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ABSTRACT

The increased use of sheet metal products in automotive, construction, and
aerospace industries leads to investigate more precise, economic and sustainable
sheet metal bending techniques. The conventional sheet metal bending processes
often require costly shape-dedicated die/mold set and special high tonnage machin-
ery. Origami-based sheet metal (OSM) bending can overcome the challenge and
achieve precision, simplicity, and minimum machinery/equipment requirement by
implementing origami principle on sheet metal. To date, there are very limited
attempts to understand and explore OSM bending in manufacturing research com-
munity. The bottleneck that hinders OSM bending from wide usage is due to lack
of understanding of the OSM bending mechanics in metal sheets. The dissertation
focus on expanding the knowledge about OSM bending from mechanics point of
view.

This work relies on computational, experimental, analytical approaches to
present investigations on fundamentals of OSM bending mechanics. The focus is
the correlation between manufacturing parameters of OSM bending and the result-
ing bending process mechanics. Specifically, I introduced OSM into a conventional
bending process, wiping die bending, to investigate effect of OSM in terms of re-
quired bending force, bending accuracy, and deformation. Then, OSM bending is
conceptualized and parameters associated to both OSM bending process and OSM
design process are determined. A general guide has been made as to selection of
these parameters. In the next step, the required bending force for OSM bending
is formulated with experimental and analytical approach. It was discovered that
the topology of the material discontinuity has a unique shape factor that impacts
magnitude of the OSM bending force. Further, the deformation behavior of OSM
under tension and shear loading are investigated. Finally, fracture prediction in
OSM bending is explored considering the effect of material discontinuity (MD) scale
and sheet thickness. The result indicated that the higher the scale is, the less likely a
fracture happens. The higher the thickness of the sheet is, the more likely a fracture
occurs. The possibility of fracture is also associated with topology of the MDs.
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Chapter 1

INTRODUCTION

Origami – meaning paper folding in Japanese, has been the inspiration for
many in science and engineering. Examples for application of origami concept range
from kinematics [1], structure [2–4], metamaterials [5,6], mathematics [7–9], energy
[10], biomedical devices [11], construction [12,13]. Likewise, the origami-based sheet
metal (OSM) bending is an extension of the origami concept onto metal sheets [14].
It brings forward an alternative bending method for sheet metal. Growing research
and application of OSM bending in structures [4,15–17], vehicle Body-in-White [18],
and potential application in automotive, aerospace, construction industries motivate
deeper understanding mechanics of OSM bending process. The core idea of OSM
bending is the construction of three-dimensional (3-D) structures out of a flat two-
dimensional (2-D) metal sheet by a sequence of folding or bending operations. The
bending is achieved with the aid of material discontinuities (MD) located at the
predetermined bending line on the metal sheet. Figure 1.1 [19, 20] shows possible
MDs.

As a common bending process, sheet metal bending can be achieved by wip-
ing die bending (L bending), air bending (V bending), circular bending, roll bending
and U bending. Unlike these conventional bending methods, OSM bending is a die-
less bending process, in which bending is achieved with the configuration shown in
1.2. A blank sheet is held between a support and a blank holder. The support is
fixed and a force in downward (negative Y) direction is applied on the blank holder
to hold the blank sheet firmly. Bending line is offset from the edge of the blank
holder a distance, s. Bending takes place with the downward motion of the punch.
The motion of the punch is determined by the geometric configuration of the setup,
sheet thickness, and bending angle. The advantages of OSM bending with this con-
figuration is that it eliminates heavy machinery, costly shape dedicated die/mold set
and its maintenance from bending process, which is significant economic and pro-
ductivity gain in manufacturing process. However, one of the challenges to widely
utilize OSM bending in production scale like other conventional bending techniques
is unknown mechanics such as feasibility, deformation, accuracy and failure mech-
anism. This under-studied area hinders its wide usage due to research in this area
being in relatively early stages. As an alternative sheet metal bending technique,
mechanics of OSM bending is an open research domain where bending mechanism,
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Figure 1.1: Possible material discontinuities (MDs)

Example MD

Figure 1.2: OSM bending configuration
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feasibility, parameters influencing the bending process, accuracy, deformation have
not been investigated. The dissertation, therefore, investigates on mechanics of
less explored bending technique - i.e., OSM bending technique. This work involves
process (concept) design, finite element analysis (FEA) , experimental testing, and
analytical modeling.

The research on OSM bending is at the intersection of bending in sheet metal
bending, rigid origami, and perforated sheet metal. Thus, in the following, a review
is presented from each of the three field mentioned above.

1.1 Literature review

1.1.1 Sheet metal bending method perspective

Sheet metal forming is a common manufacturing process. A study by the
European Aluminum Association [21] shows 55% of weight in Audi A2 vehicle body
is made from sheet metal components. Further, sheet metal bending is one of the
most common forming processes [22]. Sheet metal bending can be achieved using
conventional bending methods including U-die bending [23], wiping die bending (L
bending) [24], air bending (V-die bending) [25, 26], roll bending [27] and circular
bending [28], some of which are illustrated in Fig. 1.3. A great deal of research has
been done on these bending techniques. The past research dealt with the accuracy
of bending [29, 30], numerical modeling of the bending process [31–35], bending
process and optimization [36, 37]. Despite continuous research have been done on
these bending techniques, the main issues remaining challenging are involvement of
shape dedicated equipment such as die and mold set along with heavy machinery [38]
and accuracy of bending due to springback [31]. For bending of specific component, a
dedicated die/mold must be manufactured, which has distinct disadvantages such as
expensive equipment investment, high maintenance cost of die/mold due to concerns
for part quality, wear of die/mold, life-cycle restriction. In addition, manufacturing
die/mold is a very time-consuming process [39].

Springback is believed to be caused by the tendency of sheet metal to return
to original shape after forming operation. It is a main quality concern. If it exceeds
designated tolerance, it causes severe problems in the following assembly operation.
The concern for springback has grown due to trends of replacing steel with high
strength steel and aluminum sheet metal components in the automotive industry.
This material replacement brings a desirable low weight-to-strength ratio, which can
increase fuel efficiency.

In this context, OSM bending can bring forward a new bending technique
that is cost effective, accurate and easy to integrate into the current mass produc-
tion workflow. As can be seen from the OSM bending configuration in Fig. 1.2,
the die/mold set has been eliminated from the bending process. The elimination
of die/mold from the bending process is achievable due to the introduction to the
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Figure 1.3: Common bending methods, (a) U-die bending; (b) wiping die bending;
(c) air bending; (d) rolling bending.

material MD along the bending line. MD has taken the role of die/mold to prede-
termine bending line on a blank sheet. Current technology in laser cutting, water
jet cutting, or progressive die stamping allows MDs to be cut on the blank sheet
with ease prior to bending operation. In the cutting process, the material can be
completely removed from through-thickness direction or partially removed. The de-
sired angle of bending can be achieved by controlling the movement of punch in X,
Y directions. With these features, OSM bending can solve challenges encountered
in conventional sheet metal bending techniques.

1.1.2 Rigid origami perspective

OSM bending falls under the category of rigid origami application for sheet
metal. Rigid origami is a branch of origami that deals with folding structures us-
ing flat rigid sheets joined by hinges. Traditionally, a zero thickness is assumed in
origami because paper is the main material used. With the increase of origami in-
spired research in engineering, non-zero thickness integration into origami structures
are demanded. In result, many methods have been purposed to integrate non-zero
thickness into origami. Thickness consideration in origami was firstly purposed by
Hoberman [40]. His approach is summarized as “degree-4 vertex by thick panels
that connects shifted axes of rotation using plates with two levels of thicknesses”.
Trautz and Kunstler [41] presented a slidable hinges method in which hinges can
slide. Tapered panel method by Tachi [14] shifts rotational axis to alternative side
with respect to sheet thickness. Tachi’s work achieved the foldability of rigid panels
with finite thickness by shifting the folding axes, his work also included removing
material near the fold line to enable folding. However, the material removal tech-
nique presented in Tachi’s work assumes a combined pattern for the flat layout of
the rigid origami, where the faces of a 3-D structures are made of separated thick
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panels with stiff material, while the fold lines are created by a flexible material such
as cloth or rubber created on a secondary flat pattern and attached to the panels.
Hoberman [42] patented another method that arranges hinges on different planes
so that the axis of hinges doesn’t intersect with each other. In result, hinges are
offset to each other and with respect to the basic plane of the sheet as well. Zirbel
et al [10] presented the membrane folds method, which utilizes a thin flexible mem-
brane under a thick material. A certain amount of gap is left between two adjacent
thick material blocks according to the intended bent angle. e.g., two times of thick
material thickness is proper if the bending angle is 180º. Abel et al [43] presented
offset crease method. In this method, a hinge axis is shifted to the middle of the
material. Gaps are added to each fold on the alternative side of the hinge axis. Chen
et al [44] presented spatial linkages method and another method, called offset panel,
was presented by Edmondson et al [45]. Ku and Demaine [46] proposed a new algo-
rithm to accommodate thickness in origami structure. In their method, new creases
are created by offsetting crease-pattern faces from their flat folded state keeping
the order of layer. It includes six steps, those are: determining crease width, poly-
gon construction, refining the newly generated creases and polygons, setting scale
factor, final construction and adding thickness to the crease pattern. Erica [47]
et al summarized various thickness adaption approaches – shown in Fig. 1.4 [48],
by illustrating the advantages and disadvantage of each method in the context of
manufacturing. They showcased a square-twist mechanism for the viability of using
sheet metal in origami adapted products.

As can be seen from Fig. 1.4, the flat sheets are joint by a hinge, which
doesn’t deform. In OSM bending, the web – defined as the connection between
two neighboring MDs along the bending line, can serve as hinges. Unlike the rigid
origami, the web undergoes deformation, which introduces mechanics into the pic-
ture. In addition, it appears the thickness accommodation approaches emphasize
on creating a complex 3-D structure as it can be done using paper. However, OSM
bending focuses on the rigid origami problem from manufacturing and mechanics
point of view. From the manufacturing point of view, OSM bending brings for-
ward a new forming technique. From the mechanic’s point of view, it deals with
deformation, load bearing capability, bending accuracy.

1.1.3 Perforated sheet metal perspective

MDs can be regarded as perforation on a blank sheet. So, OSM bending can
be considered as bending of perforated sheet metal. So, it begs a perspective from a
perforated sheet metal point of view. Perforated sheet is widely used in mechanical,
aerospace and civil engineering structural elements. Examples are heat exchange
equipment, shadow masks [49, 50], construction equipment [51], cold-formed thin-
walled steel structures [52], beam [53], sandwich panels in building [54]. In many
cases perforation has been the means of creating light-weight structures, ease of
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Figure 1.4: Thickness accommodation approaches to rigid thick origami

access point. However, perforation can also the means to create/form 3-D structure
from a flat sheet of metal. In this sense, the role of perforation can be similar in
function to the MD in OSM bending process. Literature [55–70] show that perfo-
rated sheet has been researched under various loading conditions with different hole
types and hole orientation to investigate deformation behavior. Studies also investi-
gated stress, stress concentration, and buckling effects. In sheet metal forming field,
Ajudia and Dangar [71] presented a review on forming of perforated sheet metal.
Nakayama et al [72] studied elastic-plastic deformation behavior of sheet perforated
with circular holes evenly distributed all over the sheet. It is found that distribution
and arrangement of holes significantly affect deformation behavior of sheet due to
stress concentrations generated near the holes. Elangovan et al [73, 74] showcased
formability of perforated aluminum sheets using an artificial neural network. It is
found that formability of perforated sheet increases marginally as ligament ratio in-
creases or percentage of area decreases. Farsi and Arezoo [75] investigated bending
force and springback on low carbon steel sheet with oblong holes on the bending
surface in V-shaped die bending setup. The influence of the area of holes, die angles,
die width, and punch radius on the value of bending force, and springback angle
is studied. It is concluded that increasing the area of hole leads to the reduction
in spring back as well as bending force. Nasrollahi and Arezoo [76] presented the
effect of hole type, the number of holes and ratio of the hole with sheet width on
the springback in wiping die bending setup. They found that springback caused by
different hole types increased in the following order – square, oblong and circular
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holes. Presence of a hole is the reason for less springback. Having more holes in
the part decreases springback slightly. Senthilnathan et al [77] reported electro-
magnetic forming of perforated aluminum sheets using FEA. Kothari and Jhala [78]
investigated the impact of material thickness, type of blank, blank shape, shape
and pattern of perforation, the pitch of perforation on stress and load-displacement
relationship. Venkatachlam et al [79] presented forming limit of stretch forming of
perforated aluminum sheet with circular, triangular and slot type of holes. Sheet
with circular holes exhibited more major and minor strains than that of triangular
and slot type of holes. In these studies, simple perforations such as holes, squares,
and other shapes are studied to investigate the effect of perforation on the compo-
nent or process considered. Perforations are simple if compared to MDs shown in
Fig. 1.1. Further, the effect of MD in forming has not been understood. In addition,
OSM bending takes advantage of MD to accomplish bending rather than seeing the
perforation as a defect in the structure.

1.2 Objective

Considering the literature, the goal of the dissertation is to better understand
the mechanics of OSM bending in order to close the gap in fundamental understand-
ing leading to the development of a more precise, economic, and sustainable sheet
metal bending technique. Specifically, the current work attempts to answer a series
of questions about OSM bending in terms of feasibility, force requirement, deforma-
tion, accuracy, and proper scale of MDs and failure possibility; those are:

• What are the impacts of OSM sheet in the conventional sheet metal bending
process?

• Is OSM bending conceptually feasible such that 3-D OSM bent structures are
formed form a 2-D metal sheet?

• What are the manufacturing parameters that are necessary to achieve success-
ful OSM bending? What is their impact on the OSM bending process.

• How can the OSM bending force be modeled analytically and empirically?

• How does the OSM behave if it is subjected to tension and shear loads?

• How should the optimal MD parameters be selected so that it leads to the
desired bending outcome without failure of the blank sheet?

Therefore, the first objective of the dissertation is to perform FEA on the
effect of OSM sheet in conventional bending configuration. This is presented in
Chapter 3. Then, in Chapter 4, OSM bending process is defined in a similar manner
as the conventional sheet metal forming processes. Parameters associated with OSM
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forming and design of MDs are identified. Comprehensive FEA is carried out to
assess feasibility of OSM bending process with the correlation of OSM design and
process parameters. In Chapter 5, a bending force model is developed analytically
and experimentally. In chapter 6, response of MDs under tension and shear is
investigated in light of fracture using experimental and FEA case studies. In chapter
7, a study is conducted to predict possibility of fracture in OSM bending under the
impact of different scale, sheet thickness and types of MDs. Finally, Chapter 8 is
reserved for conclusion and future extension of the work.
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Chapter 2

METHODS

2.1 Overview

In this chapter, finite element analysis (FEA), digital image correlation (DIC)
are introduced as these are main numerical and experimental tools used to carry
out the study.

Numerical simulation techniques in sheet metal forming [31,35,76,80,81] have
been widely used in research to facilitate fundamental understanding. Numerical
simulations are recommended to be performed prior to experiments in order to
increase productivity and reduce cost. FEA, Artificial Intelligence (AI), particularly
artificial neural network (ANN) have been used to predict quantities in the forming
process. Early works studied sheet metal forming using FEM date back to pioneer
works by Wifi [82], Gotoh and Ishiseé [83], and Wang and Budiansky [84] in late
1970s. Since then, FEA technique has been expanded to a wide range of forming
problems. Variety of general and specialized sheet metal forming simulation software
has been developed to tackle problems in sheet metal forming. Currently, FEM
is capable of providing cost-effective, efficient results to answer questions in sheet
metal forming. Reported work [31,35,85–90] discussed different solution methods in
simulation of sheet metal forming. Makinouchi et al. [91] classified formulation into
three main categories, which are dynamic explicit, static explicit, and static implicit
formulation. Further, solution strategies were categorized into three types, which
are incremental method, large step method, and one-step method. Thus, in FEM
codes, the various FEM formulations are combined with different solution strategies.
In summary, one can classify solution methods into five different categories. They
are static explicit method, dynamic explicit method, static implicit incremental
method, static implicit large step method, and static implicit one-step method.
These methods are compared with one another in the work of Oniate et al. [92] and
Yang et al. [93], respectively.

These developments enabled numerical simulation, particularly FEM, to ef-
fectively and accurately simulate OSM bending problems. There are cases where
FEA results alone are not enough to make the final judgment as FEA provides an
approximated result to the problem analyzed [94]. The results of FEA are accept-
able when it closely represents the phenomenon investigated. Other times, there is a
need for experimental validation of FEA results. Therefore, in sheet metal forming,
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experimental testing and FEA are often used together [30]. Validating analytical
analysis with experiments or FEA is also common due to the same reason mentioned
above [27,95].

DIC is a non-contact, optical, deformation measurement technique by track-
ing the motion of the component. DIC was first introduced by researchers in
1980s [96]. DIC offers non-contact, full field, 3-D measurements for dimensions,
deformations, shapes, structures in different environments and conditions. Over the
years, it is continuously improved and now it is used in various fields [97,98]. DIC is
also widely used in sheet metal forming [95, 99, 100]. DIC brings many advantages
such as easiness to set up, flexibility, robustness against ambient disturbance, and
spacial resolutions. In the following sections, the main procedures and principles of
FEA and DIC is briefly presented.

2.2 FEA

2.2.1 FEA background

In essence, FEA is a tool to provide approximated solution to differential
equations that describe a physical problem. The physical domain of interest is
represented by an assembly of finite elements that are the result of discretization of
the physical domain. Approximation functions of the finite element are constructed
using physical value at the nodal points within the element. The physical values at
the nodal points are the unknowns. With the discretization approach, the continuous
physical problem is transformed into a system of algebraic equations that can be
solved for the unknown nodal values.

The main steps of FEA procedure is summarized below.

• Discretization of the physical domain: the first step is to dissect the entire
physical domain into finite elements or mesh elements.

• Selecting interpolation function: mesh elements discretized in the first step are
represented using an approximated interpolation functions that is dependent
on physical nodal values in the element.

• Establishing elemental properties: a set of algebraic equation are established
to connect the physical nodal values to other parameters. Often, the Galerkin
method or variational approach is used for this purpose.

