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Graded, multidimensional intra- and
intergroup variations in primary progressive
aphasia and post-stroke aphasia

Ruth U. Ingram,1 Ajay D. Halai,2 Gorana Pobric,1 Seyed Sajjadi,3 Karalyn Patterson2,4

and Matthew A. Lambon Ralph2

Language impairments caused by stroke (post-stroke aphasia, PSA) and neurodegeneration (primary progressive aphasia, PPA)

have overlapping symptomatology, nomenclature and are classically divided into categorical subtypes. Surprisingly, PPA and PSA

have rarely been directly compared in detail. Rather, previous studies have compared certain subtypes (e.g. semantic variants) or

have focused on a specific cognitive/linguistic task (e.g. reading). This study assessed a large range of linguistic and cognitive tasks

across the full spectra of PSA and PPA. We applied varimax-rotated principal component analysis to explore the underlying struc-

ture of the variance in the assessment scores. Similar phonological, semantic and fluency-related components were found for PSA

and PPA. A combined principal component analysis across the two aetiologies revealed graded intra- and intergroup variations on

all four extracted components. Classification analysis was used to test, formally, whether there were any categorical boundaries for

any subtypes of PPA or PSA. Semantic dementia formed a true diagnostic category (i.e. within group homogeneity and distinct be-

tween-group differences), whereas there was considerable overlap and graded variations within and between other subtypes of PPA

and PSA. These results suggest that (i) a multidimensional rather than categorical classification system may be a better conceptual-

ization of aphasia from both causes; and (ii) despite the very different types of pathology, these broad classes of aphasia have con-

siderable features in common.
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Introduction
Aphasia is an impairment of the ability to comprehend and

formulate language following acquired brain damage, which

manifests as difficulties across multiple modalities of lan-

guage use (e.g. reading, auditory comprehension, expressive

language) (Rosenbek et al., 1989). Causes of acquired brain

damage leading to aphasia include stroke and neurodegener-

ation. The latter cause results in a form of aphasia termed

primary progressive aphasia (PPA) (Mesulam, 2001). To dif-

ferentiate the two, we will refer to aphasia as a consequence

of stroke as post-stroke aphasia (PSA). Two clinical and the-

oretical issues are addressed in this study. First, despite the

similarity of symptoms and nomenclature in subtypes of

PSA and PPA, there have been few—if any—detailed direct

comparisons across the full range of PSA and PPA. Second,

although diagnostic subtypes have been proposed for both

forms of aphasia, patients often vary greatly within each cat-

egory or commonly fall between classifications (and thus are

referred to as ‘mixed’). This suggests that the phenotype dif-

ferences observed across patients might reflect graded varia-

tions across multidimensional aphasic spectra rather than a

series of mutually exclusive, coherent diagnostic categories

(Lambon Ralph et al., 2003; Stopford et al., 2008;

Migliaccio et al., 2009; Ridgway et al., 2012; Warren et al.,

2012). By combining detailed assessment data across the full

ranges of PSA and PPA, this study was able to map out

these graded inter- and intragroup variations.

Although arising from very different pathologies, PSA and

PPA share symptomatology. Despite these clear superficial

behavioural similarities, detailed direct comparisons between

PSA and PPA are rare and thus it is still unclear if the degree

and nature of the symptoms are the same, or if the vocabu-

lary terms used to describe the patients and their symptoms

are truly equivalent. The small number of previous compara-

tive studies have been focused on either specific tasks or lin-

guistic/cognitive domains. For example, Patterson et al.

(2006) compared speech production and phonological defi-

cits in a selection of non-fluent subtypes of PSA and PPA.

Jefferies and Lambon Ralph (2006) compared semantically

impaired PSA and PPA patients on a range of linguistic and

non-linguistic semantic tasks (Jefferies et al., 2008).

Thompson et al. (2013) compared syntactic processing in

agrammatic and anomic forms of PSA and PPA (see also

Budd et al., 2010; Thompson et al., 2012; Faria et al.,

2013). Mesulam et al. (2015) compared comprehension of

words and sentences in different subtypes of PPA, splitting

the cases according to whether their atrophy encroached

‘Wernicke’s area’—a region that post-stroke aphasia classic-

ally implicates in comprehension deficits (cf. Wernicke’s

aphasia). Whilst these important studies have advanced our

understanding of specific language features for selected sub-

types of PPA/PSA, larger scale studies are needed for at least

two reasons: (i) it is important to explore performance sim-

ultaneously across a broad spectrum of language and

cognitive areas in order to situate and understand any one

specific task; and (ii) comparisons of select PPA/PSA sub-

types make the assumption that the subtypes can be readily

identified and are the most appropriate basis for the

comparison.

Individuals with PPA or PSA display considerable vari-

ation in the nature and severity of their impairments (e.g.

naming, repetition, comprehension, reading, etc.)—but what

is the basis of these variations? To clinical and research pro-

fessionals working with patients with aphasia, it is clear that

there is an underlying structure in their aphasic performance

(i.e. heterogeneity in aphasia phenotype is not caused by ran-

dom variation and noise). Ruling out random variation, be-

havioural variation in health or disease can be split into two

types reflecting the presence of either multiple, mutually ex-

clusive coherent categories of person/patient, or graded var-

iations along different dimensions. All true categorical

classification systems are based on two assumptions: (i) that

there is homogeneity within each category or type; and (ii)

that there are distinct boundaries between categories

(Schwartz, 1984).

