Locality-aware load-balanced task scheduling for MapReduce™

Oguz Selvitopi®, Gunduz Vehbi Demirci®, Ata Turk?, Cevdet Aykanat®*

¢ Bilkent University, Computer Engineering Department, 06800, Ankara, TURKEY
bBoston University, ECE Department, Boston, MA 02215

Abstract

Task scheduling for MapReduce jobs has been an active area of interest since the popularization of
MapReduce framework. The objective of scheduling is to decrease the amount of data transfer during the
shuffle phase via exploiting data locality. In the literature, generally only the scheduling of reduce tasks is
considered with the assumption that scheduling of map tasks is already determined by the input data place-
ment. However, in cloud or HPC deployments of MapReduce, the input data is located in a remote storage
and scheduling map tasks gains importance. Here, we propose models for simultaneous scheduling of map
and reduce tasks in order to improve data locality and balance the processors’ loads in both map and reduce
phases. Our approach is based on graph and hypergraph models which correctly encode the interactions
between map and reduce tasks. Partitions on these graphs and hypergraphs are decoded to schedule map
and reduce tasks. A two-constraint formulation utilized in these models enables balancing processors’ loads
in both map and reduce phases. The partitioning objective in the hypergraph models correctly encapsulates
the minimization of data transfer when a local combine step is performed prior to shuffle, whereas the parti-
tioning objective in the graph models achieve the same feat when a local combine is not performed. We show
the validity of our scheduling on the MapReduce parallelizations of two important kernel operations—sparse
matrix-vector multiplication (SpMV) and generalized sparse matrix-matrix multiplication (SpGEMM)—-that
are widely encountered in big data analytics and scientific computations. Compared to random scheduling,
our models lead to tremendous savings in data transfer in the shuffle phase, leading up to 2.6x and 4.2x
speedup for SpMV and SpGEMM, respectively.

Keywords: MapReduce, scheduling, locality, load balance, map task, reduce task

1. Introduction

MapReduce [1] simplifies the programming for large-scale data-parallel applications and greatly reduces
the development effort by sparing the programmer from complex issues such as parallel execution, fault tol-
erance, data management, task scheduling, etc. Hadoop [2], an open source implementation of MapReduce,
has been used in production environments of many big companies and is deployed on clusters that can scale
up to tens of thousands of cores. Its generality, ease of use and scalability led to a wide acceptance and
adoption in many fields.

A MapReduce job consists of map, shuffle and reduce phases which are carried out one after another
by multiple parallel tasks that process data in parallel. The map tasks process the input data and emit
(key,value) (KV) pairs. In the shuffle phase, the KV pairs are communicated and then they are sorted
according to keys, thus grouping the values that belong to the same key. The reduce tasks then process the

*This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant
EEEAG-115E212 and ICT COST Action IC1406 (cHiPSet).
*Corresponding author
Email addresses: reha@cs.bilkent.edu.tr (Oguz Selvitopi), gunduz.demirci@cs.bilkent.edu.tr (Gunduz Vehbi
Demirci), ataturk@bu.edu (Ata Turk), aykanat@cs.bilkent.edu.tr (Cevdet Aykanat)

Preprint submitted to Journal of Future Generation Computer Systems December 24, 2017

20

25

30

35

40

45

50

55

60

grouped values for keys and produce the final outputs belonging to keys. The tasks in a phase depend on
the tasks in the preceding phase.

The performance of MapReduce jobs has been focus of interest in the literature. The studies that aim
at improving the parallel performance of a MapReduce job generally either try to reduce data transfers
during the shuffle phase [3-8] or try to balance the loads in the map and/or reduce phases [5, 9]. Task
scheduling studies usually focus on only the assignment of reduce tasks with the belief that map scheduling
is determined by the initial data distribution of the file system hosted on the MapReduce compute nodes.
However, in cloud or high performance computing deployments of MapReduce this assumption is not valid.
The input data often resides in a remote shared file system such as Lustre [10], or distributed object store
such as Amazon S3 [11]. In such a setup, since all the data is loaded from a remote location, the scheduling
of map tasks also becomes important.

In recent years, the MapReduce framework has attracted interest from the graph processing, machine
learning, and scientific computing domains and there have been many studies towards parallelizing kernel op-
erations in these fields using MapReduce. Examples include HAMA [12], Apache Mahout [13], MR-MPIT [14]
and [15]. In these domains, since the interactions among map and reduce tasks can be predetermined by a
scan of the input datasets, and the applications often perform multiple iterations of MapReduce computa-
tions, intelligently scheduling map and reduce tasks can yield significant performance gains.

In this work we propose a task assignment mechanism that simultaneously schedules map and reduce
tasks to improve performance of applications. We showcase the impact of our approach by improving
the performance of two kernel operations: sparse matrix-vector multiplication (SpMV) and generalized
sparse matrix-matrix multiplication (SpGEMM). SpMV is a common primitive that is encountered widely
in numerical algebra [16] and iterative computations such as PageRank [17]. SpGEMM occurs in multigrid
interpolation and restriction [18], linear programming [19], multi-source breadth first search [20], similarity
join [21] and item-to-item collaborative filtering in recommendation systems [22]. The omnipresence of these
kernel operations in machine learning, graph algorithms, and scientific computations make them attractive
targets for performance optimization.

Our approach uses graph and hypergraph models tailored for these operations. These models’ outputs
are used as hash functions to distribute KV pairs to mappers and reducers, i.e., we make use of application-
specific knowledge to schedule map and reduce tasks. This enables scheduling tasks in the map and reduce
phases with the aim of balancing the loads of processors in these phases and decreasing the data transfer
(volume) in the shuffle phase. The models’ success of exploiting domain-specific knowledge in assigning tasks
are validated with the experiments. Compared to random scheduling, the models lead to tremendous savings
in data transfer in the shuffle phase, which leads up to 2.6x and 4.2x speedup for SpMV and SpGEMM,
respectively.

The rest of the paper is organized as follows. The related work and background are given in Section 2.
MapReduce parallelizations of SpMV and SpGEMM operations are respectively investigated in Section 4
and Section 5. Section 6 presents the experiments. Section 7 concludes.

2. Related work and Background

Scheduling jobs and tasks for MapReduce programs has been an active area of research since the popu-
larization of MapReduce paradigm. Job scheduling [23-28] considers allocation and usage of the resources
in case of multiple MapReduce jobs. Task scheduling, on the other hand, focuses on the assignment of map
and reduce tasks regarding a single MapReduce job. Our work falls in the latter category, so we focus on
the works in this category.

Task scheduling presents two challenges which are critical for parallel performance: balancing the load
in map and reduce phases, and decreasing the communication in the shuffle phase. Both can be alleviated
via various approaches depending on the environment and the application MapReduce is being realized.
The approach proposed by [3] considers data locality for decreasing communication in the shuffle phase
and schedules each reduce task to its center-of-gravity node. This node is determined by two main factors:
network locations of this reduce task’s feeders and the partitioning skew regarding this task. Similarly, the

65

70

75

80

85

90

95

100

authors in [4] argue the overhead of the large network traffic and exploit data locality on both map and
reduce phases to decrease the network traffic. Data locality is achieved by considering factors related to
virtual machine placement, properties of the MapReduce job being run and the system load. [5] proposes a
locality-aware approach based on a cost model that schedules reduce tasks in order to decrease the amount
of data transferred in the shuffle phase. This approach is similar to our work in the sense that it also makes
use of hash functions in order to decrease the data transferred in the shuffle phase and balance the load
in reduce phase. Our work uses the hash functions in a static manner where they are determined from
the patterns inherent in the input data, while in [5] they are determined on-the-fly according to the key
frequencies. Another locality-aware approach is studied by [6], in which a scheduler called LARTS makes
use of the information about the network locations and partition sizes in the scheduling decisions. LARTS
improves data locality by reduce task scheduling and hence is able to decrease the network traffic. In [7], the
authors propose a method that monitors the execution of MapReduce jobs and schedules map and reduce
tasks according to the pattern deduced. By doing so they are able to schedule tasks preserving locality hence
able to decrease the amount of transferred data in the shuffle phase. Recently, the authors of [8] propose
an algorithm to improve the data locality and further overlap local reduce and shuffle phases of MapReduce
jobs. Another study [9] aims to balance the load in the reduce phase by collecting the key distribution of
intermediate pairs and running an algorithm that utilizes this data to further make the scheduling decisions.
The works in [29-31] all aim at decreasing communication overheads: [29] by overlapping map and shuffle
phases, [30] by overlapping shuffle and reduce phases, and [31] with a barrier-less MapReduce framework.
These studies do not consider data locality.

