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It is widely recognized that new vehicle and fuel technologies are neces-
sary but not sufficient to meet deep greenhouse gas reduction goals in the 
United States. Demand management strategies, such as land use, transit, 
and auto pricing policies, are also needed. These measures, however, 
have historically faced political challenges and have been difficult to 
implement. Emerging ridesharing systems now suggest the possibility of a 
new demand management strategy that may be more politically palatable 
and reduce the number of vehicle miles traveled (VMT). To date, how-
ever, little research has evaluated their potential travel effects, especially 
on a regional scale. This study used the San Francisco, California, Bay 
Area activity-based travel demand model to simulate business-as-usual, 
transit-oriented development, and auto pricing scenarios with and with-
out high, medium, and low ridesharing participation levels. The analysis 
suggests that relatively large VMT reductions are possible from moder-
ate and high participation levels, but at low participation levels, VMT 
reductions are negligible. Moderate dynamic ridesharing alone compares 
favorably, with a 9% reduction in VMT, to transit-oriented development 
and auto pricing scenarios. The analysis also suggests a potentially prom-
ising policy combination: a moderately used regional dynamic ridesharing 
system with a 10- to 30-cent increase in the per mile cost of auto travel, 
which together may reduce VMT on the order of 11% to 19%.

New vehicle and fuel technologies are widely recognized to be neces-
sary but not sufficient to meet deep greenhouse gas (GHG) reduction 
goals in the United States. Demand management strategies that reduce 
the number of passenger vehicle miles traveled (VMT) and related 
GHG emissions are also needed. These strategies typically include 
land use, transit, and auto pricing policies. Studies indicate that com-
pact development that supports transit investments has a relatively 
modest impact on the number of VMT and GHG emissions (reduc-
tions on the order of 1.3% to 3.2% relative to the number of VMT and 
GHG emissions under business-as-usual scenarios) (1). Auto pricing 
policies at high per mile price levels should be significantly more 
effective. However, both measures have faced political challenges 
and have been difficult to implement. Emerging ridesharing systems 
now suggest the possibility of a new demand management strategy 
that may be more politically palatable and reduce the number of VMT 
and GHG emissions. Little, however, is known about the potential 
magnitude of this reduction, especially at regional scales.

The wider practical application of activity-based microsimula-
tion travel demand models (ABMs) by metropolitan planning orga-
nizations not only allows the more complete simulation of land use, 
transit, and pricing policies (relative to that achievable with tradi-
tional four-step models) but also enables analysis of dynamic ride-
sharing services (DRSs). Unlike the traditional trip-based four-step 
travel models, ABMs track individual and household activities and 
travel throughout a typical day. This information makes it possible to 
identify trip start and end times by location, purpose, and mode. This 
information can then be used to identify by attributes the number 
of individuals and trips that could feasibly use dynamic ridesharing 
and, thus, the potential magnitude of avoided VMT.

The current study uses the ABM of the Metropolitan Transporta-
tion Commission (MTC) of the San Francisco Bay Area, California, to 
examine the potential magnitude of the market for and VMT reduction 
from DRSs with and without land use, transit, and auto pricing poli-
cies. The study begins with a discussion of what is known about the 
market and travel effects of DRSs. Next, the MTC ABM is described. 
This is followed by a detailed discussion of the simulated scenarios 
and the postprocessing models developed to estimate the travel effects 
of DRSs. The results of the model simulation of business-as-usual 
(base case), transit-oriented development (TOD), and auto pricing 
(VMT fee) scenarios with and without high, medium, and low DRS 
participation rates are presented. The study concludes with a summary 
of key results, policy implications, and future research.

Background

Overview

DRSs automatically match drivers and riders with similar spatial 
and temporal constraints (i.e., trip origin–destination locations and 
departure and arrival times) and communicate matches upon request, 
in advance, or on demand in real time. Smartphone applications 
are provided to users to request rides, evaluate and view ratings of 
drivers and riders, accept or reject matches, and pay drivers. Social 
networks and incentive systems may be used to expand service 
participants and use (2).