As is traditional in neurology and neuropsychology, cat-

egorical subtypes of PSA and PPA have been proposed. The

Boston Diagnostic Aphasia Examination (BDAE) (Kaplan,

1983), for example, categorizes PSA patients into one of

seven subtypes based on their relative strengths and weak-

nesses in repetition, speech output fluency and comprehen-

sion. In addition to this, the BDAE also uses this

information to give an indication of the level of impairment

within each subtype. The Western Aphasia Battery (WAB)

(Kertesz, 2007) categorizes patients into discrete subtypes

and provides the aphasia quotient to give a sense of general

aphasia severity regardless of subtype. Likewise, the consen-

sus derived classification system for PPA (Gorno-Tempini

et al., 2011) delineates three categorical subtypes: semantic

dementia/semantic variant PPA, non-fluent/agrammatic vari-

ant PPA and logopenic variant PPA (lvPPA), though numer-

ous additional subtypes are often proposed [such as

agrammatic PPA without apraxia of speech (Tetzloff et al.,

2019), or primary progressive apraxia of speech (Josephs

et al., 2012)]. There is evidence, however, that a strict cat-

egorical approach is limited and does not capture the true

nature of the patients’ variations. Thus, (i) rather than

homogeneity within each category, there is significant vari-

ation (e.g. consider the different presentations of anomic

aphasia or non-fluent progressive aphasia); (ii) patients’ cat-

egorical membership can change (with recovery in PSA and

decline in PPA); and (iii) there are blurred boundaries be-

tween categories (e.g. the boundary between conduction

aphasia and Wernicke’s aphasia). One consequence is that

in both PSA and PPA there is a considerable proportion of

patients who must be classified as having ‘mixed’ aphasia

because they either do not fulfil the criteria for any subtype,

or even fulfil the criteria for more than one subtype (Benson,

1979; Wertz et al., 1984; Mesulam et al., 2008, 2012;
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Knibb et al., 2009; Sajjadi et al., 2012a; Gil-Navarro et al.,
2013; Harris et al., 2013; Matias-Guiu et al., 2014;

Wicklund et al., 2014; Botha et al., 2015; Spinelli et al.,

2017; Utianski et al., 2019).

These limitations of the categorical approach implied by

the syndrome classification systems have long been under-

stood clinically (Caramazza, 1984) (e.g. the limited use of

broad ‘brush stroke’ classifications like Broca’s aphasia in

describing an individual’s unique impairments for the pur-

pose of therapy) (Feyereisen et al., 1986; Gordon, 1998). In

PSA, the use of the subtype labels from the BDAE/WAB clas-

sification systems has evolved over time and now they are

often used in sophisticated and flexible ways. The labels

have come to refer to the heterogeneous constellation of

strengths and weaknesses making up a particular individu-

al’s aphasic profile, rather than to imply that the patient fits

the exact diagnostic criteria for a specific aphasia subtype. It

seems likely that this natural evolution in the use of these

labels is very important and might tell us something import-

ant about the variation in the patients’ presentations, paral-

leling our argument here that patients vary along graded

dimensions.

This hypothesis arises from formal explorations of an al-

ternative, non-categorical way to conceptualize behavioural

variations (Butler et al., 2014; Mirman et al., 2015a). These

new approaches are based on the second source of individ-

ual differences noted above—namely, graded variations

along continuous behavioural dimensions. Recent studies

have reconceptualized the variations in PSA as forming an

aphasic multidimensional space with each patient taking up

a different position (typically varying in terms of phonology,

semantics, speech fluency and, when assessed, non-language

cognitive skills) (Butler et al., 2014; Halai et al., 2017,

2018a; Schumacher et al., 2019). In this formulation, the

classical aphasia labels (e.g. conduction, Broca’s, etc.) do not

represent categories per se, but rather are verbal pointers to

a subregion in the multidimensional space. By way of ana-

logy, one can think of patients as colour hues across the red,

green and blue (RGB) colour space. It is possible to recog-

nize clear differences [such as yellow (e.g. Broca) versus blue

(Wernicke), etc.] but also to capture the graded and un-

bounded variations between colours [e.g. there are many

types of blue, its boundary with greens or violets is unclear,

there are many hues (e.g. teal, maroon, etc.) that are hard to

classify uniquely, and perceivers (cf. clinicians/researchers)

have slightly different definitions for each colour (cf. clinical

label)].

Accordingly, some key aims of the current study were: (i)

to test if the same approach can be applied to PPA (in con-

trast to other studies where methods capable of capturing

graded variation have only been used as an intermediate

step towards categorizing proposed subtypes of PPA)

(Mesulam et al., 2009; Hoffman et al., 2017); (ii) to com-

pare the multidimensional spaces for PSA and PPA; and (iii)

to test if a single multidimensional space can be formed for

PSA and PPA to allow direct, intra- and intergroup compari-

sons. Importantly, the aim of situating PSA and PPA in a

shared multidimensional space was not to differentiate be-

tween these aetiologies. Rather, we used this shared space as

a platform for a larger-scale direct comparison without

selecting specific subtypes or cognitive/linguistic processes

(as mentioned above). These aims were tackled through two

large PSA and PPA cohorts (inclusive of typical and mixed

cases), both completing large-scale, detailed neuropsycho-

logical and aphasiological test batteries.