Most of these works perform dynamic scheduling and do not focus on improving the performance of a
specific operation. Our approach is static, i.e., in a preprocessing stage we determine hash functions to
exploit the target operation realized within the MapReduce paradigm. These mappings are then used to
distribute key value pairs among mappers and reducers in the execution.

We realized the subject operations using MR-MPI library [14]. This library uses MPI for handling
communication between processors and in that sense it is fast and flexible. However, these come at the
expense of fault tolerance and redundancy, both of which may prove vital in a commodity cluster but are
not of prime concern on high performance computing systems. The high performance computing systems,
sometimes called tier-0 systems, are characterized with very high availability and they allow access to full
resources, without any virtualization or whatsoever. As our focus in this work is such a system, we preferred
MR-MPI for implementation.

MR-MPI library supports two basic data types on which the functions operate: (Key, Value) (KV) and
(Key, Multivalue) (KMV). As the name suggests, a KMV pair stores all values related to a key while a KV
pair stores a single one of them. The operations that are of interest to our work in this library are briefly
described below:

e map(): Generates KV pairs.
e reduce(): Reduces KMV pairs to KV pairs.

e collate(): Communicates KV pairs and generates KMV pairs from them. Equivalent to MapReduce
shuffle.

e aggregate(): Distributes KV pairs among processors. Necessitates communication.

o convert(): Creates KMV pairs from KV pairs in which the values belonging to the same key become
a MultiValue.

e add(): Adds KV pairs of a MapReduce object to those of another.

These operations are used in our implementation. For more details on MR-MPI, see [14].

105

110

115

120

125

reduce
tasks

YR YR
graph model hypergraph model

Figure 1: An example with three map and four reduce tasks, and the corresponding graph and hypergraph used to model them.

3. Modeling MapReduce applications

The map and reduce tasks in a MapReduce job can be scheduled with certain considerations in mind if
the relations between map and reduce tasks are known apriori. These relations may be inferred from the
target application’s computational structure on the input data or the MapReduce job can be run beforehand
to infer them. The latter case is particularly useful if the same MapReduce job will be executed multiple
times. In this section, we show how the map and reduce tasks can be scheduled via graph and hypergraph
partitioning models to address important issues such as load balancing and communication reduction.

Consider a set M of map tasks and a set R of reduce tasks, where the time to execute a map task
m; € M and a reduce task r; € R is respectively denoted with size(m;) and size(r;). A KV pair is
denoted with the tuple (key,val). The set of KV pairs generated by m; is denoted by kvp(m;) and the
set of KV pairs destined for r; is denoted by kvp(r;). Note that it is assumed that the relation between
map and reduce tasks is known, i.e., it is known that which map task produces value(s) for a certain key.
The left of Figure 1 shows an example MapReduce job with three map and four reduce tasks. For example,

kvp(mQ) = {<k17d>’ </€2,€> <k37 f>a <k37g>7 <k3a h>v <k4ai>7 <k4>j>} and kvp(TQ) = {<k2,0>, <k27 €>}

3.1. Formation

In the bipartite graph G = (VM UVt g) proposed to model a given MapReduce job, the map and reduce
tasks are represented by different vertex sets. There exists a vertex v € VM for map task m; € M and a
vertex v € VE for reduce task r; € R. There exists an edge (v]", v;) € & if the map task represented by
v;" generates at least one KV pair for the reduce task represented by v7, i.e., kvp(m;) N kvp(r;) # (. The
edges represent the dependency of the reduce tasks to the map tasks. The graph in the middle of Figure 1
models the MapReduce job in the left of the same figure. For example, there exists an edge between v4* and
v} since mgo generates the KV pairs (ks, f), (ks, g), (ks, h), which are to be reduced by rs.

The hypergraph H = (VM U VE N) proposed to model a given MapReduce job is the same with G
in terms of vertex sets and what they represent. The difference between H and G lies in representing the
dependencies, which is achieved by nets in H as opposed to the edges in G. There exists a net n; € N for
each reduce task r; € R and this net connects the vertex that represents the reduce task r; and the vertices
corresponding to the map tasks that generate at least one KV pair for r;. The vertices connected by n; is
denoted by

Pins(n;) = {vj" : kvp(m) N kvop(ry) # 0} U {v]}.
4

130

135

140

145

150

155

160

Compared to the edges, the nets are better means for capturing multi-way dependencies. The hypergraph
in the right of Figure 1 models the MapReduce job in the left of the same figure. For example, ng connects
v, vf* and v} since the map tasks mgo and mg respectively generates the KV pairs (ks, f), (ks,g), (ks, h)
and (ks, k), which are to be reduced by r3. Hence, Pins(ns) = {v§*, v§", v} }.

In both G and H, a two-constraint formulation is used for vertex weights to enable load balancing in two
distinct computational phases of map and reduce. The weights of a vertex v!® € VM are assigned as

in order to balance the processors’ loads in the map phase. The weights of a vertex vj € VE are assigned as

wy(vj) =0

wa(v}) = size(r;)

in order to balance the processors’ loads in the reduce phase. The cost of edge (vlm,v;) in G is assigned
the number of KV pairs generated by m; for r; to encapsulate the volume of communicated data, i.e.,
c(vi®,v}) = |kvp(m;) N kvp(r;)|. The cost of net n; in H is assigned as 1, i.e., c¢(n;) = 1, reasons of which
will be clear shortly.

3.2. Partitioning

G/M is partitioned into K parts to obtain II(G/H) = {V1 = VM UVE,... . Vk = VM UVE}. The
obtained partition is used to schedule map and reduce tasks in a given MapReduce job. For convenience,
the partitions on V™ and VP are denoted by I and II7, respectively. Without loss of generality we
assume that the vertex part Vj, is associated with processor Py. The vertices in VM are decoded as assigning
the map tasks represented by these vertices to Py. The vertices in VE are decoded as assigning the reduce
tasks represented by these vertices to Py. In partitioning G and H, the partitioning objective of minimizing
the cutsize corresponds to decreasing communication volume in the shuffle phase, whereas the partitioning
constraint of balancing part weights corresponds to balancing loads in map and reduce phases.

The correct encapsulation of communication volume in the shuffle phase depends on the specifics of
the implementation. A processor may choose to introduce an additional local reduction phase for further
reduction of communication volume at the expense of more computation. The idea is that if a processor
generates multiple values for a specific key whose reduce task belongs to another processor, it can either send
them all or it can reduce them first and then send a single KV pair. The former incurs more communication
and the latter incurs less communication at the expense of additional computation. In the example in
Figure 1, assume that the map tasks mso and mg are both assigned to processor Py, whereas the reduce task
r3 is assigned to some other processor. Regarding the values generated for key k3, P has two options:

(i) sending them all to the processor responsible for r3,
(ii) first reducing the values for k3 and then sending a single KV pair to the target processor.