Two common service models exist under the general category of 
DRSs: peer-to-peer ridesharing and taxisharing. In peer-to-peer 
ridesharing, drivers are independent service participants and riders 
reimburse drivers for some trip-related costs (e.g., fuel, tolls, and ser-
vice fee). Drivers’ ability to share rides is limited by the spatial and 
temporal constraints of their own travel. In the United States, peer-to-
peer ridesharing companies (e.g., Zimride and Carma) operate in five 
U.S. cities (Austin, Texas; San Francisco, California; Washington, 
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D.C.; Los Angeles, California; and New York City) (2). In taxi
sharing services, drivers may be licensed taxi drivers or independent 
contractors [in a transportation network company (TNC), such as 
Uber or Lyft]. Drivers are dispatched to maximize vehicle passen-
gers and minimize passenger costs (e.g., travel time, wait time, and 
fares), given the spatial and temporal travel demand of users. In the 
future, automated vehicles may eliminate the drivers’ role and signifi-
cantly lower participant costs. Examples of taxisharing services in the 
United States are UberPool and Lyft Line (2).

Potential Travel Effects

DRSs provide a new mode of travel at new travel time and cost price 
points to many destinations and service areas. Ubiquitous DRSs may 
result in a series of complex and interrelated behavioral and systems-
level effects with both positive and negative impacts on congestion, 
VMT, and GHG emissions. In the short term, fewer vehicles may 
be needed to meet the travel needs of users, which would tend to 
reduce auto travel distance and time. However, in the long term, 
these benefits may be offset, to some degree, by induced travel. With 
improved first and last mile access to transit stations, these services 
(particularly taxisharing) could increase transit use and lead to some 
reduction in congestion and auto travel, depending on the travel 
effects that are induced.

DRSs may also provide fares that are lower and travel times that are 
shorter than those of the forms of transit travel available and may thus 
increase auto travel and congestion. Individuals without access to a 
private vehicle or transit may travel more by auto. This increased auto 
travel would not increase VMT in the peer-to-peer model but could do 
so in the taxisharing model. A reliable and affordable alternative to pri-
vate vehicles may reduce auto ownership among participants, which 
would tend to reduce auto travel and encourage transit use, walking, 

and bike use. Lower auto ownership levels may increase demand for 
more centralized residential locations with high-quality multimodal 
access to destinations. In areas with pent-up travel demand, congestion 
may not be significantly reduced. However, overall efficiency (person 
throughput) and equity (greater access to transportation) could be sig-
nificantly improved. Table 1 provides a summary of some possible 
outcomes of DRSs and their effects on VMT and GHG emissions.

Policies such as TOD can reduce the spatial distribution of trip 
origins and destinations and thus increase the probability of rideshar-
ing. In addition, expansion of access to transit, walking, and biking 
increases the probability of ridesharing for one or more segments of 
a daily tour when it reduces the probability that trip segments within 
the same tour can be accomplished only by driving alone. Improved 
transit, walking, and biking modes, however, may provide cheaper 
and more timely access than ridesharing for some travelers and their 
destinations.

Auto pricing policies, such as VMT fees, increase the incentive to 
share rides by reducing travel costs for drivers and passengers. The 
higher costs of auto travel would tend to encourage shorter travel 
distances between residential and employment locations and more 
development around high-quality transit and thus further increase 
the feasibility of ridesharing. Again, higher auto pricing costs could 
also make transit use, walking, and bike use more cost-effective than 
ridesharing for some travelers and their destinations.

Literature Review

The authors are not aware of any available study that systematically 
evaluates the travel effects of operational DRSs. However, some 
recent studies of similar services are of relevance. Rayle et al. sur-
veyed taxi and TNC (e.g., Uber and Lyft) users in San Francisco and 
found that the majority of TNC rides would have taken significantly 

TABLE 1    Dynamic Ridesharing Services: Potential Outcomes and Effects on VMT and GHG Emissions

Category Possible Outcomes: If DRS . . .