Materials and methods
We initially applied principal component analysis (PCA) to PPA
and PSA separately. This allowed us to compare qualitatively
the resultant multidimensional space for each patient group
without forcing the two groups into a single space. Given that
the two group-specific PCA results were similar in form, avail-
able PSA patients were reassessed using a shared test battery
derived from the PPA test battery, so that all patients could be
entered simultaneously into a unified PCA. This enabled direct
comparisons of both intergroup and intragroup variations.

Patients

All patients were recruited non-selectively (with respect to sub-
type-level behavioural presentation) to sample the full space and
severities of behavioural impairments in both PPA and PSA.
Although diagnostic subtype labels were applied for descriptive
purposes, the inability to apply a single diagnostic label was not
grounds for exclusion in either cohort. Demographic details are
shown in Table 1.

Seventy-six patients with chronic PSA were prospectively
recruited from community groups and speech and language
therapy services in the North West of England. Patients were
included if they reported a single left hemisphere stroke at least
12 months prior to assessment and were native English speak-
ers. A portion of the PSA cases have been reported by Butler
et al. (2014) and Halai et al. (2017) (31/70), and by Halai et al.
(2018b) (70/76). All patients were classified into diagnostic sub-
types by application of the BDAE (Kaplan, 1983). All patients
provided informed consent under approval from the North
West Multi-Centre Research Ethics Committee, UK. Thirty-four
of the 76 PSA cases were available for retesting on the shared
battery for the unified PCA on PSA and PPA. Of these 34 cases,
15 had anomic aphasia, five had Broca’s aphasia, three had con-
duction aphasia, five had global aphasia, five were classified as
mixed non-fluent aphasia, and one had transcortical motor
aphasia.

Forty-six patients with PPA were prospectively recruited from
memory clinics at Addenbrooke’s Hospital, University of
Cambridge (UK), as part of a longitudinal study of PPA
(Sajjadi, 2013). These cases have previously been reported by
Sajjadi et al. (2012a, b, c, 2014) and Hoffman et al. (2017).
Patients with PPA were recruited based on meeting the core cri-
teria for PPA (Mesulam, 2001) then classified into a diagnostic
subtype by application of the Gorno-Tempini et al. (2011) crite-
ria, or given the label ‘mixed PPA’ if unclassifiable (see Sajjadi
et al., 2012a for details of how cases were diagnosed and rea-
sons for being unclassifiable). In brief, a collection of tests was
chosen to measure all the consensus-proposed language features
of the PPA subtypes. A score 1.5 standard deviations (SD)
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below control norms was considered impaired. A large propor-

tion of the cohort was classified as semantic dementia, progres-

sive non-fluent aphasia (PNFA) or mixed PPA (mPPA). We note

that in this study only a very small number met the criteria for

lvPPA. Future studies are needed to explore how a larger sample

of lvPPA distributes across the shared PCA-derived multidimen-

sional space. Exclusion criteria included other causes of aphasia

(e.g. non-neurodegenerative pathology), non-native English

speakers and any other neurological or major psychiatric illness.

The PPA dataset comprised data from two longitudinal rounds

of testing to assess change over time. On average, the second

round of data was collected after 12.7 months (SD: 0.9

months). Following Lambon Ralph et al. (2003), the partici-

pants who had scores for both rounds were treated as pseudo-

independent observations. This resulted in a total of 82 data-

points for analysis. Of these 82 observations, 26 were mPPA,

24 were PNFA, 28 were semantic dementia and four were

lvPPA. This approach was used because PCA is a data-hungry

method (Guadagnoli and Velicer, 1988) that benefits from hav-

ing adequate sampling of as much of the potential PPA ‘space’

as possible. All patients, or next of kin where appropriate, pro-

vided informed consent under approval from the Cambridge

Regional Ethics Committee.

Neuropsychological assessments

Post-stroke aphasia test battery

The tests included in the PSA test battery are shown in

Supplementary Fig. 1, and described in Halai et al. (2017) and

Butler et al. (2014). Briefly, the battery assessed connected

speech, comprehension of grammar, auditory discrimination,

repetition, semantic knowledge, naming, working memory and

attention/executive function.

Primary progressive aphasia test battery

The tests included in the PPA test battery are shown in

Supplementary Fig. 2, and described by Sajjadi (2013). Briefly,

this battery assessed connected speech, comprehension of gram-

mar, grammatical ability in sentence production, repetition, se-

mantic knowledge, naming, phonological discrimination,

working memory, attention and executive function, visuospatial

skills, and oro-buccal and limb praxis.

Shared battery

To establish the shared multidimensional space of PSA and
PPA, available PSA cases were re-tested on a shared test battery,
which was derived from the PPA test battery. Thirty-three tests
were including in the shared battery, shown in Supplementary
Fig. 3. This battery assessed attention and executive function,
repetition, sentence comprehension and production, semantic
memory, visuospatial skills, praxis, connected speech, naming,
and phonological discrimination.