• Global assembly of elements: elemental level algebraic equations are assembled
into global equation system to find solution for entire physical domain. In this
process, the boundaries and interfaces between the neighboring elements and
nodes must satisfy the connectivity requirements and the boundary conditions.
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• Solving global equation system: the assembled global equation system is solved
using direct or iterative methods to obtain solution for the unknown physical
nodal values.

• Post-processing: additional values of physical fields such as stress, strain are
calculated based on the solution of nodal values such as displacement.

2.2.2 FEA formulation

Galerkin method is most popular method to transform partial differential
equation of the physicals domain into finite element discrete system of equations.
When the physical problem can be formulated as a minimization of a functional,
variational approach can be used.

The formulation of FEA is illustrated using a one-dimensional (1-D) example
below.

Suppose the physics of the domain of interest can be expressed by the fol-
lowing differential equation,

a
d2u

dx2
+ b = 0, 0 ≤ x ≤ 2L (2.1)

with boundary condition

u|x=0 = 0

a
du

dx
|x=2L = R

(2.2)

where u is an unknown.
The discretization of the physical domain is presented in Fig. 2.1, in which

the entire physical domain is discretized into two elements. Every element consists
of two nodes. One the right panel of Fig. 2.1, the element is approximated with the
function u(x) as in Eq. (2.3), where Ni is shape function defined as in Eq. (2.4).

u = N1u1 +N2u2 = [N ]{u}
[N ] = [N1 N2]

[u] = [u1 u2]

(2.3)

N1 = 1− x− x1

x2 − x1

N2 =
x− x1

x2 − x1

(2.4)
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Figure 2.1: One dimensional linear elements and function interpolation on an ele-
ment

The nodal values u1 and u2 are unknowns that can be solved from the global
equation system.

Substituting u expressed through its nodal values and shape function, the
differential equation takes the form as in Eq. (2.5),

a
d2

dx2
[N ] [u] + b = ψ (2.5)

where ψ is a nonzero residual caused by the approximate representation of a function
inside a finite element. The Galarkein method minimizes the residual by multiplying
the terms in Eq. (2.5) by shape functions and integrating over the element,∫ x2

x1

[N ]T a
d2

dx2
[N ] {u} dx+

∫ x2

x1

[N ]T bdx = 0. (2.6)

Using integration by part, Eq. (2.6) leads to

∫ x2

x1

[
dN

dx

]T
a

[
dN

dx

]
dx {u} −

∫ x2

x1

[N ]T bdx−

{
0

1

}
a
du

dx
|x=x2 +

{
1

0

}
a
du

dx
|x=x1 = 0

(2.7)
The Eq. (2.7) can be written as

[k] {u} = {f}

[k] =

∫ x2

x1

[
dN

dx

]T
a

[
dN

dx

]
dx

[f ] =

∫ x2

x1

[N ]T bdx+

{
0

1

}
a
du

dx
|x=x2 −

{
1

0

}
a
du

dx
|x=x1

(2.8)
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where k is called stiffness matrix and f is the load vector. For the simple case
considered here, the stiffness matrix and load vector are respectively equal to,

[k1] = [k2] =
a

L

[
1,−1

−1, 1

]

f1 =
bL

2

{
1

1

}

f2 =
bL

2

{
1

1

}
+

{
0

R

} (2.9)

These are equations for each element separately. The global system of equa-
tion is constructed as

a

L

 1,−1, 0

−1, 2,−1

0,−1, 1



u1

u2

u3

 =
bL

2


1

2

1

+


0

0

R

. (2.10)

Now the boundary condition u(x = 0) = 0 can be applied and it can be
solved for ui for a given values of a, b, L, and R.

2.3 Digital image correlation

The experimental testing in this dissertation uses DIC technique to measure
deformation on the sheet.

There are three steps to follow in order to utilize DIC technique, namely,
(1) specimen preparation with speckle pattern; (2) recording images of the surface
component on the part/specimen before, during, and after loading; (3) analyzing
the acquired images to compute displacement/strain field on the surface component.

In the specimen preparation step, the surface of interest on the part/component
is painted with a random distributed white and blank speckle pattern. During the
image recording step, the imaging system shouldn’t be disturbed by geometric dis-
tortion or external disturbances. Once the images are recorded, the motion of each
point on the surface of interest is computed by the DIC based on the captured
image of the surface at different stages of the deformation. The DIC divides the
surface into evenly spaced virtual grids. The displacement is computed at each
point of the virtual grid tracing or matching the same points between the images
recorded before and after loading. Each grid is assigned to a gray level value based
on the random speckle patter applied. The gray level assists in distinguishing every
grid uniquely. To assess the motion between the reference grid and the deformed
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grid, a cross-correlation criterion or sum-squared difference correlation criterion is
executed.

As per deformation continuity in solids, a subset of neighboring points in
reference frame stay as neighboring points in target deformed frame. Through a
displacement mapping function, the displacement of the reference subset can be
mapped to the deformed subset. If applied to all subsets, this mapping yields the
result in entire surface.
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Chapter 3

OSM IN WIPING DIE BENDING CONFIGURATION

3.1 Background

In OSM bending, the MD is hypothesized to increase the accuracy of bending,
process efficiency, and by extension, reduce the cost and energy. However, the
current state of the art for the technique lacks the information to quantify the
advantage of the OSM over the traditional manufacturing process of sheet metal,
especially for mass production. For example, study [101] shows that to stamp 1
kg of steel, the energy spent in manufacturing process only can range from 5.1 to
9.69 MJ/kg due to the high tonnage presses involved and the energy lost in pressing
machines.

The wiping die bending is one of the common sheet metal bending methods.
The basic operation is to deform sheet under downward movement of a punch into
90°. The sheet is clamped between a die and a blank-holder. Schematic of wiping
die bending is shown in Fig. 3.1.

Normally no MD is applied to the sheet in wiping die bending process. Hence,
impact of OSM in a wiping die bending setup has not yet been investigated. This
chapter attempts to gain insight into OSM mechanics by incorporating the MD in
a wiping die bending setup as an initial exploring step. More precisely, the goal of
this chapter is to investigate the effect of several MDs on the wiping die bending
process. It ranks and evaluates qualitatively how the MDs affect the bending force
(BF), stress concentration and resulted springback in wiping die bending process.

3.2 Selection of MDs

Among the MDs that researchers suggested in Fig. 1.1 [19, 20], some MDs
have been already commercialized. In most cases, if not all, the MDs are arranged
symmetrically along the bend line. Alternatively, the MD appears in symmetric
pairs on the two sides of a bending line.

In this work, four different types of MDs are chosen for investigation, which
are MD-1, MD-2, MD-3, and MD-10. As can be seen in Fig. 1.1, two rules govern the
arrangement of the selected MDs along the bending line. One is that only one pair
of MDs is arranged with respect to bend line. MD-1 and MD-2 are examples that
MDs lie along the bend line. While, MD-3 and MD-10 are examples of positioning
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Figure 3.1: Wiping die bending Schematic

the MDs at the two sides of bend line. The second rule is regarding the percentage
of removed material. In order to be able to make comparison between cases, the
dimensions of MD are designed such that there are identical lengths of material left
along the bending line after MDs are applied along the bending line of the sheet. In
case these two rules conflict, rule one prevails.

3.3 FEA setup

The sheet is rectangular in shape having 50 mm in length, 50 mm in width,
and 3 mm in thickness. The radius of die, (RD), and the radius of punch, (RP ),
are both set to 3 mm. Punch dimensions are 50 mm (width), 50 mm (height),
30 mm (length). Die dimensions are 50 mm (width) , 50 mm (height), 40 mm
(length). Blank holder has dimensions of 50 mm (width), 10 mm (height), 40 mm
(length). The aluminum sheet 2036-T4 is the sheet material. It has an ultimate
tensile strength of 338 MPa, a yield strength value of 193 MPa, a strength coefficient
of 598 MPa, and a strain hardening exponent of 0.216.

In the simulation process, the sheet is set to elastic–plastic with isotropic
hardening since it experiences large deformation during the bending process. The
boundary conditions are applied based on the schematic shown in Fig. 3.1. The
die is fixed throughout the simulation. The blank holder is set to be free only in
the Y degree-of-freedom. Displacement of the sheet in Z-axis is restricted due to
symmetry condition, where Z-axis is the outgoing direction from the XY plane in Fig.
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3.1. There are four steps in simulation. First, a ramped load with maximum value
of 2×105N is applied on top of the blank holder to hold sheet firmly during bending.
In the second step, 25mm of displacement in the negative Y direction is imposed on
punch. By the end of the second step, bending will be completed. Third and fourth
steps are to unload the sheet by separating punch from sheet and unloading blank
holder so that springback can be evaluated. In order to achieve accurate results,
five layers of 20-node hexa elements are generated along the thickness direction of
sheet [102]. This would result in ten integration point along the thickness of sheet.
The Punch, blank holder, and die are simulated as rigid bodies and linear four-
node quadrilateral elements are used for them. The number of elements is kept
constant for each of the die, punch, and blank holder in all cases. Mesh of the sheet
is dominantly made of 20-node hexahedron elements, but prism elements are also
generated around the MD. A refinement is made along with the bending line. A
typical meshing of sheet is illustrated in Fig. 3.2.

Friction coefficient of 0.12 is considered in these simulations. There are three
frictional surface-to-surface contact pairs between the sheet and rigid parts (punch,
die, and blank holder). Augmented Lagrangian formulation is used for contact
simulation.

A wiping die bending case with regular sheet is also simulated. The reason
is to compare the regular sheet that has no MD and the sheets having MDs in
terms of bending force required to bend the sheet, maximum stress caused during
the bending, and springback angle. The regular sheet will serve as a benchmark. In
addition, the comparison between the different shapes of MD can assist in designing
OSM parts with optimized bending force requirements and stresses generated along
the bend line. Hence, there are four cases where sheets with the chosen MD are
simulated while the last one is a regular sheet without any MD.

3.4 Simulation results

Overall, simulation process went well except convergence problem. Obtaining
full convergence of simulation especially in the bending process (which is second step
in simulation) became problematic. The reason is diagnosed to be applying punch
displacement boundary condition too fast and elements become highly distorted.
It is overcome by increasing number of time steps, i.e., slower application of loads.
Number of time steps required for convergence at the bending process varies over
different MDs. The regular sheet and MD-10 required 200 time steps while MD-1,
MD-2, and MD-3, needs 250 time steps. These time steps are uniformly applied
during the bending process.

3.4.1 Mesh convergence study

In order to achieve accurate results from the simulation, mesh convergence
studies have been conducted. Each MD case is simulated with finer mesh size along
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(b)

Figure 3.2: Meshing illustration, (a) meshing of MD-1, top view; (b) MD-1 five
mesh layers in thickness direction
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(e)

Figure 3.3: Mesh convergence studies results, (a) without MD; (b) MD-1; (c) MD-2;
(d) MD-3; (e) MD-10.

the bending line of sheet until mesh convergence is obtained. Then variation of
maximum Von Mises stress is evaluated over mesh sizes. Fig. 3.3 shows the result
of mesh convergence studies.

3.4.2 Required bending force

Bending force is evaluated for all cases over the punch displacement. Figure
3.4 shows that in all studied cases, the bending force over the punch displacement
has a similar pattern. It increases to a maximum value and then decreases followed
by a rather steady value to the end of punch displacement. As expected, bending
force required for sheets with MD is reduced substantially compared to the sheet
that has no MD. The reduction of the magnitude of the required bending force varies
depending on the type of MD, see Table 3.1. The reduction reaches as high as 59%
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Figure 3.4: Bending force versus punch displacement plot for each of the studied
MD cases and the traditional sheet metal case with no MD along the bend line

in the case of MD-3, which is the maximum reduction, and it is 29% in the case of
MD-10, which is the least reduction among the four cases. The reduction implies the
possibility of performing bending operation with light tools even by hand for some
sheet metal thicknesses. Physically, the reduction in the required bending force is a
result of the removing materials along the bend line that resist to punch movement
and thus there are less resisting force to bending.

In the case without MD, the bending force-punch displacement curve dis-
played a series of fluctuation after reaching the maximum bending force value. This
phenomenon is caused by the deformed material flow that has been accumulated
within the gap between punch and die. As the punch goes down, the sheet experi-
ences more deformation and as a result deformed material flows to the gap between
the punch and die. As more material accumulates in the gap, it increases the re-
sistance to the punch movement and the resistance caused fluctuation of bending
force.

3.4.3 Empirical evaluation of bending force

The simulation result is validated through empirical formula that predicts
the maximum bending force for a wiping die bending. The maximum bending force
for a wiping die is given in Eq. (3.1) [76],
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Table 3.1: Bending force (BF) evaluation

Cases
Simulated Emperical Reduction in BF

BF (N) BF(N) compared to no MD (%)

MD-3 6398 — 59

MD-2 10362 — 33

MD-1 10900 — 29.5

MD-10 11012 — 29

Without MD 15459 15210 —

F =
M

l
(1 + sinφ), (3.1)

where F is the bending force, l is the die opening, l = RD +RP + t, RD is the radius
of the die, RP is the radius of the punch, t is the thickness of the sheet, and φ is
the bending angle, in this case φ is equal to 90°, M is the bending moment, which
is found using Eq. (3.2),

M = n(UTS)
bt2

4
, (3.2)

where n is correction coefficient hardening of a material (n = 1.6–1.8), UTS is the
ultimate tensile strength of a material, b is width of the beam (length of bending)
and t is the material thickness. Using Eq. (3.1), the bending force for the sheet
without MD is found to be 15210 N (for n = 1.8), which is in good agreement with
the bending force obtained from the FEA model, with a difference of 1.6%.

As for the evaluation of empirical bending force for the cases of MDs, Eq.
(3.1) cannot be used directly since the bending force is supposed to take into account
the amount of material removed along the bending line. Hence, further investigation
on the mechanics of MD is needed to develop general mathematical/ empirical model
for the calculation of bending force when MD exists on the bend line of a sheet. It
is hypothesized that the bending force reduction is related to the percentage of
material removal in each MD case. In order to validate this hypotheses, volume
of material removal in each MD case is tabulated in Table 3.2. It is noticed that
the bending force reduction is not proportional to percentage of material volume
removal. Implication of this hypotheses needs more rigorous studies.

3.4.4 Stress evaluation

Von Mises stress is evaluated for all cases when the sheet is bent to 90°, as
shown in Fig. 3.5. High stress is distributed along the bending line in all cases while

21



Table 3.2: Relation between BF and material removal volume

Cases
Sheet volume Reduction in volume Reduction in BF

(mm3) wrt. no MD (%) wrt. to no MD (%)

MD-3 7125 5 59

MD-10 7195.2 4.1 29

MD-2 7225 3.7 33

MD-1 7289.2 2.8 29.5

Without MD 7500 0 —

Table 3.3: Maximum equivalent stresses

Cases Max value (MPa) Increase due to MD (%)

MD-3 529.3 27.2

MD-2 531.8 28

MD-1 624.6 50.1

MD-10 767.2 77.3

Without MD 426.0 —

the rest of the sheet body is subjected to less stress compared to the area along the
bending line. Von Mises stress values are higher when MDs are present on the sheet.
The simulation results indicated that, with the effect of MD, the von Mises stress
increased by 27.2% at minimum and by 77.3% at maximum. Due to presence of MD,
the stress distribution along the bend line is no longer uniform as in the case of the
sheet without MD, see Table 3.3 and Fig. 3.5. It is found that Von Mises stress in
MD-2 decreased by 22.1% compared to MD-1. This is due to topological differences
between MD-1 and MD-2. The enlarged circular openings in MD-2 helped transmit
the stress into sheet body and thus it has less stress concentration. This indicates
that the topological variation in MD can be utilized to reduce stress concentration
depending on the design requirements of the sheet metal product. Based on the
results, MD-3 has overall best performance. The underlying reason is due to its
profile—particularly, due to the fact that the profile of MD-3 has a larger radius of
curvature along the bend line, which translates force easier compared to other MD
profiles. The same can be said about MD-2. As for MD-10, the reason for it to be
the highest in increase of stress is because of the edge-to-surface contact between
edge of MD-10 and surface of punch during bending. That is why maximum stress
occurred on the edges of MD-10, as shown in Fig. 3.5.
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Figure 3.5: Von Mises stress distribution for each MD case under study, (a) without
MD; (b) MD-1; (c) MD-2; (d) MD-3; (e) MD-10
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Table 3.4: Springback angle after bending

Cases Angle (°) Decrease due to MD (°)
MD-3 92.666 0.375

MD-2 92.524 0.517

MD-1 92.349 0.603

MD-10 92.488 0.553

Without MD 93.041 —

3.4.5 Springback

Springback angle after bending is calculated for all cases. The results are
tabulated in Table 3.4. It can be seen that application of MD reduced springback
for all four MD cases. This conclusion validates similar results found in perforated
sheet [76], where application of perforated feature at the bending area of sheet metal
reduced springback. This implies potential of MD in reduction of springback.

3.5 Summary

The key element in this process is creating MD along the bend line that
enables folding with reduction in the required bending force compared to the tra-
ditional wiping die bending. The shape and geometry of MD affect the required
bending force. For the selected MD shapes, the required bending force was sub-
stantially reduced for all four cases in the FEA model. This reduction is caused by
the material removal along the bend line leading to less material available to resist
the bending force. The magnitude of reduction in bending force is associated with
the percentage of volume removal. However, this relation between the percentage of
material removal and resulting bending force is not proportional. Future chapters
will focus on defining the exact relationship between the MD profile and the result-
ing bending force. Due to the small dimensions of MD, high stress concentration
is generated along the bend line. On the other hand, the stress concentration can
be effectively reduced with topological variation of the MDs and by introducing
changes to the MD profile. In addition, the application of MD leads to decrease in
springback effect.
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Chapter 4

INVESTIGATING PROCESS AND DESIGN
PARAMETERS IN OSM BENDING

4.1 Background

In the current literature, OSM bending has been studied from the perspective
of fabricating 3D parts by a sequence of folding or bending from a single 2D blank
metal sheet. The topological variations of one 3D geometry in its 2D flat pattern
state can result in various feasible 2D flat patterns that all can be successfully folded
to the same 3D geometry [103–105]. A specific flat pattern can be selected based
on a manufacturing aspect such as nesting efficiency, scrap percentage, and ease of
folding and handling [106].

