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INGREDIENTS FOR A THEORY OF INSTRUCTIONI

Richard C. Atkinson2

Stanford University

The term "theory of instruction" has been in widespread use for over a

decade and during that time has acquired a fairly specific meaning. By

consensus it denotes a body of theory concerned with optimizing the learning

process; stated otherwise, the goal of a theory of instruction is to pre

scribe the most effective methods for acquiring new information, whether in

the form of higher-order concepts or rote facts. Although usage of the term

is widespread, there is no agreement on the requirements for a theory of

instruction. The literature provides an array of examples ranging from

speculative accounts of how children should be taught in the classroom to

formal mathematical models specifying precise branching procedures in

computer-controlled instruction. 3 Such diversity is healthy; to focus on

only one approach would not be productive in the long run. I prefer to use

the term "theory of instruction" to encompass both experimental and

theoretical research, with the theoretical work ranging from general

speculative accounts to specific quantitative models.

The literature on instructional theory is growing at a rapid rate. So

much so that, at this point, a significant contribution could be made by

someone willing to write a book summarizing and evaluating work in the area.

I am reminded here of Hi1gard's book, Theories of Learning first published

in 1948; it played an important role in the development of learning theory

by effectively summarizing alternative approaches and placing them in

perspective. A book of this type is needed now in the area of instruction.

My intention in this paper is to present an overview of one of the chapters
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that I would like to see included in such a book; a title for the chapter

might be "A decision-theoretic analysis of instruction." Basically, I

shall consider the factors that need to be examined in deriving optimal

instructional strategies and then use this analysis to identify the key

elements of a theory of instruction.

A DECISION-THEORETIC ANALYSIS OF INSTRUCTION

The derivation of an optimal strategy requires that the instructional

problem be stated in a form amenable to a decision-theoretic analysis.

Analyses based on decision theory vary somewhat from field to field, but

the same formal elements can be found in most of them. As a starting point

it will be useful to identify these elements in a general way, and then

relate them to an instructional situation. They are as follows:

1. The possible states of nature.

2. The actions that the decision-maker can take to transform the

state of nature.

3. The transformation of the state of nature that results from each

action.

4. The cost of each action.

5. The return resulting from each state of nature.

In the context of instruction, these elements divide naturally into three

groups. Elements 1 and 3 are concerned with a description of the learning

process; elements 4 and 5 specify the cost-benefit dimensions of the problem;

and element 2 requires that the instructional actions from which the decision

maker is free to chose be precisely specified.
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For the decision problems that arise in instruction, elements I and 3

require that a model of the learning process exist. It is usually natural

to identify the states of nature with the learning states of the student.

Specifying the transformation of the states of nature caused by the actions

of the decision-maker is tantamount to constructing a model of learning for

the situation under consideration. The learning model will be probabilistic

to the extent that the state of learning is imperfectly observable or the

transformation of the state of learning that a given instructional action

will cause is not completely predictable.

The specification of costs and returns in an instructional situation

(elements 4 and 5) tends to be straightforward when examined on a short-term

basis, but virtually intractable over the long-term. For the short-term

one can assign costs and returns for the mastery of, say, certain basic

reading skills, but sophisticated determinations for the long-term value

of these skills to the individual and society are difficult to make. There

is an important role for detailed economic analyses of the long-term impact

of education, but such studies deal with issues at a more global level than

we shall consider here. The present analysis will be limited to those

costs and returns directly related to a specific instructional task.

Element 2 is critical in determining the effectiveness of a decision

theory analysis; the nature of this element can be indicated by an example.

Suppose we want to design a supplementary ~et of exercises for an initial

reading program that involve both sight-word identification and phonics.

Let us assume that two exercise formats have been developed, one for training

on sight words, the other for phonics. Given these formats, there are many

ways to design an overall program. A variety of optimization problems
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can be generated by fixing some features of the curriculum and leaving others

to be determined in a theoretically optimal manner. For example, it may

be desirable to determine how the time available for instruction should be

divided between phonics and sight word recognition, with all other features

of the curriculum fixed. A more complicated question would be to determine

the optimal ordering of the two types of exercises in addition to the optimal

allocation of time. It would be easy to continue generating different

optimization problems in this manner. The main point is that varying the

set of actions from which the decision-maker is free to choose changes the

decision problem, even though the other elements remain the same.