Data analysis

All raw behavioural scores were converted to percentages. For
measures without a fixed maximum score, scores were con-
verted to a percentage of the maximum score across the relevant
cohort or both cohorts for the unified PCA. Missing data were
imputed using probabilistic principal component analysis
(PPCA) (Ilin and Raiko, 2010). This approach was chosen as
the results were stable when compared to versions of the analy-
ses without imputation (i.e. list-wise exclusion analysis). PPCA
requires that the number of components to be extracted is speci-
fied a priori, so a k-fold cross validation approach (Ballabio,
2015) was used to choose the number of components giving the
lowest root mean squared error for held-out cases over 1000
permutations. This approach was also used to select the optimal
number of components for subsequent PCA using the imputed
dataset. The imputed datasets were entered into PCAs (con-
ducted in SPSS 23), with varimax rotation to aid cognitive inter-
pretation of the extracted dimensions. This interpretation was
based on the core aspects of the tests with the largest loadings
onto each factor. The factor labels necessarily capture less infor-
mation than the test loadings (which are provided in the
Supplementary material) but serve as a useful shorthand. The
adequacy of the sample size for each PCA was determined using
Kaiser-Meyer-Olkin measure of sampling adequacy.

The separate PCAs for PPA and PSA could not be compared
directly as they did not share the same tasks, so they were com-
pared qualitatively by analysing the type of tasks that loaded
most heavily onto each extracted component. This approach
was also used to compare the separate PCAs to the unified
PCA. However, since the unified PCA was conducted on data
from both groups on the shared battery, this made direct, quan-
titative, intra- and intergroup comparisons possible. To put the

Table 1 Demographic details per subtype of the PSA and PPA cohorts

Group Subtype n (F) Age Education, years Time with aphasia, years

PSA Anomia 30 (11) 63.8 (13.4) 12.4 (2.7) 4.2 (4.3)

Broca 13 (1) 62.7 (13.0) 11.9 (1.8) 4.3 (3.4)

Conduction 4 (1) 62.0 (10.7) 13.8 (3.2) 1.8 (0.9)

Global 9 (0) 66.4 (9.0) 11.3 (0.7) 5.9 (4.6)

Mixed non-fluent 16 (4) 68.1 (9.0) 11.5 (1.0) 6.3 (4.9)

TMA 2 (1) 74.5 (2.1) 11.0 (0.0) 6.8 (4.1)

TSA 1 (0) 63.0 12.0 2.0

Wernicke/conduction 1 (1) 77.0 16.0 2.8

PPA Logopenic 2 (1) 71.0 (4.2) 11.0 (2.8) 2.0 (0.0)

Mixed PPA 16 (12) 72.7 (5.2) 10.8 (1.9) 3.3 (1.4)

PNFA 12 (7) 69.3 (7.3) 13.0 (3.8) 3.2 (1.4)

Semantic dementia 16 (8) 67.1 (8.5) 13.9 (3.3) 4.2 (1.3)

Data are presented as mean (standard deviation). TMA = transcortical motor aphasia; TSA = transcortical sensory aphasia.
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relative regions of the multidimensional space occupied by PSA
and PPA into perspective, control norms were projected into the
unified PCA space by normalizing to the patient mean and SD,
and then using the factor coefficients to generate factor scores
for an average control participant. Subtype classifications of
PSA and PPA were derived separately, using tests included in
the different battery for each aetiology (e.g. sentence repetition
assessed with different sentences in the BDAE versus the repeti-
tion task used by Sajjadi et al., 2012a). We avoided the prob-
lems of trying to make quantitative comparisons between the
aetiologies via different test batteries, by conducting intergroup
comparisons using the shared battery, and by comparing indi-
viduals’ positions in the multidimensional space regardless of
their subtype categorization.

Finally, formal analyses were conducted to test for the pres-
ence of subgroup categories (i.e. subgroups with relatively high
intragroup homogeneity and distinct intergroup differences).
The motivation for this analysis was as follows: working under
the hypothesis that the structure of variation in PSA and PPA is
driven by graded variation along multiple dimensions means
that methods like cluster analysis (e.g. k-means clustering)
would be inappropriate for detecting potential graded variation.
Yet, visual inspection of the scatter plots defined by the
extracted PCA dimensions (Fig. 2) showed many regions of ex-
tensive overlap but also (for semantic dementia) some more
uniquely occupied regions. Therefore, we sought to quantify this
by conducting a form of data-driven classification analysis with-
in the graded multidimensional space, rather than using formal
cluster analysis. We note that the principal dimensions were not
intended as a new way to categorize patients. Instead, we took
it to be the case that if one or more subgroups formed a true
category, they would be represented in the PCA multidimension-
al space as a homogenous group of data-points, and it would be
possible to define formal diagnostic boundaries with the other
subgroups in terms of cut-off scores on each extracted
dimension.