Effects on 
VMT and GHG 
Emissions

Auto ownership Provides access to necessary destinations at a lower overall cost (time and money) than private vehicles, then 
auto ownership declines and use of non-SOV modes increases.

−VMT/GHGa 

Trip generation Is affordable and access to a car and transit is limited, then new auto trips may be induced. +VMT/GHGa

Mode choice Costs (time and money) are less than those of SOVs, then mode share increases for DRS and decreases for SOVs. −VMT/GHGa

Costs (time and money) are less than transit, then mode share increases for DRS and decreases for transit. +VMT/GHGa

Costs (time and money) for first and last mile transit access and use are less than those by travel by SOVs, then 
mode share for DRS and transit increases and decreases for SOV.

−VMT/GHGa

Destination choice Contributes to lower overall travel time and costs to central areas relative to outlying areas, then travel to central 
areas is more likely.

−VMT/GHG 

Contributes to lower overall travel time and costs to outlying areas than to central areas, then travel to outlying 
areas is more likely.

+VMT/GHG 

Route choice Involves additional travel to pick up and drop off passengers, then a longer overall vehicle travel distance will be 
required for trips.

+VMT/GHG 

Contributes to more overall congestion, then longer routes are possible to avoid congestion and minimize travel 
time and there could be more stop-and-start travel.

+VMT/GHG 

Contributes to less overall congestion, then shorter, more direct routes are possible and there could be more  
stop-and-start travel.

−VMT/GHG 

Urban form Contributes to lower overall travel time and costs to central areas than to outlying areas, then demand for 
residential and employment space may be greater in central areas.

−VMT/GHG 

Contributes to lower overall travel time and costs to outlying areas than to central areas, then demand for 
residential and employment space may be greater in outlying areas.

+VMT/GHG 

Note: SOV = single-occupancy vehicle; − = reduced VMT and GHG emissions; + = increased VMT and GHG emissions.
aMediated by induced travel.
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longer by transit (3). Overall, passengers take taxis and TNCs to 
travel to and from transit stations and to access destinations faster 
than it is possible when they take transit (3). A preliminary evaluation 
of peer-to-peer carsharing services in Portland, Oregon, indicated that 
a significant number of trips made by the service would not have 
been made if the service had not been available and that the service 
frequently substituted for transit (4).

Two studies used survey data to examine the potential demand for 
DRSs in a university context, in Berkeley, California, and Cambridge, 
Massachusetts. They estimated that 20% to 30% of commuters who 
drive alone to campuses could use a DRS (5, 6). Amey estimated that 
reductions in VMT could range from 9% to 27% for daily university 
commute travel, but the analysis did not account for induced travel (6).

Several simulation modeling studies evaluated peer-to-peer ride-
sharing services. Agatz et al. developed an optimization model 
with fixed morning commute data (i.e., the quantity of travel did not 
change if travel time and cost changed) from the Atlanta, Georgia, 
regional travel model that matched riders and drivers (with similar 
temporal and special constraints and fixed travel times) while mini-
mizing system VMT and travel costs and maximizing driver revenues 
(7). They found that, even with relative low participation rates and a 
time flexibility of 20 min, the peer-to-peer ridesharing matching rate 
was 70%, VMT was reduced by 25%, and travel costs were reduced 
by 29%. Di Febbraro et al. developed a discrete event, dynamic 
pickup and delivery model to optimally match drivers, riders, and 
network paths to minimize access and egress times in the morning 
and afternoon peak periods in Genoa, Italy (8). They found that only 
13% and 15% of matches were refused because of excessive delays. 
Xu et al. combined two equilibrium models, a market pricing model 
and a traditional static assignment model, to simulate the hypothetical 
effect of congestion and ridesharing price on the decision of a given 
number of drivers and passengers to share rides (9). Dubernet et al. 
used the MATSim model to simulate the feasibility of ridesharing in 
Switzerland and found that between 47% and 87% of all trips made 
on a daily basis could be matched into two-person carpools (10).