Once these five elements have been specified, the next task is to

derive the optimal strategy for the learning model that best describes the

situation. If more than one learning model seems reasonable ~ priori, then

competing candidates for the optimal strategy can be deduced. When these

tasks have been accomplished, an experiment can be designed to determine

which strategy is best. There are several possible directions in which to

proceed after the initial comparison of strategies, depending on the results

of the experiment. If none of the supposedly optimal strategies produces

satisfactory results, then further experimental analysis of the assumptions

of the underlying learning models is indicated. New issues may arise even

if one of the procedures is successful. In the second example that we shall

discus£, the successful strategy produces an unusually high error rate during

learning, which is contrary to a widely accepted principle of programmed

instruction (Skinner, 1968). When anomalies such as this occur, they

suggest new lines of experimental inquiry, and often require a reformulation

of the learning model. 4
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CRITERIA FOR A THEORY OF INSTRUCTION
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Our discussion to this point can be summarized by listing four criteria

that must be satisfied prior to the derivation of an optimal instructional

strategy:

1. A model of the learning process.

2. Specification of admissible instructional actions.

3. Specification of instructional objectives.

4. A measurement scale that permits costs to be assigned to each

of the instructional actions and payoffs to the achievement of

instructional objectives.

If these four elements can be given a precise interpretation then it is

generally possible to derive an optimal instructional policy. The solution

for an optimal policy is not guaranteed, but in recent years some powerful

tools have been developed for discovering optimal or near optimal procedures

if they exist.

The four criteria listed above, taken in conjunction with methods for

deriving optimal strategies, define either a model of instruction or a

theory of instruction. Whether the term theory or model is used depends on

the generality of the applications that can be made. Much of my own work

has been concerned with the development of specific models for specific in

structional tasks; hopefully, the collection of such models will provide

the groundwork for a general theory of instruction.

In terms of the criteria listed above, it is clear that a model or

theory of instruction is in fact a special case of what has come to be

known in the mathematical and engineering literature as optimal control
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theory or, more simply, control theory (Kalman, Falb, & Arbib, 1969). The

development of control theory has progressed at a rapid rate both in the

United States and abroad, but most of the applications involve engineering

or economic systems of one type or another. Precisely the same problems

are posed in the area of instruction except that the system to be controlled

is the human learner, rather than a machine or group of industries. To the

extent that the above four elements can be formulated explicitly, methods

of control theory can be used in deriving optimal instructional strategies.

To make some of these ideas more precise, we shall consider two examples.

One involves a response-insensitive strategy and the other a response-sensitive

strategy. A response-insensitive strategy orders the instructional materials

without taking into account the student's responses (except possibly to provide

corrective feedback) as he progresses through the curriculum. In contrast,

a response-sensitive strategy makes use of the student's response history

in its stage-by-stage decisions regarding which curriculum materials to present

next. Response-insensitiVe strategies are completely specified in advance

and consequently do not require a system capable of branching during an

instructional session. Response-sensitive strategies are more complex, but

have the greatest promise for producing significant gains for they must be

at least as good, if not better, than the comparable response-insensitive

strategy.

OPTIMIZING INSTRUCTION IN INITIAl READING

The first example is based on work concerned with the development of a

computer-assisted instruction (CAl) program for teaching reading in the

primary grades (Atkinson & Fletcher, 1972). The program prOVides individ

ualized instruction in reading and is used as a supplement to normal
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classroom teaching; a given student may spend anywhere from zero to 30

minutes per day at a CAl terminal. For present purposes only one set of

results will be considered, where the dependent measure is performance on

a standardized reading achievement test administered at the end of the

first grade. Using our data a statistical model can be formulated that

predicts test performance as a function of the amount of time the student

spends on the CAl system. Specifically, let Pi (t) be student i's performance

on a reading test administered at the end of first grade, given that he

spends time t on the CAl system during the school year. Then within

certain limits the following equation holds:

Pi(t) = a i - Siexp(-Yit )

Depending on a student's particular parameter values, the more time spent

on the CAl program the higher the level of achievement at the end of the

year. The parameters a, S, and Y, characterize a given student and vary

from one student to the next; a and (a-S) are measures of the student's

maximal and minimal levels of achievement respectively, and Y is a rate

of progress measure. These parameters can be estimated from a student's

response record obtained during his first hour of CAl. Stated otherwise,

data from the first hour of CAl can be used to estimate the parameters

a, S. and Y for a given student, and then the above equation enables us to

predict end-of-year performance as a function of the CAl time allocated to

that student.