To investigate this, formally, the unified PCA was systematic-
ally swept to find the combination of cut-off values across all
dimensions that gave the highest sensitivity index (d prime, d0)
value per diagnostic subtype. Crucially, the calculations of sensi-
tivity were only within aetiology, i.e. only considering subtypes
from the same cohort; the aim of this analysis was not to differ-
entiate PSA and PPA. PCA solutions are always scaled using z-
scoring, and in this study the dimensions ranged from approxi-
mately –3 to + 2 with zero representing the centroid of the pa-
tient cohort. These dimensions were swept iteratively at
intervals of 0.05. The d0 equation was adapted to account for
extreme values (0 or 1) for the rate of hits or false alarms
(Macmillan and Kaplan, 1985), resulting in the maximum d0

value achievable being 4.65; thus a d0-value near 4.65 would be
suggestive of distinct categorical boundaries and within-group
homogeneity. To establish the likelihood of achieving these d0-
values by chance, diagnostic group membership was random-
ized within aetiology and d0 recalculated over 10 000 iterations
to give a distribution of d0-values.

The combination of cut-off values along each dimension that
gave the maximum d0-value (i.e. highest possible sensitivity)
were then treated as diagnostic ‘criteria’ for new data-driven
diagnostic groups. The hits from the d0 analysis represent cases
whose factor scores correctly met the cut-off values for their
own data-driven diagnostic group. The false alarms represent

cases whose factor scores incorrectly met the cut-off values for
any other data-driven diagnostic group, i.e. cases who were mis-
classified. These misclassifications occurred despite the cut-offs
representing the best possible (highest sensitivity) between-group
boundaries that could be found in the iterative sweep through
the entire multidimensional space. The distribution of misclassi-
fications amongst subtypes of each aetiology was extracted
from the false alarms associated with each data-driven diagnos-
tic group. It is important to note that it was possible for a single
case’s factor scores to meet the cut-off values for more than one
data-driven diagnostic group simultaneously (or none), and this
may or may not have included their own group.

Data availability

Anonymized data are available on reasonable request for aca-
demic (non-commercial) purposes, although restrictions may
apply to adhere to participant consent and anonymity.

Results

Principal component analysis

Post-stroke aphasia

The PCA for the PSA cohort was robust (Kaiser-Meyer-

Olkin = 0.84) and produced a four-factor rotated solution

that accounted for 76.7% of variance in PSA patients’ per-

formance (F1 = 30.4%, F2 = 17.5%, F3 = 15.2%,

F4 = 13.7%). The factor loadings of each behavioural assess-

ment onto the extracted components are shown in

Supplementary Fig. 1.

Measures loading heavily onto the first factor were tests of

repetition [Psycholinguistic Assessments of Language

Processing in Aphasia (PALPA) words, non-words], naming

(Boston, Cambridge), phonological working memory (digit

span), auditory comprehension [Comprehensive Aphasia

Test (CAT) sentence comprehension], and phonological sen-

sitivity (PALPA minimal pairs). These tests all require

phonological processing; hence we called this factor

‘Phonology’. The strong loadings from the naming tests onto

this factor are likely to be driven by the fact that many of

the cases in this PSA cohort have a core phonological proc-

essing impairment (hence this phonology factor explained

the greatest amount of variance in the PCA) and so the

phonological aspect of naming is compromised in these

patients.

The second factor had strong loadings from the two meas-

ures designed to assess attention and executive function

(Brixton, Raven’s). Other tests not designed to measure ex-

ecutive function per se also had strong loadings onto this

factor (e.g. minimal pairs, spoken word-to-picture matching,

etc.). This probably reflects the fact that tasks designed to as-

sess various language activities also call upon generalized at-

tention and executive skills (e.g. to compare verbal stimuli,

decide between responses, etc.). This is true for the semantic

tests (aligning with the fact that semantic cognition requires

access to semantic representation but also executively-related
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processes (Jefferies and Lambon Ralph, 2006; Thompson

et al., 2018) and also with respect to the working memory,

abstract reasoning and problem-solving requirements in

other language tests (e.g. sentence comprehension and min-

imal pairs). The nature of PCA means that it decomposes

and orthogonalizes these sources of variation. As a result, in-

dividual tests can have strong loadings across multiple

extracted factors and each factor points towards a shared

underpinning process. Thus, for this second factor, whilst

spanning different aspects of language and cognition, these

tests all share the feature of requiring attentional or execu-

tive processing skills; hence, we called this factor ‘Executive

Function’.

Measures with strong loadings onto the third factor

included speech rate (words per minute) and speech quanta

(total number of words). We called this factor ‘Speech

Fluency’. We note that the Camel and Cactus test, an execu-

tively demanding test of semantic associative relationships,

also had a very strong loading onto this factor. This result is

surprising and has not occurred in our previous investiga-

tions, where it has loaded onto the executive and semantic

factors (Butler et al., 2014; Halai et al., 2017). We could

speculate that this result might reflect variation in another

form of executive process (distinct from the executive pro-

cess that seems to be captured by the second factor), which

might be involved in (i) iteratively generating and assessing

semantic associations (Camel and Cactus and synonym

judgement); (ii) generating speech (words per minute and

total words produced); and (iii) generating and monitoring

‘chunks’ to complete the backwards digit span task. Indeed,

Schumacher et al. (2019) found that the Camel and Cactus

test loaded onto an ‘Inhibit-Generate’ executive component.