Two studies used actual taxi record data to simulate the effects 
of taxisharing services. Santi et al. developed a graph-theoretic model 
that estimated the trade-off between the time and monetary benefits 
and costs of the use of the service with data on 150 million taxi trips 
in New York City in 2011 (11). They found a significant potential for 
reduced vehicle travel (40%) at relatively low levels of discomfort 
with reduced service and passenger costs. In that study, activity data 
were fixed, and thus induced travel effects were not represented. 
Martinez et al. used an agent-based model that matched taxis to clients 
while meeting the spatial and temporal requirements of clients’ trips 
given a maximum wait time in Lisbon, Portugal (12). A microsimu-
lation traffic model simulated taxi trips using fixed activity data from 
taxi records that included origin and destination information and start 
time information for each trip. They found a possible average reduc-
tion in passenger fares of 9% in the taxisharing service compared with 
the fares for a traditional taxi service.

Fagnant et al. used travel activity data from Austin’s regional travel 
demand model (a trip-based model) with MATSim to simulate an 
automated ridesharing system (13). In that study, shared autonomous 
vehicles (SAVs) service the travel needs of the entire population in 
the region (one SAV for 10 private autos). Travelers participate in 
DRS when doing so adds no more than 10% of their trip travel time. 
Relocation methods were also tested and compared. SAVs gener-
ated 10% more VMT without DRS and 10% less VMT with DRS 
than a comparable non-SAV system. That study used fixed activity 
data from a regional travel model. In another study, Fagnant and 

Kockelman conducted sensitivity analyses of SAVs without dynamic 
ridesharing that provided some insights into how congestion and 
VMT effects may be mediated in a simulation in which travel activ-
ity or demand is not fixed (14). These sensitivity analyses allowed 
trip generation, destination choice, and land use patterns to vary. The 
results indicated that low congestion levels in centralized urban areas 
are key to reduced induced travel from SAVs (14).

In sum, a limited number of studies have quantified the effects of 
dynamic ridesharing systems in a real or theoretical urban environ-
ment. Most of these studies use one or more types of models: static 
or dynamic traffic or route assignment with and without optimization 
techniques. Traveler or vehicle demand characteristics are almost 
always fixed (or are not sensitive to changes in travel time and cost 
introduced by the DRS), including origin and destination locations 
as well as departure and arrival times. Many studies test the effec-
tiveness of different optimization techniques to match potential driv-
ers and passengers. Other studies attempt to simulate the decision to 
share on the basis of DRS fees and travel time delays.

Methods

The ABM of the MTC of the San Francisco Bay Area belongs to the 
Coordinated Travel–Regional Activity Modeling Platform family of 
ABMs developed by Parsons Brinckerhoff. The activities or day pat-
terns that drive individuals’ need to make travel-related choices in  
time and space are based on the MTC’s 2000 Bay Area Travel Behav-
ior Survey. The data from this survey include data from 2-day travel 
diaries from 15,000 households. In the model, tours are the unit of 
analysis in a day pattern. A tour represents a closed or half-closed 
chain of trips starting and ending (in hourly increments) at home 
or at the workplace and includes at least one destination and at 
least two successive trips. The MTC ABM includes four manda-
tory tours (work, university, high school, and grade school) and 
six nonmandatory tours (escort, shop, other maintenance, social 
or recreational, eat out, and other discretionary). A more advanced 
feature of the Coordinated Travel–Regional Activity Modeling Plat-
form family of models is the representation of interactions among 
household members.

All individuals and their socioeconomic characteristics in the 
MTC study area are generated through a statistical process known 
as a population synthesis, which expands survey samples (i.e., 2000 
Public Use Microdata Sample and 2010 census data) of households 
to represent the entire population. Demographic and employment 
categories include households by four income quartiles, population 
by five age categories, population by four income categories, high 
school and grade school enrollment, and employment by six North 
American Industry Classification System categories.