The optimization problem that arises in this situation is as follows:

Let uS suppose that a school has budgeted a fixed amount of time T on the

CAl system for the school year and must decide how to allocate the time
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among a class of ~ first-grade students. Assume, further, that all students

have had a preliminary run on the CAl system so that estimates of the

parameters a, S, and y have been obtained for each student.

Let ti be the time allocated to student i. Then the goal is to select

a vector (t l , tz, ..• ,tn ) that optimizes learning. To do this let us check

our four criteria for deriving an optimal strategy.

The first criterion is that we have a model of the learning process.

The prediction equation for Pi(t) does not offer a very complete account

of learning; however, for purposes of this problem the equation suffices as

a model of the learning process, giving all of the information 'that is

required. This is an important point to keep in mind: the nature of the

specific optimization problem determines the level of complexity that must

be represented in the learning model. For some problems the model must

provide a relatively complete account of learning in order to derive an

optimal strategy, but for other problems a simple descriptive equation of

the sort presented above will suffice.

The second criterion requires that the set of admissible instructional

actions be specified. For the present case the potential actions are simply

all possible vectors (tl' tz, ... ,tn ) such that the ti's are non-negative

and sum to T. The only freedom we have as decision makers in this situation

is in the allocation of CAl time to individual students.

The third criterion requires that the instructional objective be

specified. There are several objectives that we could choose in this

situation. Let us consider four possibilities:

(a) Maximize the mean value of P over the class of students.
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(b) Minimize the variance of P over the class of students.

(c) Maximize the number of students who score at grade level at the

end of the first year.

(d) Maximize the mean value of P satisfying the constraint that the

resulting variance of P is less than or equal to the variance

that would have been obtained if no CAl was administered.

Objective (a) maximizes the gain for the class as a whole; (b) aims to

reduce differences among students by making the class as homogeneous as

possible; (c) is concerned specifically with those students that fall

behind grade level; (d) attempts to maximize performance of the whole

class but insures that differences among students are not amplified by

CAl. Other instructional objectives can be listed, but these are the ones

that seemed most relevent. For expository purposes, let us select (a) as

the instructional objective.

The fourth criterion requires that costs be assigned to each of the

instructional actions and that payoffs be specified for the instructional

objectives. In the present case we assume that the cost of CAl does not

depend on how time is allocated among students and that the measurement

of payoff is directly proportional to the students' achieved value of P.

In terms of our four criteria, the problem of deriving an optimal

instructional strategy reduces to maximizing the function
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subject to the constraint that

n
~t. = T
i=l 1

aM

10

This maximization can be done by using the method of dynamic programming

(Bellman, 1961). In order to illustrate the approach, computations were

made for a first-grade class where the parameters 0, S, and y had been

estimated for each student. Employing these estimates, computations were

carried out to determine the time allocations that maximized the above equa-

tion. For the optimal policy the predicted mean performance level of the

class, P, was 15% higher than a policy that allocated time equally to students

(i.e., a policy where t i = t j for all i and j). This gain represents a sub

stantial improvement; the drawback is that the variance of the P scores is

roughly 15% greater than for the equal-time policy. This means that if we

are interested primarily in raising the class average, we must let the rapid

learners move ahead and progress far beyond the slow learners.

Although a time allocation that complies with objective (a) did increase

overall class performance, the correlated increase in variance leads us

to believe that other objectives might be more beneficial. For comparison,

time allocations also were computed for objectives (b), (c), and (d). Figure 1

presents the predicted gain in P as a perce~tage of P for the equal-time

Insert Figure 1 about here

policy. Objectives (b) and (c) yield negative gains and so they should since
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instructional objective.
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their goal is to reduce variability, which is accomplished by holding

back on the rapid learners and giving a lot of attention to the slower

ones. The reduction in variability for these two objectives, when compared

with the equal-time policy, is 12% and 10%, respectively. Objective (d),

which attempts to strike a balance between objective (a) on the one hand

and objectives (b) and (c) on the other, yields an 8% increase in P and

yet reduces variability by 6%.