There are several reported applications of OSM bending and MD in loading
bearing structures. Venhovens et al. [106] presented an application of OSM bending
in vehicle body-inwhite. In their work, they showcased a new concept of vehicle
body-in-white that eliminates the use of metal stamping, shape dedicated die, or
mold tools associated with the stamping process. Shi et al. [4] developed a new
folded assembly that mimics the behavior of simple triangle truss under compres-
sion load. In the folded assembly, they took advantage of MDs when the sheet is
folded to triangular truss structure. Li et al [107] showcased a triangular and trape-
zoidal corrugated cardboard structure made of thin Aluminum 1060 sheets using
OSM principle. Under out-of plane crushing and quasi-static crushing tests, this
approach demonstrated superior performance than corrugated structures fabricated
using conventional method. This implied the potential of OSM approach in enhanc-
ing energy absorption of corrugated structures. However, it is noticed that these
studies are restricted to the application level of MD in sheet metal structures. There
has been a need to understand the performance of MD and the OSM bending pro-
cess itself from a mechanics point of view. This chapter attempts to fill the gap and
to present a clear understanding of how OSM bending process is achieved and how
associated process and design parameters affect the result of OSM bending. So, this
work aims at providing a guideline for selecting OSM bending process parameters
as well as MD design parameters. This objective is achieved in two steps. First is to
identify parameters of MD and OSM bending process. Second is to investigate how
the identified parameter affect the OSM bending process. Parameters studied are
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looked at from MD design point of view and OSM bending process point of view.
When investigating the effects of identified parameters, parametric study approach
is utilized coupled with finite element analysis (FEA), and the identified parameters
are evaluated in terms of maximum bending force and maximum stress along the
bend line and resulted in springback angle during OSM bending.

4.2 Methodology

The approach taken to reach the objective of this chapter is outlined as
follows. First, the OSM bending process is introduced, followed by identifying and
defining parameters from OSM bending process point of view and MD design point
of view. Then, parametric FEA study is presented on the effect of each of the
parameters identified on OSM bending. Finally, a generic guideline is offered for
selecting parameters pertaining to the OSM bending process as well as MD design.

4.3 Difference between OSM bending and wiping die bending

The OSM bending process appears to be similar to wiping die bending. Fig-
ure 1.2 and Fig. 3.1 demonstrate the OSM bending and the wiping die bending
configuration, respectively. However, close observation reveals that OSM bending
differs from wiping die bending in a few aspect. First, OSM bending requires no die
while wiping die bending needs a die to bend the sheet. Secondly, in OSM bending,
location of the bending line is predetermined by MDs. In origami, each fold is made
based on a bend line pattern that can either be determined or undetermined in a
given 3D geometry [108, 109]. In OSM bending, a topological analysis is required
to determine the bend line prior to bending the metal sheet [110]. In the OSM
bending configuration shown in Fig. 1.2, the bending line is predetermined by the
MDs. The position of the punch can be anywhere between the s+t and L/2, where
s, t, and L are offset distance, sheet thickness, and the length of the sheet. As a
result, the punch is required to complete the motion in both the horizontal and
vertical direction. In wiping die bending, the punch moves in a vertical direction
only. Thirdly, in OSM bending, the support can have an offset distance, denoted by
s, from the bending line.

4.4 Identifying and defining parameters

OSM bending has many parameters that affect the bending process. However,
from the bending process point of view and MD design point of view, six different
parameters are identified. These parameters are selected because they are common
to all MDs and OSM bending processes. These parameters can be categorized into
two main categories. The first category is parameters associated with the MD and
the blank sheet itself. The second category is pertaining to the bending process such
as the placement of sheet, punch, and other physical conditions in the process.
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Figure 4.1: Generic design parameters of MD

The design parameters investigated in this chapter, shown in Fig. 1.2 and
Fig. 4.1, are the kerf-to-thickness ratio (k/t), the thickness of the sheet (t), and
the web-to-width ratio (w/b). Process parameters include punch placement (g),
punch radius (RP ), and offset distance from the bending line (s). These terms are
explained as follows:

• The thickness of sheet (t): this is the thickness of the sheet. It is assumed
that the sheet has a uniform thickness throughout the whole body.

• Kerf-to-thickness ratio (k/t): is the ratio between the kerf (k) and the sheet
thickness (t). Kerf is the cutting width that the laser or water jet cuts out of
the sheet.

• Web-to-width ratio (w/b): web (w) is defined as the remained distance between
two consecutive MDs after removal of material along bend line due to the
application of MD. It is the section that connects neighboring MD along the
bend line. Length of the web is measured along the bend line. It is denoted
by w/b, where w represents web and b is the width of the sheet.

• Punch placement (g): it is the distance between the blank holder and punch.

• Punch radius (RP ): it is the radius of punch that stays in contact with the
sheet during the bending process.

• Offset distance (s): it is the distance between imaginary (predetermined) bend
line determined by MD and edge of the blank holder (or support).

27



Table 4.1: Base values and a full list of values for each parameter under study

Parameters Baseline value Full list of values

Kerf-to-thickness (k/t) ratio 0.3 0.2, 0.3, 0.4, 0.5

Sheet thickness [mm] 1.628 1.628, 2.304, 3.264

Web-to-width (w/b) ratio 0.28 0.28, 0.40, 0.52

Offset distance (s) [mm] 3 3, 6, 9

Punch placement (g) [mm] 23 13, 18, 23

Punch radius (RP ) [mm] 3 1, 2, 3

Note that these parameters are common to all OSM bending and MDs. Fig.
1.2 and Fig. 4.1 illustrate process parameters and these generic design parameters
of MD with the example of MD-3, respectively.

4.5 FEA of OSM bending

4.5.1 FEA setup and case studies

In this chapter, FEA is performed using the OSM bending configuration
shown in Fig. 1.2 . MD-1, MD-2, and MD-3 are selected from all possible MDs shown
in Fig. 1.1 since these three MDs can be bases for other MD patterns. Baseline
value and a full list of values for each parameter assigned for the simulation are
listed in Table 4.1. In these case studies, we presented studies on single parameter
effect. Therefore, only one parameter is changed at a time while keeping all others
at the baseline value and 42 FEA cases are performed in total.

In order to achieve accuracy in simulation, mesh convergence study was per-
formed on one representative case for each MD and critical mesh size is determined.
Then, all the other cases used the critical mesh size or even finer mesh. The param-
eters of a representative case of each MD are identical to baseline values listed in
Table 4.1 except kerf-to-thickness ratio is set to 0.2. The reason for selecting 0.2 as
representative cases is that the kerf is smallest and mesh convergence on this case
would lead to convergence on larger kerf.

In addition, due to symmetrical nature of MD along the bending line, as
shown in Fig. 4.2, a quarter of MD-1 and MD-2, half of MD-3 has been used in the
simulation.

In FEA, the punch, the support, and the blank holder are modeled as rigid
bodies, and all rigid bodies are discretized with the four-node rectangular element.
The sheet is assigned as a deformable body. It has dimensions of 50 mm×50 mm ×
1.628 (2.304/3.264 mm). Sample dimensions of these MD with baseline values are
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(a) (b) (c)

Figure 4.2: Sample dimension of MD with base values, (a) MD-1; (b) MD-2; (c)
MD-3.

shown in Fig. 4.2. The sheet material is set as an elasto-plastic type with 20 node
hexa-dominant elements.

It is reported [111–113] that generated mesh can affect obtained results and
stress intensity factor. Per their research results, symmetrical and fine mesh around
region along bend line has been generated, see Fig .4.3, where the mesh is shown on
the portion of geometry that symmetry has been applied in order to show details.
Implicit quasi-static finite element method of commercial code Ansys®18 is used
for simulation. The material of the sheet is Aluminum Alloy 2036 (AA-2036), which
has 193-MPa yield strength and 338 MPa for ultimate tensile strength (UTS) [114–
116]. The plastic property of sheet is assumed to be isotropic and described by von
Mises yield criteria. Elasto-plastic isotropic bilinear hardening model is used [117].
Strength coefficient (tangent modulus) and strain hardening coefficient of the sheet
are 589 MPa and 0.216, respectively. The other material properties are tabulated
in Table 4.2.

Simulation is performed with four steps. First, pressure load is applied on
the blank holder as a preparation for bending of the sheet for the next step. Then,
the punch is displaced with given values to accomplish bending of the sheet. Third
and fourth steps are unloading of the sheet, where the punch is moved away from
the sheet and the pressure load is removed.

4.6 Results

4.6.1 Mesh convergence study

Figure 4.4 shows the mesh convergence study result. Refinement of the mesh
is stopped when the difference between refinements lead to less than 4% of the
difference in terms of Von Mises (equivalent) stress.
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Figure 4.3: Meshing. A symmetrical mesh is generated for all cases. In (a) and (b),
right part of the image is cropped to show details of mesh along MD
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Table 4.2: Finite element simulation conditions

Item Description

Object type
Sheet: elastic-plastic

Punch/blank holder/support: rigid

Element type
20-node hexa element for the sheet

4-node rectangular element for rigid bodies

Material property

Al-2036 T4

Ultimate tensile strength, 338 MPa

Young’s modulus (E), 70 GPa

Poisson’s ratio (ν), 0.33

Sheet dimension Length (L), 50 mm; width (w), 50 mm

Sheet thickness (t) 1.628/2.304/3.264 mm (14/11/8 gauge)

Bend angle 90°
Punch radius (Rp) 3/2/1 mm

Friction coefficient (mu) 0.12

Punch motion
g − s− t (mm) in positive X-axis

20 mm in the negative Y-axis

Bend line offset (s) 3/6/9 mm

Gap (g) 23/18/13 mm

4.6.2 Feasibility of OSM bending without die

OSM bending configuration is analogous to cantilever beam where the clam-
ped portion of the sheet represents a fixed end of a cantilever beam and the motion
of the punch can be seen as a load applied at a certain point on the beam. Unlike
the bending of the cantilever beam, the blank sheet in OSM bending configuration
is in fact clamped at the virtual bend line due to the application of MD and the
offset distance, s, as shown in Fig. 1.2. As a result, the bending takes place along
the location where MD is applied as the punch starts its motion. With this principle
in mind, the punch is initially positioned 20 mm away to the left of the bend line,
and the offset distance s is set to 3 mm in the FEA setup. To bend blank sheet into
90° the punch moves g − s − t distance in the positive X-axis and 20 mm in the
negative Y -axis direction. The different MDs on a 90° bent sheet are shown in Fig.
4.5. These results confirm the feasibility of bending sheets without using a die in
OSM bending process.

31



(a) (b) (c)

Figure 4.4: Mesh convergence study results

4.6.3 Effect of kerf-to-thickness (k/t) ratio

A group of 12 FE simulations is performed to investigate the effect of k/t
ratio. For each MD type considered, the k/t ratio is changed from 0.2 to 0.5 and
all other parameters are kept at the same baseline value tabulated in Table 4.1.
Figure 4.6 and Table 4.3 show the results of maximum bending force requirement,
maximum Von-Mises stress along the bend line, and final bend angle after springback
with respect to different k/t ratios. From Fig. 4.6, it can be seen that the stress has
a decreasing trend as the k/t ratio increases. This is because of two reasons. First,
an increase in the k/t ratio creates a larger gap between opposite edges (surfaces) of
MD. A larger gap leads to a reduced possibility of contact between opposite edges
(surfaces) of MD [17]. Secondly, larger curvature radius at the ending of the MD
have less drastic curvature change with larger k/t ratio and this allows the applied
force to translate to the sheet body more smoothly. The force and stress on MD-3 is
the least among the three MD types, since the oblique shape of MD-3 with respect
to bending line spans from one half of the blank sheet to the other half with large
radius curvature, MD-3 experiences torsion in addition to bending while MD-1 and
MD-2 is subjected to only bending. The results show that MD-3 can translate the
forces easily to the sheet body rather than concentrating it on the small area around
the bend line. The results also showed that the stress on MD-2 is smaller than the
one resulted in the MD-1 regardless of k/t ratio. The large opening circle at the end
of MD-2 has played the role of relieving stress. The final angle after springback of
all MDs is little influenced by k/t ratio.

4.6.4 Effect of sheet thickness (t)

The effect of thickness on OSM bending is investigated by performing nine
FEA for three different thicknesses, those are 1.628 mm, 2.304 mm, and 3.264 mm.
The results of sheet thickness effect are shown in Fig. 4.7 and Table 4.4. The
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Figure 4.5: The resulted von misses stress along the different MD bend lines, (a)
MD-1; (b) MD-2; (c) MD-3.
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Figure 4.6: Effect of kerf-to-thickness (k/t) ratio

Table 4.3: Effect of kerf-to-thickness (k/t) ratio

Simulation Condition Results

MD Base Bending Von Mises Angle After

type values kerf-to-thickness force stress springback

(k/t) ratio (N) [MPa] [°]
MD-1 t=1.628 (mm) 0.2 264.6 995.7 95.67

w/b=0.28 0.3 259.5 860.7 95.58

s=3 (mm) 0.4 260.5 786.8 95.59

g=23 (mm) 0.5 256.0 727.8 95.62

MD-2 RP=3 (mm) 0.2 251.5 694.8 95.59

0.3 243.2 608.5 95.67

0.4 244.2 563.6 95.78

0.5 238.7 524.3 95.78

MD-3 0.2 42.9 453.3 96.29

0.3 36.4 423.3 95.33

0.4 37.1 427.3 96.33

0.5 35.3 420.9 96.76
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Figure 4.7: Effect of sheet thickness (t)

results show that the thicker sheets require significantly higher bending force as
expected. The stress generated along the bend line is slightly increased for thicker
sheets for all three MDs. This is apparently associated with patterns each MD
has, particularly with the curvature of endings in MD. The springback exhibited a
consistently increasing trend in all MD cases, though there is a little fluctuation of
springback angle on MD-3. This irregularity might be caused by the rate of change
in thickness and shape of MD.

4.6.5 Effect of web-to-width ratio (w/b)

We investigate the web-to-width ratio for three different values for each MD,
total of nine cases. The web-to-width ratios are 0.28, 0.4, and 0.52. Figure 4.8
illustrates the results, and Table 4.5 lists the simulation results and conditions.
The results show that a larger w/b ratio requires a higher magnitude of bending
force. This can be explained by the fact that a larger w/b ratio means a longer web
remained after cutting out MD along the sheet width. Hence, a longer web between
two neighboring MD obviously generates more resistance to bending. As for the
stresses generated, it increased slightly. This implies that a reasonable change in the
web dimension does not affect the stress on the bend line. The reasonable change
determined by the certain distance between the two ends of MD. This distance
should be large enough to prevent interference of stress at one end of MD with
stress at another end. Interesting to notice that stresses on MD3 decreases as w/b
ratio increases; however, stresses on MD-1 and MD-2 stated constantly. The reason
is again related to the shape of MD-3 where larger w/b ratio can allow bending forces
to pass through larger web area, which would alleviate the stress concentrations on
the web. On the other hand, maximum stresses on MD-1 and MD-2 are located
at the end of MDs, thus increasing w/b ratio does not influence stress result. The
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Table 4.4: Effect of sheet thickness (t)

Simulation Condition Results

MD Base Changing parameters Bending Von Mises Angle After

type values sheet thickness force stress springback

(t) (N) [MPa] [°]
MD-1 k/t=0.3 (mm) 1.628 259.5 860.7 95.58

w/b=0.28 2.304 566.8 874.1 96.06

s=3 (mm) 3.264 1225.5 904 97.14

MD-2 g = 23 (mm) 1.628 243.2 608.5 95.67

RP=3 (mm) 2.304 526.3 633.5 96.27

3.264 1138.7 653.3 97.37

MD-3 1.628 36.4 423.4 96.33

2.304 36.4 452.5 95.54

3.264 159.1 448.1 96.91

increase in the w/b ratio leads to higher springback angle in the three studied cases of
the MD. However, the change in angle magnitude is fairly small with approximately
0.5° increase for MD-1 and MD-2 compared to MD-3. Note that MD-1 and MD-2
behaves similarly. This is because MD-1 and MD-2 have a very similar shape and
MD-3 is much different.

4.6.6 Effect of offset distance (s)

To study the effect of the offset distance, this work investigated three offset
distances, namely 3 mm, 6 mm, and 9 mm. Fig. 4.9 and Table 4.6 show the effect of
different offset distances on OSM bending. The bending force is increased as larger
offset distance is used in bending. The increase in bending force is caused by the
reduction of the distance between the punch and virtual bending line determined by
MD. Hence, a larger force is needed to achieve the same amount of bending moment.
No variation in stress is expected for the increase of s. Results show a slight increase
of springback angle for all cases, and magnitude of increment is similar for MD-1
and MD-2. This implies again that the shape of the MD plays role in springback.

It is also noted that offset distance (s) increased the tendency of bending with
respect to the clamped point (edge of blank holder or support), see Fig. 4.10(a). In
order to illustrate the changes in the magnitude of vertical displacement of the sheet
with respect to the clamping point, a vertical displacement of the edge is evaluated
with different offset distance in Fig. 4.10(b), (c) during the bending step (second

36



Figure 4.8: Effect of web-to-width ratio (w/b)

Table 4.5: Effect of web-to-width ratio (w/b)

Simulation Condition Results

MD Base Changing parameters Bending Von Mises Angle After

type values web-to-width force stress springback

ratio (w/b) (N) [MPa] [°]
MD-1 k/t=0.3 (mm) 0.28 259.5 860.7 95.58

t=1.628 0.4 380.3 864.5 95.77

s=3 (mm) 0.52 460.1 862.0 95.99

MD-2 g = 23 (mm) 0.28 243.2 608.5 95.67

RP=3 (mm) 0.4 345.5 610.1 95.89

0.52 440 610.0 96.14

MD-3 0.28 36.4 423.4 96.33

0.4 87.8 381.2 96.9

0.52 159.6 368.3 96.62
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Figure 4.9: Effect of offset distance (s)

load step of simulation). It shows that the displacement magnitude increased as the
offset distance is raised to 9 mm. However, it is found that the magnitude of this
vertical movement is negligible compared to total displacement happened during
bending. Therefore, the tendency to bend with respect to clamping point can be
neglected.

