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forest and no-till soils. Pasture communities showed 
a predominantly neutral model, regarding stochastic 
processes, with moderate dispersion, leading to biotic 
homogenization. Most no-till and forest microbial 
communities followed a niche-based model, with low 
rates of dispersal and weak homogenizing selection, 
indicating niche specialization or variable selection. 
Historical and evolutionary contingencies, as repre-
sented by soil type, season, and dispersal limitation 
were the main drivers of microbial assembly and pro-
cesses at the local scale, markedly correlated with the 
occurrence of endemic microbes. Our results indicate 
that the patterns of assembly and their governing pro-
cesses are dependent on the niche occupancy of the 
taxa evaluated (generalists or specialists). They are 
also more correlated with historical and evolutionary 

Abstract  Understanding the effects of forest-to-
agriculture conversion on microbial diversity has 
been a major goal in soil ecological studies. However, 
linking community assembly to the ruling ecological 
processes at local and regional scales remains chal-
lenging. Here, we evaluated bacterial community 
assembly patterns and the ecological processes gov-
erning niche specialization in a gradient of geogra-
phy, seasonality, and land-use change, totaling 324 
soil samples, 43 habitat characteristics (abiotic fac-
tors), and 16 metabolic and co-occurrence patterns 
(biotic factors), in the Brazilian Atlantic Rainforest, a 
subtropical biome recognized as one the world’s larg-
est and most threatened hotspots of biodiversity. Pair-
wise beta diversities were lower in pastures than in 
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contingencies and the interactions among taxa (i.e., 
co-occurrence patterns) than the land-use change 
itself.

Keywords  Biodiversity hotspots · Historical 
contingency · Land-use change · Microbial niche 
specialization · Soil bacterial co-occurrence · Spatial 
distance

Introduction

The Brazilian Atlantic Forest is the fourth world’s 
richest hotspot of biodiversity, harboring 2.7% and 
2.1% of the global endemic species of plants and 
vertebrates, respectively (Myers et  al. 2000). How-
ever, in recent decades this biome has suffered from 
extensive fragmentation and destruction of forest 
canopies, with only 11.7% of the original vegetation 
remaining (Ribeiro et  al. 2009). The conversion of 
forests to both croplands and pasturelands represents 
20 and 42% of the total human net primary produc-
tion (HNPP) appropriation in this biome (Weinzettel 
et  al. 2018). By 2100, land-use change is expected 
to reduce natural vegetative cover by 26–58% in all 
34 global hotspots of biodiversity, compared to 2005 
(Jantz et al. 2015). The same study predicted that, by 
the end of the century, forest conversion to croplands 
and pasturelands could contribute up to 1/3 of the 
habitat loss and up to 16% loss of plant and animal 
species in those hotspots due to land-use change only.

As with plants and animals, soil microorganisms 
are very responsive to land-use change (Lauber et al. 
2013; Kaiser et al. 2016; Li et al. 2019; Ceola et al. 
2021). Investigations of local microbial communities 
in the Amazon Forest Biome (Northwestern Brazil) 
have shown that the conversion of forest in pasture-
lands and croplands often leads to bacterial diversity 
loss (Jesus et al. 2009; Rodrigues et al. 2013; Mendes 
et  al. 2015b; Goss-Souza et  al. 2020) and affects 
ecosystem services related to the microbial activity 
(Paula et  al. 2014; Meyer et  al. 2017; Goss-Souza 
et al. 2019; Pedrinho et al. 2019). Most of the works 
listed above have described taxa trade-offs, diversity 
turnover, and shifts in microbial functions, resulting 
from land-use change, as dependent on local abiotic 
environmental filters (e.g., soil pH, soil organic mat-
ter, soil fertility), which is indicative of homogeneous 
selection process (Stegen et al. 2013). When looking 

to the Atlantic Forest, just a few works evaluated the 
diversity of soil bacterial communities in the sub-
tropical region of this biome (Southern Brazil) (Faoro 
et  al. 2010) and the consequences of forest-to-agri-
culture conversion for both bacterial diversity and 
ecological processes shaping bacterial distribution 
(Goss-Souza et al. 2017).

The continuum hypothesis states that stochastic 
processes along with deterministic selection contrib-
ute to the assembly of ecological communities (Ste-
gen et  al. 2013; Dini-Andreote et  al. 2015; Powell 
et al. 2015; Tripathi et al. 2018). Spatial distance have 
been linked with success with the ecological dispersal 
process (Martiny et al. 2011), which refers to the ten-
dency to migrate by individuals from a local popula-
tion or community, leading to homogenous dispersal, 
when rates of migration are high or, dispersal limita-
tion, when the dispersal rates are low (Sengupta et al. 
2019). The variation in microbial diversity related to 
random birth and death or spatial distance between 
sites, not related to environmental selection, indicates 
a drift process. Drift could act as the dominant pro-
cess in microbial communities when overall popula-
tion abundance and community diversities are low 
(Nemergut et  al. 2013), leading to an increased risk 
of extinction (Cordovez et  al. 2019). Moreover, dis-
persal and drift can act together as stochastic forces, 
leading to microbial neutral assembly (Cottenie 2005; 
Székely and Langenheder 2014; Goss-Souza et  al. 
2017, 2020).

The homogeneous selection is assumed to be a 
pivotal driver of local assembly dynamics of bacte-
rial communities (e.g., in the same toposequence) 
(Jesus et al. 2009; Dini-Andreote et al. 2014; Mendes 
et  al. 2015a). However, several studies have shown 
weak correlations between assembly and homogene-
ous environmental filtering in regional or continental 
scales (Feng et al. 2019; Gao et al. 2019). The expla-
nation could reside in a complementary selection 
force, the variable selection process, which occurs 
when heterogeneous selective environments lead 
microbial communities to be overdispersed (e.g., 
increase in SOM quantity and/or quality, microbial 
cooperation and co-occurrence, microbial activity) 
(Dini-Andreote et  al. 2015), with microbial com-
munities modulated by intra- and interspecific biotic 
relationships among species, in detriment of environ-
mental abiotic filters (Gao et al. 2019). To account for 
this, species association has been extensively used in 
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microbial ecology to infer biotic interactions result-
ing from the variable selection process (Ferrenberg 
et al. 2013; Nemergut et al. 2013; Wang et al. 2020). 
Otherwise, just a few studies have used microbial net-
works for examining species association and variable 
selection in biogeographical studies (Ma et al. 2016; 
Gao et al. 2019). The outcome of network topologi-
cal properties results in co-occurrence and co-exclu-
sion patterns, which can offer valuable insights about 
biotic interactions within sets of microbial commu-
nities (Dini-Andreote et  al. 2014; Jones and Hallin 
2019), although some studies have argued that spatial 
associations between species are not a good proxy for 
ecological interactions (Blanchet et al. 2020). Micro-
bial ecologists are now focusing on the hypothesis 
that, besides homogeneous selection, other ecological 
processes, such as variable selection, dispersal limita-
tion, and drift are important drivers of the variability 
in assembly patterns along with geographic gradients 
(Hanson et al. 2012; Ranjard et al. 2013). However, a 
few studies have tested and quantified those comple-
mentary processes in biogeography studies (Fan et al. 
2017; Feng et al. 2019; Gao et al. 2019).

Recent studies have raised the hypothesis that geo-
graphical patterns and the ecological processes gov-
erning assembly in bacterial communities could vary 
between habitat generalists and specialists (Gao et al. 
2019; Luo et  al. 2019). While generalists follow the 
Baas Becking theory of “everything is everywhere” 
(De Wit and Bouvier 2006), habitat specialists are 
the microorganisms that have restricted occupancy, as 
represented by their low occurrence across environ-
mental and geographical gradients (Meyer et al. 2018; 
Gao et al. 2019; Ceola et al. 2021). The competitive/
cooperative interactions among microbial popula-
tions in a local community (Li et al. 2018) and sets of 
metapopulations in metacommunity (Hovatter et  al. 
2011; Rocha et  al. 2021) are very intricate (Leibold 
et al. 2004) and land-use change would alter the role 
of these interactions in microbial community assem-
bly (Creamer et  al. 2016; Brinkmann et  al. 2019; 
Goss-Souza et  al. 2020). Some authors have found 
land-use change and management intensification in 
tropical soils, as selective abiotic filters, by increasing 
the competition among species for habitat and limit-
ing resources, according to niche (Mendes et al. 2014; 
Goss-Souza et  al. 2019). Linking the occurrence of 
those endemic and ubiquitous taxa with the envi-
ronmental and geographical gradients could enable 

microbial ecologists to survey the consequences of 
human intervention on microbial diversity and habitat 
specialization.