In view of these computations, objective (d) seems to be preferred; it

offers a substantial increase in mean performance while maintaining a low

level of variability. As yet, we have not implemented this policy, so

only theoretical results can be reported. Nevertheless, these examples

yield differences that illustrate the usefulness of this type of analysis.

They make it clear that the selection of an instructional objective should

not be done in isolation, but should involve a comparative analysis of

several alternatives taking into account more than one dimension of per

formance. For example, even if the principal goal is to maximize P, it

would be inappropriate in most educational situations to select a given

objective over some other if it yielded only a small average gain while

variability mushroomed.

Techniques of the sort presented above have been developed for other

aspects of the CAl reading program. One of particular interest involves

deciding for each student, on a week-by-week basis, how time should be

divided between training in phonics and in sight-word identification

(Chant & Atkinson, 1972). However, these developments will not be con

sidered here; it will be more useful to turn to another example of a quite

different type.
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OPTIMIZING THE LEARNING OF A SECOND-LANGUAGE VOCABULARY

12

The second example deals with learning a foreign-language vocabulary.

A similar example could be given from our work in initial reading, but

this particular example has the advantage of permitting us to introduce

the concept of learner-controlled instruction. In developing the example

we will consider first some experimental work comparing three instructional

strategies and only later explain the derivation of the optimal strategy.5

The goal is to individualize instruction so that the learning of a

second-language vocabulary occurs at a maximum rate~ The constraints imposed

on the task are typical of a school situation. A large set of German-English

items are to be learned during an instructional session that involves a

series of trials. On each trial one of the German words is presented and

the student attempts to give the English translation; the correct trans

lation is then presented for a brief study period. A predetermined number

of trials is allocated for the instructional session, and after an intervening

period of one week a test is administered over the entire vocabulary. The

optimization problem is to formulate a strategy for presenting items during

the instructional session so that performance on the delayed test will be

maximized 0

Three strategies for sequencing the instructional material will be

considered. One strategy (designated the random-order strategy) is simply to

cycle through the set of items in a random.order; this strategy is not

expected to be particularly effective but it provides a benchmark against

which to evaluate others. A second strategy (designated the learner

controlled strategy) is to let the student determine for himself how best

to sequence the material. In this mode the student decides on each trial
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which item is to be tested and studied; the learner rather than an external

controller determines the sequence of instruction. The third scheme

(designated the response-sensitive strategy) is based on a decision-theoretic

analysis of the instructional task. A mathematical model of learning that

has provided an accurate account of vocabulary acquisition in other experi

ments is assumed to hold in the present situation. This model is used to

compute, on a trial-by-trial basis, an individual student's current state of

learning. Based on these computations, items are selected from trial to

trial so as to optimize the level of learning achieved at the termination

of the instructional session. The details of this strategy are complicated

and can be more meaningfully discussed after the experimental procedure

and results have been presented.

Instruction in this experiment is carried out under computer control.

The students are required to participate in two sessions: an instructional

session of approximately two hours and a briefer delayed-test session

administered one week later. The delayed test is the same for all students

and involves a test over the entire vocabulary. The instructional session

is more complicated. The vocabulary items are divided into seven lists

each containing twelve German words; the lists are arranged in a round-robin

order (see Figure 2). On each trial of the instructional session a list is

Insert Figure 2 about here

displayed and the student inspects it for a brief period of time. Then one

of the items on the displayed list is selected for test and study. In the

random-order and response-sensitive conditions the item is selected by the



Round - robin of Seven Lists Typical List

I. dos Rod
2. die Seite
3. dos Kino
4. die Gons
5. der Fluss
6. die Gegend
7. die Kamera
8. der Anzug
9. dos Geld

10. der Gipfel
II . dos Bein
12. die Ecke

Figure 2: Schematic representation of the round-robin of display lists

and an example of one such list. I--'w
;t>



Atkinson 14

computer. In the learner-controlled condition the item is chosen by the

student. After an item has been selected for test, the student attempts

to provide a translation; then feedback regarding the correct translation

is given. The next trial begins with the computer displaying the next list

in the round-robin and the same procedure is repeated. The instructional

session continues in this fashion for 336 trials (see Figure 3).