4.6.7 Effect of punch placement (g)

This work considers three different scenarios for the effect of placing the punch
at various locations, denoted by (g). The distance between the punch and edge of
the blank holder (or support) is set to 13 mm, 18 mm, and 23 mm, respectively. All
other processing and design parameters are kept at constant baseline values. The
results in Fig. 4.11 and Table 4.7 show that required bending force is reduced as
the punch placement location (g) increases. This is due to the fact that obtaining
the same amount of bending moment requires less amount of bending force when
the force arm increases. In addition, the stress level and springback angle in all MD
stayed without significant change.

4.6.8 Effect of punch radius (RP )

This work evaluated three different punch radiuses, denoted by RP . The
values are set to 1 mm, 2 mm, and 3 mm, respectively. The results are shown in
Fig. 4.12 and Table 4.8, suggesting that stress stayed at the same level. Bending
force and spring back slightly increased with the change in the punch radius. The
changes in the bending force magnitude are related to the change in contact area
between the punch radius and the sheet during the bending process.
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Table 4.6: Effect of offset distance (s)

Simulation Condition Results

MD Base Changing parameters Bending Von Mises Angle After

type values Offset distance force stress springback

(s) (N) [MPa] [°]
MD-1 k/t=0.3 (mm) 3 259.5 860.7 95.58

t=1.628 (mm) 6 272.4 856.4 96.23

w/b=0.28 9 320.6 854.3 96.88

MD-2 g=23(mm) 3 243.2 608.5 95.67

RP=3 (mm) 6 254.0 602.7 96.43

9 284.3 603.6 97.05

MD-3 3 36.4 423.4 96.33

6 37.0 414.3 96.39

9 40.1 418.6 96.57

Table 4.7: Effect of punch placement (g)

Simulation Condition Results

MD Base Changing parameters Bending Von Mises Angle After

type values Offset distance force stress springback

(s) (N) [MPa] [°]
MD-1 k/t=0.3 (mm) 23 259.3 861.4 95.56

t=1.628 (mm) 18 281.3 861.6 95.73

w/b=0.28 13 342.6 860.7 95.58

MD-2 g=23(mm) 23 243.2 608.5 95.67

RP=3 (mm) 18 263.9 607.3 95.72

13 319.3 609.5 95.86

MD-3 23 36.4 423.4 96.32

18 40.5 420.0 96.17

13 52.6 418.7 96.20
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(a)

(b)

(c)

Figure 4.10: Evaluation of tendency to bend with respect to clamping point, (a) the
tendency to bend with respect to clamping point of the sheet; (b) Y displacement
is evaluated on edge shown. This is the case for MD-1; offset distance is equal to 6
mm; (c) Y displacement of the designated edge in MD-1 is plotted in the bending
process (second load step) of the simulation.
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Figure 4.11: Effect of punch placement (g)

Figure 4.12: Effect of punch radius (RP )
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Table 4.8: Effect of punch radius (RP )

Simulation Condition Results

MD Base Changing parameters Bending Von Mises Angle After

type values Punch radius force stress springback

(RP ) (N) [MPa] [°]
MD-1 k/t=0.3 (mm) 3 259.5 860.7 95.58

t=1.628 (mm) 2 255.9 860.6 95.42

w/b=0.28 1 246.7 862.2 95.34

MD-2 s=3(mm) 3 243.2 608.5 95.67

g=23 (mm) 2 240.4 606.7 95.55

1 230.1 606.7 95.41

MD-3 3 36.4 423.4 96.33

2 41.9 422.4 96.13

1 34.7 415.3 96.02

4.6.9 General recommendation

Based on the discussed results, some general recommendation can be made
regarding OSM bending parameters. The stress generated along the bend line is
caused by the size of the curvature radius at the end of a specific MD. A lager
k/t ratio leads to a greater curvature radius. Hence, a large k/t ratio should be
selected in order to have less stress concentration after bending. For achieving
reduced bending force, the web-to-width (w/b) ratio and thickness should be kept
small as long as the stress level is not affected by it. A smaller offset distance (s) is
good for higher accuracy of bending. The punch position (g) in the OSM bending
configuration should be as large as possible for decreasing bending force as well
as the sliding surface contact between the punch and the blank sheet. However,
it should be kept in mind that punch placement (g) should guarantee the contact
between the punch radius and the sheet surface. Otherwise, it causes undesired
contact between edges of the blank sheet and the punch surface at certain point. As
for the punch radius, it has a little effect on OSM bending and proper radius can
be selected based on the specific problem.

4.7 Summary

This chapter shows that OSM bending is possible without die. The intro-
duced MD can play the role of a die in a bending process by determining the bending
line. Therefore, OSM bending has a significant impact on bending, especially in the
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mass production settings for sheet metal parts. In order to investigate the effect of
OSM parameters, three OSM design parameters and three process parameters are
presented in this investigation. The findings indicate each parameter has a different
impact on OSM bending. The general recommendation is made on the selection
of studied parameters. It is found that shape of MD plays an important role and
it is observed that similar MDs exhibit a similar trend, leading to the conclusion
that there is a difference in the deformation mode along the bend line caused by the
selected shape of the MD.
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Chapter 5

FORCE PREDICTION MODEL FOR OSM BENDING
PROCESS

5.1 Background

Force prediction during a sheet metal forming process is of crucial impor-
tance during the fabrication process. Literature shows various approaches to predict
the necessary manufacturing force requirements for sheet metal forming, including
bending. The approaches are based on experimental methods, analytical analysis,
regression techniques such as response surface method (RSM), or a combination of
these techniques.

Wang et al. [118] reported a detailed mathematical force prediction model
for the air bending process. The inputs required for the model are the material
properties, bending tool dimensions, and bending process parameters. The bending
force is one of the four outputs of the model. Zhang et al. [119] presented an
analytical model to predict the bending force for plane-strain bending of a metal
sheet. The model is very general and can be used for any deformation where both
bending and stretching exist.

Marciniak et al. [120] discussed the sheet metal bending process in detail,
including load type, springback, and choice of material model. Singh et al. [121]
showed an analytic force prediction model for the three-point bending process. The
model was refined and exhibited better agreement with an experiment reported
in [38]. Boljanovic [22] showcased bending force empirical prediction models for
wiping die bending, U-die bending, and air bending. However, the derivation process
of these models is not detailed. Narayanasamy et al. [122] reported a method that
uses RSM regression to predict the necessary bending force in air bending. The
RSM regression model takes five process parameters as inputs. More specifically,
the inputs are the punch travel, strain hardening exponent, punch radius, punch
velocity, and width of the sheet. Malikov et al. [123] reported a bending force
requirement for the air bending process on structured sheet metal. They developed
an analytical model to predict the maximum bending force in air bending.

On the other hand, Farsi et al. [75] presented a bending force prediction
model for air bending of sheet metal with holes. This model considers the effective
width of the sheet, the radius of the hole, and the angle factor as parameters to
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predict the bending force magnitude. Srinivasan et al. [124] presented a bending
force prediction model for air bending by using RSM regression. Inputs to this model
include the sheet metal strain-hardening exponent, coating thickness, die opening,
die radius, punch radius, punch travel, and punch velocity. The outputs of the
model are bending force and bending angle. Chudasama et al. [125–127] developed
a mathematical model to predict the maximum bending force in the 3-roller bending
process, while Vorko et al. [128–130] presented a bending force prediction model for
air bending taking multi-breakage effect during the forming process into account.

The literature reveals that the state-of-the-art still lacks the understanding
of the force requirements for sheet metal bending and its correlation to the MD
geometry. The ability to correctly predict the required force to bend a sheet with
a certain thickness and MD features enables the successful implementation of this
manufacturing technique. It can also reveal the operation limits of the OSM bending
tool. In addition, estimating the bending force is necessary for design consideration
and safety concerns during the fabrication.

In the literature presented above, the bending force is predicted using a tradi-
tional punch-die bending configuration in addition to using a sheet with continuous
material, i.e., without MDs. However, in OSM bending analysis, the introduction
of MDs and the new bending setup without the punch-die configuration can alter
the bending force requirements [76, 131]. Therefore, further investigations need to
be carried out to estimate the bending force in the OSM bending process. These
investigations need to consider the parameters of the MDs and the OSM bending
process factors such as the offset distance, sheet thickness, and punch placement.

The objective of this chapter is to present a prediction model for OSM bend-
ing force that can assist the evaluation of manufacturing needs for certain sheet
metal thickness and a specific MD design. The bending force can be a function of
the mechanical properties of the sheet, the geometrical configuration of the bending
setup, and features of the MDs.

5.2 Modeling of bending force

This section develops a prediction model to estimate the force requirements
for OSM bending by combining information from an analytical analysis and exper-
imental data. The procedure to obtain the prediction model is as following: 1) an
analytical force analysis is performed on a sheet assuming no MD is applied. Bend-
ing force is derived with moment equilibrium condition on a cross-section of the
sheet placed in the OSM bending setup. 2) OSM bending experiment is conducted
to measure the bending force under combinations of different bending configuration
and parameters. The goal is to collect bending force measurement data for regres-
sion analysis, in addition to identifying which parameters influence the bending force
significantly. 3) A regression model is purposed to find OSM bending force, which
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Figure 5.1: Forces on a cross-section parallel to the X-Y plane

considers OSM bending parameters that were identified as significant using the ex-
perimental data. The purposed OSM bending force formulation contains variables
corresponding to MD parameters, material properties, OSM bending configuration,
and regression coefficients. The OSM bending force measurement during the experi-
ment is divided into two sets. One set is used to determine the regression coefficients,
and the other set is used to validate the OSM bending force prediction model.

5.2.1 Analytical force analysis

For the analytical force analysis, the OSM bending force is derived using
moment equilibrium applied on a sheet with no MDs in an OSM bending configura-
tion. Under these conditions, a cross-section of the sheet parallel to the XY plane
is selected, as shown in Fig. 5.1. A general bending state where the sheet is bent to
an angle θ is considered and a segment of the sheet cross-section is analyzed. The
free-body diagram of the analyzed section of the sheet is illustrated in Fig. 5.1.

Initially, the punch contacts the blank at point A, while the punch is posi-
tioned at a distance g from the blank holder (or support). The bending line indicated
with a dashed line is crossing point O and has an offset distance s from the blank
holder and support. At the final bending stage, when the sheet is bent to an angle
of θ, the punch is in contact with the sheet at point A′. Up to this stage, the punch
has traveled ∆x, ∆y along the positive X-axis and negative Y -axis, respectively.
The magnitude of the bending force exerted by the punch on the blank at point A′

is equal to Fb , at an angle of γ from the X-axis.

46



The following assumptions are made during the analysis: (a) During bend-
ing, the sheet material is assumed to undergo isotropic hardening. Therefore, the
yield surface keeps its shape but expands uniformly with increasing stress. The
nonlinearity of the sheet material obeys the Von Mises criterion and associated flow
rule; (b) The sheet is sufficiently wide in the dimension along the Z-axis, which
is perpendicular to the sheet cross-section shown in Fig. 5.1. Hence, the change
in the width can be neglected, which implies plane-strain condition; (c) The stress
component normal to sheet surface is zero, i.e., the plane stress condition holds; (d)
The stress-strain characteristics of the sheet material are the same in tension and
compression; (e) The neutral axis is always in the middle of the sheet thickness. The
cross-section plain remains plane and normal to the neutral axis during bending; (f)
The sheet does not undergo any thinning; hence the thickness remains constant
during the bending; (h) Bauschinger effect is not considered.

Under the assumptions above, the OSM bending process occurs under defor-
mation mode with plane strain [ε1; ε2 = βε1 = 0; ε3 = −(1 + β)ε1] and plain strain
[σ1;σ = ασ1 = 1

2
σ1;σ3 = 0] where the subscript 1, 2, 3 denote principle directions,

α and β are stress ratio and strain ratio, respectively.
The values of stress ratio and strain ratio are α = 1

2
, β = 0 under plane strain

and plane stress condition. Thus, the equivalent strain, ε̄, can be written as in Eq.
(5.1),

ε̄ =

√
4

3
(1 + β + β2)ε1 =

2√
3
ε1. (5.1)

For the analysis, the Von Mises yield criteria, which relates the flow stress,
σf , and equivalent stress, σ̄, takes the form as in Eq. (5.2)

Von Mises yield criteria,√
1

2
[(σ1 − σ2)2 + (σ2 − σ1)2 + (σ3 − σ1)2] = σf = σ̄, (5.2)

Under plane stress condition where the principal stresses are σ1 6= 0, σ2= ασ1,
σ3 = 0, α = 1

2
, Eq. (5.2) can be simplified to Eq. (5.3),

σ̄ =
√

(1− α + α2)σ1 =

√
3

2
σ1, (5.3)

which then can be written as

σ1 =
2√
3
σ̄. (5.4)

The sheet material is assumed to follow the power-law work hardening as in
Eq. (5.5), where K is the strength coefficient, and n is strain hardening exponent
of a material.
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σ̄ = Kε̄n (5.5)

Equivalent stress on the sheet can be obtained by substituting Eq. (5.1) into
Eq. (5.5) to yield Eq. (5.6)

σ̄ = K(
2√
3
ε1)n. (5.6)

The internal moment generated on the sheet is given in Eq. (7) [120],

Minternal =

∫ t
2

− t
2

σ1ydy, (5.7)

where y is the distance from the neutral axis to a strip of sheet thickness dy, and
σ1 × dy × 1 is the tension force acting on the strip of the sheet with unit width.

By substituting Eq. (5.4), and Eq. (5.6) into Eq. (5.7) and simplifying the
equation, the internal moment can be expressed as in Eq. (5.8),

Minternal = 2K(
2√
3

)(n+1)

∫ t
2

0

εn1ydy. (5.8)

Assuming principal strain ε1 ≈ y
ρ
, where ρ is the radius of curvature and

y = t
2
, Eq. (5.8) can be expressed as in Eq. (5.9),

Minternal = K(
1√
3

)(n+1)(
1

ρ
)n
t(n+2)

n+ 2
. (5.9)

To obtain the external moment generated by the punch on the sheet, we
analyze the moment of bending force, Fb, about point O as expressed in Eq. (5.10),

Mexternal = Fbsin(γ)(g − s−∆x) + Fbcos(γ)∆y. (5.10)

Based on the trigonometry relationship given in Eq. (5.11), Eq. (5.10) can
be expressed as in Eq. (5.12),

∆y = sin(θ)
√

(g − s−∆x)2 + (∆y)2, (5.11)

Mexternal = Fbsin(γ)(g−s−∆x)+Fbcos(γ)sin(θ)
√

(g − s−∆x)2 + (∆y)2. (5.12)

Based on moment equilibrium condition, equating the internal moment in
Eq. (5.9) to the external moment in Eq. (5.12) will result in Eq. (5.13),
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K( 1√
3
)(n+1)(1

ρ
)n t

(n+2)

n+2
=

Fbsin(γ)(g − s−∆x) + Fbcos(γ)sin(θ)
√

(g − s−∆x)2 + (∆y)2.
(5.13)

Solving Eq. (5.13) for Fb, we obtain the bending force acting on the sheet as
in Eq. (5.14).

Fb =

K( 1√
3
)(n+1)(1

ρ
)n t

(n+2)

n+2
1

sin(γ)(g−s−∆x)+cos(γ)sin(θ)
√

(g−s−∆x)2+(∆y)2
. (5.14)

Assuming the radius of curvature is small in OSM bending and is equal to
the sheet thickness, t. Eq. (5.14) can be expressed as in Eq. (5.15)

Fb =

K( 1√
3
)(n+1) t(n+2)

n+2
1

sin(γ)(g−s−∆x)+cos(γ)sin(θ)
√

(g−s−∆x)2+(∆y)2
. (5.15)

Eq. (5.15) is the concluded analytical form of bending force required for a
sheet without MDs to bend the sheet with an angle of θ using the OSM bending
setup.

5.3 OSM bending experiment

5.3.1 Experimental setup

An experiment is designed to measure the OSM bending force magnitude
required to bend a sheet with MD. During the experiment, the needed force to bend
the sheet from a flat state to 90° was continuously measured. The CNC machining
center–DMG Mori NMV1500 shown in Fig. 5.2–is used to achieve OSM bending.
The CNC controlled relative motion between the punch and sheet. Two fixtures
are designed to hold the sheet and the punch. One fixture is mounted on the CNC
spindle to hold the sheet. The other fixture is installed on a Kistler three-component
dynamometer to hold the punch. The dynamometer is screwed on the CNC bed.
During the bending process, the CNC spindle controls the motion of the sheet. As
a result, the sheet moves against the punch, which is the opposite of the schematic
shown in Fig. 1.2. The experiment is set up in this way due to the impracticality of
installing the dynamometer on the spindle. However, the current experiment setup
still provides the same force measurement because the relative motion between the
punch and the OSM specimen does not change. To collect data from the Kistler
Type 9257B Dynamometer, a Yokogawa SL-1000 data acquisition unit is used to
collect three voltage signals – one for each of the orthogonal directions. The voltage
readings can then be converted to force (in Newtons).
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(a)

(b) (c)

Figure 5.2: OSM bending experiment CNC setup, (a) CNC machining center and
realization of OSM bending process; (b) Details of the spindle and punch fixtures; (c)
Kistler three-component dynamometer type 9295B used to measure bending force
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The experiment is performed on three different configurations of MDs. MD-
1, MD-2, and MD-3 are shown in Fig. 4.2. These three MDs are studied since
they are the bases for other MDs. The used sheet material for the samples is
aluminum alloy 6061-O temper. To fabricate the MDs, a micro waterjet cutting
with a tolerance of ±0.025 (mm) was used. The sheet specimen dimensions are
50 (mm) × 50 (mm) in length and width, respectively. MDs were applied in the
middle of the sheet, as shown in Fig. 4.2. There are three different thicknesses for
the sheet specimens. To achieve precise bending, the thickness of the sheet before
the experiment is measured. The measured thicknesses were 1.548 (mm), 2.228
(mm), and 3.192 (mm), respectively.

5.3.2 Experimental plan

In chapter 4, we identified the significant parameters that influence the OSM
bending process. It is found that OSM bending force is influenced by an offset
distance (s), punch placement (g), web-to-width ratio (w/b), and sheet thickness
(t). In this chapter, these parameters are taken into consideration during the OSM
bending force formulation.

Table 4.1. lists investigated parameters, baseline value, and a full list of the
investigated values for each parameter. In this experiment, only one parameter is
changed at a time while keeping all others at the baseline value. Thus, 42 different
cases (i.e., samples) were considered. Each case is tested with three repetitions; thus
126 experiment runs are performed. Table 5.1 lists the 42 cases with each associated
OSM parameter, while the changed parameters are indicated by bold font.