Here, we investigated the patterns of soil bacte-
rial beta diversities and the consequent ecological 
processes governing microbial assembly along with 
multiple spatial scales. Moreover, we linked those pat-
terns and processes to habitat transformation, resulting 
from the long-term conversion of the Atlantic Forest 
into no-till cropping and pasture areas. Our central 
hypothesis affirmed that (i) the microbial assembly 
would vary along land uses, and geographic distance 
between microbial communities with a decrease in 
microbial diversity in the converted agriculture soils 
of local communities. We also hypothesized that (ii) 
the balance between neutral and niche-based assembly 
models would differ along land uses and spatial scales, 
being neutral in the forest soils, and local communities 
and niche-based in the agriculture soils and regional 
communities. A third hypothesis stated that (iii) the 
processes governing microbial assembly would vary 
from stochastic to deterministic between habitat gen-
eralists and specialists, respectively. By combining 
16S rRNA T-RFLP fingerprint and a large set of abi-
otic (43 soil and landscape parameters) and biotic fac-
tors (16 metabolic and co-occurrence patterns) in a 
broad spatial scale (0–378 km), we aimed (i) to ver-
ify the changes in bacterial assembly patterns, (ii) to 
identify the features that impose assembly, and (iii) to 
underlie the ecological processes governing assembly 
across spatial scales for overall bacterial communities, 
generalists, and specialists.

Material and methods

Study areas, soil sampling, and environmental 
analyses

The sampling sites were located within the subtropi-
cal Atlantic Forest Biome, at Santa Catarina State, 
Brazil (Supplementary Fig. S1a), and represented (1) 
remnants of the original forest cover, and the long-
term conversion of forest into (2) no-till cropping and 
(3) pasturelands. The forest sites comprised a natural 
transition between mixed ombrophilous forest and 
semi-deciduous forest, with a predominance of Arau-
caria angustifolia (fam. Araucariaceae) in the west-
ern mesoregion and Mimosa scabrella (Fabaceae) 
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in the plateau mesoregion. Other frequent species in 
forest sites were Apuleia leiocarpa, Balfourodendron 
riedelianum, Cabralea glaberrima, Cedrela fissilis, 
Cordia trichotoma, Diatenopterix sorbifolia, Enter-
olobium contortisiliquum, Lonchocarpus leucanthus, 
Parapiptadenia rigida, Patagonula americana, and 
Peltophorum dubium. Forest areas were deforested 
via timber slash-and-burn and converted in two dis-
tinct land uses, in the late 1980s: i) No-till cropping 
systems, characterized by successive rotational cul-
tivation of wheat, and eventually, oat and ryegrass 
in the winter, followed by soybean and maize in the 
summer, and; ii) Pasturelands, characterized by a 
mix of perennial grasses with a predominance of 
Axonopus affinis (Poaceae) in western mesoregion 
and Andropogon lateralis (Poaceae) in plateau mes-
oregion. The selection of sampling sites was based 
on land-use history and management, obtained from 
previous exploratory campaigns, interviewing farm-
ers and experts. The main criterion of selection was 
the conversion of forest to no-till or pasture at least 
10 years before sampling. Grassland and no-till rep-
resent the most common land uses employed by farm-
ers at the Santa Catarina State, Brazil. Samples were 
collected in July and January, comprising winter and 
summer seasons of the southern hemisphere, respec-
tively, in a gradient of latitude, longitude, and alti-
tude. Sampling counties were São Miguel do Oeste 
(26°44’S; 53°32’W; 652  m above sea level—masl), 
Chapecó (27°3’S; 52°40’W; 642 masl) and Xanxerê 
(26°50’S; 52°28’W; 728 masl) in the western mes-
oregion and, Campo Belo do Sul (27°52’S; 50°39’W; 
978 masl), Lages (27°47’S; 50°35’W; 877 masl) and 
Otacílio Costa (27°33’S; 49°52’W; 902 masl), in 
the Plateau mesoregion, Santa Catarina State, Bra-
zil (Supplementary Fig. S1a). The climate in both 
mesoregions is humid temperate mesothermal (Cfb) 
(Köppen classification), with no marked dry season 
and rainfalls equally distributed throughout the year. 
The historic mean annual temperature varies from 
18–22 °C in the western to 14–18 °C in the Plateau.

To evaluate microbial assembly patterns (response 
variables), non-deformed soil samples from the 
0–10 cm profile were collected with sterile PVC tubes 
(5 cm diameter × 10 cm depth), yielding ~ 500 g of soil 
each. Each sample was collected in a 3 × 3 Cartesian 
square-geogrid scheme, equidistantly by 30  m from 
each other, with 20 m of the border, totalizing an area 
of one hectare per sampling site (Supplementary Fig. 

S1b). A total of 324 individual soil samples were col-
lected (9 samples per geogrid × 3 land uses × 6 coun-
ties × 2 sampling seasons). Samples were kept on dry 
ice and transported to the Cell and Molecular Biology 
Laboratory, Center for Nuclear Energy in Agriculture 
(Piracicaba, Brazil), within 24 h, to further molecular 
procedures. For soil physical, chemical, and micro-
biological parameters, used as explanatory vari-
ables, samples were collected at the same points (also 
totalizing 324 independent samples). Soil samples 
were maintained at 4  °C and transported to the Soil 
Analysis Laboratory, Santa Catarina State University 
(Lages, Brazil). The soil physical analyses performed 
were soil density, porosity (total-, macro-, micro- 
and  bioporosity), texture, particle density, aggregate 
diameter, and penetration resistance. The chemical 
characteristics analyzed were soil pH, total C, H, N, 
and S, C:N ratio, soil organic matter, soil organic C, 
P, K, Al, Ca, and Mg. All the physical and chemical 
analyses were performed following routine methodol-
ogy (Keeney and Nelson 1982; Gee and Bauder 1986; 
Dexter 1988; Cambardella and Elliott 1992; Tedesco 
et al. 1995; Claessen et al. 1997; Dexter et al. 2007; 
Dhaliwal et al. 2011; Teixeira et al. 2017). Microbio-
logical metabolic analyses included soil microbial C, 
soil basal respiration, metabolic quotient, and micro-
bial quotient, also performed through a routine meth-
odology (Sparling and West 1988; Sparling 1992; 
Anderson and Domsch 1993; Alef and Nannipieri 
1995). Soil types were classified using the World Ref-
erence Base for Soil Resources (Anjos et  al. 2015). 
Details about site management history, sampling, and 
environmental analyses are available as supporting 
information and at the Supplementary Table ST1. See 
also (Bartz et al. 2014; Goss-Souza et al. 2017).