Transportation supply is represented by the transportation analysis 
zone system (geographic units of analysis) and roadway and transit 
networks. The following modes are represented in the MTC ABM: 
drive alone free and paid, shared ride free and paid, walk, bike, and 
transit (with walk, bike, and drive access and egress modes). The 
2010 zone system includes 1,454 zones. Network assignment is 
for the following time periods: the early off-peak period (3 to  
6 a.m.), the morning peak period (6 to 10 a.m.), midday (10 a.m. 
to 3 p.m.), the p.m. peak (3 to 7 p.m.), and off-peak late (7 p.m. 
to 3 a.m.). Traffic is assigned to the network by the use of static 
assignment processes.

In this study, induced travel is represented through the application 
of elasticities from the literature as opposed to the complete travel 
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time convergence process used in the MTC ABM. Postprocess coding 
for DRS by use of the convergence process would have been much 
more complex and computer run times for each scenario would have 
been significantly longer (a fully iterated run takes at least 3 days, 
and postprocessing for DRS scenarios can take from 6 to 24 h). As a 
result, the fully converged 2010 base case scenario was used and the 
policy scenarios (the TOD and VMT fee scenarios) were simulated 
with one additional model run. This approach allowed multiple sce-
narios to be run for each policy type and numerous sensitivity analy-
ses that address the uncertainties around the travel effects of DRSs to 
be conducted. The DRS scenarios required postprocessing of the base 
case, VMT fee, and TOD model output files (as described below). For 
the scenarios that would result in a change in the average number of 
VMT per hour (i.e., VMT fee, TOD, and DRS), the long-run elasticity 
of VMT with respect to the average number of VMT per hour (0.64) 
was used to represent induced travel (15). The elasticity was applied 
to the change in the average number of VMT per hour in each of the 
five time periods in the model, and the resulting change in VMT for 
each time period was summed for each scenario. Change is always 
relative to the 2010 base case.

Although no direct empirical evidence of the effect of ridesharing 
on induced travel is available to date, solid empirical evidence shows 

that reduced congestion lowers the cost of driving and increases the 
quantity of vehicle travel (16).

Scenarios

The analysis included the business-as-usual (base case), TOD, and 
auto pricing (VMT fee) scenarios with and without high, medium, and 
low DRS participation rates. In the TOD scenario, residential densities 
around transit stations were increased by 10%, 20%, and 50% by the 
random selection of households from the least-dense to the most-dense 
zones in the region. Density was calculated with a quarter-mile buf-
fer at the traffic analysis zone level. In the VMT fee scenario, the per 
mile auto operating cost for passenger vehicle travel in the MTC ABM  
(17.9 cents) was increased by 10, 30, and 50 cents (in 2000 U.S. dollars).

A postprocessing program was developed in C to estimate the 
potential market and travel effects of DRS, as illustrated in Figure 1. 
In Stage 1 of the postprocessing program, the relevant MTC ABM files 
are read into the program. These include the following files:

•	 Household and individual characteristics from the population 
synthesis,

Read MTC ABM files:  
1. Distance skims 
2. Synthesized population and  
3. Individual trip and tour data 

Specify ridesharing conditions for subsequent 
processing. 

Identify zones within 
specified distance condition 
from zone-to-zone distance 
matrix.

Identify individuals, tours, and
trips meeting these conditions: 

1. Income 
2. Min. trip length 
3. Max. tour stops 

Randomly select and apply 
participation rates. 

Identify trips meeting 
these trip conditions: 
1. Departure time 

flexibility  
2. Proximity 
3. Group size 

Identify orphan trips and 
reassign to other 
ridesharing trips. 

Identify trips that meet these 
tour conditions: 

1. Auto-dependent trip 
2. Trips per tour 

Change travel mode
for ridesharing trips in

trip list data.  