Table 5.1: The details of each conducted experiment case with the assigned param-
eters. In total 42 cases were experimented with three repetitions for each case.

Case No. Name k/t
s g Rp t

w/b
[mm] [mm] [mm] [mm]

1 MD-1-k-t-0.2 0.2 3 23 3 1.548 0.28

2 MD-1-k-t-0.3 0.3 3 23 3 1.548 0.28

3 MD-1-k-t-0.4 0.4 3 23 3 1.548 0.28

4 MD-1-k-t-0.5 0.5 3 23 3 1.548 0.28

5 MD-2-k-t-0.2 0.2 3 23 3 1.548 0.28

6 MD-2-k-t-0.3 0.3 3 23 3 1.548 0.28

7 MD-2-k-t-0.4 0.4 3 23 3 1.548 0.28

8 MD-2-k-t-0.5 0.5 3 23 3 1.548 0.28

9 MD-3-k-t-0.2 0.2 3 23 3 1.548 0.28

10 MD-3-k-t-0.3 0.3 3 23 3 1.548 0.28
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11 MD-3-k-t-0.4 0.4 3 23 3 1.548 0.28

12 MD-3-k-t-0.5 0.5 3 23 3 1.548 0.28

13 MD-1-offset-6 0.3 6 23 3 1.548 0.28

14 MD-1-offset-9 0.3 9 23 3 1.548 0.28

15 MD-2-offset-6 0.3 6 23 3 1.548 0.28

16 MD-2-offset-9 0.3 9 23 3 1.548 0.28

17 MD-3-offset-6 0.3 6 23 3 1.548 0.28

18 MD-3-offset-9 0.3 9 23 3 1.548 0.28

19 MD-1-punch-place-13 0.3 3 13 3 1.548 0.28

20 MD-1-punch-place-18 0.3 3 18 3 1.548 0.28

21 MD-2-punch-place-13 0.3 3 13 3 1.548 0.28

22 MD-2-punch-place-18 0.3 3 18 3 1.548 0.28

23 MD-3-punch-place-13 0.3 3 13 3 1.548 0.28

24 MD-3-punch-place-18 0.3 3 18 3 1.548 0.28

25 MD-1-punch-radi-1 0.3 3 23 1 1.548 0.28

26 MD-1-punch-radi-2 0.3 3 23 2 1.548 0.28

27 MD-2-punch-radi-1 0.3 3 23 1 1.548 0.28

28 MD-2-punch-radi-2 0.3 3 23 2 1.548 0.28

29 MD-3-punch-radi-1 0.3 3 23 1 1.548 0.28

30 MD-3-punch-radi-2 0.3 3 23 2 1.548 0.28

31 MD-1-thickness-2.288 0.3 3 23 3 2.288 0.28

32 MD-1-thickness-3.192 0.3 3 23 3 3.192 0.28

33 MD-2-thickness-2.288 0.3 3 23 3 2.288 0.28

34 MD-2-thickness-3.192 0.3 3 23 3 3.192 0.28

35 MD-3-thickness-2.288 0.3 3 23 3 2.288 0.28

36 MD-3-thickness-3.192 0.3 3 23 3 3.192 0.28

37 MD-1-w-b-0.4 0.3 3 23 3 1.548 0.4

38 MD-1-w-b-0.52 0.3 3 23 3 1.548 0.52

39 MD-2-w-b-0.4 0.3 3 23 3 1.548 0.4

40 MD-2-w-b-0.52 0.3 3 23 3 1.548 0.52

41 MD-3-w-b-0.4 0.3 3 23 3 1.548 0.4

42 MD-3-w-b-0.52 0.3 3 23 3 1.548 0.52

The parameters considered are the kerf-to-thickness ratio (k/t), the thickness
of the sheet (t) and the web-to-width ratio (w/b), punch placement (g), punch radius
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(Rp) and offset distance from the bending line (s). These parameters are illustrated
in Fig. 1.2 and Fig. 4.1 and further explained below for the convenience:

• The thickness of the sheet (t): it refers to the thickness of the sheet material
used.

• Kerf-to-thickness ratio (k/t): it is the ratio between the kerf (k) and the sheet
thickness (t). Kerf is the cutting width that the laser or water jet cut out of
the sheet.

• Web-to-width ratio (w/b): the ratio between the web (w) and the width of the
sheet (b). web (w) is defined as the remaining distance between two consecutive
MDs after the removal of the material along the bend line to create MD. It is
the section that connects neighboring MD along the bend line. The length of
the web is measured along the bend line.

• Punch placement (g): the distance between the blank holder and punch.

• Punch radius (Rp): the radius of punch at the region that stays in contact
with the sheet.

• Offset distance (s): it is the distance between the imaginary (predetermined)
bend line determined by MD and the edge of the blank holder (or support).

5.3.3 OSM bending experiment results

The measurement data of the OSM bending force is plotted against the bend-
ing angle. The results are shown in Fig. 5.3-Fig. 5.8. The force magnitude rep-
resents an averaged force from three repetitions of the same experiment case listed
in Table 5.1. The individual OSM bending force curves are compared to evaluate
the repeatability of the experiment before the average is calculated from the three
repetitions. Good repeatability, as shown in Fig. 5.9 has been observed for all cases.
In Fig. 5.9, the three repetitions for one case are labeled with the full name of the
case in addition to letters A, B, and C. The comparison among the replications A,
B, and C indicates the excellent repeatability of the experimental measurement.

The experiment confirms that the magnitude of OSM bending force is affected
by the sheet thickness (t), web-to-width (w/b) ratio, offset distance (s), and punch
placement (g) as in Chapter 4. The remaining two parameters–punch radius (Rp)
and kerf-to-thickness ratio (k/t)–have shown little effect on OSM bending force.
Hence, in the final formulation of OSM bending force, kerf-to-thickness ratio (k/t)
and punch radius (Rp) are excluded.

Further, Eq. (5.15)—the analytical bending force for a sheet without MD—already
includes the impact of these three parameters. These parameters are the punch
placement (g), offset distance (s), and the sheet thickness (t). The mechanics of
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Figure 5.3: Kerf-to-thickness (k/t) ratio impact on OSM bending force per MD
type.

Figure 5.4: The impact of sheet thickness (t) on OSM bending force per MD type
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Figure 5.5: Impact of web-to-width (w/b) ratio on OSM bending force per MD type

Figure 5.6: The impact of offset distance (s) on OSM bending force per MD type
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Figure 5.7: The impact of punch placement (g) on OSM bending force per MD type

Figure 5.8: The impact of punch radius (Rp) on OSM bending force per MD type
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Figure 5.9: Repeatability of experiment

the bending operation suggest that the bending angle theta (θ), the web-to-width
ratio (w/b), and the MD type have an influence on the magnitude of OSM bending
force. Therefore, these parameters must be incorporated in the final form of the
OSM bending force prediction model. Consequently, the final OSM bending force,
F , is a function of Fb as listed in Eq. (5.15), bending angle theta (θ), web-to-with
ratio (w/b), and MD type as listed in Eq. (5.16),

F = f(Fb, θ, w/b,MD). (5.16)

5.3.4 OSM bending force formulation through regression

To find the explicit form of OSM bending force F in Eq. (5.16), the function
form is shown in Eq. (5.17) is proposed.

F = c1F
c2
b sin(θ)c3wc4e . (5.17)

In Eq. (5.17), θ is bending angle, we is the effective width of the sheet along
the bending line after applying MD. we is equal to b, the width of the sheet, multi-
plying web-to-width-ratio, w/b. Except for MD type, each independent variable in
Eq. (5.16) is correlated to OSM bending force, F , through an exponential function.
MD type is considered as a categorical variable in the regression process, and it
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represents the shape factor of each MD. Constants c1, c2, c3, c4 are the coefficients
that need to be determined through regression.

To obtain the constants in Eq. (5.17) and validate Eq. (5.17), the OSM
bending force measured data is divided into two sets. One set is made of 34 cases
and used to find the constants in Eq. (5.17). The remaining eight cases constitute
the validation set. The experiment cases are numbered from 1 to 42, starting from
the top of Table 5.1. The validation set includes case No. 4, 8, 12, 14, 21, 29, 32,
40 listed in Table 5.1. These eight-cases in the validation set are selected in such
a way that they represent the variance of MD type and all six different parameters
considered in the experiment.

In the regression process, 50 equal-distanced data points—consisting of bend-
ing angle and force magnitude—are extracted from each experiment case measure-
ment Thus, the extracted data points represent the full range of the OSM bending
process from 0° to 90°.

The regression process is carried out in MATLAB using the built-in regression
function “fitlm”. The nonlinear Eq. (5.17) is linearized by taking the natural
logarithm, as shown in Eq. (5.18),

lnF = lnc1 + c2lnFb + c3lnsin(θ) + c4ln(we). (5.18)

In addition, the type of MD is given as a categorical variable in “fitlm” func-
tion. The regression yields the following coefficients, c1=0.6, c2=0.93817, c3=0.4392,
c4 = 1.1368 for MD-1. The coefficient c1 is a shape factor that changes as the MD
type changes. Thus, the value of c1 for MD-2 and MD-3 are identified to be 0.591 and
0.107, respectively. Therefore, the regression provided three equations representing
each MD, respectively.

The final form of the OSM bending force equation can be written as presented
in Eq. (5.19)

F =


0.6F 0.93817

b sin(θ)0.4392w1.1368
e , forMD − 1

0.591F 0.93817
b sin(θ)0.4392w1.1368

e , forMD − 2

0.107F 0.93817
b sin(θ)0.4392w1.1368

e , forMD − 3

(5.19)

Eq. (5.19) provided a calculation for each MD type. It should be noted that
only coefficient c1 is different when MD type alters, which shows that c1 is a shape
factor that represents the topology of the MD. The underlying reason why the three
MD has a different value for c1 can be explained by the topology of each respective
MD pattern and the amount of material removed by the MD. The topology of MD-2
differs from MD-1 only at the end of MD-2 where there is an enlarged opening. Due
to this opening, MD-2 has more material removed around the bending line, which
leads to slightly less material resisting bending. Hence, the bending force needed for
bending MD-2 is marginally less than that of MD-1. As for MD-3, the curved cuts
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Table 5.2: Regression statistics

Coefficients Estimated Standard Error tStar pValue

Intercept (lnc1) -0.050945 0.060187 -8.4644 5.4923e−17

c2 0.93817 0.0088213 106.35 0

c3 0.4392 0.0028305 155.17 0

c4 1.1368 0.019313 58.863 0

that span away from the bending line towards the two sides of the sheet resulted in
more material removal around the bending line compared to both MD-1 and MD-2.
In addition, the topology of MD-3 pattern has changed the transmission path of
external force from one half of the specimen to the other. Hence, the bending force
magnitude is much less compared to MD-1 and MD-2.

Eq. (5.19) indicates that the coefficient c1 is the only factor that can change
the magnitude of OSM bending force, provided that the material type, the effective
length, and the bending angle remain the same. This implies that only coefficient
c1 needs to be identified for Eq. (5.19) to be extended to other MDs configurations.
The identification of c1 for other MDs using effective mathematical, statistical, or
numerical methods is in our future research plan.

The adequacy of the proposed model is judged based on the regression statis-
tics in Table 5.2 and the analysis of variances (ANOVA) presented in Table 5.3. R-
squared and Adjusted R-Squared, which is desired to be close to 1, are both equal
to 0.983. This implies the model can explain almost all of the response variable vari-
ation. The pValue for each parameter is under the 0-5% significance level standard,
which indicates that the response variables selected are statistically significant and
it is meaningful to include them in the proposed model. In the next section, the
purposed model is validated using the validation set of experimental measurements.

5.4 Validation

The proposed model presented in Eq. (5.19) is validated against the valida-
tion set of the force measurement that consists of eight experiment cases. These
eight cases are not used in the regression analysis. Similar to the regression process,
50 data points of force-angle pairs are extracted from each of these eight cases for
comparison. The regression model in Eq. (5.19) predicts OSM bending force values
at the derived 50 angles by substituting the coefficients c1, c2, c3, c4. The prediction
results are plotted and compared to the experimental measurements in Fig. 5.10-Fig
5.17.
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Table 5.3: ANOVA statistics

Coefficients Sum Square Degree of Freedom Mean Square F pValue

c2 193.25 1 193.25 11311 0.00

c3 411.35 1 411.35 24077 0.00

c4 59.196 1 59.196 3464.8 0.00

MD 1120.9 1 560.44 32803 0.00

Error 28.942 1694 0.017085 — —

Figure 5.10: Validation of OSM bending force: case MD-1-k-t-0.5
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Figure 5.11: Validation of OSM bending force: case MD-2-k-t-0.5

Figure 5.12: Validation of OSM bending force: case MD-3-k-t-0.5
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Figure 5.13: Validation of OSM bending force: case MD-1-offset-9

Figure 5.14: Validation of OSM bending force: case MD-2-punch-place-13
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Figure 5.15: Validation of OSM bending force: case MD-3-punch-radius-1

Figure 5.16: Validation of OSM bending force: case MD-1-thickness-3.192
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Figure 5.17: Validation of OSM bending force: case MD-2-w-b-0.52

The results show that force prediction is in good agreement with experimental
measurements. The prediction model has good accuracy in small-angle bending. As
the bending angle increases, the predictions deviated from measurements and failed
to follow measurement data closely. However, the deviation is relatively small,
except for case No. 32, which is shown in Fig. 5.16.

Usually, the repeatability of an experiment is suspected of causing the inac-
curacy. Hence, repeatability of case No. 32 is examined as shown in Fig. 5.9. As
mentioned earlier, the three replications shows overlapping results. Hence, repeata-
bility is not a probable cause.

Further analysis showed that the force prediction deviation from experimen-
tal measurement can be categorized into two types. The first type is the prediction
model cannot track experiment data closely, for example, the range 30-50° in Fig.
5.10. The second type, prediction model deviates when changing a particular pa-
rameter, thickness change in Fig. 5.16 for example.

The reason for the first type is that the proposed regression model in Eq.
(5.17) has a sine function that takes the bending angle θ as an independent variable.
Hence, it appears that the sine function dictated the shape of the prediction model.
Consequently, fluctuations in bending force, the range 30-50°in Fig. 5.10, are not
captured closely.

The discrepancy for the second type, shown in Fig. 5.16 for example, is
suspected to be caused by two factors. (a): the term Fb in Eq. (5.19) is function of
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square of OSM specimen thickness, refer to Eq. (5.15). Thus, it may have a higher
weight in OSM bending force compared to other terms in Eq. (5.19). This might
have resulted in a drastic change when changing thickness. (b): the number of values
for the parameters in the experimental data set is three for all parameters except
the kerf-to-thickness (k/t) ratio as tabulated in Table 5.1. For example, the sheet
thickness has only three different values, which are 1.548 mm, 2.288 mm, and 3.192
mm. Only six specimens have thickness values other than 1.548 mm in the whole
study. Thus, the prediction model might not have enough variation to describe the
effect of this parameter.

As a result, the prediction of the regression model is noticeably different when
predicting OSM bending force for a specimen having a different thickness. Hence,
it needs further study to find out the cause and improve the prediction accuracy.

5.5 Summary

A force prediction model is presented for OSM bending and validated through
comprehensive experiments. In addition to the MD type and bending angle, there
are six different parameters considered in this study. These six parameters are
associated with bending configuration and MD design. The experiment confirmed
the bending force is affected by sheet thickness (t), web-to-width ratio (w/b), punch
placement (g), offset distance (s).

It is found that OSM bending force is not affected by kerf-to-thickness (k/t)
ratio, and radius of punch, (Rp). Unlike the other parameters, the MD type is con-
sidered a categorical variable in regression models. Experiment data were divided
into two sets, of which one is used to obtain the regression coefficients in the predic-
tion model; the other is used to validate the model. The prediction model predicts
the bending force for most of the cases well. This model can be used as a design
tool for OSM bending.

The input for the prediction model includes MD type, the effective length
along the bending line, the geometric configuration of the OSM bending setup, sheet
thickness, and material properties such as the strength coefficient, and hardening
exponent. The prediction model serves as an estimation tool for OSM bending based
on the inputs mentioned above, which can be easily obtained.

The prediction model reveals that c1 is a shape factor representing different
MD topologies. This model can be extended to other MDs if the shape factor c1 is
identified. Hence, future improvements of the model will address ways to identify c1

for different MD types and other perforated patterns by mathematical, statistical,
and experimental methods.

Future work can be extended to reducing the gap between prediction and
experimental measurement to capture fluctuations in bending force magnitude.
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Chapter 6

EXPERIMENTAL EVALUATION OF TENSION AND
SHEAR RESPONSES OF MATERIAL

DISCONTINUITIES IN ORIGAMI-BASED SHEET
METAL BENDING

6.1 Background

Chapter 3 and 4 indicate tension and shear are two main load types that
MDs are subjected to during OSM bending. When a sheet with a MD is bent using
OSM bending, generally the outer surface is under tension, and the inner surface is
under compression in addition to observance of shear deformation. As the bending
load concentrates on the MD during the bending process, failure of the sheet mostly
likely happens on the MDs due to the tension or shear load. It is thus imperative
to investigate the responses of the MDs under tension and shear loading to achieve
successful OSM bending operation. Hence, this Chapter aims, firstly, to evaluate the
responses of MDs under tension and shear loads. Secondly, based on the responses
of MDs under tension and shear loads, we attempt to assess if the OSM sheet will
fail during bending using two ductile fracture criteria (DFC). In this process, the
critical values for the two DFC are determined experimentally from standard tests,
and the OSM bending is simulated using finite element analysis (FEA). Thus, this
chapter comparatively studies five different MDs in terms of their tension, shear
load responses, deformation developed on the MDs, and the possibility of failure
occurring during the OSM bending.