Soil total DNA extraction and 16S rRNA T‑RFLP

To investigate bacterial diversity patterns and pro-
cesses structuring bacterial communities across land 
uses, seasons, and geographical distances, we used 
the T-RFLP method. T-RFLP quantifies the variabil-
ity in DNA sequences of genes or intergenic space 
regions (e.g., bacterial small subunit 16S rRNA, fun-
gal ITS), generating a DNA ‘fingerprint’ of unique 
fragments, with the size and abundance of each frag-
ment in a soil sample. Although sequencing provides 
more detailed phylogenetic information, T-RFLP as 
an automated fingerprinting method is a simpler and 
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less expensive system that allows the comparison of 
a high amount of soil samples (van Dorst et al. 2014), 
with sufficient replication to address soil microbial 
patterns of diversity and structure (Fierer and Jack-
son 2006; Dumbrell et  al. 2010; Székely and Lan-
genheder 2014; Lange et al. 2015; Kari et al. 2019). 
Also, T-RFLP generates results consistent with that 
found in high throughput sequencing (Vega-Avila 
et  al. 2014; Powell et  al. 2015; Durrer et  al. 2017; 
Karczewski et  al. 2017; De Vrieze et  al. 2018). To 
accomplish that, total DNA extraction (250 mg) was 
performed for the 324 soil samples (See Supplemen-
tary Fig. S1), using PowerLyzer PowerSoil™ DNA 
Isolation Kit (Mo Bio Laboratories, Carlsbad, USA). 
DNA quality was verified in gel electrophoresis with 
Tris-buffered saline with sodium boric acid and 1% 
agarose (Brody and Kern 2004). DNA concentra-
tion was measured with the Qubit™ fluorometer 
(Thermo Fischer Scientific, Waltham, USA). T-RFLP 
fragments amplification was performed in a thermal 
cycler GeneAmp PCR System 9700™ (Thermo Fis-
cher Scientific, Waltham, USA), using the 16S rRNA 
universal set of primers 27F (5’ AGA GTT TGA TCC 
TGG CTC AG 3’) labeled with 6-FAM (Edwards 
et al. 1989) and 1492R (5’ GGT TAC CTT GTT ACG 
ACT T 3’) (Turner et  al. 1999). The PCR mix con-
tained 10X Platinum Taq PCR buffer, 3.0 mM MgCl2, 
0.2 mM of each dNTP, 0.5 mM of each primer and 
0.05 U μL−1 of Platinum™ Taq DNA polymerase 
(Thermo Fischer Scientific, Waltham, USA). DNA 
templates (10–50  ng µL−1) were ten-fold diluted to 
optimize the reaction. Reaction consisted in a pre-
denaturation step at 94 °C for 3 min, followed by 35 
cycles of 94 °C for 30 s, 59 °C for 45 s, and 72 °C for 
60 s, with a final extension of 72 °C for 15 min. Reac-
tion products were then purified using GFX™ PCR 
DNA and Gel Band Purification Kit (GE Health Care, 
Chicago, USA), according to the manufacturer’s 
instructions. Ten to 60 nanograms of the amplified 
and purified DNA were used in 10  μl of restriction 
reaction using HhaI endonuclease (Thermo Fischer 
Scientific, Waltham, USA), at 37 °C for 3 h. Digested 
DNA was then purified using 60 μl of absolute etha-
nol with 2 μl of sodium acetate/EDTA (100:1; 0.1%) 
and centrifuged at 4000 × g for 45  min, followed by 
another step, adding 150 μl of absolute ethanol/water 
(7:3) and centrifuging at 4000 × g for 45  min. The 
purified DNA pellet was eluted in 9.8  μl of deion-
ized formamide with 0.2 μl of GeneScan-500 ROX™ 

internal size standard (Thermo Fischer Scientific, 
Waltham, USA). The product was denatured at 94 °C 
for 5 min in a thermal cycler GeneAmp PCR System 
9700™ (Thermo Fischer Scientific, Waltham, USA). 
Fragments were analyzed in an ABI Prism 3100™ 
automated sequencer (Thermo Fischer Scientific, 
Waltham, USA) following the manufacturer’s instruc-
tions. The size and the intensity of each terminal 
restriction fragment were estimated using GeneMap-
per version 3.0 (Thermo Fischer Scientific, Waltham, 
USA) and are hereafter described in terms of opera-
tional taxonomic units (OTUs) (Schütte et  al. 2008; 
Rodríguez-Valdecantos et  al. 2017). Only fragments 
ranging from 50 to 500 bp were analyzed.

Microbial profiling and assembly patterns

We first calculated the overall Chao-1 estimated rich-
ness and Shannon’s alpha diversity for each land use 
and season. Means were compared through ANOVA 
with Tukey’s Honest Significant Difference test (Tuk-
ey’s HSD) with the function ‘tukeyHSD’ on R soft-
ware, version 4.0.2 (R Core Team, 2020). To evaluate 
the overall distribution of beta diversities, we per-
formed a multivariate Principal Coordinates Analysis 
(PCoA), with Monte-Carlo permutations on Canoco 
software, version 5.2 (Lepš and Šmilauer 2005). 
From the resulting Bray–Curtis distance matrix, we 
measured the clustering of beta diversities resulting 
from PCoA ordination, through non-parametric Per-
mutational Analysis of Variance (PERMANOVA), as 
implemented by ‘adonis’ function in ‘vegan’ package, 
version 2.5–6 (Anderson 2001; Oksanen et al. 2019), 
on R software. Adonis-PERMANOVA allowed us to 
test whether beta diversities were separated by land 
use, season, and geographic location. Then, we cal-
culated the distributions of observed beta Sørensen 
pairwise dissimilarities, using the function ‘beta.pair’ 
in ‘betapart’ R package, version 1.5.1 (Baselga et al. 
2018). We partitioned the values Sørensen pairwise 
beta diversities (BSOR) into the turnover (BSIM) and 
the nestedness (BSNE) components of diversity. We 
found that the turnover component dominated the 
partitioning for all land-uses and seasons (Supple-
mentary Fig. S2). Moreover, using Sørensen’s pres-
ence/absence matrices and analyzing samples from a 
large geographic scale (0–378 km) in the same data-
set, pairwise comparisons almost reached the limit 
of the signal of the Sørensen index (BSOR = 1) for all 
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land uses and seasons. Thus, we decided to depict 
the variation in diversification through pairwise 
Bray–Curtis abundance-based dissimilarities, across 
land uses and seasons, using the function ‘beta.multi.
abund’ (Baselga 2017), in the ‘betapart’ R package. 
We performed the Shapiro–Wilk W test for normal 
probability, using the function ‘shapiro.test’ on R. 
Data presented non-parametric distribution, hence we 
used the Kruskal–Wallis (chi-square) non-parametric 
test, with corrected P-values to compare the means of 
beta diversities across land uses and seasons, using 
the function ‘kruskal.test’ on R.

Microbial co‑occurrence patterns

To obtain a signal of microbial ecological interac-
tions modulating assembly complexity patterns, we 
performed non-random co-occurrence network analy-
sis, using the Python ‘SparCC’ tool, which estimates 
correlation values from compositional data (Fried-
man and Alm 2012). First, we calculated SparCC 
co-occurrence metrics for overall communities, 
according to land use and season (54 samples × 3 land 
uses × 2 seasons = 324 samples). Complementary, 
pairwise microbial communities were compiled in 
local and regional communities, within and over the 
mesoregion threshold, respectively, according to spa-
tial distance. Local and regional communities were 
defined by complementary analyses of Moran’s I test 
for spatial autocorrelation. After defining the limit 
distance for autocorrelation, we calculated SparCC 
co-occurrence metrics for local communities, which 
is the set of pairwise communities within Moran’s 
threshold for autocorrelation and regional communi-
ties, regarded as the pairs of microbial communities 
over the limit for autocorrelation. For each network 
(overall, local, or regional), P-values were obtained 
by 100 random permutations for each set of sam-
ples. Only OTUs with SparCC significant (P < 0.01) 
and correlations with a magnitude of SparCC > 0.6 
or < ̠ 0.6 were included into the network analyses. 
The nodes in the reconstructed networks represented 
the OTUs, while the edges represented significant 
positive or negative correlations between nodes. Co-
occurrence patterns were calculated in the interactive 
platform Gephi, version 0.9.2 (Bastian et  al. 2009), 
and network graphs were built with the ‘Fruchter-
man Reingold’ design. The metrics evaluated were: 
average clustering coefficient, which indicates how 

nodes are embedded in their neighborhood and the 
degree to which they tend to cluster together; average 
path length, regarding the average network distance 
between all pairs of nodes or the average length of 
all edges in the network; average degree distribution, 
which is the average number of connections per node 
in the network, that is, the node connectivity; network 
diameter modularity, or the capability of the nodes to 
form highly connected communities, that is, a struc-
ture with a high density of between-node connec-
tions; number of edges, represented by the number of 
connections/correlations obtained by SparCC analy-
sis; number of nodes, or microbial OTUs with at least 
one significant (P < 0.01) and strong (SparCC > 0.6 
or <  − 0.6) correlation, and; number of communi-
ties, as defined by groups of nodes densely connected 
internally. The resulting values of those metrics were 
used as biotic factors, representing the variable selec-
tion process, in further multivariate partitioning 
analyses. From the resulting networks, we were also 
able to extract the major hub taxa, represented by the 
set of OTUs with the highest betweenness centrality, 
which measures the extent to which a node lies on 
paths between other nodes.

