original experiment so that we could have
more power in assessing the magnitude and the temporal extent
of the decoding that could be achieved purely on the basis of
stimulus-evoked activity. Our results support the idea that the
long-latency above-chance decoding in experiment 1 is not at-
tributable to purely sensory activity driven by physical stimulus
differences, because we found that in experiment 2 statistically
significant above-chance decoding occurred only in a cluster of
time points at short postcue latency (,200 ms after cue onset;
Fig. 6).

Experiment 3
Behavioral results
In the task of discriminating blurry from focused images
(Fig. 7), we observed differences in RT between valid and invalid
trials, for all object categories, such that validly cued trials elicited
faster responses than invalidly cued trials (Fig. 8). In fitting a
gamma-distributed generalized linear mixed model to the RT
data, we found a significant effect of validity (p, 0.001).

SVM decoding results
Using the same EEG analysis and SVM decoding pipeline as for
experiment 1, we found statistically significant clusters of time
points exhibiting above-chance decoding accuracy (Fig. 9). Just
as in experiment 1, these statistically significant clusters were
observed in the second half of the preparatory period, .500 ms
after the cue onset. Notably, there also appears to be a group of
above-chance time points in the cue presentation window of 0–
200 ms, in the same period where we observed statistically signif-
icant decoding in experiment 2 that was attributable to the cue-
evoked sensory activity. However, in the results of experiment 3,
like experiment 1, decoding in this cue presentation time period
(,200 ms latency) did not reach the level of statistical signifi-
cance (whereas with the higher number of participants in experi-
ment 2, it could be revealed).

The behavioral results of experiment 3 suggest that partici-
pants were engaging object-based attention during the prepara-
tory period. Participants were faster to discriminate object
images as blurry or in focus when their category was cued.
Analogous to the cued spatial attention paradigms, on invalidly
cued trials participants were attending to one object category
during the preparatory period but then, on stimulus presenta-
tion, reoriented their attention to be able to discriminate whether
an image from an uncued object category was blurry or in focus.

Figure 6. Alpha-band decoding accuracy for experiment 2. The same SVM decoding procedure and Monte Carlo statistical procedure that was used for analyzing the data from
experiment 1 was applied to alpha-band EEG from experiment 2, revealing a cluster of statistically significant time points close to the onset of the cue, but not later in the preparatory
period.
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With the behavioral effect between valid and invalid trials in
line with that from our original experiment, we are confident
that the experimental design in experiment 3 was engendering
the same form of top-down object-based attention as was cap-
tured by experiment 1. Therefore, in observing statistically signif-
icant above-chance decoding in the same general window of
time after cue onset for experiments 1 and 3, we interpret this
finding as evidence that object-based attention, and not task set
or motor response preparation differences, is driving the longer-
latency decoding result before the onset of the targets.

Discussion
Object-based attention is a fundamental component of natural
vision. People navigate the world principally on the basis of
interactions with objects, which abound in typical environments
(O’Craven et al., 1999; Scholl, 2001). The primacy of objects
means that adaptive interaction with the world requires high-
level object representations that are distinct from low-level visual
features in the same region of space. Therefore, an effect of atten-
tion directly on object representations is a critical aspect of per-
ception (Woodman et al., 2009). Attention has been shown to
operate on object representations (Tipper and Behrmann, 1996;
Behrmann et al., 1998), so identifying the neural mechanisms by
which attention influences object representations is a key goal in
cognitive neuroscience.

Physiologic studies show that the performance benefits of
attention correlate with neural activity changes in perceptual sys-
tems. Cortical structures coding attended information show
increased signal amplitude, synchrony, and/or functional con-
nectivity (Moore and Zirnsak, 2017). How the nervous system
mechanistically controls this cortical excitability and processing
efficiency remains incompletely understood, but most models
suggest that top-down control signals from higher-order net-
works in frontal and parietal cortex alter processing in sensory/
perceptual cortical regions coding attended and unattended in-
formation (Petersen and Posner, 2012). One hypothesized neural
signature of top-down control at the level of sensory/perceptual
cortex is focal alpha power (Jensen and Mazaheri, 2010).
Changes in alpha power occur during spatial attention (Worden
et al., 2000), and feature attention (Snyder and Foxe, 2010). Here
we investigated alpha-based mechanisms mediating selective
attention to objects by cuing attention to different objects and

measuring changes in scalp-recorded EEG alpha power. We
combined behavior with EEG topographic mapping and decod-
ing to test the hypothesis that object attention involves selective
alpha power modulations in object-specific cortex.