The graph model correctly encapsulates the communication volume incurred in the shuffle phase if local
reduction is not performed (case (i)). This is because the graph model represents KV pair(s) produced by a
certain map task for a specific key with a different edge. On the other hand, the hypergraph model correctly
encapsulates the communication volume if local reduction is performed (case (ii)). This is because the
locally reduced values for a specific key are represented with the pins of a single net and in the partitioning
the connectivity metric [32] is utilized. Unit net costs are required here since for any key, a processor may
contribute at most a single KV pair due to local reduction, i.e., uniform data size.

An additional issue regarding the partitioning models and the optional local reduce is the computational
load balance in the reduce phase. Recall that in both models, the vertex weights regarding the reduce
phase were set to the number KV pairs generated for the respective reduce tasks. If local reduction is
not performed, then these weights correctly represent the amount of computation in the reduce phase and

5

165

170

175

180

185

190

195

200

balancing part weights in the partitioning process balances processors’ computations in the reduce phase.
If local reduction is performed, however, both models overestimate the computations in the reduce phase as
some of the KV pairs will be reduced locally. It is not possible to infer the exact amount of computation in
the reduce phase if the optional local reduce is performed as this information depends on the distribution of
data—the goal of the partitioning models. Hence, it is not possible to utilize the correct vertex weights in the
models for this case. Interestingly, however, the objective of minimizing cutsize in the graph model strongly
correlates to the assigned vertex weights since the minimization of the cutsize translates to the maximization
of the number of internal edges, which in turn implies the maximization of the number of KV pair reductions
in the reduce phase, rather than in the local reduce. This correlation exists in the hypergraph model as
well, but it is more loose.

4. Sparse matrix-vector multiplication

We first briefly review the parallel algorithm for sparse matrix-vector multiplication (SpMV) and discuss
the graph and hypergraph models in the context of MapReduce framework. Then, we describe the MapRe-
duce implementation of SpMV and show how to use the partitions obtained by the graph/hypergraph models
to assign map and reduce tasks to processors.

4.1. Parallel algorithm and MapReduce

We focus on one-dimensional columnwise parallelization of y = Az, where A is permuted into a block

structure as:
A11 N AlK

AK1 AKK

Here, K is the number of processors, A is a square n X n matrix, and x and y are dense vectors of size n.
The size of submatrix block Ay is ng X ng. a;« and a. ; respectively denote row ¢ and column j of A and
a;,; denotes the nonzero element at row i and column j of A. To denote the number of nonzeros in a row,
column, or a (sub)matrix, we use the function nnz(-).

In the columnwise partitioning, processor Py is held responsible for the computations related to kth
column stripe [AT, ... AL,]T of A, whose size is n x nj. This columnwise partitioning of A induces a
partition on the input vector x as well, where Py stores the subvector xy.

The parallel algorithm that results from the columnwise partitioning of A is called the column-parallel
algorithm for SpMV and its basic steps for processor Py are as follows:

1. For each submatrix block Ay, owned by Pk, Px computes yf = Apxp for 1 < ¢ < K. Here, it is
assumed that the submatrix blocks are ordered in such a way that the resulting elements from the
multiplication containing a specific submatrix block Ay belong to P,. In other words, the sparse
subvector yf contains the elements that are computed by Py, but belong to P (¢ # k). The elements
in these subvectors are called the partial results. As Pj’s portion of y, it computes y’,j = Aprx) and
sets yr, = y’,j

2. The partial results are communicated to aggregate y,‘i at P with the aim of computing the final results
of the elements in yi. To do so, Py receives the partial results computed by Py (¢ # k), i.e., yﬁ. Note
that Py only needs interaction with processors that have partial results to send it.

3. In the final step, P, sums the partial results by yr = yi + yﬁ for each P;.

We assume there is no overlap of communication and computation in the above algorithm and the steps
proceed in a similar manner to BSP model of computation. In addition, we retain the flexibility of having
different partitions on input and output vectors in SpMV. In other words, it is not enforced for a processor
to store the ith element of y if it stores the ith element of x. In the column-parallel algorithm, there is a
single communication phase between two computational phases. Considering the two computational phases,

6

205

210

215

220

225

230

235

wl/wQ wl/wg wl/wg wl/wQ

Ax 1, T1 Ax,1, T1

Qs 2, T2 Ay 2, T2

123456
Ax 3, T3 Ax,3, T3

Ax.45 Ty (x4, Ty

a*,5, Ts a*,57 Ts5

Q.65 T6 Ax.6, L6

V]\/I VR
graph model hypergraph model

Figure 2: An example SpMV, and graph and hypergraph models to represent it. The numbers inside the vertices indicate the
two weights associated with them. Vectors and matrices are color-matched with the vertices they are represented with.

the first computation phase is likely to be more expensive compared to the second one. However, there
may be other linear vector operations that involve vectors x and y. For this reason, it is a good practice
to balance the vector elements owned by the processors (i.e., number of z and/or y elements) besides the
nonzeros of A owned by each processor. In this way, the processors’ loads in each computational phase can
be balanced.

In the parallel algorithm above, there are n map and n reduce tasks, ie., IM| = |[R] = n. A map
task m; is defined as the multiplication of a. ; with x; (performed in the first step of the column-parallel
algorithm). In the rest of the paper, we use x;/y; to denote a single element of x/y, rather than the portion
owned by the processor. For each nonzero in a, j, the map task m; generates a single KV pair, hence,
kvp(m;) = {(yi,a;j *x;) : a;; # 0for 1 < i < n}. A reduce task r; is defined as the summation of
partial results generated for y; (performed in the third step of the column-parallel algorithm). The KV pairs
destined for r; is given by kvp(r;) = {(vs,a:; * ;) : a; ; # 0 for 1 < j < n}. The size of m; is proportional
to the number of nonzeros in the respective column of A, hence, size(m;) = nnz(as), whereas the size of
r; is proportional to the number of nonzeros in the respective row of A, hence, size(r;) = nnz(a;).

The formation and partitioning of the graph/hypergraph for efficient parallelization of column-parallel
SpMV in MapReduce framework follow the methodology described in Sections 3.1 and 3.2, respectively.
All edges in G have unit weights since m; generates a single KV pair for r; if a; ; # 0, and it does not
generate anything, otherwise. All nets in H have unit costs as well. The K-way partitions IT™ (G /H) and
%(G/H) are used to schedule map and reduce tasks, details of which will be described in the following
section. Figure 2 shows an SpMV operation and its representation with the graph and hypergraph models.

4.2. Implementation

We describe the parallelization of the SpMV operation under MapReduce paradigm. The parallelization
is realized using the MR-MPI library [14]. We first give the MapReduce-based parallelization, and then
explain how to assign the tasks to the processors in order to decrease the communication overhead in the
shuffle phase and balance the loads of the processors in both map and reduce phases.

Algorithm 1 presents the MapReduce-based parallelization of SpMV. The SpMV operation is assumed
to be repeated in an application-specific context and it is highlighted in gray in the algorithm. We omit the
application-specific details and focus solely on the SpMV operation itself. Note that a similar routine is also
used in [14] without explicit usage of any hash function. In the algorithm, A and z are distributed among
the processors via aggregate() operation prior to performing SpMV and they are keyed according to column
index j (line 2 and 3). aggregate() operation can take a hash function as input (whose role is going to be
clarified shortly). The keys regarding A and = are added to y and they are converted to the KMV pairs

7

240

245

Algorithm 1: Sparse matrix-vector multiplication

Input: A, hy, hg

1 Set initial x
2 A.aggregate(hpns) > Key 7, Value (4,a; ;)
3 x.aggregate(hps) > Key j, Value z;
4 Let y be an empty MapReduce object
5 repeat
> other computations... (on vectors, etc.)

y.add(z)

y.add(A)

y.convert()

> IN: Key j, MultiValue [(i,a; ;)], x;
9 y.reduce()

> OUT: Key i, Value y{ = a; ;T;

> optional local reduce
10 y.convert()
11 y.reduce()

> communication phase (shuffle)
12 y.collate(hg) > OUT: Key i, MultiValue [y]

> IN: Key i, MultiValue [yﬂ
13 y.reduce()
> OUT: Key i, Value Zj y{

> other computations... (on vectors, etc.)
until application-specific condition is met

(lines 6-8). Then, the multiplication operations are performed via reduce(), in which the multiple values
belonging to key j are reduced via multiplying value of each with x;. The results of this operation are the
partial results for y that are keyed by index 1. yg denotes the partial value generated by column j for y;.
The operations up to this point constitute the first computational phase of the column-parallel algorithm.