6.2 Experimental procedure

6.2.1 Testing method selection

The MDs can be seen as defects or notches in the sheet. In the past, re-
searchers have investigated the effect of various types of discontinuities (notches)
in metal sheets under tension and shear in the context of stress concentration fac-
tor [132], constitutive behavior and large strains [133,134], testing method develop-
ment [135–137], and fracture [138]. The literature shows that the shape of notches
investigated is limited to simple shapes like MD-1 shown in Fig. 1.1. Though var-
ious testing techniques are employed during these studies, we realize that there is
no ready-to-use standard testing method and equipment to measure the load and
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deformation on the OSM sheet when it comes to the OSM bending shown in Fig.
1.2. Therefore, it seemed necessary to design and fabricate special devices to mea-
sure responses of the MDs in terms of loading force and strain. For example, to
control the movement of the punch during the OSM bending, it needs a position
control system. To hold the sheet sample, the test needs a special fixture design
that can be incorporated with force and strain measurement. This would make the
testing process costly and complicated. To cope with this obstacle, we proposed
achieving the goal by using the simple tension and shear tests. In the proposed
tension and shear testing method, the MDs can be easily incorporated into tension
and shear test samples. In addition, simple tension and shear test can be performed
using readily available universal testing machine. The response of the MDs in sim-
ple tension and shear test can reveal the tension and shear behavior of the sheet in
OSM bending operation. The applied force and strain can be conveniently measured
using universal testing machine and full-filed displacements and surface strain field
measurement using a DIC system.

6.2.2 Testing plan

Five different MDs are selected from available topologies shown in Fig. 1.1.
In addition, to provide a valid comparable value, the standard tension and shear
samples with no MD are prepared for benchmarking purposes. The MDs tested in
this study are MD-1, MD-2, MD-3, MD-5, and MD-6. The selected MDs are the
basic topologies and other topologies can be built upon these five designs. In order
to make a fair comparison between MDs with different topologies, it is ensured that
the same length of material is left along the bending line after applying MDs in
the middle of the specimen. The sheet material is aluminum alloy 6061 temper O
(AA 6061-O) with a thickness of 1.6 mm (14 gauge). Each test sample is repeatedly
tested with four specimens to account for repeatability of results. Table 6.1 lists
the loading type, material, MD type, and the number of specimens tested for each
experiment.

6.2.3 Specimen preparation

For the tension test, a sheet type tension specimen is prepared according to
ASTM E8/E8M-9 [139]. Then, the MDs are fabricated in the middle of the speci-
men. The dimensions of the tension specimen and the selected MDs are illustrated
in Fig. 6.1 , where Fig. 6.1 (a) is standard sheet type tension specimen without
any MD, Fig 6.1 (b)-(f) are detailed views of each MD pattern investigated in this
work. The outline dimensions of the tension specimen, such as length (L), width
(W), gauge length (A) etc., are identical to that of sheet type specimen prescribed
in the ASTM E8/E8M-9. The dimensions of MDs are obtained with following
procedure. In first step, a kerf-to-thickness ratio of 0.3 is selected based on litera-
ture [19, 131, 140]. In second step, a proper value for the remaining width of sheet
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Table 6.1: The experimental plan for MD pattern loading. STD. tension (shear)
refers to the standard sheet metal with no MD applied.

Loading MD Material Thickness Repetition for
type type [mm] each MD

Tension

MD-1

AA-6061-O 1.6 4

MD-2

MD-3

MD-5

MD-6

STD. tension

Shear

MD-1

AA-6061-O 1.6 4

MD-2

MD-3

MD-5

MD-6

STD. shear

after applying MDs (denoted by b in the Fig. 6.1). Tension loading specimen details
and MD specification in Fig. 6.1, and Fig. 6.3 are determined considering (a) the
width of specimen (W), (b) the fact that the same amount of material should be left
in order to compare different MDs in terms of their responses to tension and shear
load. Finally, the remaining dimensions are derived from step one and step two.

For the shear test, the shear specimens are adapted from ASTM testing stan-
dard B831-14 [141]. In order to test the shear response of MDs, three modifications
are made to the standard shear test specimen designed for the DIC in ASTM B831-
14. The DIC is an optical method that offers non-contact, optical measurement of
2D and 3D full-field displacement and strains [99,142–144] More details about DIC
is presented in Chapter 2.3.

The first modification is made to the shear zone, where the length of the shear
zone is doubled to include MDs. The shear zone in the standard shear specimen is
set to 7 mm in length, which is not enough space for applying any of the MDs. The
second modification is made to the end of the standard rectangular shear specimen
shown in Fig. 6.2 (a). The width is reduced from 38 mm to 25 mm, as in Fig.
6.2 (b), so that the specimen can be gripped on its entire width. In this test, the
gripping width of the universal testing machine 3369 turns out to be narrower than
the width of the rectangular shear test specimen. This modification would prevent

68



(a)

(b) (c)

(d) (e)

(f)

Figure 6.1: Tension specimen and MD specification. The dimensions L=200 mm,
B=50 mm, R=12.5 mm, W=12.5 mm, A=82 mm, a=4 mm, b=4.5 mm, k=0.5 mm,
R1=2.5 mm, R2=8 mm, R3=20 mm, h=10 mm
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(a)

(b)

Figure 6.2: Shear sample, (a) standard shear sample; (b) reduced end shear standard
sample; The dimensions: LS=150 mm, WS=38 mm, Theta=45° , WS1=25 mm,
AS=25 mm, rs=10.3 mm

bending and rotation of the shear specimen during the test. The third modification
is the application of the MDs at the shear zone. The details are shown in Fig. 6.2
(c)–(g) representing the applied MDs. The dimensional values of MDs in shear test
samples are also obtained using the same steps described earlier for the tension test
specimens. For all specimens, the MDs are cut by micro waterjet cutting to ensure
dimensional accuracy within ±0.025 mm. During the test, the strain measurement
is carried out by a DIC system that has a camera resolution of 2752 × 2200 (pixel).
The specimens are painted with black and white paint to create a stochastic pattern,
which is a necessary procedure for measuring strain using DIC.
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(a) (b)

(c) (d)

(e)

Figure 6.3: MD detailed view on shear sample, (a) MD-1; (b) MD-2; (c) MD-3;
(d) MD-5; (e) MD-6; The dimensions b=4.5 mm, k=0.5 mm, q=4 mm, r2=4 mm,
r3=10 mm, hs=10 mm, m=14 mm, n=12.7 mm, X=1 mm.
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6.2.4 Testing process

Both tension and shear tests are performed on an Instron universal testing
machine 3369. The testing standards followed are ASTM testing standard E8/8M-
9 for the tension test and ASTM B831-14 for the shear test. The test speed is
controlled by the extension rate of the load cell of the universal testing machine.
For the STD. tension sample, the extension rate is set to 1.23 mm/min prior to
yield and 10 mm/min for post-yield. The extension rate for the tension sample
with MDs is 0.1 times of the extension rate set for the STD. tension samples. In
the shear test, a 1 mm/min extension rate is used for all shear samples. In both
tension and shear tests, the time, load, and extension of the crosshead are recorded
by the universal testing machine. Images are captured using a DIC system with an
identical frequency as configured in the universal testing machine to analyze strain
generated in the samples.

6.3 Results and discussion

The results of the tests are evaluated in terms of maximum force applied on
MDs and corresponding extension. The strain and stress analysis is carried out in
order to predict failure in OSM bending. Particularly, fracture strain is analyzed for
tension tests using the strain measured with DIC. Maximum shear stress is analyzed
in the shear tests using the force measurement.

6.3.1 Tension behavior observation

6.3.1.1 Maximum tension force and extension

Figure 6.4 shows the behavior of the MDs under tension until a fracture oc-
curs. The maximum force and corresponding extension averaged from the replicas
are tabulated in Table 6.2. These results indicate that introducing a MD into the
standard tension sample significantly reduced maximum tension force and corre-
sponding extension, as expected.

The change in sample topology caused by the MDs leads to a concentration
of load around the MDs and as a result the localization of strains. If we compare the
MDs in terms of maximum tension force that the MDs are subjected to, we observe
that MD-1 can withstand the highest magnitude of tension force among all MDs
types, followed by MD-5, MD-2, and MD-6. The magnitude of maximum tension
force on these three MDs are almost the same, i.e. 647∼673 N. The magnitude
of maximum tension force on MD-3 is the lowest because MD-3 topology has the
smallest area to resist tension force among all MDs. When taking the standard
tension sample as a benchmark, the least amount of reduction, 65.3%, in terms of
maximum tension force occurred in MD-1, while the maximum amount of reduction,
91.6%, in terms of maximum tension force took place in MD-3. Interestingly, MD-1,
MD-2, MD-5, and MD-6 all are within the 65-69% range in terms of reduction of
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Table 6.2: Maximum tension force and extension

Sample Max Avg. Extension Change in Change in Initial effective

type tension At Max Tension Max tension extension cross section

[N] [mm] due to MD [%] due to MD [%] area [mm2]

MD-1 732 0.59 -65.3 -96.7 7.2

MD-2 656 0.65 -68.9 -96.3 7.2

MD-3 178 2.18 -91.6 -87.6 7.2

MD-5 673 1.06 68.1 -94.0 7.2

MD-6 647 2.26 69.3 -87.2 7.2

STD. 2109 17.65 — — 20
tension

Table 6.3: Fracture strain on MDs under tension load

Cases MD-1 MD-2 MD-3 MD-5 MD-6

Fracture Strain [mm/mm] 0.672 0.542 0.583 0.525 0.643

maximum tension force. This similarity arises from the fact that as the tension force
approaches gradually to its maximum, the change in effective cross-sectional area of
these four MD doesn’t differ significantly from each other. On the other hand, MD-3
has the least amount of tension load-bearing capability because it has the smallest
effective cross-section area that will resist the tension force. It is also noticeable
that the extension of crosshead at maximum tension force significantly dropped on
all samples with MD. The decline in extension is most obvious in MD-1 with 96.7%
while it is 87.6% in MD-6. Comparing the magnitude of extension at maximum
tension force among the MDs shows that MD-6 outperforms all other MDs. MD-6
extends more than twice as much as MD-5. Also, MD-6 extends more than three
times as much as MD-1 and MD-2. This behavior is caused by the topology of MD-6
that has a straight slot in the direction of tension.

6.3.1.2 Strain analysis under tension

The strain at fracture is determined from the tension test using DIC. Ac-
cording to the tension test method prescribed in ASTM E8/8M-9, fracture occurs
when the maximum force on the specimen drops by 10%.
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Figure 6.4: Tension force and extension, (a) Standard (STD.) tension sample; (b)
MD tension sample.
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(a) MD-1 (b) MD-2 (c) MD-3

(d) MD-5 (e) MD-6 (f) STD. tension

Figure 6.5: True equivalent strain distribution at fracture in tension test
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Table 6.4: Maximum shear force, and extension

Sample Max Avg. Extension Change in Change in Initial effective

type shear At Max shear Max shear extension cross section

[N] [mm] due to MD [%] due to MD [%] area [mm2]

MD-1 669 1.42 -49.2 -58.6 7.2

MD-2 656 3.23 -50.2 -5.83 7.2

MD-3 217 0.75 -83.5 -78.1 7.2

MD-5 577 4.43 -56.1 +29 7.2

MD-6 509 3.40 -61.4 -0.8 7.2

STD. 1317 3.43 — — 20.32
shear

Hence, a stage in which the tension force drops to 90% of the maximum
tension force is identified in DIC. The true equivalent strain on this stage is taken
as fracture strain. The true equivalent strain distribution is shown in Fig. 6.5. The
values of true equivalent strain at fracture are tabulated in Table 6.3. These values
are used as the basis for predicting whether a failure occurs in OSM bending if
the same MDs are bent. The equivalent true strain distribution reveals the strain
localization on the MDs while the magnitude of the strain is far less in other parts
of the specimen.

6.3.2 Shear test observation

6.3.2.1 Maximum shear force and extension

Analysis of maximum shear force and the corresponding extension in the
shear test is shown in Fig. 6.6 and Table 6.4. These results indicate that applying
the MDs in the shear zone has decreased the maximum shear force and corresponding
extension drastically. The maximum shear force on MDs exhibits a similar trend
as the maximum tension force does. Ranking the MDs in terms of maximum shear
force, MD-1 reached the highest magnitude while MD-3 has the lowest magnitude.

Application of MD-1, MD-2, MD-5, MD-6 at the shear zone leads to a re-
duction in maximum shear force within a range of 49%-61%. The reason is that the
change in effective cross-section areas of these four MDs is not much different as the
shear force approaches to the maximum value. The shear load on MD-3 also creates
tension effect due to the narrower web of MD-3 topology, which leads to the least
amount of extension among all the MDs tested. Because of the tension effect, MD-3
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Figure 6.6: Shear load and extension
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(a) (b) (c)

Figure 6.7: Self-contact happening under shear load, (a)MD-2; (b) MD-5; (c) MD-6.

didn’t fracture in the direction of the shear load. It can be seen from Fig. 6.6 that
the shear force has a fluctuation in MD-2, MD-5, and MD-6. The fluctuation in force
is due to self-contact, shown in Fig. 6.7. Due to the topology of these MDs, parts
of the MDs come in contact and the shear force increases consequently to overcome
the increase in deformation resistance. In terms of the extension under the shear
force, self-contact greatly influences the magnitude of extension. The magnitude of
extension in MD-1 and MD-2 is expected to be close to each other. However, MD-2
has 127% more extension than MD-1 due to self-contact. The extension obtained at
the maximum force in MD-2 is not a pure shear extension. Part of the extension at
maximum shear force in MD-2 is attributed to the extension to overcome contact re-
sistance once self-contact starts occurring. Similarly, part of extension at maximum
shear load in MD-5, MD-6 is coming from the effort to overcome self-contact.

6.3.2.2 Maximum shear stress under shear

In the shear test, the maximum shear stress is determined using Eq. (6.1)
[145],

τmax =
Fmax
Lt

(6.1)

78



Table 6.5: Maximum shear stress τmax on the MDs

Cases MD-1 MD-2 MD-3 MD-5 MD-6

τmax [MPa] 92.9 91.1 30.1 80.1 70.69

where τmax is the maximum shear stress, Fmax is the maximum shear force, L is the
length of the shear zone, t is the thickness of the sheet. The maximum shear stress
for each MD is calculated in Table 6.5. These values are used as a benchmark to
predict if fracture happens due to shear during OSM bending.

6.4 Failure prediction in OSM bending

The test results show stress concentrated around the MDs under both tension
and shear load. Hence, failure is expected to occur on the MDs. The possibility of
failure of the sample during OSM bending is evaluated using DFC.

6.4.1 Ductile fracture criteria (DFC)

Researchers proposed numerous DFC [146,147] up to date. Considering sim-
plicity and practicality, in this study, two DFC are chosen to predict failure in
OSM bending, namely constant equivalent plastic strain and maximum shear stress.
Constant equivalent strain criterion states that fracture is assumed to occur when
equivalent plastic strain reaches a critical value,

ε̄ = ε̄f (6.2)

for incompressible plastic material the equivalent strain is defined as

ε̄ =

√
2

3
(ε21 + ε23 + ε23) (6.3)

where ε1, ε2, ε3 are the principal strains.
Fracture also occurs due to shear and thus the maximum shear stress criteria

state that fracture occurs when the maxim shear stress reaches a critical value.

τmax = (τmax)f , (6.4)

where the maximum shear stress τmax is defined as

τmax = max

{
σ1 − σ2

2
,
σ2 − σ3

2
,
σ3 − σ1

2

}
, (6.5)

and σ1, σ2, σ3 are the principal stresses.
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6.4.2 Finite element simulation of OSM bending

The failure prediction using the two DFC is dependent on the magnitude of
deformation generated during the OSM bending process. For the reasons mentioned
in section 6.2.1, no available standard test method and equipment are available for
evaluating the deformation happening during OSM bending. Therefore, FEA of
OSM bending process are carried out to provide an evaluation model. The FEA
is performed in accordance with the setup shown in Fig. 1.2 and the values of the
parameters used in the simulations are g = 23 mm, s = 3 mm, Rp=3 mm, t = 1.6
mm, where g is the gap between the edge of support (blank holder) and punch, s
is the offset distance, Rp is the punch radius, t is the sheet thickness. In this work,
five simulations are carried out representing each of the MDs topology under study.
The dimensions of MDs modeled in the FEA are identical to the dimension of MDs
tested in the tension and shear samples.

In the FEA, material properties of the AA6061-O sheet are identified from
the response of the standard tension sample and fed into a multilinear isotropic
hardening plasticity material model in Ansys®2019 R1. The punch, die, and the
blank holder are modeled as rigid bodies. The area around the MDs is discretized
with fine mesh to ensure the accuracy of the simulation results. The simulation is
performed with two steps. First, the pressure load is applied to the blank holder
to hold the sheet firmly between the blank holder and the die. Then, the punch
is displaced 18.4 mm along the X-axis, 20 mm along negative Y-axis to bend the
sheet up to 90°.

6.4.3 FEA results and failure prediction

The results from FEA of OSM bending are analyzed in terms of equivalent
plastic strain and shear stress to predict the possibility of occurring failure. The
equivalent plastic strain distribution at 90° bend is shown for each of the MDs in
Fig. 6.8 and the maximum shear stress distribution is presented in Fig. 6.9. The
equivalent plastic strain field indicates that high deformation occurs at the edges
at the end of MDs where the failure is expected to happen. The shear stress field
shows a high magnitude of shear deformation is generated at the outer and inner
surfaces of MDs.

The shear deformation in this area is caused by the tension and compression
generated during bending. As the punch progresses to its final position, the tension
force develops on the outer surface and the compression force develops on the inner
surfaces of the MDs.

To predict the possibility of failure during OSM bending, the deformation
field is benchmarked against the critical values of equivalent strain and shear stress
identified in section 6.3.1.2, and section 6.3.2.2, respectively. The failure prediction
results obtained using the two DFC are presented with a bar chart in Fig. 6.10.
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(a) MD-1 (b) MD-2

(c) MD-3 (d) MD-5

(e) MD-6

Figure 6.8: Distribution of equivalent plastic strain
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(a) MD-1 (b) MD-2

(c) MD-3 (d) MD-5

(e) MD-6

Figure 6.9: Distribution of maximum shear stress
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Figure 6.10: Failure prediction results using two DFC

According to constant equivalent strain criteria, a failure occurs on MD-1 and MD-
2. On the other hand, a failure occurs on MD-1, MD-3, and MD-6 according to
maximum shear stress criteria. This prediction shows, on one hand, that the failure
can occur due to any of the tension or shear loads. And on the other hand, the results
point towards the fact that each DFC has certain prediction accuracy limitations
when applied to OSM. The discrepancy in prediction may also stem from how the
critical values for each criterion are identified. For example, in constant equivalent
strain criteria, the fracture strain is identified when the maximum force drops by
10%, which may not be accurate all the time. In maximum shear stress criteria, the
maximum shear stress is determined from the maximum shear force, which might
be overestimated because of self-contact in the MDs.