To test the turnover of microbial abundances 
across land uses and seasons, we performed the 
Multinomial Species Classification Method (CLAM 
test) (Chazdon et  al. 2011), classifying all the pos-
sible phylotypes according to their habitat spe-
cialization, as generalists and specialists, using the 
‘clamtest’ function, in ‘vegan’ R package, according 
to the estimated species relative abundance. The test 
was applied using the supermajority rule (K = 2/3, 
P < 0.005). After that, we were able to investigate 
whether the hub OTUs in each network were general-
ists or specialists.

Assembly models, selection, and dispersal

To investigate the species association patterns across 
land uses and seasons, we calculated species rank 
abundance distributions (RADs) for each of the 324 
samples and fitted them to four different theoretical 
assembly models: the zero-sum multinomial (ZSM) 
and the broken stick (null model), which regard to 
neutral assembly, and the pre-emption and the log-
normal, related to a niche-based assembly. Broken 
stick, pre-emption, and log-normal models were cal-
culated using the ‘radfit’ function from the ‘vegan’ R 
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package. The ZSM model was calculated on TeTame 
software, version 2.16 (Jabot et al. 2008). The mod-
els were compared based on the AIC. The lowest AIC 
value indicates the best-fitted model for each sample 
(Bozdogan 1987). The dispersal rates, related to the 
tendency to migrate from members of a certain com-
munity, were calculated for each sample, through 
Etienne’s formula (Etienne and Alonso 2005), on 
TeTame.

From the Bray–Curtis dissimilarity matrices, we 
calculated beta-diversity distributions for local and 
regional communities with the function ‘vegdist’ on 
the ‘vegan’ R package (Oksanen et  al. 2019). Then, 
we performed permutations resemblance of those 
Bray–Curtis dissimilarity distance distributions under 
the null model with the function ‘swap_count’ from 
the ‘vegan’ R package. Afterward, we generated the 
Z-scores for the set of microbial communities with 
the function ‘oecsimu’ (Ulrich and Gotelli 2010), 
from the ‘vegan’ R Package. The Z-score refers to 
the deviation of expected Bray–Curtis pairwise dis-
tributions under permutations to the observed value, 
indicating the distance of a certain set of pairwise 
beta diversities from the null expectation (Keil 2019). 
Pairwise diversities with Z-score < − 2 reflected 
aggregation, which means that OTUs co-occurred 
more than expected by the null model, while pairwise 
diversities with Z-score >  + 2 reflected segregation, 
meaning that OTUs co-occurred less than expected by 
the null model (Dini-Andreote et al. 2015; Gao et al. 
2019). We considered the co-occurrence patterns of 
microbial communities as non-random, resulting 
from deterministic homogeneous (Z-score < − 2) or 
variable selection (Z-score >  + 2) processes, while 
Z-scores within those values (− 2 < Z-score <  + 2), 
indicated that communities co-occurred ran-
domly, governed by drift and/or dispersal stochastic 
processes.

Variation partitioning of factors modulating assembly 
of microbial communities

To investigate the importance of geographic coor-
dinates as primary predictors of Bray–Curtis dis-
similarities across spatial scales, we first performed 
a Principal Coordinates Analysis of Neighbor Matri-
ces (PCNM), with forward-selection, setting lati-
tude, longitude, and altitude as primary predictors 
and the resulting coordinates (PCNM axes) as spatial 

predictors. Latitude and longitude were used as con-
straining variables in the model. From the result-
ing PCNM non-collinear and significant variables 
(Bonferroni correction), we depicted the proportion 
of the variation in the microbial assembly of over-
all bacterial communities, generalists and, special-
ists explained by (1) geography, (2) abiotic factors, 
and (3) biotic factors, via Mantel and partial Mantel 
tests, with Pearson correlations and log transforma-
tion (Martiny et  al. 2011), according to geographic 
distance, with the functions ‘mantel’ and ‘partial.
mantel’ (Legendre and Fortin 1989), in the ‘vegan’ R 
Package.

Results

Profiling of microbial communities

Chao-1 Richness and Shannon’s α-diversity (H’) 
among land uses and seasons were compared through 
Tukey’s HSD test (Supplementary Fig. S3). We found 
differences in richness only for summer between 
no-till and pasture (P = 0.027). When comparing 
seasons within the same land use, we found no-till 
summer richer than winter (P = 0.018). The same 
patterns were observed for α-diversity, which var-
ied across land uses only in the summer (P < 0.001). 
Depicting the variability in summer, no-till presented 
higher α-diversity than forest (P = 0.004) and pasture 
(P < 0.001), with forest α-diversity higher than pas-
ture (P < 0.001). Comparing seasons within the same 
land use, we found only differences for no-till, with 
summer more diverse than winter (P = 0.003).

Beta diversity structures and distributions

We investigated the beta diversity structure among 
land uses, through PCoA (Fig. 1). The plot based on 
Bray–Curtis distances showed differences in struc-
tures of no-till microbial communities with both for-
est and pasture communities. Otherwise, forest and 
pasture communities presented a high degree of over-
lapping. Variation in Bray–Curtis distances explained 
in the first two axes of PCoA was 34.78%. Depict-
ing the clustering of beta diversities resulting from 
principal coordinates ordination we found differ-
ences among land uses, seasons, and sampling sites. 
To explore the first two significant correlations from 
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PERMANOVA, we depicted the variation in beta 
pairwise diversities distributions, according to land 
use (P = 0.008) and season (P = 0.007) (Supplemen-
tary Fig. S4). For summer, mean pairwise beta diver-
sities decreased after long-term forest conversion to 
both no-till and pasture, with diversities in pasture 
higher than in no-till. Diversity also decreased from 
winter to summer in no-till (P < 0.001) and pasture 
(P < 0.001).

Microbial co‑occurrence patterns

Overall, network complexity increased after forest 
conversion to both no-till and pasture and decreased 
from winter to summer, for both land uses (Fig.  2). 
Pasture communities presented the highest num-
ber of microbial OTUs with at least one significant 
(P < 0.01) and strong correlation (SparCC > 0.6 
or <  − 0.6) (Supplementary Table ST2). Pasture 
also showed the highest number of both positive 
and negative correlations among pairs of OTUs, 
the highest modularity, the larger network diameter, 
the larger average path length, and the larger aver-
age degree, in both seasons. The number of nodes, 
the number of edges, the number of positive and 

negative connections, network diameter, and aver-
age path length decreased from winter to summer in 
all land uses. The number of microbial communities 
increased in no-till and decreased in pasture, from 
winter to summer. The average degree decreased 
from winter to summer for forest and no-till.

Complementary, we investigated the turnover of 
microbial abundances across land uses and seasons, 
according to their habitat specialization, as generalists 
and specialists (Fig.  3). From a total of 275 OTUs, 
we found 165 as generalists (60%) and 51 specialists 
in the plateau mesoregion (18.5%), and 59 specialists 
in the western mesoregion (21.5%). Investigating the 
seasonal OTUs turnover, in forest (Supplementary 
Fig. S5a), we found 160 generalists (62%), 48 spe-
cialists in winter (19%), and 48 specialists in summer 
(19%), of which 27 exclusives for forest winter and 
11 exclusives for summer. In no-till (Supplementary 
Fig. S5c), we found 152 generalists (56%), 59 spe-
cialists in winter (22%), and 60 specialists in summer 
(22%), being 25 exclusives for no-till winter and 21 
exclusives for summer. In pasture (Supplementary 
Fig. S5e), we found 139 generalists (54%), 79 spe-
cialists in winter (31%), and 40 specialists in summer 
(15%), of which 36 exclusives for pasture winter and 
9 exclusives for summer. We also compared abun-
dance turnover due to land-use change. In long-term 
forest-to-no-till conversion (Supplementary Fig. S5b), 
we found 139 generalists (52%), 63 specialists in for-
est (23%), and 68 specialists in no-till (25%), with 20 
exclusives for forest and 14 exclusives for no-till. Yet 
in long-term forest-to-pasture conversion (Supple-
mentary Fig. S5d), we found 159 generalists (59%), 
69 specialists in forest (26%), and 40 specialists in 
pasture (15%), of which 10 were exclusives for forest 
and 12 exclusives for pasture. When comparing the 
differences in assemblages resulting from long-term 
land-use change (no-till vs. pasture; Supplementary 
Fig. S5f), we found 149 generalists (55%), 69 spe-
cialists in no-till (26%), and 52 specialists in pasture 
(19%), with 12 exclusives for no-till and 20 exclu-
sives for pasture.