Insert Figure 3 about here

The results of the experiment are summarized in Figure 4. Data are

Insert Figure 4 about here

presented on the left side of the figure for performance on successive

blocks of trials during the instructional session; on the right side are

results from the test session administered one week after the instructional

session. Note that during the instructional session the probability of a

correct response is highest for the random-order condition, next highest for

the learner-controlled condition, and lowest for the response-sensitive

condition. The results, however, are reversed on the delayed test. The

response-sensitive condition is best by far with 79% correct; the learner

contrslled condition is next with 58%; and .the random-order condition is

poorest at 38%. The observed pattern of results is expected. In the

learner-controlled condition the students are trying, during the instructional

session, to test and study those items they do not know and should have a



14A

Display first List
of 12 German Words

Select One Word
on Displayed List
for test

Start
In structiona I

Session

Oisplay Next List
in Round - robin
of Lists

No

Evaluate Student's Response
to Tested Word. If Correct
so Indicate; I f Incorrect
so Indicate and Provide
Correct Transl a tion

Each
Been

Ha~~
of the S~ven Li~.>
Displayed 48 Times?

Terminate
Instructionol

Session

Yes

Figure 3: Flow chart describing the trial sequence during the instructional

session. The selection of a word for test on a given trial

(box with heavy border) varied over experimental conditions.
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lower score than students in the random-order condition where testing is

random and includes many items already mastered. The response-sensitive

procedure also attempts to identify for test and study those items that

have not yet been mastered and thus also produces a high error rate during

the instructional session. The ordering of groups on the delayed test is

reversed since now the entire set of words is tested; when all items are

tested the probability of a correct response tells us how much of the

list actually has been mastered. The magnitude of the effects observed on

the delayed test are large and of practical significance.

Now that the effectiveness of the response-sensitive strategy has been

established, let us turn to a discussion of how it was derived. The strategy

is based on a model of vocabulary learning that has been investigated

in the laboratory and shown to be quite accurate (Atkinson & Crothers, 1964;

Atkinson, 1972). The model assumes that a given item is in one of three

states (P, T, and U) at any moment in time. If the item is in state P then

its translation is known and this knowledge is "relatively" permanent in

the sense that the learning of other vocabulary items will not interfere

with it. If the item is in state T then it is also known, but on a

"temporary" basis; in state T other items can give rise to interference

effects that cause the item to be forgotten. In state U the item is not

known and the student is unable to provide a translation. Thus in states P

and T,a correct translation is given with probability one, whereas in

state U the probability is zero.

When a test and study occurs on a given item the following transition

matrix describes the possible change in state from the onset of the trial
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to its termination:

p

A = T
~

u

p

1

a

bc

T

o

l-a

(l-b)c

u

o

o

l-c

16

Rows of the matrix represent the state of the item at the start of the trial

and columns its state at the end of the trial. On a trial when some other

item is presented for test and study, a transition in the learning state of

our original item also may take place; namely, forgetting is possible in

the sense that if the item is in state T it may transit into state U.

This forgetting can occur only if the student makes an error on the other

item; in that case the transition matrix applied to the original item is

as follows:

p

F = T
~

U

p

1

o

o

T

o

l-f

o

U

o

f

1

To summarize, consider the application of matrices A and F to some specificz - =
item on the list; when the item itself is presented for test and study

transition matrix A is applied; when some other item is presented that
~

eliciLs an error then matrix F is applied. The above assumptions provide
~

a complete account of the learning process. The parameters in matrices

A and F measure the difficulty level of a German-English pair and vary
~ ~

across items. On the basis of prior experiments, numerical estimates of

these parameters exist for each of the items used in the experiment.
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As noted earlier, the formulation of a strategy requires that we be

precise about the quantity to be maximized. For the present task, the goal

is to maximize the number of items correctly translated on the delayed test.

To do this, a theoretical relationship must be specified between the state

of learning at the end of the instructional session and performance on

the delayed test. The assumption made here is that only those items in

state P at the end of the instructional session will be translated correctly

on the delayed test; an item in state T is presumed to be forgotten during

the intervening week. Thus, the problem of maximizing delayed-test perfor-

mance involves, at least in theory, maximizing the number of items in state

P at the termination of the instructional session.