The first computational phase is followed by an optional local reduce in which the partial results are
summed locally (note that these summations do not compute the final values of y yet). The partial results
are then communicated and KMV pairs are created accordingly, producing possible multiple y] values for
y; (line 12). Notice that collate() also accepts a hash function as input.

Finally, the partial results are reduced and the final values of y are computed by simply summing them
(line 13). The computation of final values constitutes the second computational phase of the column-parallel
algorithm. Note that the first computational phase is the “map” phase even though a reduce call has been
performed, as it emits KV pairs and is followed by a shuffle phase, which is in turn followed by a reduce
operation to compute the final results.

We make use of the partitions ITM = {VM ... YM} and ITF = {VE, ..., VE} described earlier in order
to achieve an efficient distribution of data and computations in Algorithm 1. II™ and II® can be utilized
as hash functions in the algorithm, which are respectively denoted with hy; and hg. hjs is simply obtained
from IIM as

hu(of €W =P, 1<j<nand1<k<K,

which allows distributing matrix columns, elements of x and the respective map tasks via aggregate() with

250

255

260

265

270

275

har as its input. Similarly, hg is obtained from IT% as
hp(i:vf € Vi) =P, 1<i<nand1<k<K,

which allows distributing elements of y and the respective reduce tasks on them via collate()! with hr as
its input.

5. Sparse matrix-sparse matrix multiplication

The literature on parallelization of sparse matrix-sparse matrix multiplication of form C' = AB (SpGEMM)
is more recent compared to that on SpMV. One of the recent promising studies on this subject is based
on parallelization with one-dimensional partitioning of input matrices (A and B) and outer product tasks
via hypergraph models [33]. We first briefly review the parallel algorithm for SP GEMM and discuss the
graph and hypergraph models in the context of MapReduce framework. Then, we describe the MapReduce
implementation of SpPGEMM and show how to use the partitions obtained by the graph/hypergraph models
to assign map and reduce task to processors.

5.1. Parallel algorithm and MapReduce

We focus on one-dimensional partitioning of input matrices A and B, and two-dimensional partitioning
of output matrix C'. The matrices A and B are permuted into block structures as

A11 AlK Bll BlK
and : : ,

AKl AKK Brg1 ... Bgk

respectively, where A is an m x n and B is an n X p matrix. Processor Py is held responsible from the outer
products in kth column stripe A = [AT, ... AL,]7 of A and the respective kth row stripe Bl = [By1 . .. Bk]
of B. An outer product performed between a column z of A and the respective row = of B is denoted with
Q3 @ by i It 1s assumed if Py stores ay 4, it also stores b, . in order to avoid redundant communication (i.e.,
a conformal partition of A and B). The described partitions of A and B do not induce a natural partition of
C since the outer products performed by a processor may contribute to any nonzero in C. In other words,
there is no locality in access to elements of C.

The parallel algorithm that results from the columnwise partitioning of A and the rowwise partitioning
of B is called the outer-product—parallel algorithm for Sp GEMM and its basic steps for Py are as follows:

1. For each column z in column stripe A§ (and hence each row in row stripe B}), Py computes the outer
product C* = a, 5 ®b, .. This outer product generates partial result(s) for the elements of C', denoted
with C”. There exists a complete partial result set for each such outer product. Observe that two
such different partial result set C* and C¥Y may contain partial results for the same element of C. P
may sum them by >~ C¥ or it may not do so and leave them as they are. If ¢; ; belongs to Py, it sets
the initial value of this nonzero by ¢; ; = cf i

2. The partial results are communicated to aggregate each cﬁ ; at Py with the aim of computing the final
result of this nonzero whose accumulation responsibility is given to Py. To do so, P, receives each
such partial result ¢ ; computed by Py (€ # k).

3. In the final step, P}, sums the partial results by ¢; ; = ¢; ; + cf,j for each P;.

Leollate() is actually an aggregate() followed by a convert().

280

285

290

295

300

wl/u‘z w1 /1U2

W N =
Il

X

X

X
N W
X X

S X
XX X

Vi i
graph model hypergraph model

Figure 3: An example SpGEMM, and graph and hypergraph models to represent it. The numbers inside the vertices indicate
the two weights associated with them. Matrices are color-matched with the vertices they are represented with.

As in the column-parallel SpMV, we assume no overlap of communication and computation and the steps
proceed in a similar manner to the BSP model. Notice the resemblance of outer-product—parallel algorithm
for SpP GEMM to the column-parallel algorithm for SpMV. The outer-product—parallel Sp GEMM has the
same skeleton with the column-parallel SpMV, where there exists a single communication phase between
two computational phases. Here too the first computational phase is likely to be more expensive compared
to the second one.

In the parallel algorithm above, there are n map tasks and nnz(C) reduce tasks, i.e., M| = n and
|R| = nnz(C). A map task m, is defined as the outer product a. , ® b, . (performed in the first step of the
outer-product—parallel algorithm). For each ¢; ; € C*, m, generates a single KV pair, hence, kvp(m,) =
{{cij, @i z*bg i)t @iz, by j #0for 1 <i<mand 1< j<p}. Areduce taskr;; is defined as the summation
of partial results generated for ¢; ; (performed in the third step of the outer-product—parallel algorithm).
The KV pairs destined for r; ; is given by

kup(r; ;) = {(¢ij, @iz * by j) : @iz, bgj # 0 for 1 <oz < n}.

The size of my,, is proportional to the number of operations performed in the respective outer product, hence,
size(my) = nnz(asz) X nnz(by), whereas the size of r; ; is proportional to the number of outer products
that generate a partial result for ¢; ;, hence, size(r; ;) = [{C* : ¢; ; € C*}|.

In the graph and hypergraph models used to parallelize the outer-product—parallel Sp GEMM in the
MapReduce framework, all edges and nets have unit costs, respectively. The K-way partitions ITM (G/H)
and I1%(G/H) are used to schedule map and reduce tasks, details of which will be described in the following
section. Figure 3 shows an SpGEMM operation and its representation with the graph and hypergraph
models.

5.2. Implementation

We describe the parallelization of the SpGEMM operation under MapReduce paradigm. We first give
the MapReduce-based parallelization, and then explain how to assign the tasks to the processors in order to
decrease the communication overhead in the shuffle phase and balance the loads of the processors in both
map and reduce phases.

Algorithm 2 presents the MapReduce-based parallelization of Sp GEMM. The algorithm solely focuses on
parallelizing SpGEMM and ignores the application-specific issues. In the algorithm, the matrices A and B
are distributed among the processors via aggregate() operation and matrix A is keyed according to column
index = and matrix B is keyed according to row index x (lines 1 and 2). The values contained in these
keys are the nonzero elements and additional information regarding row/column indices and identification

10

305

310

315

Algorithm 2: Sparse matrix-sparse matrix multiplication

Input: A, B, hy, hr

1 A.aggregate(hps) > Key z, Value (i,a;4,'c’)
2 B.aggregate(hps) > Key x, Value (4, by, j,'7)
3 Let C be an empty MapReduce object

4 repeat
> other computations...