We also sought potential keystone taxa, the OTUs 
that hold the networks, as represented by elevated lev-
els of betweenness centrality—the number of times a 
node plays a role as a connector between two other 
nodes (Supplementary Table ST3). We found three 
keystone taxa in forest winter and none in summer. 
No-till presented three keystone taxa in winter and 

Fig. 1   Principal Coordinates Analysis (PCoA) of soil micro-
bial communities across land uses, in the subtropical Atlantic 
Forest Biome, Southern Brazil. Plots were generated using 
Bray–Curtis distance matrices with 1000 Monte-Carlo per-
mutations. Samples are colored as follow: forest, green cir-
cles; no-till, brown circles; pasture, red circles; Differences 
in microbial beta diversities clustering among land uses were 
evaluated through Adonis-PERMANOVA (n = 324 samples; 
999 permutations; PADONIS < 0.05)
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none in summer. Yet for pasture, several keystone 
taxa were found for both winter and summer. When 
classifying the 20 most important keystone taxa hold-
ing each network (Supplementary Table ST3), in 
terms of habitat specialization, we found: (1) Forest 
winter: nine seasonal specialists and six specialists 
in forest; (2) Forest summer: five seasonal special-
ists and three specialists in forest; (3) No-till winter: 
seven seasonal specialists and eight specialists in 
no-till; (4) No-till summer: four seasonal specialists 
and five specialists in no-till; (5) Pasture winter: eight 
seasonal specialists and six specialists in pasture, and; 
(6) Pasture summer: three seasonal specialists and 
four specialists in pasture.

Microbial assembly models across land use and 
spatial scales

We fitted all the 324 individual samples to theoreti-
cal ecological models, according to AIC. From the 
four tested models, microbial communities fitted 

most to ZSM neutral model or lognormal niche-based 
model, with exception of one sample in pasture sum-
mer that fitted the preemption niche-based model 
(Fig. 4a). Most of the samples in forest (61.1%) and 
no-till (63.9%) fitted the niche-based lognormal dis-
tribution, which indicates the prevalence of deter-
ministic processes governing microbial assembly. 
Otherwise, most of the samples in pasture fitted the 
ZSM neutral distribution (63.0%), which regards sto-
chastic processes governing assembly. When depict-
ing the seasonal variation in assembly, we found an 
increase in the number of microbial communities fit-
ting the neutral ZSM assembly from winter to sum-
mer, in both forest (35.2 to 42.6%) and pasture (53.7 
to 72.2%). We observed a decrease in the number of 
microbial communities fitting the ZSM model from 
winter (44.5%) to summer (27.8%) in no-till. When 
comparing the dispersal rates across land use and sea-
sons (Fig.  4b), through the Kruskal–Wallis test, we 
observed an increase in the rates of dispersal resulting 
from the long-term conversion of forest to pasture in 

Fig. 2   Overall SparCC network plots of co-occurrence and co-
exclusion between OTUs, following long-term land-use change 
and seasons. Only OTUs with SparCC significant (two-sided 
pseudo-P < 0.01, 100 bootstrapping random permutations) and 
correlations with a magnitude of SparCC > 0.6 (positive corre-
lation–blue edges) or SparCC <  − 0.6 (negative correlation–red 

edges) were included into the network plots. Each node repre-
sents an OTU, based on HhaI enzyme T-RFLP fingerprint. The 
size of each node is proportional to the number of connections 
(that is, degree), while the color of each node is represented 
by a gradient of betweenness centrality. Network graphs were 
built with ‘Fruchterman Reingold’ design, on Gephi software
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both winter (P < 0.001) and summer (P < 0.001), with 
no differences observed for the forest to no-till con-
version, in both seasons, meaning more predisposi-
tion to migration from members of pasture local com-
munities, compared with those from forest and no-till. 
We observed no seasonal effect on dispersal rates for 
any of the land uses.

When evaluating the influence of geographic dis-
tance in assembly patterns, we observed that beta 
pairwise diversities were lower in local scale—
defined as the set of samples within the autocorrela-
tion limit (< 97.196  km; Supplementary Fig. S6)—
compared to the regional scale (> 97.196 km) (Fig. 5). 
Diversities decreased in summer on a local scale from 
forest to both no-till and pasture (Fig. 5a), with only 
no-till presenting a decrease in beta diversities from 
winter to summer, at the regional scale (Fig.  5b). 
Comparing diversities within each land use, diversi-
ties decreased in summer in both local and geographic 
scales for no-till. For pasture samples, diversities 
decreased from winter to summer at the local scale. 
Thus, we investigated co-occurrence patterns of bac-
terial OTUs, through Z-scores (Keil, 2019), compar-
ing the observed beta diversities across scales (Fig. 5a 
and b, dark bars) with the simulated beta diversities 

(Fig. 5a and b, light bars). The resulting Z-score dis-
tributions after simulations are presented (Fig. 5c and 
d). At the local scale (Fig. 5c), Z-scores of most for-
est microbial communities, in winter and summer, 
fitted the null expectation, the same as for pasture 
communities, evidencing a neutral assembly, which is 
expected to occur when selection is weak, and assem-
bly is governed by drift and dispersal processes. Yet 
for no-till, in both seasons, most of the local commu-
nities fitted above the null expectation. Thus, local 
microbial communities in this environment are more 
segregated than expected by the null model, which 
is likely to occur when the variable selection process 
is acting. At the regional scale (Fig. 5d), Z-scores of 
forest microbial communities in winter and summer 
fitted above the null expectation, indicating segrega-
tion of communities across geographic distances. A 
similar trend was found for no-till, where the mean 
Z-scores were above the null expectation, regarding 
segregation, but with several communities fitting the 
null model, neutral. Geographic Z-scores of pasture 
communities presented the same trends as found for 
local communities, with most of the communities fit-
ting the null model, in both seasons.

Underlying the drivers of microbial community 
assembly across spatial scales and niche occupancies

To evaluate the role of each set of variables (geog-
raphy + abiotic + biotic) in structuring generalists 
and specialists decay profiles, we performed Mantel 
and Partial Mantel tests (Table 1). Mantel tests have 
shown that the variation in overall bacterial commu-
nity dissimilarities, considering all land uses together 
(overall data) was correlated with the biotic factors, 
even after controlling for the effect of geographic dis-
tance and abiotic factors (P < 0.001). Significant cor-
relations were also observed with geographic distance 
and to a lesser extent with abiotic factors. For gener-
alists, the variation was also correlated strongly corre-
lated with the biotic factors, even after controlling for 
geographic distance and abiotic factors (P < 0.001). 
Significant correlations were also observed with geo-
graphic distance, with a minor effect of both geo-
graphic distance, and abiotic factors. When looking 
for the specialists’ correlations, the biotic factors 
were again the major constraints of dissimilarities 
distributions, even after controlling for the effect of 
geographic distance and abiotic factors (P < 0.001). 

Fig. 3   Habitat microbial specialization across mesoregions. 
The x and y axes represent the OTUs abundance turnover 
between regions. The number and the percentage of general-
ists and specialists for each habitat comparison  are  shown. 
The classification of generalists and specialists was performed 
through the CLAM test function in vegan R package, accord-
ing to the estimated species relative abundance. The test was 
applied with arguments of K = 2/3 and P < 0.005, according to 
the supermajority rule. All the counts were added by 1 to let 
the marginal OTUs evenly arranged in the plot space
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Significant correlations were also observed with abi-
otic, with a minor effect of geographic distance.