Having numerical values for parameters and knowing the student's response

history, it is possible to estimate his current state of learning.
6

Stated

more precisely, the learning model can be used to derive equations and, in

turn, compute the probabilities of being in states P, T and U for each item

at the start of trial ~, conditionalized on the student's response history

up to and including trial n-l. Given numerical estimates of these probabilities

a strategy for optimizing performance is to select that item for presentation

(from the current display list) that has the greatest probability of moving

into state P if it is tested and studied on the trial. This strategy has

been termed the one-stage optimization procedure because it looks ahead one

trial- in making decisions. The true optim~l policy (i. e., an :!'!-stage pro

cedure) would consider all possible item-response sequences for the remaining

trials and select the next item so as to maximize the number of items in

state P at the termination of the instructional session. For the present

case the :!'!-stage policy cannot be applied because the necessary computations



Atkinson 18

are too time consuming even for a large computer. Fortunately, Monte Carlo

studies indicate that the one-stage policy is a good approximation to the

optimal strategy for a variety of Markov learning models; it was for this

reason, as well as the relative ease of computing, that the one-stage pro

cedure was employed. 7 The computational procedure described above was

implemented on the computer and permitted decisions to be made on-line

for each student on a trial-by-trial basis.

The response-sensitive strategy undoubtedly can be improved upon by

elaborating the learning model. Those familiar with developments in learning

theory will see a number of ways of introducing more complexity into the

model and thereby increasing its precision. We will not pursue such con-

siderations here, however, since our reason for presenting the example was

not to theorize about the learning process but rather to demonstrate how a

simple learning model can be used to define an instructional procedure.

CONCLUDING REMARKS

Hopefully, these two examples illustrate the steps involved in develop-

ing an optimal strategy for instruction. Both examples deal with relatively

simple problems and thus do not indicate the range of developments that

have been made or that are clearly possible. It would be a mistake, however,

to conclude that this approach offers a solution to the problems facing

education. There are some fundamental obstacles that limit the generality

of the work.

The major obstacles may be identified in terms of the four criteria

we specified -as prerequisites for an optimal strategy. The first criterion

concerns the formulation of learning models. The models that now exist are
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totally inadequate to explain the subtle ways by which the hun,an organism

stores, processes, and retrieves information. Until we have a much deeper

understanding of learning, the identification of truly effective strategies

will not be possible. However, an all-inclusive theory of learning is not a

prerequisite for the development of optimal procedures. What is needed

instead is a model that captures the essential features of that part of the

learning process being tapped by a given instructional task. Even models

that may be rejected on the basis of laboratory investigation can be useful

in deriving instructional strategies. The two learning models considered in

this paper are extremely simple, and yet the optimal strategies they generate

are quite effective. My own preference is to formulate as complete a

learning model as intuition and data will permit and then use that model to

investigate optimal procedures; when possible the learning model will be

represented in the form of mathematical equations but otherwise as a set

of statements in a computer-simulation program. The main point is that the

development of a theory of instruction cannot progress if one holds the view

that a complete theory of learning is a prerequisite. Rather, advances in

learning theory will affect the development of a theory of instruction, and

conversely the development of a theory of instruction will influence research

on learning.

The second criterion for deriving an optimal strategy requires that

admissible instructional actions be clearly specified. The set of potential

instructional inputs places a definite limit on the effectiveness of the

optimal strategy. In my opinion powerful instructional strategies must

necessarily be adaptive; that is, they must be sensitive on a mornent-to

moment basis to a learner's unique response history. My judgment on this
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matter is based on limited experience, restricted primarily to research on

teaching initial reading. In this area, however, the evidence seems to be

absolutely clear: the manipulation of method variables accounts for only

a small percentage of the variance when not accompanied by instructional

strategies that permit individualization. Method variables like the modified

teaching alphabet, oral reading, the linguistic approach, and others

undoubtedly have beneficial effects. However, these effects are minimal

in comparison to the impact that is possible when instruction is adaptive

to the individual learner. Significant progress in dealing with the nation's

problem of teaching reading will require indiVidually prescribed programs,

and sophisticated programs will necessitate some degree of computer inter

vention either in the form of CAlor computer-managed instruction. As a

corollary to this point, it is evident from observations of students on our

CAl Reading Program that the more effective the adaptive strategy the less

important are extrinsic motivators. Motivation is a variable in any form of

learning, but when the instructional process is truly adaptive the student's

progress is sufficent reward in its own right.