However, without more measures of attention and executive

function it is not possible to test these speculations. We

chose to give this third factor the subjective label of ‘Speech

Fluency’ given that the strongest loadings are from words

per minute and total number of words.

Measures with strong loadings onto the fourth factor were

tests of semantic knowledge (synonym judgement, word-to-

picture matching) and semantic richness of speech (mean

length per utterance). Furthermore, measures of naming

(Boston, Cambridge) and sentence comprehension (CAT)

also had moderate factor loadings onto this factor. These

tests all require semantic knowledge; hence we called this

factor ‘Semantics’.

Primary progressive aphasia

The PCA for the PPA cohort also generated a robust result

(Kaiser-Meyer-Olkin = 0.85) with a five-factor rotated solu-

tion, which accounted for 72.4% of variance (F1 = 23.7%,

F2 = 17.8%, F3 = 14.5%, F4 = 9.8%, F5 = 6.7%). The fac-

tor loadings of each behavioural assessment onto the

extracted components are shown in Supplementary Fig. 2.

The tests loading onto the first factor all required retaining

phonological information (e.g. single digits, words, numbers,

whole sentences) in mind; hence we called this factor

‘Phonological Working Memory’. These measures included

tests of phonological sensitivity (non-word minimal pairs),

attention and executive function (digit span forwards and

backwards, letter span similar and dissimilar phonemes),

repetition (words, non-words and sentences), sentence com-

prehension [SECT, Test for Reception of Grammar

(TROG)] and cube counting (Visual Object and Space

Perception, VOSP).

The second factor comprised heavy loadings from tests

relying on semantic knowledge; hence we called this factor

‘Semantics’. These tasks included tests of semantic know-

ledge (Cambridge naming, Point from Repeat and Point,

Category Fluency), semantic association (Camel and

Cactus), recognition of irregular words, and sentence com-

prehension (SECTV).

The third factor was characterized by strong loadings

from measures of speech rate (words per minute) and speech

quanta (total number of words), in addition to oro-buccal

praxis. A test of executive function requiring drawing and

counting (Trail Making Test, TMT-A) also had high load-

ings (note, patients often count under their breath or out

loud to complete the TMT-A). Accordingly, this factor

appeared to capture the motor aspect of speech, hence we

called this factor ‘Motor Speech Production’.

Visuospatial tests of executive function loaded heavily

onto the fourth factor. Specifically, tests of switching (TMT-

B), counting and visual imagery (VOSP), and copying and

visuospatial recall (Rey Complex Figure) had high loadings

on this factor, hence we called this factor ‘Visuo-Executive

Function’.

Loadings onto the fifth factor were dominated by tests of

sentence production (Mississippi Aphasia Screening Test,

MAST), measures of semantic richness of speech (mean

length per utterance) and generation of items (letter fluency

from the Addenbrooke’s Cognitive Examination – Revised)

(Mioshi et al., 2006). Having accounted for motor speech

production, semantics and executive demands in earlier fac-

tors, the remaining aspect of these tests which might be cap-

tured in this final independent factor could be the generative

aspect of speech production. Hence, we called this factor

‘Speech Generation’.

Unified principal components analysis on the shared

battery

Given that the two group-specific batteries and PCAs gener-

ated similar types of dimensions (phonology, semantics, ex-

ecutive skill and aspects of speech production), a formal

direct comparison through a shared battery and single PCA

spanning both groups was both merited (i.e. there was prima

facia evidence of shared symptoms and variations) and per-

mitted formal intra- and intergroup comparisons by enabling

inclusion of all patients across a single multidimensional

space. The unified PCA was again robust (Kaiser-Meyer-

Olkin = 0.88), with a four-factor rotated solution account-

ing for 67.4% of variance in patient performance

(F1 = 23.5%, F2 = 16.6%, F3 = 14.8%, F4 = 12.6%), and

bore a strong relationship with the factors identified in the

group-specific test batteries. The factor loadings of each
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behavioural assessment onto the extracted components are

shown in Supplementary Fig. 3.

The first factor had high loadings from tests of repetition

(words, non-words, sentences), phonological sensitivity and

attention (digit and letter spans, non-word minimal pairs),

and sentence comprehension (auditory and visual). These

tests all require intact phonological processing, hence we

called this factor ‘Phonology’.

There were high loadings on the second factor for tests of

semantic knowledge (Cambridge naming, pointing from the

Repeat and Point test), generation of items in a semantic cat-

egory [category fluency from the Addenbrooke’s Cognitive

Examination (ACE)], sentence comprehension (SECT) and

address recall and recognition from the ACE. Hence, we

called this factor ‘Semantics’.

Tests of attention and executive function in the visuo-

spatial domain (VOSP, TMT, Rey Complex Figure) all

loaded heavily onto the third factor. As above, we called

this factor ‘Visuo-Executive Function’.

The fourth factor had high loadings from measures of

speech quantity (words per minute, total number of words

and mean length per utterance). Measures of praxis (oro-

buccal and limb) and phonological working memory (digit

span backwards) also had high loadings onto this factor.

Given that phonological ability and executive functions have

been accounted for already, this factor probably captured

the speech production element of the digit span test (patients

often repeat the string of digits to themselves before report-

ing them backwards). These tests therefore all require pro-

duction of speech, and coupled with the loadings from the

praxis tests, we interpreted this as a ‘Motor Speech

Production’ factor.