As we found differences in pairwise beta diversi-
ties for local and regional scales, we sought for the 
evidence of differential patterns of correlations within 
and over the Moran’s I autocorrelation threshold (See 
Supplementary Fig. S6). To achieve that, we divided 
bacterial, generalists, and specialists in local (from 0 
to 97.196 km) and regional communities (> 97.196 to 
378.160 km). On the local scale, the variation in over-
all bacterial community dissimilarities was strongly 
correlated with the biotic factors (Table 1), even after 
controlling for the effect of geographic distance and 
abiotic factors (P < 0.001). Strong and significant 
correlations were also observed with geographic dis-
tance, even controlling for abiotic and biotic factors 
(P < 0.001) and to a lesser extent with abiotic factors, 
even controlling for geographic distance, and biotic 
factors (P < 0.001). For generalists, the local variation 
was also strongly correlated with the biotic factors, 

even after controlling for geographic distance and abi-
otic factors (P < 0.001). Strong and significant corre-
lations were also observed with geographic distance, 
even after controlling for biotic distance and abi-
otic factors distance (P < 0.001), with a minor effect 
of abiotic factors. Yet for the specialists, we found 
strong and significant correlations with the three sets 
of explanatory variables. The biotic factors were the 
stronger drivers of dissimilarities distributions, even 
after controlling for the effect of geographic distance 
and abiotic factors (P < 0.001). Strong and significant 
correlations were also observed with abiotic, even 
controlling for geographic distance and biotic fac-
tors (P < 0.001), and to a lesser extent to geographic 
distance, even controlling for abiotic and biotic fac-
tors (P < 0.001). Evaluating the mesoregional scale, 
we observed strong and significant correlations only 
with biotic factors (P < 0.001), for both overall bacte-
rial communities, generalists, and specialists, with a 

Fig. 4   Samples fitting to theoretical ecological models, based 
on Akaike information criterion (AIC) for rank abundance dis-
tributions of microbial OTUs, across land use and seasons, in 
the subtropical Atlantic Forest Biome, Southern Brazil. a Rank 
abundance models based on corrected AIC value from Pois-
son distributions using maximum likelihood estimation. The 
lowest AIC value for each sample represented the best-fitted 
model for general community’s assembly. Best-fitted models 
were calculated by the general equation AIC =  − 2log-likeli-
hood + 2 × npar. ZSM (Zero Sum Multinomial) and Broken-
stick are null models regarding theoretical neutral assembly 
while Preemption and Lognormal are niche-based models 
regarding deterministic assembly. b Boxplots of distributions 

of calculated dispersal rates across land use and seasons show-
ing the median (thick black line), the first quartile (lower box 
bound), the third quartile (upper box bound) and the range of 
data values that deviate from the box (vertical black lines). 
Dispersal rates were compared through Kruskal–Wallis (chi-
square) non-parametric test with Bonferroni correction. Upper-
case letters represent differences between seasons for the same 
land use while lowercase letters represent differences among 
land uses for the same season (Pcorrected < 0.05). Dispersal rates 
were calculated by Etienne’s formula. Values of dispersal are 
between 0 and 1, where the higher the value the greater the 
tendency to migrate of members of a local microbial commu-
nity, as represented by each of the 324 soil samples
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Fig. 5   Pairwise beta diversities distribution and simulated 
deviation from null expectation. Beta pairwise diversities at 
a local and b regional scales. Barplots of Bray–Curtis dis-
similarities across land use and seasons showing the mean 
and the standard deviation (vertical black lines) of observed 
(dark colors) and simulated (light colors) beta pairwise diver-
sities (10,000 simulations). Z-scores at c local and d regional 
scales. Boxplots of distributions across land use and seasons 
showing the median (thick black line), the first quartile (lower 

box bound), the third quartile (upper box bound), and the 
range of data values that deviate from the box (vertical black 
lines). Horizontal lines separate lower and upper significance 
thresholds of Z-scores distributions (Z =   2 and + 2, respec-
tively; P < 0.05). Z-scores were generated under the null model 
method ‘swap_count’ with 10,000 simulations. H1: observed 
beta diversity is less or greater than simulated values of beta 
diversity



Antonie van Leeuwenhoek	

1 3
Vol.: (0123456789)

Table 1   Relative contribution of geographic distance, abiotic factors, and biotic factors influencing bacterial communities with 
different niche occupancies at overall, local, and regional scales. We calculated Pearson product-moment correlations from the 
simple (Mantel test; 1000 permutations; P < 0.05) and the controlled effects (partial Mantel test; 1000 permutations; P < 0.05). From 
a set of 64 measured parameters, only non-collinear and significant variables were forward-selected and used in the model. Local 
and regional microbial communities were selected by the geographic limit for autocorrelation (Moran’s I = 97.196 km; P < 0.05) 

Overall communities Overall scale Local scale Regional scale

ρ P ρ P ρ P

Geographic distance 0.172 0.001 0.308 0.001 – –
Abiotic selection 0.135 0.001 0.247 0.001 – –
Biotic selection 0.292 0.001 0.340 0.001 0.231 0.001
Geographic [Abiotic] 0.131 0.001 0.297 0.001 – –
Geographic [Biotic] 0.147 0.001 0.260 0.001 – –
Abiotic [Geographic] 0.073 0.001 0.233 0.001 – –
Abiotic [Biotic] 0.095 0.001 0.198 0.001 – –
Biotic [Geographic] 0.278 0.001 0.299 0.001 0.231 0.001
Biotic [Abiotic] 0.277 0.001 0.309 0.001 0.236 0.001

Generalists Overall scale Local scale Regional scale

ρ P ρ P ρ P

Geographic distance 0.157 0.001 0.285 0.001 – –
Abiotic selection 0.096 0.001 0.163 0.001 – –
Biotic selection 0.253 0.001 0.299 0.001 0.206 0.001
Geographic [Abiotic] 0.131 0.001 0.276 0.001 – –
Geographic [Biotic] 0.134 0.001 0.241 0.001 – –
Abiotic [Geographic] 0.037 0.003 0.145 0.001 – –
Abiotic [Biotic] 0.060 0.001 0.114 0.001 – –
Biotic [Geographic] 0.240 0.001 0.258 0.001 0.206 0.001
Biotic [Abiotic] 0.242 0.001 0.277 0.001 0.210 0.001

Specialists Overall scale Local scale Regional scale

ρ P ρ P ρ P

Geographic distance 0.160 0.001 0.243 0.001 – –
Abiotic selection 0.191 0.001 0.325 0.001 – –
Biotic selection 0.291 0.001 0.356 0.001 0.242 0.001
Geographic [Abiotic] 0.094 0.001 0.229 0.001 – –
Geographic [Biotic] 0.134 0.001 0.188 0.001 – –
Abiotic [Geographic] 0.141 0.001 0.315 0.001 – –
Abiotic [Biotic] 0.155 0.001 0.281 0.001 – –
Biotic [Geographic] 0.269 0.001 0.324 0.001 0.242 0.001
Biotic [Abiotic] 0.269 0.001 0.318 0.001 0.243 0.001
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lower influence of controlling geographic and abiotic 
effects.

Later, we forward-selected the factors within the sets 
of significant parameters that could be driving bacterial, 
generalists, and specialists diversity distributions across 
spatial scales, through Partial Mantel tests (Supplemen-
tary Table ST4). On an overall scale, after controlling 
all the possible individual factors with their respective 
matrices (e.g., pH controlling for abiotic), the number 
of nodes was the key factor for overall bacterial com-
munities (P = 0.002), whereas no strong factor was 
found for generalists. Yet for specialists, the number 
of nodes, and the number of negative edges, and to a 
lesser extent spatial distance, were the main factors 
(P < 0.001). When depicting the variability across spa-
tial scales, we noticed different patterns within and over 
the mesoregional threshold. At the local scale, spatial 
distance, elevation, and biopores were the main drivers 
of overall bacterial communities (P < 0.001). The num-
ber of strong and significant correlations was greater for 
specialists (11 factors) than for generalists (6 factors). 
Specialists were correlated with spatial distance, eleva-
tion, season, number of nodes, soil type, and average 
weighted degree (P < 0.001). In comparison, generalists 
were most correlated with elevation, spatial distance, 
and biopores (P < 0.001). At the regional scale, land 
use, the number of negative edges, and the number of 
nodes were the main factors correlated with bacterial 
communities (P < 0.001). Land use and negative edges 
were also the major factors for generalists (P < 0.001). 
Yet for specialists, the main constraining factors were 
number of nodes and negative edges, and to a lesser 
extent land use (P < 0.001).