 

Assign trip list data to road 
network for VMT and speed by
time of day. 
Apply short- and long-term 
elasticities of VMT for average 
vehicle speed.

Stage 2

Stage 4

Stage 6

Stage 5

Stage 3

Stage 1

FIGURE 1    ABM postprocessing for DRS scenarios.
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•	 Data on tour- and trip-level daily travel by households and 
individuals, and
•	 Zonal network distance estimates.

At this stage, the program specifies the following global conditions 
for ridesharing:

1.	 The minimum and maximum number of travelers allowed in 
a ridesharing trip (group size),

2.	 The presence of one driver for each ridesharing trip,
3.	 The maximum number of minutes that a traveler is willing to 

wait to share a ride (maximum departure time flexibility),
4.	 The minimum trip distance for a traveler to share a ride 

(minimum trip length),
5.	 The maximum percentage of ride-sharable trips within a tour 

required for a traveler to share a ride (maximum ride-sharable trips 
per tour),

6.	 Maximum number of stops allowed in a tour to participate in 
a ridesharing trip (maximum tour stops),

7.	 Maximum individual income level required for an individual 
to participate in ridesharing,

8.	 The rate at which people will share a ride given the ability to 
share a ride (participation rate), and

9.	 The maximum number of miles between trip origin zones of 
potential ride shares (proximity).

Stage 2 identifies individuals with tours and trips that meet the max-
imum income, minimum trip length, and maximum tour stop condi-
tions. These individuals are then randomly selected to share a ride on 
the basis of specified participation rates. In Stage 3, the trips identi-
fied in Stage 2 are evaluated to identify those who meet departure 
time flexibility, proximity, group size, and driver conditions. The MTC 
ABM currently uses 1-h departure time windows. The 2000 Bay Area 
Travel Survey is used to estimate the distribution of trip departures 
by 15-min intervals per hour within each time period and by county. 
Trips within each hour from the model are then randomly selected and 
assigned departure times within the hour on the basis of the weight-
ing factors developed from the estimated distribution. In Stage 4, the 
resulting trips are then evaluated against tour-level conditions, includ-
ing auto-dependent trip (i.e., one or more trips within a tour can be 
satisfied only by the auto mode) and the number of trips per tour, to 
further refine ride-sharable trips. In Stage 5, the program identifies 
ridesharing trips that lost a ridesharing group (orphan trips) between 
Stage 3 and Stage 4. The program reassigns these orphan trips to 
new ridesharing groups on the basis of an iterative process among 
Stage 3, Stage 4, and Stage 5. In Stage 6, travel modes for rideshar-
ing trips are changed in the original input trip list. Finally, the revised 
trip list is assigned to the roadway network to estimate VMT and speed 

(in miles per hour) by time of day, which are adjusted with elasticities 
from the literature, as described above, to represent long elasticities.

In the current study, the following conditions were fixed across all 
scenarios: the maximum income was $375,000, the group size ranged 
from two to five, a maximum of 50% of tour trips had to be ride shar-
able, and the maximum number of tour stops was six. Sensitivity analy-
ses of income, participation rates, trip lengths, origin proximity, and 
travel time flexibility were conducted. The study did not include trips 
that could be matched along a route. As the literature review pointed 
out, evidence of the effect of these variables on the willingness to par-
ticipate in DRSs is limited. The results of the sensitivity tests indicated 
that ride-sharable trips were elastic with respect to participation rates 
and length of trips (Table 2). However, all other travel results were 
inelastic with respect to variation of the other condition variables.

Three DRS scenarios in which DRS parameters were varied to rep-
resent minimum use, moderate use, and maximum use of the service 
were created. Variable conditions in the dynamic ridesharing scenar-
ios (maximum, moderate, and minimum use) included the following: 
departure time, participation rate, and proximity. These scenarios were 
simulated alone and in combination with the VMT fee and TOD sce-
narios. The parameters selected for these scenarios are described in 
Table 3. Income was not varied because the results of the sensitivity 
test indicated that participation and VMT were relatively less sensitive 
to this variable than the other variables (with the exception of proxim-
ity). Because proximity would be affected by the TOD scenario, the 
authors decided to include this in the scenario, despite the relatively 
low elasticity values. The scenarios with high and low DRS participa-
tion rates were designed to be scenarios of extreme use, and the sce-
nario with a moderate DRS participation rate was likely a conservative 
estimate of the use of a DRS with high-quality regionwide service and 
affordable use costs.