The visuo-executive function and motor speech production

factors had strong negative loadings from the TMT-B and

TMT-A response times, respectively. We reran the analysis

without these measures to ensure the result was stable and

that the negative loadings were not an artefact of a coinci-

dental correlation with general motor abilities. Pearson cor-

relations between the original factors and their

corresponding updated factors following the removal of the

TMT response time measures were very high (F1 versus F1:

0.999, F2 versus F2: 0.997, F3 versus F3: 0.996, F4 versus

F4: 0.991), showing that the PCA result was unchanged.

Intergroup comparisons

To illustrate the components extracted in each PCA, exem-

plar tests with strong and relatively unique loadings onto

each factor across the three PCAs are plotted together in

Fig. 1 (the full plots of all tests loadings on all PCA factors

are shown in the Supplementary material). The specific ex-

ample test chosen differed across PCAs due to the different

test batteries, but where possible the same or a similar meas-

ure was chosen. Figure 1 highlights the similarity of the com-

ponents extracted for both forms of aphasia, whether

separately or in combination.

Direct inter- and intragroup comparisons were possible in

the shared multidimensional space of the unified PCA.

Figure 2 plots the patients and their aphasia classifications

into the 4D factor space (Fig. 2A maps the phonology and

semantics factors, Fig. 2B speech production versus visuo-ex-

ecutive skill factors). Four key observations can be gleaned

from these scatterplots: (i) intragroup graded differences: for

both PPA (except semantic dementia, see below) and PSA

there is considerable variation across cases within each sub-

type of aphasia and also overlap between the groups (e.g.

conduction and anomic aphasia or PNFA and mPPA); (ii)

intergroup differences: with regards to semantics and phon-

ology the PSA and PPA cases are fully overlapping reflecting

the clinical observation that the two aetiologies share many

language symptoms; (iii) the two aetiologies are strongly sep-

arated in terms of speech fluency and co-occurring visuo-ex-

ecutive skills with the PSA cases dominating the space

denoting poorer fluency yet better visuo-executive skills

(Fig. 2B). All forms of PSA (even those referred to as ‘fluent’)

were less fluent than the PPA patients (with the exception of

the most severe PNFA and mixed cases), whilst only the se-

mantic dementia subset were able to match the PSA on

visuo-executive skills; and (iv) by eye, the only group that

might form a coherent and separated cluster (cf. a true cat-

egory) are those with semantic dementia in that they appear

to uniquely occupy the combination of moderate-to-severe

semantic impairment with good phonology (Fig. 2A) and

good visuo-executive function and speech fluency (Fig. 2B).

We tested formally whether semantic dementia and any

other groups form a true category in the subsequent

analysis.

Intragroup graded variation

For each subtype within each aetiology, the best combin-

ation of ‘diagnostic’ values across all four dimensions was

derived using a data-driven search (Supplementary Table 1).

These values were treated as cut-offs defining new data-

driven diagnostic groups, which were labelled according to

the subtype from which the cut-offs were derived. An illus-

tration of the data-driven diagnostic cut-offs for semantic de-

mentia is shown in Fig. 3.

The pattern of hits and misclassifications associated

with each combination of diagnostic cut-offs for PPA

subtypes is shown in Table 2. The pattern of hits and

misclassifications for PSA subtypes is shown in

Supplementary Table 2, as these results will need validat-

ing in a larger cohort; in order to include a heteroge-

neous cohort reflecting the true phenotypic space of PSA,

subtypes of PSA were included in this study even if they

comprised only a single case. However, in terms of

assessing whether the subtypes of PSA meet the assump-

tions of a true category, larger sample sizes will be

needed to fully answer this question.

The data presented in Table 2 are the percentages of

patients, from each clinical diagnostic subgroup of PPA,

whose factor scores met the data-derived cut-off values for
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each diagnostic group. The rows represent the ‘real’ clinical

diagnostic categories for patients in this study. The ‘Hits’

column represents the percentage of patients meeting the

data-driven cut-off values for their own diagnostic group.

The columns under ‘Misclassifications’ represent the percent-

age of cases whose factor scores (i) met the cut-off values for

a different (i.e. incorrect) diagnostic group; (ii) did not meet

the cut-off values for any of the possible data-driven diag-

nostic groups; and (iii) met the cut-off values for more than

one data-driven diagnostic group (e.g. their own group and

one other group). These ‘misclassifications’ are not mutually

exclusive and thus cases falling into more than one classifica-

tion are tabulated in the ‘41’ column; consequently, the

row totals do not add up to 100%.

For example, the optimum cut-off values for semantic de-

mentia were highly selective for semantic dementia, with

100% of the semantic dementia cases factor scores meeting

these values (Table 2). Furthermore, there were no misclassi-

fications of patients from other diagnostic groups as seman-

tic dementia. This corresponds to the highest d0-value of

4.46 (P5 0.001) for semantic dementia and suggests that

the cases with semantic dementia, from which the data-

driven diagnostic criteria were derived, show within-group

homogeneity and clearly distinct between-group boundaries.