6.5 Summary

Tension and shear response of the MDs are investigated by adopting standard
tension and shear testing methods. The deformation behavior of the MDs at max-
imum tension and shear forces are compared. A set of critical values for constant
equivalent strain and maximum shear stress criteria are determined from tension
and shear tests to predict the possibility of a failure in OSM bending. Results show
an average extension of the entire specimen under tension reduced significantly due
to the application of the MDs. The tension and shear load-bearing capability of
a MD can be related to the change in the area of the effective cross-section. This
can be clearly observed from the load magnitude range of MD-2, MD-5, MD-6.
Extension under tension load depends on how uniformly a MD can transmit the
load. This is noticeable when comparing MD-5 and MD6 under tension load. Shear
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behavior of MD is discovered to be affected by self-contact in MD-2, MD-5, and
MD-6. Self-contact increased load-bearing capability of OSM sheet. In MD-5, MD-
6 secondary shear zone occurred due to self-contact, as well. The modified tension
and shear tests in a combination of FEA analyses of OSM bending can provide a
simple approach to predict failure in OSM bending.
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Chapter 7

INVESTIGATION OF FAILURE BY FRACTURE IN
ORIGAMI-BASED SHEET METAL BENDING

7.1 Background

In this chapter, the term, scale, is defined as the ratio of kerf to the thickness
of the sheet. The kerf is the width of the material being removal by the cutting tool
along the MDs geometrical outline.

Chapter 4 implied that the scale of the MDs is crucial to achieving successful
bending. On one hand, a small scale of the MDs results in a higher magnitude
of stress on the MDs, which can cause fracture and tear during the OSM bending
process. For instance, the smallest scale investigated in chapter 4 was 0.2, which is
0.32 mm on a 1.6 mm thick sheet. The stress magnitude generated on MD-2 due
to a 0.2 scale is 12.4% higher than the stress level caused by a 0.3 scale on MD-2.
On the other hand, a large scale of MD may defeat the purpose of OSM bending
where the bending may not occur at the desired location. The chapter carried by
Nikhare [148] shows a large scale of MD gives rise to a bending of the sheet along
one edge of the MD, which is not desirable. These studies implicate that the proper
selection of the MD scale is a critical factor that influences the success of OSM
bending operation in terms of failure and accuracy. Hence, being able to predict the
possibility of failure based on a given MD scale is an important step that needs to
be investigated.

However, current literature shows no research on the proper selection of the
MD scale has been carried out. Therefore, this study attempts to identify the impact
of the MD scale on the fracture that occurred during the OSM bending. Particularly,
this works is dedicated to predicting the possibility of a fracture during the OSM
bending process using the DFC.

7.2 Methodology and scope

The failure in sheet metal forming has been assessed using the concept of
formability [149] that has been developed from strain-based forming limit diagrams
(FLD) [150, 151]. In FLD, the strain is measured until necking with a different
strain path [152], and the strain magnitude causing failure is recorded. A diagram
can be constructed by combining various strain paths. The diagram is then used as
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a tool to determine the failure of the material. The FLDs are widely used because
it conveniently offered a way to evaluate the maximum amount of deformation that
can take place during a sheet metal forming process before the material becomes
plastically unstable. However, The FLDs are not suitable for the application where
the material doesn’t exhibit a clear necking before fracture [153] as presented in a
biaxial test [154] and incremental sheet forming process [155].

As for bending dominated processes such as hemming and air bending, the
failure mechanism is not controlled by a necking, because there is no thinning of
material along the bending line. Rather, a fracture mechanism governs the failure
in these processes. Therefore, ductile fracture is considered as the failure criteria.
[147,153,156] and numerous DFC have been proposed [146].

In this context, OSM bending is also a process where the failure is governed
by fracture. Hence, this study utilizes various DFC to predict the occurrence of a
fracture during OSM bending. There are two general categories of ductile fracture
criteria (DFC), which are coupled DFC and uncoupled DFC [147,157]. The coupled
DFC models focus on microscopic damage evolution to model fracture. The models
are based on nucleation, growth, and coalescence of the crack until fracture.

The uncoupled DFC is phenomenological relation that models the fracture
macroscopically. This approach gain popularity due to its simplicity and fewer
number of coefficients that need to be determined compared to coupled DFC. Most
of the uncouples DFC models use the function form of

∫ ε̄f
0
f(σ, ε̄)dε̄, which represents

plastic work [158]. The function, f , involves various stress invariants. The uncoupled
fracture criteria state that fracture occurs when accumulated plastic strain reached
a critical value.

Based on these facts, uncoupled DFC is used in this study. Among the
uncoupled DFC, Cockroft, and Latham [159], Brozzo et al [160], Ayada [161], and
Rice and Tracy criteria [162] are chosen, because they need only one parameter to
calibrate. The specific forms of these DFC are given in Eq. (7.1)-(7.4). This allows
for a relatively easy calibration process.

d1 =

∫ ε̄fp

0

σ1

σeq
dε̄p (7.1)

d2 =

∫ ε̄fp

0

2σ1

3(σ1 − σeq)
dε̄p (7.2)

d3 =

∫ ε̄fp

0

σh
σeq

dε̄p (7.3)

d4 =

∫ ε̄fp

0

exp(
3σ1

2σeq
)dε̄p (7.4)
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Figure 7.1: Workflow of fracture prediction in OSM bending

where di(i = 1, 2, 3, 4) ) is damage value corresponding to each of these DFC. As
can be seen from Eq. (7.1)-(7.4), Cockroft and Latham postulated that fracture
is associated with maximum principal stress σ1, and equivalent stress σeq. Brozzo
and Ayda criterion depends on hydrostatic stress σh. Rice and Tracy’s criterion has
an exponential relation with hydrostatic stress σh. For all of these DFC, fracture
happens when the parameters di reaches a critical damage value (CDV), which is
identified from the experiment and FEA.

The complete workflow to predict the fracture in OSM bending is depicted
in the flow diagram shown in Fig. 7.1. The workflow consists of three main proce-
dures, which are ductile fracture criteria calibration, finite element analysis of OSM
bending, and OSM bending experiment.

In the process of ductile fracture criteria calibration, the stress-strain charac-
teristics of the material beyond necking are identified from a tensile test with help of
an iterative finite element process. The calibration provides a CDV for each of the
chosen DFC. The CDVs are used as a benchmark to predict fracture in OSM bending
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Table 7.1: Scope of the study

MD Scale Thickness Material
Type [mm]

MD-1 0.3, 0.5, 1, 1.5, 2

1.6, 2.3, 3.2 Aluminum Alloy 6061-O
MD-2 0.3, 0.5, 0.7

MD-3 0.2, 0.3, 0.4, 0.5

MD-5 0.2, 0.3, 0.4, 0.5

process. Then, finite element simulation of OSM bending is performed to calculate
the damage values (DVs) for different types of MDs, different scales, and different
thicknesses. Then, DVs are compared against CDVs to determine the possibility of
fracture occurring. Lastly, the FEA of OSM bending is experimentally validated by
comparing the strain results from FEA to experimental strain measurement at the
outer surface of the sheet.

In this study, four different MDs are selected for investigation from the avail-
able MDs shown in Fig. 1.1. They are MD-1, MD-2, MD-3, and MD-5. Considering
the fact that each MD may fracture at a different scale, a different set of scales
is chosen for each MD as listed in Table 7.1. Three-level of thicknesses are taken
into consideration to determine if the same scale causes fracture at a different thick-
ness. The material used for the study is aluminum alloy 6061 temper O, denoted as
AA-6061-O below.

7.3 Calibrating DFC

7.3.1 Determining the stress-strain curve beyond necking

Here the calibration process of DFC refers to the process of determining the
two items. The first is the stress-strain curve of AA-6061-O prior to necking as well
as post necking. The second is CDVs for the chosen DFC listed in Eq. (7.1)-(7.4).
This procedure is completed with a tensile test and iterative FEA. The steps of
calibrating DFC are outlined below:

1. A uniaxial tensile test is performed on AA-6061-O until fracture. During the
test, force-displacement data was collected. The stress-strain characteristics
until necking is obtained from the test.

2. The post necking stress-strain values are estimated based on the weighted
average method [163]. The stress-strain values until fracture are fed into FEA
to define the material model for AA-6061-O.
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Figure 7.2: Tensile test specimen

3. FEA of the tensile test is performed iteratively until the force-displacement
from FEA matches that of the uniaxial tension test in step 1.

4. The critical damage values are calculated for the chosen DFC.

During the uniaxial tensile test, the sheet type specimen along the rolling
direction of the material is prepared according to the ASTM standard [139] with
the dimension shown in Fig. 7.2. The specimen thickness is 14 gauge (1.6 mm). In
the test, the elongation of the specimen is controlled by the speed of the loadcell
motion. Prior to the yielding of the specimen, the speed of the loadcell is set to 1.23
mm/s. It is changed to 10 mm/s for post-yield. The tensile test is carried on Instron
universal tensile testing machine 3369. Load, extension data is collected from the
test.

FEA of the tensile test is performed using Ansys ®19 R1 implicit scheme.
Since the bending happens along the rolling direction of sheet metal, anisotropy was
not considered in the FEA. The material is assumed to obey Von Mises yield criteria
and associated flow rule. The plasticity model for AA-6061-O is elastic-plastic with
multi-linear isotropic hardening. Due to symmetry, one-fourth of the sample was
stimulated by considering only half-width and thickness. The symmetry boundary
condition was applied along the length and thickness of the specimen. One end
of the sample is fixed, and a displacement load is applied on the other end. The
magnitude of the displacement load is 20.8 mm, which is the same displacement
measured from the tensile test at fracture. It was assumed that fracture happens in
the simulation when the displacement reaches the same value, 20.8 mm. To ensure
the necking happens at the center of the specimen, a tiny defect is introduced. The
specimen geometry is discretized with linear 8-node Hexa-elements. Mesh size at
the center was much finer and it is gradually coarsened towards two ends of the
sample.

The stress-strain relationship prior to necking is obtained from the recorded
load-displacement data in the tensile test. The stress-strain relationship beyond
necking is estimated with a process, named the weighted average method [163]. The
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Figure 7.3: Force-displacement curve from tensile test and FE simulation

weighted average method uses Eq. (7.5) iteratively to determine the stress-strain
relationship beyond necking.

σ = σu[w(1 + ε− εu) + (1− w)(
ε

εu
)εu)] (7.5)

where σ is true stress, σu is ultimate true stress, ε is the true strain, εu is the ultimate
true strain, w is the weight factor.

As the stopping criteria for the iteration, the force-displacement data from
the tensile test simulation is compared to experimental force-displacement data.
The simulation is repeated until it matches the experimental force-displacement
curve. After trial and error, w is identified to be 0.865. The final force-displacement
curve matching the tensile test most closely is shown in Fig. 7.3. The identified
stress-strain data in Fig. 7.4 is then provided as input for the multilinear isotropic
hardening material model of AA-6061-O in the OSM bending simulations.

7.3.2 Calculating critical damage values for DFC

The CDVs for the four DFC are calculated from the tensile test FE simu-
lation. The CDVs corresponds to the accumulated damage value of the material
until fracture. For each increment of the load step in the simulation, the necessary
fields such as the maximum principle stress, equivalent stress, hydrostatic stress, and
equivalent plastic strain, are extracted using an Ansys APDL code. The extracted
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Figure 7.4: Stress-Strain curve extended by weighted average method. This curve
is used as input to AA-6061-O material model definition in FEA

field data is then used to integrate according to Eq. (7.1)-(7.4). The integration
is performed using the trapezoid integration rule in Matlab. The CDV at fracture
from the Cockroft-Latham criterion is d1=0.607. Similarly, the CDVs from Brozzo,
Adaya, Rice-Tracy are d2=0.6107, d3=0.214, d4=1.017, respectively.

7.4 FE simulation of OSM bending

Series of FE simulations are performed to calculate the damage values of MDs
under different scale and thickness. The simulation is set up in the configuration
identical to the setup shown in Fig. 1.2. Taking all MD types, scales, and sheet
thickness listed in Table 7.1 into account, there are 48 cases in total as tabulated
in Table 7.2. The case name in Table 7.2 starts with a MD type followed by the
thickness of the sheet, then the scale of the MD is indicated by “k-t”, and a number
representing the scale. All OSM bending simulations uses the same configuration
parameters, i.e., g=23 mm, s=3mm, Rp=3 mm, where g is the gap between the
punch and edge of the support (blank holder), s is the offset distance, Rp is the
punch radius.

The sheet size is 50 (mm) × 50 (mm). The MDs are applied in the middle
of the sheet. As an example, the dimensions for the sheet and MDs are illustrated
for the scale of 0.3 in Fig. 7.5.
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(a) MD-1 (b) MD-2

(c) MD-3 (d) MD-5

Figure 7.5: Dimensions of the sheet and MDs with scale of 0.3

In the simulation, the punch, the support, and the blank holder are modeled
as rigid bodies. The sheet is modeled as a deformable flexible body. Four-node
rectangular element is used for all rigid bodies in the FE model. The blank sheet
is discretized with 20 node Hexa-dominant elements. The deformation of the sheet
obeys von Mises yield criteria and associated flow rule. A multilinear hardening
plasticity material model determined from the tensile test simulation is assigned to
the sheet. A friction coefficient of 0.12 is considered between the sheet and all rigid
bodies. The OSM bending process is simulated in two load steps. The first load
step is to apply a pressure load on the blank holder to hold the sheet in the correct
position during the bending process. The second load step is to apply a displacement
load on the punch along with horizontal and vertical directions to bent it to 90°.

7.5 Experimental validation of finite element simulation

An OSM bending device as shown in Fig. 7.6 is designed in order to validate
the simulation results. The bending device consists of a base, sheet holder, bending
bar, mounting column, and a pair of rotating links. The base is connected to the
mounting column, which is used to position the whole device in a fixture. On top
of the base, there is a 1 mm deep slot that precisely matches the width of the sheet.
The slot also ensures the sheet is placed with a 3 mm offset distance (s). The base
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Figure 7.6: OSM bending device

also has a step at the front that guarantees the bending stops at 90°Ṫhe sheet holder
is placed on top of the sheet sample. The sheet holder fixes the sheet sample through
four screws connected to the base. A bending bar is transversely connecting a pair
of rotating links that can rotate freely. The bending takes place with the guide of
rotating links once the bending bar starts pressing the sheet.

In the OSM bending experiment, equivalent strain occurred on the surface
of the OSM sample is analyzed. The trend of equivalent strain is evaluated over
the entire duration of 90° bending. The trend of equivalent strain variation over
the bending angle is then compared to the trend obtained from the FEA of OSM
bending.

Six different cases are selected among the 48 cases listed in Table 7.2. They
are case No. 5, 10, 18, 21, 36, and 40, respectively. These cases are chosen based
on two rules. First, they cover different thicknesses. The second is to select the
largest scale among all scales investigated for each MD in order to increase testing
data acquisition accuracy. The reason for selecting the largest scale is that the DIC
system computes the deformation on a surface component visible to its cameras.
Hence, the creation of surface components in the DIC is of crucial importance to
the accuracy of the analysis. Often the surface component is a continuous surface
area on a test sample, and the DIC can analyze a continuous surface component
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quite accurately given all the other parameters are selected properly. However, the
DIC lacks accuracy when the surface component is non-continuous. MDs profiles
come under the non-continuous category. Therefore, we are faced with challenges in
accurately capturing the MD profile as it is on the real test sample. When creating
a surface component on the sheet that contains MDs, it is hard, if not possible, to
ensure the identical profile is traced as the MDs profile on the real sample. Therefore,
to minimize the data loss in the critical area of interest, the largest scale of MDs
from the investigated scales is selected.

The OSM bending process is carried out manually. Images of the OSM sheet
surface is captured by the DIC system with a frequency of four images per second.
The equivalent strain field from the images is then computed on the surface of the
samples. Then the maximum equivalent strain on the surface is evaluated with
respect to the bending angle. A comparison is made between the experiment and
FEA in terms of equivalent strain magnitude variation over the bending angle, as
shown in Fig. 7.7 - Fig. 7.12 . The trend of maxim equivalent strain and bending
angle appears to be a linear relationship. This is due to the assumption in the
implicit scheme that a quasi-static state is assumed for the deformation. Thus, the
strain and bending angle change uniformly with respect to time following the same
trend. This leads to a linear relationship between the strain and the bending angle.
The same linear relationship is also proved and captured in the experiment, where
the curves are mostly linear except for some deviations due to noise and equipment
error. Good repeatability is observed when the same case is tested twice. The results
can be seen in Fig. 7.13 and Fig. 7.14.

The comparison revealed that FEA is in good agreement with the experiment
in general. There are two sources of the discrepancy. Firstly, the noise in the DIC
system caused fluctuation in the magnitude of the equivalent strain. The noise
depends on stochastic paint quality on the sheet and ambient light. It also comes
from the fact that the bending is manually performed, and the movement of the
sheet is hard to avoid. Secondly, FEA overestimates the equivalent strain magnitude
at a larger angle. The reason is due to the manual creation of surface comment,
where the maximum equivalent strain occurs. The manual creation of the surface
component is not the best representation of the MD profiles. Considering all these
factors, FEA yields a very good agreement with the experiment.

7.6 Fracture prediction in OSM bending

The Possibility of fracture occurring is evaluated from the FE simulation of
OSM bending. Related stress, strain fields are extracted, and DVs are calculated
for all the cases following the same approach used to calculate CDVs for the tensile
test. Table 7.2 tabulated the DVs for all 48 cases based on the selected four DFC.
Fracture is predicted to occur when the DVs of an OSM bending case is equal to or
greater than CDVs obtained from the tensile test. Bar charts in Fig. 7.18 - Fig. 7.15
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Figure 7.7: FEA validation for case No.5 (MD-1-1.6-K-T-2)

Figure 7.8: FEA validation for case No.10 (MD-1-2.3-K-T-2)
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Figure 7.9: FEA validation for case No.18 (MD-2-1.6-K-T-0.7)

Figure 7.10: FEA validation for case No.21 (MD-2-2.3-K-T-0.7)
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Figure 7.11: FEA validation for case No.36 (MD-3-3.2-K-T-0.5)

Figure 7.12: FEA validation for case No.40 (MD-5-1.6-K-T-0.5)
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Figure 7.13: Repeatability of experiment case No.18 (MD-2-2.3-K-T-0.7)

Figure 7.14: Repeatability of experiment case No.40 (MD-5-1.6-K-T-0.5)
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show the prediction case by case. In the bar chart, a horizontal line representing
the CDV based on a selected DFC is added to indicate the benchmark, which aids
in identifying the fracture cases conveniently.