C.add(A)

C.add(B)

C'.convert()

>IN Key j, MultiValue [(i, a;,2,'C’), . . ., (7, be,5,77), . .]
8 C'.reduce()

> OUT: Key (i,7), Value cﬁj = j,zbz,;

> optional local reduce

9 C'.convert()
10 C'.reduce()

> communication phase (shuffle)
11 C.collate(hg) >OUT:Key (i,j), MultiValue [c?
> IN Key (i,), MultiValue [c?]

12 C'.reduce()
> OUT Key (i,7), Value > cf;

> other computations...
until application-specific condition is met

of matrices. C' is initially empty and it is filled with the KV pairs of A and B (lines 5 and 6). These pairs
are converted to KMV pairs next (line 7). Then, the multiplication operations are performed via reduce(),
in which each element of column x of A is multiplied with each element of row x of B, i.e., ay 5 ® by «.
The results of this outer product are the partial results for C' that are keyed with the row and column
pair indices, (,7), in order to achieve a two-dimensional partitioning of C'. This first computational phase
is followed by an optional local reduce in which the partial results are summed. Next follows a collate()
in which the partial results are communicated and KMV pairs are created accordingly, producing possible
multiple ¢f; values for ¢; ; (line 11). The final step of SpPGEMM corresponds to the second computational
phase of the outer-product—parallel algorithm and it contains the reduction of ¢; ; via summation (line 12).
Observe that similar to SpMV, the functions aggregate() and collate() take hash functions as their input,
which we exploit to achieve task assignments in Algorithm 2.
We make use of the partitions M = {VM ... VM} and I = {VE, ... VE} obtained by the graph/hypergraph

models and use them as hash functions in order to achieve an efficient distribution of data and computations,
as done for SpMV. hy; is obtained from ITM as

hM(x:v;"EVIJy):Pk, 1<z<nand1<k<K,
and hp is obtained from IT® as

hr((i,§) i vi, € V) =Pe, 1<i<m,1<j<p
and 1 < k < K.

has is used along with aggregate() to obtain a columnwise distribution of A, a rowwise distribution of B and

11

320

325

330

335

Table 1: Matrices used in the experiments.

number of row/column degree

operation matrix rows/columns nonzeros average maximum
333SP 3,712,815 22,217,266 6.0 28

adaptive 6,815,744 27,248,640 4.0 4
circuitbM_dc 3,523,317 19,194,193 5.5 27

CurlCurl 4 2,380,515 26,515,867 11.1 13

SpMV delaunay_n23 8,388,608 50,331,568 6.0 28
y=Ax germany_osm 11,548,845 24,738,362 2.1 13
hugetrace-00000 4,588,484 13,758,266 3.0 3

rajat31 4,690,002 20,316,253 4.3 1252

rggn_2_24 s0 16,777,216 265,114,400 15.8 40

Transport 1,602,111 23,500,731 14.7 15

crashbasis 160,000 1,750,416 10.9 18

crystm03 24,696 583,770 23.6 27

dawson5 51,537 1,010,777 19.6 33

ia2010 216,007 1,021,170 4.7 49

SpGEMM kim1 38,415 933,195 24.3 25
C=AAT 17l 70,304 1,528,092 21.7 63
olesnikQ 88,263 744,216 8.4 11
rggn_2_17s0 131,072 1,457,506 11.1 28

struct3 53,570 1,173,694 21.9 27

xenonl 48,600 1,181,120 24.3 27

a distribution of map tasks. hg, on the other hand, is used along with collate() to obtain a two-dimensional
nonzero-based distribution of C' and a distribution of reduce tasks.

6. Experiments

We test a total of six schemes in our experiments:

RN: The tasks in the first and the second computation phases are distributed among the processors in
a random manner and local reduce is not performed (i.e., lines 10 and 11 in Algorithm 1 and lines 9
and 10 in Algorithm 2 are not executed). This scheme is equivalent to using the default hash function
in the MapReduce implementation in Algorithms 1 and 2 for aggregating data.

RNr: Similar to RN, but with the optional local reduce.

GR: The tasks in the first and the second computation phases are distributed among the processors
with the graph models with the aim of decreasing communication overhead under the load balance
constraint. Local reduce is not performed in this scheme.

GRr: Similar to GR, but with the optional local reduce.

HY: The tasks in the first and the second computation phases are distributed among the processors with
the hypergraph models with the aim of decreasing communication overhead under the load balance
constraint. Local reduce is not performed in this scheme.

HYr: Similar to HY, but with the optional local reduce.

The experiments are performed on an IBM System x iDataPlex machine (dx360M4). A node on this
machine consists of 16 cores (two 8-core Intel Xeon E5 processors) with 2.7 GHz clock frequency and 32 GB
memory. The nodes are connected with an Infiniband non-blocking tree network topology. We tested for
32,64, ...,1024 processors. Recall that these are also the number of parts in partitioning models.

12

340

345

350

355

360

Table 2: Volume, imbalance and runtime averages for SpMV (volume in megabytes and time in milliseconds).

actual values normalized within scheme normalized wrt RN and RNr

K scheme RNr RN GRr GR HYr HY RN/RNr GR/GRr HY/HYr GRr/RNr HYr/RNr GR/RN HY/RN
%imb-map 0.5 05 07 07 09 09 1.00 1.00 1.00 14 2.0 1.4 2.0

39 %imb-reduce 0.5 05 10 1.0 16 1.6 1.00 1.00 1.00 1.9 3.2 1.9 3.2
volume 406.3 4489 06 1.0 05 1.6 1.10 1.60 2.91 0.002 0.001 0.002 0.004

time 1.26 093 0.61 0.59 0.61 0.60 0.74 0.96 0.99 0.49 0.48 0.64 0.65
%imb-map 0.8 08 16 16 09 09 1.00 1.00 1.00 2.1 1.2 2.1 1.2

64 %imb-reduce 0.7 07 21 21 20 20 1.00 1.00 1.00 2.9 2.7 2.9 2.7
volume 433.7 4562 09 15 08 24 1.05 1.59 2.88 0.002 0.002 0.003 0.005

time 064 047 033 032 033 0.32 0.74 0.97 0.97 0.52 0.52 0.69 0.68
%imb-map 1.0 1.0 32 32 13 13 1.00 1.00 1.00 3.1 1.2 3.1 1.2

128 %imb-reduce 1.2 1.2 36 36 27 27 1.00 1.00 1.00 2.9 2.2 2.9 2.2
volume 4485 4599 14 22 12 35 1.03 1.59 2.84 0.003 0.003 0.005 0.008

time 034 025 020 0.18 020 0.19 0.71 0.91 0.93 0.59 0.59 0.75 0.76
%imb-map 1.6 1.6 42 42 16 16 1.00 1.00 1.00 2.7 1.0 2.7 1.0

256 %imb-reduce 2.0 20 53 53 36 36 1.00 1.00 1.00 2.6 1.8 2.6 1.8
volume 4559 461.7 20 31 1.8 50 1.01 1.58 2.76 0.004 0.004 0.007 0.011

time 020 0.15 0.13 0.12 0.13 0.12 0.73 0.89 0.89 0.66 0.67 0.81 0.81
Y%imb-map 2.7 27 60 60 19 19 1.00 1.00 1.00 2.2 0.7 2.2 0.7

512 %imb-reduce 3.3 33 74 74 51 51 1.00 1.00 1.00 2.2 1.5 2.2 1.5
volume 459.7 4626 29 45 26 7.1 1.01 1.57 2.71 0.006 0.006 0.010 0.015

time 0.17 0.13 0.10 0.09 0.10 0.09 0.78 0.86 0.86 0.60 0.60 0.66 0.66
Y%imb-map 3.9 39 71 71 22 22 1.00 1.00 1.00 1.8 0.6 1.8 0.6

1024 %imb-reduce 4.5 45 88 88 6.6 66 1.00 1.00 1.00 1.9 1.5 1.9 1.5
volume 461.7 463.1 41 6.4 3.8 10.1 1.00 1.56 2.68 0.009 0.008 0.014 0.022

time 0.23 0.19 0.09 0.07 0.09 0.07 0.85 0.83 0.82 0.39 0.40 0.38 0.39

All sparse matrix operations (SpMV, SpGEMM) are implemented using the MR-MPI library [14]. The
partitions obtained by the graph/hypergraph models are fed to the aggregate() and collate() as hash func-
tions. Each sparse matrix operation is repeated 10 times and the average is reported in the results in
the upcoming sections. Metis [34] is used to partition the graphs and PaToH [32] is used to partition the
hypergraphs, both in default settings. The maximum allowed imbalance in processors’ loads in both com-
putational phases is set to 10% for each of the two constraints. Recall that this imbalance determines the
maximum allowed imbalance in both computational phases.