We chose faces, scenes, and tools as attentional targets
because these objects have been shown to activate circumscribed
areas in the visual cortex. The fusiform face area (FFA) is selec-
tively responsive to images of upright faces (Allison et al., 1994;
Kanwisher and Yovel, 2006): faces can be considered objects
because, for example, evidence from patients with prosopagnosia
suggests that the similar mechanisms underlie face recognition
and object recognition (Gauthier et al., 1999). The parahippo-
campal place area (PPA) is responsive to scenes (Epstein et al.,
1999), and specifically to scene category (Henriksson et al.,
2019). Areas responsive to tools have been identified in the ven-
tral and dorsal visual pathways (Kersey et al., 2016). In line with
the prediction that object-based attention modulates alpha in vis-
ual areas specialized for processing the attended object category,
attention to faces should selectively decrease alpha-band activity
in face-selective visual areas like FFA, attention to scenes should
decrease alpha-band activity in place-selective areas like PPA,
and attention to tools should decrease alpha-band activity over
tool-selective regions of the ventral and dorsal visual pathways.
EEG is not a strong method for localizing the neural sources of
brain activity, but, given that the FFA, PPA, and postulated tool-
specialized areas are located in different cortical regions, the pat-
terns of alpha modulations with attention in these areas would
be expected to produce differential EEG alpha patterns on the
scalp. Given that such patterns might be expected to be only sub-
tly different, and in ways difficult to predict, one avenue for
assessing different patterns of alpha for attention to different
objects is to incorporate machine learning to decode scalp EEG
alpha patterns. Such differences should only be expected if focal
modulation of alpha is also involved in selective object attention.

Our reaction time results showed that participants who
engaged object-based attention to cued object categories were
faster to identify cued objects. Theoretically, when cued to antici-
pate a particular object category, participants would bias neural
activity within the cortical areas specialized for that object type
and perhaps also bias activity within cortical areas processing all
the lower-level visual features associated with that object (Cohen
and Tong, 2015). When the target appears, its visual properties
would thus be integrated, facilitating the required perceptual dis-
crimination. When the object appearing is from an unanticipated
(uncued) category, activity in object-selective areas and associ-
ated visual feature areas for the uncued objects would be rela-
tively suppressed, delaying the integration and semantic parsing
of uncued target images, and slowing reaction times.

Topographic alpha difference maps varied with the object cat-
egory that was attended. Differing alpha topographies were con-
sistent with scalp EEG patterns that would be expected if the
alpha modulations were occurring in different underlying corti-
cal generators (cortical patches or areas) for the three object
categories. The wealth of evidence about underlying neuroana-
tomical substrates of face, scene, and tool processing from imag-
ing studies allows some predictions about our data with respect
to the hypothesized nature of the focal cortical activity contribut-
ing to our topographic and decoding findings. The right hemi-
sphere-emphasized FFA (Kanwisher et al., 1997), and the equally
bilaterally distributed PPA (Epstein and Kanwisher, 1998),
would, in principle, predict a differential scalp alpha distribution
and perhaps lower alpha power broadly over the right occipital
when attending faces. Our attend-face minus attend-scene alpha

Figure 7. Example target images in the attention task for experiment 3. In this example
set, face is the target object category to be identified as in focus or blurry, and the overlaid
tool or scene images are the distractor images. For each stimulus image, both the target and
distractor can be blurry or in focus, independently of each other.
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topography was generally consistent with
this prediction (Fig. 3A), and this pattern
was different from that in the attend-face
minus attend-tool difference plot (Fig.
3B). We hope to make exceptionally clear,
however, that we are not proposing that
we can localize the underlying cortical
generators of scalp-recorded activity
using the methods we used here; hence,
we turned to decoding.