Discussion

Drivers of bacterial assembly patterns and processes 
across spatial scales

Linking microbial diversity patterns to the ecologi-
cal processes governing assembly has been often 
implemented for local (Ferrenberg et al. 2013; Dini-
Andreote et  al. 2014; Jia et  al. 2018; Tripathi et  al. 
2018) or regional and continental scales communities 
(Stegen et al. 2013; Ma et al. 2016, 2017; Luo et al. 
2019), often not considering the effect of spatial dis-
tance between microbial communities. Moreover, just 
a few studies have quantified the jointing contribution 

of spatial distance, abiotic and biotic factors on 
microbial diversity distribution, and ecological pro-
cesses (Martiny et  al. 2011; Gao et  al. 2019; Zhao 
et al. 2019; Ceola et al. 2021). To our knowledge, this 
is the first study underlying those patterns and pro-
cesses for bacterial communities across spatial scales 
in Brazilian subtropical soils.

Our first hypothesis claimed that the patterns of 
microbial assembly would vary along with land use, 
and geographic distance between microbial com-
munities, leading to microbial diversity loss due to 
forest-to-agriculture conversion. Although we did 
not find differences in alpha diversity and richness, 
both long-term forest to no-till and forest to pasture 
conversions led to changes in bacterial beta-diversity 
distances and consequent loss in pairwise beta diver-
sities, which is indicative of biotic homogenization 
(Rodrigues et al. 2013; Maaß et al. 2014; Rocha et al. 
2021). These results corroborate our previous study, 
in which we have evaluated, through metagenomics, 
the patterns of microbial alpha and beta diversities 
in two out of the six counties evaluated here (Goss-
Souza et  al. 2017). Other authors also have found 
the same soil microbial patterns for both subtropi-
cal (Ceola et  al. 2021) and tropical soils (Rodrigues 
et  al. 2013; Mendes et  al. 2015b). When comparing 
seasons, we have found a loss in pairwise beta diver-
sities from winter to summer in no-till and pasture, 
the same as found in our previous study (Goss-Souza 
et  al. 2017). Moreover, our microbial co-occurrence 
networks have raised the hypothesis that land-use 
change has not only altered microbial composition 
and diversity but has also increased the complexity of 
the biotic interactions among taxa, just as found for 
other tropical and subtropical environments (Mendes 
et  al. 2014; Goss-Souza et  al. 2017; Felipe-Lucia 
et al. 2020). Together, our results emphasize that the 
long-term forest to agriculture conversion has led to a 
loss in microbial diversity, just as observed in previ-
ous studies in tropical (Rodrigues et al. 2013; Mendes 
et al. 2014, 2015b; Goss-Souza et al. 2019, 2020) and 
subtropical agroecosystems (Goss-Souza et al. 2017; 
Ceola et al. 2021).

We also found a spatial scale dependence on 
microbial beta diversity distributions, which was 
inflated at the local scale (< 97 km) and disappeared 
at the regional scale, suggesting that, according to 
Baas Becking proposal, bacterial communities are 
widespread across the regional limit, and filtered by 
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environmental factors at the local scale (De Wit and 
Bouvier 2006). Several microbial studies have high-
lighted the land-use change and soil physical and 
chemical characteristics (e.g., pH, soil fertility) as 
the main drivers of local diversity patterns (Brookes 
et al. 2010; Rodrigues et al. 2013; Lauber et al. 2013; 
Mueller et al. 2014). Although we observed a loss in 
bacterial diversity due to land-use change, markedly 
in summer and a scale dependence for all land uses 
and seasons, Mantel tests revealed that land use was 
only significant at the regional scale, as a secondary 
effect, explaining 16.6% of the variability. The main 
drivers at this spatial scale were the biotic factors, as 
represented the number of nodes and negative edges, 
within other weaker but significant biotic factors, cor-
roborating Gao et  al. (2019). At the local scale, we 
also found a loss of beta diversities after forest con-
version for both no-till and pasture and local scales. 
As observed for overall bacterial communities, land 
use was not a significant factor modulating local 
microbial diversity, which goes against other find-
ings for local bacterial communities (van der Gast 
et  al. 2011; Hazard et  al. 2013; Karimi et  al. 2020; 
Mirza et  al. 2020). The main drivers of local bacte-
rial communities were spatial distance and elevation. 
A recent study evaluating the geographical distribu-
tion of arbuscular mycorrhizal fungal communities in 
a broad gradient of land-use intensification and spa-
tial distance, have found significant distance-decays 
for all land uses evaluated (Ceola et al. 2021), but not 
directly correlated with the land-use change itself, 
as the main drivers of decays were soil type, total 
organic carbon, and clay contents, both considered 
as evolutionary historical contingencies (Fukami and 
Nakajima 2011). Although we cannot deny that this 
correlation seems to occur widely, we argue that the 
arbitrary assignment of soil samples to a determined 
land use could lead to confounding results. While 
considering land use as a factor, not a treatment (as 
we did here), we can observe how this single factor 
behaves when confronted with other measured or cal-
culated environment characteristics that result from 
forest to agroecosystem conversion. Thus, we argue 
that land uses would not be arbitrarily set as treat-
ments, as soil habitats have multiple facets, due to 
their geographic location, management intensity, soil 
type and origin, climate conditions, among others 
(Fierer and Jackson 2006; Delgado-Baquerizo et  al. 
2018). Together, those soil ecosystem characteristics 

culminate with different historical (Fukami and Naka-
jima 2011) and contemporary contingencies (Durrer 
et  al. 2017; Wang et  al. 2017; Karimi et  al. 2020), 
leading to different microbial diversity outcomes 
(Ceola et al. 2021).

In our study, somehow surprisingly, the main fil-
tering factor of bacterial diversities at the overall 
scale was the number of nodes, a biotic factor, as 
revealed by microbial networks and Mantel tests. The 
main local filters were spatial distance and elevation, 
the same as found in previous biogeographic stud-
ies (Fierer and Jackson 2006; Pellissier et  al. 2014; 
Wang et al. 2017; Farrer et al. 2019), with a second-
ary effect of the season (Goss-Souza et al. 2017; Ma 
et al. 2017), biopores, an abiotic soil physical factors. 
The average weighted degree was the major biotic 
filter of bacterial communities at the local scale, cor-
roborating the findings of a biogeographic study of 
bacterial communities in paddy soils at a continental 
scale (Gao et al. 2019). The authors also found cou-
pled effect of geographic distance, abiotic and biotic 
factors, such as observed in our study.

Another explanation for the spatial correla-
tions is dispersal limitation, as observed by the low 
immigration rates found in our study, particularly 
for forest and no-till microbial communities, cor-
roborating our previous study (Goss-Souza et  al. 
2017). Evidence against the Baas Becking hypoth-
esis comes from studies showing that dispersal of 
microbes is limited, meaning that “everything is 
not everywhere” at least at a contemporary pace 
(Nemergut et  al. 2013). By comparing the spatial 
correlations of bacterial communities with the pat-
terns found for Eukaryotes, including Fungi (Zhao 
et al. 2019; Ceola et al. 2021), they tend to be lower 
for Bacteria, but they are often significant, mean-
ing that the higher the distance between pairs of 
microbial communities, the more contrasting they 
are (Horner-Devine et al. 2004; Martiny et al. 2006, 
2011; Gao et al. 2019). Those results together have 
led us to partially reject our first hypothesis, since 
the land-use change, despite being significant, was 
not found as a ruling driver of microbial assembly 
patterns.