We evaluate the performance of all schemes for each operation with the matrices given in Table 1, which
are from the UFL Sparse Matrix Collection [35]. For each type of operation, we include 10 matrices. The
maximum degree values presented in the table are the maximum of maximum number of nonzeros in rows
and columns. For SpGEMM, we test the operation C' = AA”, which is also listed as one of the key operations
and included in the experiments of [33].

6.1. SpMV

The results obtained for the SpMV operation are presented in Table 2. We compare the schemes in terms
of four metrics: computational imbalance in map and reduce phases in terms of KV pairs (indicated with
imb-map and imb-reduce, respectively), communication volume (volume) and runtime (time). The volume
is in terms of megabytes (Mb) and the time is in terms of milliseconds. The table is grouped under three
basic column groups. The first column group presents the actual results obtained by the compared schemes.
The second column group compares the schemes within themselves, i.e., with and without the optional local
reduce. The last column group measures the performance of partitioning models against the baseline random
assignment. Each value in the table is the geometric mean of the results obtained for the matrices used for
SpMYV on a specific number of processors. The last two column groups contain the normalized values in the
format of A/B, which means scheme A is normalized with respect to scheme B.

When we compare the schemes that use partitioning models for task assignment (i.e., GR, GRr, HY, HYr)
against the ones that do not (i.e., RN, RNr), the benefits of using a model are seen clearly. These models

13

365

370

375

380

385

390

395

400

rajat31 - all
©-0 GRr ‘x—x RNr A -A HYr
L

SN

180 N -
| \i\\\ S

rajat31 - without local reduce
[*> RN a4 HY

rajat31 - with local reduce
[*x RNz

& A HYr

6-0 GRr
GO GR

660 GR 880

a,

N

F

£
g

-

9
=

Time (msec.)

Time (msec.)
o’ ’

Time (msec.)

N

1

—s ‘*4;

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
Number of processors Number of processors Number of processors

Figure 4: Speedups of compared schemes in parallel SpMV for matrix rajat31. Both axes are in logarithmic scale.

decrease the communication volume drastically by obtaining a volume of no more than 7 Mb in any K value,
whereas the communication volume of RN or RNr is around 400 Mb. The reduction in communication volume
is reflected as improvement in overall runtime of the SpMV. For example on 128 processors, RN obtains an
SpMYV time of 0.34 milliseconds, while GR obtains an SpMYV time of 0.18 milliseconds. In terms of imbalance,
the schemes that utilize random assignment usually exhibit better performance since the sole purpose of
these schemes is maintaining such a balance, while for the schemes that utilize partitioning models balance
is a constraint rather than objective.

The execution of the optional local reduce is expected to decrease the communication volume. This is
validated from the values in the second column group and the volume row. For example on 128 processors,
RN incurs 3% more volume than RNr, GR incurs 59% more volume than GRr and HY incurs 184% more volume
than HYr. This difference is less in RN and RNr since random assignment already necessitates a large amount
of communication. The results regarding the optional local reduce indicate that performing local reduce
does not pay off as the parallel runtimes obtained by RN, GR and HY are lower than the ones obtained by
RNr, GRr and HYr, respectively. However, this may not always be the case, especially when the savings from
communication are drastic with the execution of local reduce, which happens not to be the case for SpMV.
Note that the imbalances in KV pairs in the first and second phases of computations are the same with or
without the local reduce as their counts are independent of it.

Recall that without the local reduce, the graph model correctly encapsulates the total volume during the
partitioning process. From the volume results in Table 2, when we compare GR and HY, it is seen that GR
obtains lower volume for any K: for example on 512 processors the volume of GR is 4.5 Mb while it is 7.1
Mb for HY. On the other hand, with the local reduce, the hypergraph model correctly encapsulates the total
volume. When we compare GRr and HYr, it is seen that HYr obtains lower volume for any K: for example
on 512 processors the volume of HYr is 2.6 Mb while it is 2.9 Mb for GRr.

Figure 4 presents the parallel SpMV runtimes obtained by the compared schemes for matrix rajat31.
There are three plots: the one in the left compares the schemes that do not contain local reduce, i.e.,
RN, GR, HY, the one in the center compares the schemes that contain local reduce, i.e., RNr, GRr, HYr, and
the one in the right compares all. We display the plots for a single matrix only as the plots for other
matrices exhibit similar behaviors. Both with and without local reduce, the task assignments realized by
the partitioning models scale much better. Observe that the schemes without local reduce obtain lower
runtimes compared to their counterparts, as also observed in Table 2. Up to 256 processors, all schemes
seem to scale, but after that point, the schemes relying on random assignment scale poorly while the schemes
relying on partitioning models scale further by being able to decrease the runtime. The reason behind this
is the increased importance of communication in overall runtime, which we investigate next.

Figure 5 illustrates the dissection of parallel SpMV times as bar charts for matrix rajat31 on 64,
256 and 1024 processors. Blue and yellow bars in the figure respectively represent the computation and
communication times. When we compare the performance of different schemes (RNr, GRr, HYr) for a specific
number of processors with local reduce, it is seen that the computation times are roughly the same, whereas
the communication times vary drastically. This is also the case without local reduce. When we compare
the communication performance of a scheme for a specific number of processors, it is observed that local

14

405

410

415

420

425

430

rajat31 - without local reduce

700 rajat31 - with local reduce

1 communication -
computation [communication
600+ — P B computation
- 800+
8 500t S
B g
- 600+
400+ ~
g o
g £
— 300 i}
= — 400
- «
2 200f 1 g
o >
O 200}
100 H 1
0 RN GR HY RN GR HY RN GR HY 0

s« C — o RNr GRr HYr RNr GRr HYr RNr GRr HYr
K =32 K =128 K =512 N ¥ o8 fr GRe 10
Number of processors Number of processors

Figure 5: Dissection of computation and communication times in parallel SpMV for matrix rajat31 on 32, 128 and 512
Processors.

reduce decreases the communication time significantly as expected. Although it is expected that the total
amount of computation of a scheme for a specific number of processors should stay the same with or without
local reduce, this does not seem to be the case due to the overhead of the convert() and reduce() operations
involved in local reduce. As seen from both bar charts, the key to scalability is to address the communication
bottlenecks, which is achieved by the partitioning models in a very successful manner.

6.2. SpGEMM

The results obtained for the SpGEMM operation are presented in Table 3. The decoding of the table is
the same with the one presented for SpMV (Table 2). We experiment up to 512 processors for this operation.

As seen from Table 3, the schemes that utilize a partitioning model decrease the communication volume
drastically in the shuffle phase. For example on 128 processors, GRr and HYr incur a volume of 5-6 Mb, while
RNr incurs a volume of 341.7 Mb. Similarly, on the same number of processors, GR and HY respectively incur a
volume of 13.1 and 21.4 Mb, while RN incurs a volume of 356 Mb. The benefit of decreasing data transferred
is seen as improvement in parallel Sp GEMM runtime: the schemes relying on partitioning models obtain
more than 2-4x speedup over the ones that do not so for any number of processors. The schemes exhibit
close performance in computational balance in the map phase. However, RN and RNr obtain better balance
in the reduce phase.