Results

The share of the ride-sharable trips relative to the total number of trips 
in each scenario is presented in Table 4. At maximum levels of ride-
sharing use, 32% to 41% of all trips were ride sharable (or trips that 

TABLE 2    Sensitivity Analyses and Average Elasticities of Travel for Condition Values

Variable Value
Ride-Sharable  
Trips

Weighted Average 
Speed VMT (LR)a

Maximum income $50,000, $100,000, $150,000 and $500,000 0.0342 0.0014 −0.0040

Maximum participation 20%, 40%, 60%, and 100% 1.7011 0.0135 −0.0322

Minimum trip length 5, 10, 20, and 30 mi −60.0523 −0.0360 0.0924

Maximum proximity 5 and 10 mi −0.0211 −0.0011 −0.0013

Maximum flexibility 15 and 30 min 0.1069 0.0046 −0.0152

aVMT (LR) = long-run elasticity of VMT with respect to vehicle speed.

TABLE 3    Minimum, Moderate, and Maximum DRS Use Values

Variable Minimum Moderate Maximum

Maximum participation (%) 20 50 100

Minimum trip length [mi (km)] 30 (48.3) 10 (16.1)   5 (8)

Maximum proximity [mi (km)]   1 (1.6)   5 (8)   15 (24.1)

Maximum flexibility (min) 15 30   60
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could be shared, given the specified conditions if a traveler decides to 
share it) across the policy scenarios. At minimum levels, less than 1% 
of all trips were ride sharable. At moderate levels, 7% to 10% were 
ride sharable. As discussed above, the scenarios with high and low 
DRS participation rates were designed to be scenarios of extreme use 
that bookend the more moderate ridesharing use scenario.

Compared with the results obtained in the base case scenario, ride-
sharable trips declined somewhat in the TOD and VMT fee scenarios 
with higher levels of TOD and VMT fees across all levels of ridesharing 
use. Transit, walk, and bike travel increased relative to auto travel in 
both the TOD and VMT fee scenarios. In the TOD scenario, as land 
uses intensified around transit stations, these modes were better able to 
compete with auto travel. In the VMT fee scenario, higher auto travel 
costs made the walk, bike, and transit modes more attractive than 
auto travel. As discussed above, improved transit, walk, and bike 
modes may provide cheaper and more timely access than ridesharing 
for some travelers and their destinations and the VMT fee could  
also make transit use, walking, and bike use more cost-effective 
than ridesharing for some travelers and their destinations. The share 
of the ride-sharable trips did not include induced travel effects and 
thus may be underestimated to some degree. Shorter auto travel times 
due to increased ridesharing (as described below) would tend to 
induce more auto trips.

As presented in Table 5, in the ridesharing scenarios, daily aver-
age weighted speed (in miles per hour) relative to that in the base 
case without ridesharing increased by about 8% for maximum use 
levels, 3% to 6% for moderate use levels, and 0% to 4% for mini-

mum use levels. The variation in the results was greater across the 
VMT fee scenarios than the TOD scenarios. Again, induced travel 
was not represented in these data, and thus the reductions were 
likely overestimated (Table 5).