Table 7.2: Case studies and damage values

Case Thick- Scale Damage Values

No. Name
ness

Cockfront Brozzo Ayady Rice
[mm] & Latham &Tracy

1 MD1-1.6-k-t-0.3

1.6

0.3 1.3418 1.349 0.4898 2.2487

2 MD-1-1.6-k-t-0.5 0.5 1.0483 1.054 0.3635 1.7472

3 MD-1-1.6-k-t-1 1 0.7445 0.7484 0.2522 1.2326

4 MD-1-1.6-k-t-1.5 1.5 0.6142 0.6174 0.2061 1.0145

5 MD-1-1.6-k-t-2 2 0.537 0.5398 0.1795 0.8861

6 MD-1-2.3-k-t-0.3

2.3

0.3 1.3605 1.3676 0.486 2.2751

7 MD-1-2.3-k-t-0.5 0.5 1.0763 1.0819 0.3685 1.7873

8 MD-1-2.3-k-t-1 1 0.7775 0.7814 0.2608 1.284

9 MD-1-2.3-k-t-1.5 1.5 0.6558 0.6592 0.2191 1.082

10 MD-1-2.3-k-t-2 2 0.5909 0.5939 0.1971 0.9743

11 MD-1-3.2-k-t-0.3

3.2

0.3 1.3741 1.381 0.4804 2.2802

12 MD-1-3.2-k-t-0.5 0.5 1.1251 1.1308 0.3829 1.8651

13 MD-1-3.2-k-t-1 1 0.8376 0.8418 0.2801 1.3821

14 MD-1-3.2-k-t-1.5 1.5 0.7251 0.7287 0.2416 1.1953

15 MD-1-3.2-k-t-2 2 0.6416 0.6448 0.2134 1.0573

16 MD-2-1.6-k-t-0.3

1.6

0.3 0.7987 0.803 0.272 1.3244

17 MD-2-1.6-k-t-0.5 0.5 0.6282 0.6315 0.2115 1.0385

18 MD-2-1.6-k-t-0.7 0.7 0.5405 0.5433 0.1813 0.8926

19 MD-2-2.3-k-t-0.3

2.3

0.3 0.8169 0.8211 0.2667 1.3526

20 MD-2-2.3-k-t-0.5 0.5 0.661 0.6644 0.2217 1.0917

21 MD-2-2.3-k-t-0.7 0.7 0.5794 0.5823 0.1936 0.9559

22 MD-2-3.2-k-t-0.3

3.2

0.3 0.8656 0.8701 0.2936 1.4337

23 MD-2-3.2-k-t-0.5 0.5 0.7143 0.718 0.2401 1.1804

24 MD-2-3.2-k-t-0.7 0.7 0.6444 0.6477 0.2209 1.063
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25 MD-3-1.6-k-t-0.2

1.6

0.2 0.2304 0.2316 0.0744 0.377

26 MD-3-1.6-k-t-0.3 0.3 0.2313 0.2325 0.075 0.3789

27 MD-3-1.6-k-t-0.4 0.4 0.2534 0.2548 0.0809 0.414

28 MD-3-1.6-k-t-0.5 0.5 0.2475 0.2489 0.078 0.403

29 MD-3-2.3-k-t-0.2

2.3

0.2 0.3443 0.3461 0.1127 0.5652

30 MD-3-2.3-k-t-0.3 0.3 0.3407 0.3424 0.1109 0.5585

31 MD-3-2.3-k-t-0.4 0.4 0.2886 0.2901 0.0935 0.4726

32 MD-3-2.3-k-t-0.5 0.5 0.3223 0.324 0.1043 0.5277

33 MD-3-3.2-k-t-0.2

3.2

0.2 0.4736 0.476 0.1566 0.78

34 MD-3-3.2-k-t-0.3 0.3 0.4649 0.4673 0.1533 0.7645

35 MD-3-3.2-k-t-0.4 0.4 0.4231 0.4252 0.1389 0.695

36 MD-3-3.2-k-t-0.5 0.5 0.3948 0.3968 0.1291 0.648

37 MD-5-1.6-k-t-0.2

1.6

0.2 0.3029 0.3044 0.1276 0.5291

38 MD-5-1.6-k-t-0.3 0.3 0.3034 0.305 0.127 0.5265

39 MD-5-1.6-k-t-0.4 0.4 0.3044 0.3059 0.1265 0.5251

40 MD-5-1.6-k-t-0.5 0.5 0.3035 0.305 0.1272 0.5272

41 MD-5-2.3-k-t-0.2

2.3

0.2 0.3911 0.3931 0.1621 0.676

42 MD-5-2.3-k-t-0.33.2 0.3 0.3914 0.3933 0.1623 0.6772

43 MD-5-2.3-k-t-0.4 0.4 0.3928 0.3948 0.162 0.6762

44 MD-5-2.3-k-t-0.5 0.5 0.3941 0.3961 0.1638 0.6835

45 MD-5-3.2-k-t-0.2

3.2

0.2 0.4883 0.4908 0.2002 0.8439

46 MD-5-3.2-k-t-0.3 0.3 0.4884 0.4908 0.1997 0.8428

47 MD-5-3.2-k-t-0.4 0.4 0.4885 0.491 0.2 0.8431

48 MD-5-3.2-k-t-0.5 0.5 0.4892 0.4916 0.2004 0.846

7.6.1 Effect of scale

Different numbers of scales are evaluated for each type of MD. The results
exhibited two different trends. The first trend is that the larger the scale is, the less
likely a fracture occurs. This can be clearly seen from the predictions for MD-1 and
MD-2 shown in Fig. 7.15 and Fig. 7.16. All four DFC followed the same pattern
on the change of Scale. It is clearly seen that the increase of the scale results in a
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Figure 7.15: Fracture prediction on MD-1
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Figure 7.16: Fracture prediction on MD-2
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Figure 7.17: Fracture prediction on MD-3
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Figure 7.18: Fracture prediction on MD-5
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drop in the DVs, and gradually the DVs go under the safe zone below the CDVs.
The second trend is exhibited on MD-3 and MD-5 as shown in Fig. 7.17 and Fig.
7.18, where the DVs stay constant regardless of changes on the scale. Even though
there is some fluctuation on MD-3, it is not as large as the fluctuation observed on
MD-1, and MD-2.

The reason for the two different trends is related to the size of the curvature
radius on MDs. On MD-1 and MD-2, the curvature radius is significantly smaller
than that of MD-3, and MD-5. Small curvature radius can because of stress con-
centration leading to fracture. Hence, a change on the scale of MD-1, and MD-2
generate a large shift in DVs, whereas, in MD-3 and MD-5, the scale doesn’t result
in a change of DVs.

The results also yield the limit scale for the MDs, beyond which a fracture
can occur. For sheets with a MD-1, a scale of 2 is the limit scale when the thickness
is less than 2.3 mm because a fracture is predicted when the thickness is 3.2. For
sheet with MD-2, a scale of 0.7 is the safe scale when the thickness is equal to or
less than 2.3 mm. The reason for MD-2 can tolerate a much smaller scale is due to
the opening at the end of the MD-2.

For MD-3, and MD-5, all scales investigated don’t give rise to a fracture
regardless of the thickness. MD-3 and MD-5 can be applied with a scale as small as
0.2. These two MDs are good choices for small scales.

7.6.2 Effect of sheet thickness

The thicker the sheet thickness, the more likely a fracture happens during
the OSM bending. This trend is evident regardless of the MD type investigated in
this study. This can be explained by the fact the DVs are plastic work done to the
sheet [158]. The thicker the sheet, the more work it requires to be bent to the same
extend. This implies that a smaller scale can be combined with a thinner thickness
to obtain a balanced choice for the design.

7.7 Summary

The tensile test on the AA-6061-O sheet of 1.6 thickness is performed in order
to calibrate four DFC. The calibration provided a set of benchmarks in terms of dam-
age values to predict the possibility of fracture in OSM bending. The damage values
are obtained from the FEA of OSM bending. The tensile test simulation is vali-
dated using the experimental force-displacement curve, whereas the OSM bending
simulation is validated using strain measurement from OSM bending experiments.
Four different MDs, three different thicknesses are investigated with the combina-
tion of numbers of scales. The results reveal that the higher the scale, the more
fracture-proof the MD is, because a small scale is associated with a small radius of
curvature on MDs. It is also observed that the MDs are more likely to fracture on
a thicker sheet than it does on a thinner sheet. The investigation also provided a
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safe scale for the MD studied in this work. The investigation can be extended to
different types of materials, MDs, and thicknesses in order to cover various design
requirements.
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Chapter 8

CONCLUSION

The research conducted in this dissertation expanded the origami concept
from a manufacturing point of view, and from a mechanics point of view. Particu-
larly, this research focused on various aspects of OSM bending in light of mechanics
and sheet metal forming.

The following summarizes my contribution in the context of sheet metal
forming:

• We showed that the OSM sheet can reduce bending force, increase bending
accuracy in a conventional bending setup–wiping die bending.

• We conceptualized the OSM bending process by defining a set of parameters
related to the OSM sheet and the bending process. OSM bending revealed the
feasibility of a dieless bending, which is significant advantage of OSM bending
over the conventional bending processes.

• We identified a set of design and process parameters in the OSM bending
process. The design parameters are related to the design of OSM sheet, and
MD. The process parameters are associated with the bending process itself.
These parameters are kerf-to-thickness (k/t) ratio, web-to-width (w/b) ratio,
sheet thickness (t), offset distance (s), punch placement (g), and punch radius
(Rp).

• Impact of the identified parameters are evaluated. The results show that the
stress generated along the bend line is caused by the size of the curvature
radius at the end of a specific MD. A larger k/t ratio should be selected in
order to have less stress concentration after bending. For achieving reduced
bending force, a smaller web-to-width (w/b) ratio , a larger punch placement
(g), and a thinner sheet is recommended. It is found that high accuracy of
bending along the predetermined bending line can be guaranteed by selecting
a smaller offset distance (s).

• We presented a bending force perdition model for OSM bending. This model
takes mechanical property of the material, type of MDs, sheet thickness, and
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bending angle as input. It revealed that each MD has a unique shape factor
dictating the influence on the magnitude of the bending force. This model
provides an easy tool to estimate OSM bending force.

• We identified behavior of MDs under tension and shear load. It shows that the
behavior of MDs under these loads depend on how the effective cross section
changes during the loading. The study also presented a simple approach to
predict failure in the OSM bending process using simple testing methods such
as tension test, and shear test.

• We discovered that success of an OSM bending operation is largely affected
by the MDs applied on the sheet, particularly by the scale of MDs. Hence, a
systematic approach to predict fracture occurrence caused by the scale of the
MD during the OSM bending is presented. It showed a critical scale for MDs
to avoid fracture. Interestingly, the critical scale depends on the MD profile,
and curvature at the end of the MD. Considering the topological similarity
between MD-1 and MD-2, It shows that MD-2 with a larger opening would
help prevent the fracture. MD-3 and MD-5 are generally fracture-proof as they
didn’t exhibit any fracture for the range of scales and thickness investigated.

• This dissertation also showed that topology of MDs are critical aspect of the
OSM bending process. The topology affects the stress concentration level,
fracture occurrence, accuracy of bending. The MD topology is cause of failure,
stress concentration. At the same time, improving the topology also brings
the solution to the problems. Therefore, selecting a proper MD topology is
important.

Future work

This research can be extended in the following areas/direction.

• The force prediction model proposed can be extended from the three MDs to
other MD types and material types. A statistical or artificial intelligence based
approach can be used to strengthen the accuracy of the model with more tests
on variety of MDs and materials.

• Sheet metal bending occurs in many forms. In this dissertation, a bending
form that bends along a straight line is considered. Therefore, a bending
configuration along a curved bending line can be investigated based on what
has been discovered in this work. The curved bending of sheet metal is can
be categorized into flanging.

• This work considered only 90° bending angle for OSM bending. The study
can be extended to larger angle of bending. For instance, when the bending
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angle reaches to 180° it becomes a hemming operation. In this case, the
bending setup used in this work may not be suitable any more. Besides,
additional parameters may impact the large angle bending with OSM. Hence,
identification of these parameters and feasibility of large bending angle leading
to a hemming operation can be investigated.

• This work can be extended to investigate performance of structures formed by
OSM bending under various loading scenarios. For instance, adaptive struc-
tures, sandwich structure that are constructed or formed from OSM bending
operation.

109



BIBLIOGRAPHY

[1] K. A. Tolman, E. G. Merriam, L. L. Howell, Compliant constant-force linear-
motion mechanism, Mechanism and Machine Theory 106 (2016) 68–79.
URL http://dx.doi.org/10.1016/j.mechmachtheory.2016.08.009

[2] N. De Temmerman, Design and analysis of deployable bar structures for mobile
architectural applications, Ph.D. thesis, Vrije Universiteit Brussel (2007).
URL http://www.vub.ac.be:8080/phd/verdedigingen2007/200706282a.pdf

[3] J. Morgan, S. P. Magleby, L. L. Howell, An Approach to Designing Origami-
Adapted Aerospace Mechanisms, Journal of Mechanical Design 138 (5) (2016)
052301.

[4] Q. Shi, X. Shi, J. M. Gattas, S. Kitipornchai, Folded assembly methods
for thin-walled steel structures, Journal of Constructional Steel Research 138
(2017) 235–245.

[5] K. C. Cheung, T. Tachi, S. Calisch, K. Miura, Origami interleaved tube cellular
materials, Smart Materials and Structures 23 (2014) 1–10.

[6] J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D.
Santangelo, I. Cohen, Using origami design principles to fold reprogrammable
mechanical metamaterials, Science 345 (2014) 647—-650.

[7] R. J. Lang, T. Nelson, L. Howell, S. Magleby, Thick Rigidly Foldable Origami
Mechanisms, in: ASME 2016 International Design Engineering Technical Con-
ferences & Computers and Information in Engineering Conference, 2016, pp.
1–20.

[8] T. Hull, Project origami: activities for exploring mathematics, second edi
Edition, CRC Press, 2012.

[9] E. D. Demaine, J. O. Rourke, Geometric Folding Algorithms: Linkages,
Origami, Polyhedra, Cambridge University Press, Cambridge, 2007.

[10] S. A. Zirbel, R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer,
B. P. Trease, S. P. Magleby, L. L. Howell, Accommodating Thickness in
Origami-Based Deployable Arrays, Journal of Mechanical Design 135 (11)
(2013) 111005.

110

http://dx.doi.org/10.1016/j.mechmachtheory.2016.08.009
http://www.vub.ac.be:8080/phd/verdedigingen2007/200706282a.pdf


[11] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito,
M. Sasaki, Self-deployable origami stent grafts as a biomedical application
of Ni-rich TiNi shape memory alloy foil, Materials Science and Engineering A
419 (1-2) (2006) 131–137.

[12] A. P. Thrall, C. P. Quaglia, Accordion shelters: A historical review of origami-
like deployable shelters developed by the US military, Engineering Structures
59 (2014) 686–692.
URL http://dx.doi.org/10.1016/j.engstruct.2013.11.009

[13] F. J. Mart́ınez-Mart́ın, A. P. Thrall, Honeycomb core sandwich panels for
origami-inspired deployable shelters: Multi-objective optimization for mini-
mum weight and maximum energy efficiency, Engineering Structures 69 (2014)
158–167.

[14] T. Tachi, Rigid-Foldable Thick Origami, Origami 5: Fifth International Meet-
ing of Origami Science Mathematics and Education (2011) 253–264.

[15] Q. Shi, M. T. Heitzmann, J. M. Gattas, Analysis of steel origami tube with
nonlinear rotational hinge stiffness, in: C. Wang, M. Ho, S. Kitipornchai
(Eds.), 25th Australasian Conference on Mechanics of Structures and Ma-
terials (ACMSM25), Brisbane, 2018, pp. 1–7.

[16] C. P. Nikhare, Bending and springback analysis on sheet metal material dis-
continuity, in: ASME 2019 14th International Manufacturing Science and En-
gineering Conference, MSEC 2019, Vol. 2, 2019, pp. 1–7.

[17] Q. Shi, M. T. Heitzmann, J. M. Gattas, Nonlinear rotational stiffness and clash
prevention in perforated steel fold lines, Engineering Structures 209 (2020)
110218.

[18] P. Venhovens, K. Bell, P. Marathe, A. Patkar, F. Lamance, D. Lind, C. D.
Amico, Application of a novel metal folding technology for automotive BiW
design, SAE Int. J. Passeng. Cars - Mech. Syst. 6 (2) (2013) 584–600.

[19] B. Gitlin, A. Kveton, J. Lalvani, Method of Bending Sheet Metal to Form
Three-Dimensional Structures (2002).

[20] Max W.Durney, A. D. Pendley, Precision-folded, high strength, fatigue-
resistant structures and sheet therefor (2013).

[21] European Aluminium Association, The Aluminum Automotive Manual body-
structures, Tech. rep., European Aluminum Association (2013).
URL http://www.alueurope.eu/wp-content/uploads/2011/12/1{ }AAM{ }
Body-structures.pdf

111

http://dx.doi.org/10.1016/j.engstruct.2013.11.009
http://www.alueurope.eu/wp-content/uploads/2011/12/1{_}AAM{_}Body-structures.pdf
http://www.alueurope.eu/wp-content/uploads/2011/12/1{_}AAM{_}Body-structures.pdf


[22] V. Boljanovic, Sheet metal forming processes and die design, Industrial Press,
2004.

[23] D. Zhang, Z. Cui, X. Ruan, Y. Li, An analytical model for predicting spring-
back and side wall curl of sheet after U-bending, Computational Materials
Science 38 (4) (2007) 707–715.
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