The third criterion for an optimal strategy deals with instructional

objectives, and the fourth with cost-benefit measures. In the analyses

presented here, it was tacitly assumed that the curriculum material being

taught is sufficiently beneficial to justify allocating time to it. Further,

in both examples the costs of instruction were assumed to be the same for

all strategies. If the costs of instruction are equal for all strategies,

they may be ignored and attention focused on the comparative benefits of the

strategies. This is an important point because it greatly simplifies the

analysis. If both costs and benefits are significant variables, then it
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is essential that both be accurately estimated. This is often difficult to

do. When one of these quantities can be ignored, it suffices if the other

can be assessed accurately enough to order the possible outcomes. As a

rule, both costs and benefits must be weighed in the analysis, and fre

quently subtopics within a curriculum vary significantly in their importance.

In some cases, whether or not a certain topic should be taught at all is the

critical question. Smallwood (1971) has treated problems similar to the

ones considered in this article in a way that includes some of these factors

in the structure of costs and benefits.

My last remarks deal with the issue of learner-controlled instruction.

One way to avoid the challenge and responsibility of developing a theory of

instruction is to adopt the view that the learner is the best judge of what

to study, when to study, and how to study. I am alarmed by the number of

individuals who advocate this position despite a great deal of negative

evidence. Don't misinterpret this remark. There obviously is a place for

the learner's judgments in making instructional decisions. In several CAl

programs that I have helped develop, the learner plays an important role in

determining the path to be followed through the curriculum. However, using

the learner's judgment as one of several items of information in making an

instructional decision is quite different from proposing that the learner

should have complete control. Our data, and the data of others, indicate

that the learner is not a particularly effective decision maker. Arguments

against learner-controlled programs are unpopular in the present climate of

opinion, but they need to be made so that we will not be seduced by the

easy answer that a theory of instruction is not required because, "who can

be a better judge of what is best for the student than the student hims'elf."
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The aim of this paper was to illustrate the steps involved in deriving

an optimal strategy and their impli~ations for a theory of instru~tion. I

want to emphasize a point made at the outset-~namely that the approa~h is

only one of many that needs to be pursued. Obviously the main obsta~le

is that adequate theories as yet do not exist for the learning pro~esses

that we most want to optimize. However, as the examples indi~ate, analyses

based on highly simplified models ~an be useful in identifying problems and

fo~using resear~h efforts. It seems ~lear that this type of resear~h is a

ne~essary ~omponent in a program designed to develop a general theory of

instru~tion.
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lA briefer version of this paper was presented as an invited address at

the meetings of the American Educational Research Association, Chicago,

April, 1972. This research was sponsored in part by National Science

Foundation Grant No. NSF GJ-443X2 and by Office of Naval Research Contract

No. N00014-67-A-Ol12-0054.

2Reques·ts for reprints should be sent to Richard C. Atkinson, Department

of Psychology, Stanford University, Stanford, California 94305.

3See , for example, Smallwood (1962), Carroll (1963) , Hilgard (1964),

Bruner (1966), Groen and Atkinson (1966), Crothers and Suppes (1967),

Gagne (1970), Seidel and Hunter (1970), Pask and Scott (1971), and

Atkinson and Paulson (1972).

4For a more extensive discussion of some of these points see Atkinson and

Paulson (1972), Calfee (1970), Dear, et a1. (1967), Laubsch (1970), and

Smallwood (1971).

SA detailed account of this research can be found in Atkinson (1972).

6The student's response history is a record (for each trial) of the item

presented and the response that occurred. It can be shown that a sufficient

history exists which contains only the information necessary to estimate

the student's current state of learning; the sufficient history is a function

of the complete history and the assumed learning model. For the model

considered here the sufficient history is fairly simple, but cannot be

readily described without extensive notation.
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7For a discussion of one-stage and N-stage policies and Monte Carlo studies

comparing them, see Groen and Atkinson (1966), Calfee (1970), and Laubsch

(1970).
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