The VMT results, which included induced travel effects over the 
long run, are shown in Table 6. The reductions in VMT in the TOD 
scenarios relative to the VMT in the base case were relatively small, 
which is not surprising in the San Francisco Bay Area, which already 
has relatively high residential densities and high levels of transit use 
compared with those in other regions in California and the United 
States. The VMT reduction for the VMT fee scenarios, however, was 
comparatively large (ranging from 3% to 13% with induced travel 
over the long run). Addition of dynamic ridesharing to the base 
case, TOD, and VMT fee scenarios showed reductions in VMT on 
the order of 9% to 30%. The VMT fee and TOD policies could have 
been combined into one scenario. If so, it could have performed better 
than the TOD and VMT fee policies with minimum ridesharing but 
not with maximum and moderate ridesharing because of the large 
gap in effectiveness of the policies.

Conclusions

This study used the San Francisco Bay Area’s (MTC) ABM to 
explore the potential reduction in VMT (and related GHG emissions) 
from a regional dynamic ridesharing system at different levels of use. 
The results indicate that relatively large VMT reductions are pos-
sible from moderate and high levels of use of ridesharing. At low 
levels of ridesharing, VMT reductions are negligible. The dynamic 
ridesharing scenario with a moderate level of use alone (added to the 
base case scenario) compares favorably, with a 9% reduction in VMT, 
with all TOD scenarios and the VMT fee scenarios in which the auto 
travel cost is increased by 10 and 30 cents without ridesharing. These 
findings are promising given the potential political challenges to the 
implementation of TOD and VMT fee policies. The results obtained 
with the combination of dynamic ridesharing with the TOD and VMT 
fee scenarios suggest that some policy combinations may be more 
effective than dynamic ridesharing alone but perhaps more politically 
palatable; for example, a moderately used regional DRS with a 10- to 
30-cent increase in VMT fees may produce reductions in VMT on the 
order of 11% to 19%.

Future research should explore the factors associated with higher 
levels of dynamic ridesharing, including individual attributes, the 
characteristics of tours and trips, and time and cost benefits. In addi-
tion, the travel effects of dynamic ridesharing systems should be 

TABLE 4    Share of Ride-Sharable Trips Relative to Total 
Trips by Scenario

Ridesharing (%)

Scenario Maximum Moderate Minimum

Base case 40.54 9.56 0.11

10% TOD 40.33 9.48 0.11

20% TOD 40.24 9.46 0.10

50% TOD 40.03 9.40 0.10

VMT fee (10 cents) 38.07 8.85 0.09

VMT fee (30 cents) 34.49 7.90 0.07

VMT fee (50 cents) 31.92 7.26 0.06

TABLE 5    Percentage Change in Daily Average Weighted Speed 
Relative to Base Case Without Ridesharing for Policy Scenarios 
With and Without Ridesharing

Scenario

With Ridesharing (%) Without 
Ridesharing 
(%)Maximum Moderate Minimum

Base case 7.7 3.3 0.0 0.0

10% TOD 7.8 3.5 0.2 0.1

20% TOD 7.8 3.6 0.3 0.2

50% TOD 7.9 3.7 0.5 0.4

VMT fee (10 cents) 7.8 3.9 1.2 1.1

VMT fee (30 cents) 8.0 4.8 3.0 2.9

VMT fee (50 cents) 8.3 5.5 4.3 4.3

TABLE 6    Percentage Change in Long-Run VMT Relative to Base  
Case Without Ridesharing for Policy Scenarios With  
and Without Ridesharing

With Ridesharing (%) Without 
Ridesharing 
(%)Scenario Maximum Moderate Minimum

Base case −23.1 −8.7 0.0 0.0

10% TOD −23.3 −8.9 −0.3 −0.2

20% TOD −23.4 −9.0 −0.4 −0.3

50% TOD −23.5 −9.3 −0.7 −0.6

VMT fee (10 cents) −24.6 −11.3 −3.3 −3.2

VMT fee (30 cents) −26.8 −15.6 −8.7 −8.5

VMT fee (50 cents) −28.5 −19.1 −13.1 −13.0
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simulated explicitly, including auto ownership, mode choice, des-
tination, and taxisharing pickup VMT. Future research should also 
explore how the market may expand if passengers could be picked 
up along a route by a ridesharing vehicle.
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