Our decoding analyses provide strong
support for the claim that attention mod-
ulates alpha topographies in an object cat-
egory-specific manner and is in line with
the time courses of the differences in
alpha patterns observed in the scalp topo-
graphic difference plots. In our decoding
analyses, statistically significant above-
chance decoding accuracy provides
straightforward evidence that alpha to-
pography contains information about the
selected object category, and, therefore,
that top-down object-based attention
modulates alpha topography according to
the cued (attended) object category. We
observed that statistically significant
decoding occurred in the 500–800 ms
range postcue/pretarget, indicating that
patterns of alpha topography at the scalp
were reliably modulated by our attention
manipulation in this time range (Fig. 4).
Importantly, the 500–800 ms range corre-
sponds to the periods in the alpha topo-
graphic difference plots where the
patterns stabilized.

In order to test whether our decoding
results were specific for the alpha band,
we performed the same SVM decoding
routine on theta-, beta-, and gamma-
band power and found no significant
above-chance decoding in the anticipa-
tory period for those frequency bands
(Fig. 5). This result is consistent with the
hypothesis that oscillatory neural activity
in the alpha band is mechanistically
involved in anticipatory attention,
whereas activity in other EEG frequency
bands is not modulated in target-relevant
visual areas in human EEG.

In two follow-up experiments, we
directly assessed two alternative interpre-
tations of our decoding results from
experiment 1. First, differences in alpha scalp topography post-
cue might reflect purely sensory processing associated with each
cue (e.g., triangle vs circle). This should be applicable only to the
above-chance (although not significant by our tests) decoding
observable in the early postcue period (;0–200 ms) in Figure 4,
and not to the significant longer-latency decoding. Indeed, we
verified this in experiment 2, in which participants performed
the same task, and saw the same cues and targets as in experi-
ment 1, but the cue shape did not predict the upcoming object
category. We observed statistically significant decoding in the
postcue/pretarget period from 0 to 200 ms attributable to

physical cue features (Bae and Luck, 2018), but no significant
decoding later in the cue-to-target interval.

A second alternative explanation of our decoding results from
experiment 1 is that they were driven by task set differences
across cued object conditions. The task for faces, for example,
was to discriminate gender, while for scenes it was to distinguish
between urban scenes and natural scenes, leaving open the possi-
bility that our decoding late in the postcue period reflected task
set differences (Hubbard et al., 2019) rather than attentional con-
trol over object selection as we propose. We can reject this alter-
native based on the results of experiment 3, in which the cues
predicted the relevant target object, but the discrimination task

Figure 8. Behavioral measures of attention in experiment 3. A, Box plots of reaction time data for invalid and valid trials
for 12 subjects, averaged across attention (object) conditions. Thick horizontal lines inside boxes represent median values.
First and third quartiles are shown as lower and upper box edges. Vertical lines extend to most extreme data points excluding
outliers. Dots above plots represent outliers, defined as any value greater than the third quartile plus 1.5 times the interquar-
tile range. Subjects were significantly faster overall for cued (valid) objects than uncued (invalid) objects. B, Reaction times
for valid and invalid trials separately for each attention condition. Subjects were significantly faster for cued (valid) objects
than uncued (invalid) objects for each object category.
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was the same for all object categories: to discriminate whether
the cued object was in focus or blurred. We were thus able to
replicate the longer-latency alpha-related preparatory attention
effects reported in experiment 1 while controlling task set
factors.

Our findings show that EEG alpha modulation is linked to
object-based selective attention, extending previous findings that
alpha modulation is associated with attention to spatial locations
and low-level visual features. Using an SVM decoding approach,
we identified differences in the topographic patterns of alpha
power during selective attention to different object categories.
Further, we linked the time range during which statistically sig-
nificant decoding was achieved to alpha power topographic
maps and observed that alpha modulation was consistent with
the time course of preparatory attention observed in prior
research. Overall, these findings support the model that alpha-
band neural activity functions as an attentional modulator of
sensory processing for both low-level visual features and high-
order neural representations such as those for objects.
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