As also observed in the SpMV operation, performing the optional local reduce leads to reductions in data
transfer in the shuffle phase. For random assignment schemes, the optional local reduce does not seem to
work as RNr obtains higher parallel SpGEMM times than RN. This is because there is not much difference in
the volumes incurred by these two schemes. On the other hand, for small number of processors, the optional
local reduce pays off for the schemes that rely on partitioning models up to 256 processors. Comparing the
volumes incurred by the graph and hypergraph models, when there is no local reduce GR always obtains
lower volume than HY for any number of processors. In the existence of local reduce, HYr obtains lower
volume than GRr for 128, 256 and 512 processors, while GRr obtains lower volume than HYr in 32 and 64
processors. Note that graph partitioners can perform close to hypergraph partitioners if the sparsity pattern
of the underlying model accommodates uniformity.

Figure 6 presents the parallel SpPGEMM runtimes obtained by the compared schemes for matrix kim1.
The left plot compares the schemes that do not contain local reduce, i.e., RN, GR, HY, the center plot compares
the schemes that contain local reduce, i.e., RNr, GRr, HYr, and the right plot compares all. With or without
local reduce, the schemes relying on partitioning models exhibit better scalability. RN and RNr scale up
to 128 processors, while GR, GRr, HY and HYr scale all the way up to 512 processors. As also observed in
Table 3, GRr and HYr perform slightly better than GR and HY on small number of processors, while the
opposite situation is observed on 256 and 512 processors.

15

435

440

445

Table 3: Volume, imbalance and runtime averages for Sp GEMM (volume in megabytes and time in milliseconds).

actual values normalized within scheme normalized wrt RN and RNr
K scheme RNr RN GRr GR HYr HY RN/RNr GR/GRr HY/HYr GRr/RNr HYr/RNr GR/RN HY/RN
Y%imb-map 6.5 65 73 73 56 56 1.00 1.00 1.00 1.1 0.9 1.1 0.9
39 Y%imb-reduce 0.6 06 49 49 29 29 1.00 1.00 1.00 7.8 4.7 7.8 4.7
volume 299.7 3476 22 44 24 101 1.16 2.00 4.28 0.007 0.008 0.013 0.029
time 0.76 0.57 0.30 0.32 0.31 0.36 0.75 1.08 1.17 0.39 0.41 0.56 0.63
Y%imb-map 9.1 9.1 104 104 9.0 9.0 1.00 1.00 1.00 1.2 1.0 1.2 1.0
64 %imb-reduce 0.9 0.9 7.2 7.2 4.5 45 1.00 1.00 1.00 7.7 4.8 7.7 4.8
volume 326.4 353.1 36 70 38 152 1.08 1.97 4.00 0.011 0.012 0.020 0.043
time 043 033 0.17 0.18 0.18 0.21 0.75 1.04 1.11 0.40 0.42 0.56 0.63
%imb-map 17.5 175 154 154 129 129 1.00 1.00 1.00 0.9 0.7 0.9 0.7
128 Y%imb-reduce 1.3 1.3 101 101 5.8 5.8 1.00 1.00 1.00 8.0 4.6 8.0 4.6
volume 341.7 356.0 6.1 13.1 5.7 214 1.04 2.15 3.73 0.018 0.017 0.037 0.060
time 0.25 0.19 0.12 0.11 0.12 0.12 0.73 0.99 1.02 0.45 0.48 0.61 0.66
%imb-map 20.0 20.0 234 234 18.0 18.0 1.00 1.00 1.00 1.2 0.9 1.2 0.9
256 Y%imb-reduce 2.0 2.0 159 159 8.2 8.2 1.00 1.00 1.00 8.0 4.2 8.0 4.2
volume 350.1 3574 9.6 21.7 88 322 1.02 2.26 3.65 0.027 0.025 0.061 0.090
time 0.18 0.14 0.09 0.08 0.09 0.09 0.77 0.92 0.97 0.49 0.50 0.58 0.63
Y%imb-map 30.1 30.1 29.3 293 24.7 24.7 1.00 1.00 1.00 1.0 0.8 1.0 0.8
512 Y%imb-reduce 3.9 3.9 183 183 129 129 1.00 1.00 1.00 4.7 3.3 4.7 3.3
volume 354.4 357.8 142 324 134 46.8 1.01 2.28 3.49 0.040 0.038 0.091 0.131
time 0.30 0.27 0.07 0.06 0.08 0.07 0.90 0.87 0.89 0.24 0.25 0.24 0.25
6 kim1 - without local reduce kim1 - with local reduce kim]1 - all
[**x RN A4 HY 00 GR 832 [** RNr A4 HYr ©-0 GRr . [RNr A4 HYr ©-0 GRr
- N 708 i |[¥X RN &A HY 00GR
A'-N ~ 416 % < o ~ 381 . Vi
E E ¢ e, £ e
g oé 208 < aé 192 &
g g B & TN -
96 T Y
\ - 104 Sy 96 e
reeaaig Py

32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Number of processors Number of processors Number of processors

Figure 6: Speedups of compared schemes in parallel Sp GEMM for matrix kiml. Both axes are in logarithmic scale.

Figure 7 illustrates the dissection of parallel SpGEMM times as bar charts for matrix kim1 on 32, 128
and 512 processors. Observe that, as also was the case for SpMV, the schemes with local reduce have less
communication overhead compared to the schemes without local reduce. The arguments made for SpMV
are also valid for Sp GEMM. Compared to SpMV, the improvements in the communication performance are
more pronounced with the execution of the local reduce. This is due to the higher number of intermediate
KV pairs produced in SpGEMM. Since all schemes achieve a good computational balance, the key to better
parallel performance and scalability lies in the reduction of communication overheads.

7. Conclusions

Using MapReduce, we focused on efficient parallelization of two key operations, sparse matrix-vector mul-
tiplication and sparse matrix-sparse matrix multiplication- that are very common in scientific computations
and graph algorithms. We fully exploited domain-specific knowledge with successful graph and hypergraph
models by balancing processors’ loads in map and reduce phases and decreasing volume in the shuffle phase.
In order to utilize these models for the operations realized with MapReduce, the partitions produced by
the models are used as hash functions for scheduling tasks in map and reduce phases. Utilization of these
models lead to improvements in parallel runtime for both operations and improved their scalability.

16

450

455

460

465

470

475

480

485

kim1 - without local reduce kim1 - with local reduce

[communication [communication

6001 . I computation 00k B computation
- -~
& 500 b
0 0
g g 600}
= =
© 400 s
g g
= 300 — 400 +
[[
3, 8
[200 4
© © 200}

100

0 RN GR HY RN GR HY RN GR HY 0 RNr GRr HYr RNr GRr HYr RNr GRr HYr
K =32 K =128 K =512 K =32 K =128 K =512
Number of processors Number of processors

Figure 7: Dissection of computation and communication times in parallel SpGEMM for matrix kiml on 32, 128 and 512
Processors.

Acknowledgements

We acknowledge PRACE (Partnership for Advanced Computing In Europe) for awarding us access to
SuperMUC based in Germany at Leibniz Supercomputing Centre.

References

[1] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107-113.
doi:10.1145/1327452.1327492.

URL http://doi.acm.org/10.1145/1327452. 1327492

[2] Apache hadoop, http://hadoop.apache.org/, accessed: 2017-01-3.

[3] M. Hammoud, M. S. Rehman, M. F. Sakr, Center-of-gravity reduce task scheduling to lower mapreduce network traffic,
in: 2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 49-58. doi:10.1109/CLOUD.2012.92.

[4] B. Palanisamy, A. Singh, L. Liu, B. Jain, Purlieus: Locality-aware resource allocation for mapreduce in a cloud, in:
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC
11, ACM, New York, NY, USA, 2011, pp. 58:1-58:11. doi:10.1145/2063384.2063462.