Our second hypothesis stated that the balance 
between neutral and niche-based assembly models 
would differ along land use, and spatial scales. Our 
T-RFLP data corroborated our previous metagen-
omics study (Goss-Souza et  al. 2017), suggesting 
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that forest and no-till microbial communities have a 
niche-based assembly, related to deterministic pro-
cesses, and are more likely to be governed by envi-
ronmental filtering, through the ecological selection 
process (Stegen et  al. 2013; Dini-Andreote et  al. 
2015). Conversely, pasture communities have pre-
sented a predominantly neutral assembly, regarding 
stochastic processes modulating microbial assembly 
patterns, indicating a pivotal role of the dispersal eco-
logical process (Albright et al. 2019; Li et al. 2020). 
We have also found a positive correlation between 
dispersal rates and microbial communities fitting neu-
tral assembly, with pasture samples presenting both 
higher values of dispersal rates and more samples 
fitting to the stochastic ZSM rank abundance model. 
These results have confirmed previous theoretical and 
experimental models suggesting that dispersal has a 
key role in microbial community assembly (Hubbell 
2005; Martiny et  al. 2011; Ferrenberg et  al. 2013; 
Nemergut et al. 2013; Goss-Souza et al. 2020).

Therefore, we depicted the balance between neu-
tral- and niche-based assembly models, according 
to spatial distance, through Z-scores. At the local 
scale, forest microbial communities presented assem-
bly based on stochastic processes, but with a large 
interplay between neutral and niche-based assem-
bly, markedly in the winter; no-till microbial com-
munities were more segregated than expected by 
chance, regarding deterministic variable selection 
(Dini-Andreote et  al. 2015; Gao et  al. 2019; Xue 
et al. 2021); while pasture fitted stochastic processes 
(Goss-Souza et  al. 2017). Regarding regional scale, 
only forest communities presented a reverse pattern, 
following a deterministic variable selection, corrobo-
rating (Goss-Souza et al. 2017).

Ecologically, the assembly of microbial communi-
ties is dependent on the trade-offs between local and 
regional microbial communities, which is dependent 
on the microbial survival at the local species pool 
and the colonization potential of microbial species in 
the regional pool (Pärtel et al. 2017; Bittleston et al. 
2020). While spatial distance and dispersal acted on 
the composition of microbial communities, variable 
selection and drift altered the relative abundances. 
Our findings have demonstrated an interplay among 
stochastic and deterministic processes modulating 
assembly, at temporal and spatial scales, the same as 
found for other soil and synthetic microbial commu-
nities (Ferrenberg et al. 2013; Nemergut et al. 2013; 

Stegen et al. 2013; Dini-Andreote et al. 2015; Evans 
et al. 2017; Goss-Souza et al. 2017, 2020; König et al. 
2019).

Biogeographic patterns and assembly processes differ 
between generalists and specialists

Ecologists have long-established the conceptual basis 
of niche occupancy and habitat specialization for 
several species of plants and animals (Reznick et al. 
2002; Bohn et al. 2014). Several authors have raised 
the idea of examining microbial life-history strate-
gies to comprehend the patterns and processes that 
modulate species distribution and trophic relation-
ships in soils (van der Heyde et al. 2017; Powell and 
Rillig 2018). Here, we separated species as general-
ists and specialists, based on the frequency of occur-
rence and habitat specialization of each taxon into our 
324 samples representing bacterial communities. Our 
third hypothesis affirmed that the processes govern-
ing microbial assembly would vary between habitat 
generalists and specialists. Our results have shown 
that forest microbial communities presented the high-
est proportion of specialists but the lowest values of 
betweenness centrality, while pasture communities 
have presented the opposite pattern. The between-
ness centrality is defined as the number of times a 
node (i.e., taxa) acts as a bridge along the shortest 
path between two other nodes, which indicates the 
most important nodes that are interpreted as key taxa 
with a significant role in the community (Poudel et al. 
2016; Mendes et  al. 2018; Shi et  al. 2020). These 
results have indicated that forest communities pre-
sented a higher number of keystones species that are 
responsible for regulating the structure and dynam-
ics of the community network (van der Heijden and 
Hartmann 2016; Banerjee et  al. 2019). On the other 
hand, pasturelands have presented few keystone taxa 
but with a higher betweenness centrality. Key taxa are 
associated with many others, and the removal of these 
nodes may have a significant impact on community 
structure (Steele et al. 2011). Thus, the lower number 
of specialists and keystone species in pasture suggest 
a less resilient and stress-tolerant community.

We depicted the bacterial community patterns 
across spatial scales, according to microbial life strat-
egies (Barberán et  al. 2012; Leff et  al. 2015; Gao 
et al. 2019; Luo et al. 2019). The most prevalent taxa 
in our study were found to be habitat specialists. Our 
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CLAM tests coupled with Mantel tests have strongly 
supported a perspective of microbial distribution in 
which communities are dominated by endemic spe-
cies and share very few common taxa between sites 
and along geographical gradients (Robeson et  al. 
2011). This local endemism is here supported by the 
major influence of dispersal limitation in microbial 
assembly patterns. Moreover, the endemic distribu-
tion is emphasized by the high significance of spa-
tial distance at the local scale for overall communi-
ties, coupled with the interaction with biotic factors 
at the local scale for endemic taxa, just as found in 
another biogeographic study (Gao et  al. 2019). Our 
mantel tests for endemic taxa have shown higher pair-
wise diversities at larger distances (Luo et al. 2019), 
directly contradicting the idea of “everything is eve-
rywhere”. Linking these microbial endemic patterns 
with the prominent levels of endemism of animals 
and, especially plants in the Atlantic Forest biome 
and other global hotspots of biodiversity (Myers 
et  al. 2000; Jantz et  al. 2015) is paramount. It also 
raises the hypothesis that land use, as a contemporary 
paced human intervention, is not a pivotal shaper of 
microbial niche occupancy and habitat specializa-
tion (Ceola et al. 2021). Our results have shown that 
other historical contingencies (Fukami and Nakajima 
2011; Ceola et al. 2021), as represented by soil type, 
and seasonal effect, intimately linked to soil forma-
tion, and evolutionary contingencies (Hanson et  al. 
2012; Wang et  al. 2013), linked to dispersal limita-
tion and taxa evolution, may be driving microbial 
niche breadth (Luo et al. 2019) and habitat speciali-
zation (Székely and Langenheder 2014), markedly on 
a local scale. Also, those historical and evolutionary 
contingencies could be shaping microbial co-occur-
rence patterns and interacting with biotic determinis-
tic selection (i.e., variable selection) (Barberán et al. 
2012; Dini-Andreote et al. 2015; Gao et al. 2019).

Soil type is defined by geological and climatic his-
torical contingencies, which together with the activ-
ity of microorganisms, water, and time regulate rock 
weathering and soil formation (Huggett 1998; Egli 
et al. 2018). According to the World Reference Base 
for Soil Resources (Anjos et al. 2015), the soils from 
all sampling sites in the western mesoregion are clas-
sified as Red Ferralsols, which are evolved soils with 
the dominance of kaolinite and Fe oxides. Otherwise, 
soils from plateau mesoregion are more diverse. Soils 
from the counties of Lages and Campo Belo do Sul, 

were classified as Humic Yellow Nitisols, which are 
strongly structured soils, characterized by low-activ-
ity clay, P fixation, the prevalence of Fe oxides, and 
accumulation of organic matter in the surface. Mean-
while, soils from Otacílio Costa County were found 
to be Humic Cambisols, with little profile differentia-
tion, moderately developed, with the accumulation of 
organic matter on the surface. We argue that soil type, 
a historical contingency (together with dispersal, an 
evolutionary contingency), could be locally filtering 
taxa distributions more strongly than the influence of 
land-use change, which is historically recent, as all 
the sites were converted from the forest into agroeco-
systems in the last decades (Bartz et al. 2014; Goss-
Souza et al. 2017; Ceola et al. 2021).

Conclusions

This study represented a step forward to depict the 
biogeographic patterns of bacterial communities due 
to land-use change in a broader geographic scale, in 
the subtropical Atlantic Forest biome. We have shown 
that soil bacterial diversity and niche occupancy are 
shaped by spatial distance and long-term historical 
contingencies related to the soil origin (soil type and 
climate), which culminates with important coupled 
patterns of dispersal limitation and spatial correla-
tions. We also demonstrated that—differently from 
the “everything is everywhere” niche postulation—
stochastic processes, represented by the dispersal lim-
itation act to outweigh the effect of the deterministic 
selection process caused by soil historical contingen-
cies and the formation of small geographic islands, 
shaped by soil type and climate. Those patterns are 
inflated when evaluating microbial niche special-
ists, markedly at a local scale, with consequences for 
biotic interactions among members from local micro-
bial communities.
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