URL http://doi.acm.org/10.1145/2063384.2063462

[5] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, L. Qi, Leen: Locality/fairness-aware key partitioning for mapreduce in the
cloud, in: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, pp. 17-24.
doi:10.1109/CloudCom.2010.25.

[6] M. Hammoud, M. F. Sakr, Locality-aware reduce task scheduling for mapreduce, in: Proceedings of the 2011 IEEE

Third International Conference on Cloud Computing Technology and Science, CLOUDCOM 11, IEEE Computer Society,

Washington, DC, USA, 2011, pp. 570-576. d0i:10.1109/CloudCom.2011.87.

URL https://doi.org/10.1109/CloudCom.2011.87

M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, P. Valduriez, Data Partitioning for Minimizing Transferred Data

in MapReduce, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 1-12.

[8] J.Li, J. Wu, X. Yang, S. Zhong, Optimizing mapreduce based on locality of k-v pairs and overlap between shuffle and local

reduce, in: 2015 44th International Conference on Parallel Processing, 2015, pp. 939-948. doi:10.1109/ICPP.2015.103.

L. Fan, B. Gao, X. Sun, F. Zhang, Z. Liu, Improving the load balance of mapreduce operations based on the key distribution

of pairs, CoRR abs/1401.0355.

URL http://arxiv.org/abs/1401.0355

[10] P. J. Braam, R. Zahir, Lustre: A scalable, high performance file system, Cluster File Systems, Inc.

[11] Amazon S3, Simple Storage Service, howpublished = https://aws.amazon.com/s3/, note = Accessed: 2017-12-21.

[12] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, S. Maeng, Hama: An efficient matrix computation with the mapreduce frame-
work, in: Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science,
CLOUDCOM ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 721-726. do0i:10.1109/CloudCom.2010.17.
URL http://dx.doi.org/10.1109/CloudCom.2010.17

[13] Apache Mahout, howpublished = http://mahout.apache.org/, note = Accessed: 2017-12-21.

[14] S.J. Plimpton, K. D. Devine, Mapreduce in mpi for large-scale graph algorithms, Parallel Comput. 37 (9) (2011) 610-632.
doi:10.1016/j.parco.2011.02.004.

URL http://dx.doi.org/10.1016/j.parco.2011.02.004

17

[7

9

490

495

500

505

510

515

520

525

530

535

540

545

(15]
(16]

(17]

(18]

19]

20]

21]
22]

23]

[24]

[25]

[26]

27)

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

J. Ekanayake, G. Fox, High Performance Parallel Computing with Clouds and Cloud Technologies, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010, pp. 20-38.

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA; USA, 2003.

L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: Bringing order to the web., Technical Report
1999-66, Stanford InfoLab, previous number = SIDL-WP-1999-0120 (November 1999).

URL http://ilpubs.stanford.edu:8090/422/

W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial, Second Edition, 2nd Edition, Society for Industrial and Applied
Mathematics, 2000. arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9780898719505, doi:10.1137/1.9780898719505.

URL http://epubs.siam.org/doi/abs/10.1137/1.9780898719505

R. H. Bisseling, T. M. Doup, L. D. J. C. Loyens, A parallel interior point algorithm for linear programming on a network
of transputers, Annals of Operations Research 43 (2) (1993) 49-86. doi:10.1007/BF02024486.

URL http://dx.doi.org/10.1007/BF02024486

A. Bulug, J. R. Gilbert, The Combinatorial BLAS: Design, implementation, and applications, Int. J. High Perform.
Comput. Appl. 25 (4) (2011) 496-509. do0i:10.1177/1094342011403516.

URL http://dx.doi.org/10.1177/1094342011403516

C. Ordonez, Optimization of linear recursive queries in sql, IEEE Transactions on Knowledge and Data Engineering 22 (2)
(2010) 264-277. doi:10.1109/TKDE.2009.83.

G. Linden, B. Smith, J. York, Amazon.com recommendations: item-to-item collaborative filtering, IEEE Internet Com-
puting 7 (1) (2003) 76-80. doi:10.1109/MIC.2003.1167344.

K. Kc, K. Anyanwu, Scheduling hadoop jobs to meet deadlines, in: Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, CLOUDCOM ’10, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 388-392. doi:10.1109/CloudCom.2010.97.

URL http://dx.doi.org/10.1109/CloudCom.2010.97

T. Sandholm, K. Lai, Dynamic proportional share scheduling in hadoop, in: Proceedings of the 15th International Con-
ference on Job Scheduling Strategies for Parallel Processing, JSSPP’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp.
110-131.

URL http://dl.acm.org/citation.cfm?id=1927648.1927655

J. Polo, D. Carrera, Y. Becerra, M. Steinder, I. Whalley, Performance-driven task co-scheduling for mapreduce en-
vironments, in: 2010 IEEE Network Operations and Management Symposium - NOMS 2010, 2010, pp. 373-380.
doi:10.1109/NOMS.2010.5488494.

J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-L.. Wu, A. balmin, Flex: A slot allocation
scheduling optimizer for mapreduce workloads, in: Proceedings of the ACM/IFIP/USENIX 11th International Conference
on Middleware, Middleware ’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 1-20.

URL http://dl.acm.org/citation.cfm?id=2023718.2023720

C. Tian, H. Zhou, Y. He, L. Zha, A dynamic mapreduce scheduler for heterogeneous workloads, in: 2009 Eighth Interna-
tional Conference on Grid and Cooperative Computing, 2009, pp. 218-224. doi:10.1109/GCC.2009.19.

Z. Tang, L. Jiang, J. Zhou, K. Li, K. Li, A self-adaptive scheduling algorithm for reduce start time, Future Generation
Computer Systems 4344 (2015) 51 — 60. doi:http://dx.doi.org/10.1016/j.future.2014.08.011.

URL http://www.sciencedirect.com/science/article/pii/S0167739X14001599

M. Lin, L. Zhang, A. Wierman, J. Tan, Joint optimization of overlapping phases in mapreduce, Per-
formance Evaluation 70 (10) (2013) 720 — 735, proceedings of {IFIP} Performance 2013 Conference.
doi:http://dx.doi.org/10.1016/j.peva.2013.08.013.

URL http://www.sciencedirect.com/science/article/pii/S0166531613000916

F. Ahmad, S. Lee, M. Thottethodi, T. N. Vijaykumar, Mapreduce with communication overlap (marco), J. Parallel Distrib.
Comput. 73 (5) (2013) 608-620. doi:10.1016/j.jpdc.2012.12.012.

URL http://dx.doi.org/10.1016/j.jpdc.2012.12.012

A. Verma, N. Zea, B. Cho, I. Gupta, R. H. Campbell, Breaking the mapreduce stage barrier, in: 2010 IEEE International
Conference on Cluster Computing, 2010, pp. 235-244. doi:10.1109/CLUSTER.2010.29.

U. V. Catalyiirek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplica-
tion, IEEE Trans. Parallel Distrib. Syst. 10 (1999) 673-693. doi:10.1109/71.780863.

URL http://portal.acm.org/citation.cfm?id=311796.311798

K. Akbudak, C. Aykanat, Simultaneous input and output matrix partitioning for outer-product—parallel
sparse matrix-matrix multiplication, SIAM Journal on Scientific Computing 36 (5) (2014) C568-C590.
arXiv:http://dx.doi.org/10.1137/13092589X, doi:10.1137/13092589X.

URL http://dx.doi.org/10.1137/13092589X

G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, STAM J. Sci. Comput.
20 (1) (1998) 359-392. doi:10.1137/5S1064827595287997.

URL http://dx.doi.org/10.1137/51064827595287997

T. A. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw. 38 (1) (2011) 1:1-1:25.
doi:10.1145/2049662.2049663.

URL http://doi.acm.org/10.1145/2049662.2049663

18