This corroborates our earlier qualitative interpretation of se-

mantic dementia as occupying a unique area in the multidi-

mensional space from the unified PCA. Because of the data-

driven criteria for other PPA subtypes being less selective for

their target subtype, some semantic dementia cases were mis-

classified; 28.6% of the semantic dementia cases met both

the semantic dementia cut-offs and the cut-offs for either

mPPA or PNFA.

Figure 1 Intergroup comparison of the underlying dimensions of variance in PSA and PPA. Bars represent the factor loadings of ex-

emplar tests onto each extracted factor. Factor loadings represent the weighting of each test on each factor and were used to suggest cognitive

interpretations of the factors. The patterns of the bars represent the different PCAs; the PPA PCA extracted two speech production compo-

nents, which are shown in different patterns on the motor speech production panel. MAST = Make a Sentence Test (Billette et al., 2015); VOSP

= Visual Object and Space Perception battery (Warrington and James, 1991).
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The data-driven diagnostic criteria for PNFA (d0 = 2.03,

P50.001) were much less selective as not only did they

incur misclassifications of all other subtypes, but they also

failed to classify all the PNFA cases correctly (hit rates

�90%). This shows that even the optimal data-driven diag-

nostic criteria for PNFA were insufficiently selective, imply-

ing that PNFA cases do not display within-group

homogeneity and distinct between-group boundaries like se-

mantic dementia.

The classification results for lvPPA and mPPA are pre-

sented here for completeness, with the caveats that (i) the

lvPPA result was derived from a very small sample size and

will need validating with a much larger cohort; and (ii)

mPPA does not represent an actual subtype category of PPA

(instead it represents the label given to cases who do not

meet the criteria for any proposed category). This means

that the data-driven diagnostic criteria for mPPA would not

be expected to have any selectivity for this inherently hetero-

geneous group. The lvPPA data-driven diagnostic criteria (d0

= 3.38, P50.001) had a perfect hit rate but some misclassi-

fications of PNFA cases, resulting in a lower d0. Consistent

with the nature of cases given the mPPA subtype label, the

data-driven diagnostic criteria for this group (d0 = 2.10,

P5 0.001) also showed low selectivity. The mPPA criteria

failed to capture all the mPPA cases and incorrectly captured

cases from all other subtypes.

Figure 2 Regions of the shared multidimensional space of PSA and PPA occupied by each diagnostic subtype. Factor scores of all

patients were plotted along all pairs of components extracted from the unified PCA. The origin is the mean of all patients. The factor scores are

an expression of how many standard deviations a patient’s performance is from the group mean. The region of space reflecting preserved per-

formance was calculated by projecting control norms into the patient space and is shaded in grey. PSA subtypes are blue-spectrum colours, PPA

are red spectrum colours. SD = semantic dementia; TMA = transcortical motor aphasia.
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Discussion

This study had two principal aims: (i) to undertake a large-

scale direct comparison of PPA and PSA utilizing detailed

aphasiological and neuropsychological test batteries; and (ii)

to reconsider the phenotype differences across patients with

PSA and PPA in terms of graded variations along multiple

principal dimensions.

The results confirm that there is meaningful, coherent

structure in the language-cognitive variations across PPA

and PSA patients. Rather than conceptualizing such

variations as mutually exclusive categories, the results indi-

cate that the patients’ variations reflect multiple, continuous,

graded dimensions. This alternative approach has multiple

advantages: (i) it is able to capture the patterns of overlap

between different ‘subtypes’ of PPA and PSA (e.g. overlap in

phonological impairments in many PPA and PSA cases) as

well as their clear differences; (ii) it captures the variations in

performance within each ‘type’ of PPA and PSA; and (iii) it

meaningfully situates the ‘mixed’ aphasic patients alongside

the other cases to generate a complete clinical picture of PPA

and PSA. This is important given that there are high

Figure 3 Data-driven diagnostic cut-off values for semantic dementia. Using a data-driven sweep at intervals of 0.05 through the entire

four-dimensional space, the combination of cut-off values giving optimum sensitivity for semantic dementia was isolated. Applying the simultan-

eous combination of these four-dimensional cut-off values as diagnostic criteria (dashed lines) gave perfect selectivity for semantic dementia. This

implies that semantic dementia shows within-group homogeneity and distinct between-group differences, suggestive of a true diagnostic category.

This process was repeated for all subtypes of PPA and PSA within each aetiology (cut-off values and d0-values per subtype in Supplementary Table

1). SD = semantic dementia.
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numbers of ‘mixed’ cases in everyday clinical practice. It is,

perhaps, important to note that these dimensions are not

new categories but rather each patient represents a specific

point in the graded multidimensional space.

The cognitive and language impairments in PSA and PPA,

both when considered in isolation and when considered in a

single unified framework, could be captured by four main

dimensions of underlying variation: phonology, semantics,

speech production/motor output fluency, and executive-cog-

nitive skill. This finding is a direct replication of what has

been found previously for this PSA cohort (Butler et al.,

2014; Halai et al., 2017) and by numerous international

groups (Kümmerer et al., 2013; Mirman et al., 2015a, b;

Lacey et al., 2017; Tochadse et al., 2018), and found to be

statistically stable across different sample sizes and assess-

ment batteries (Halai et al., 2018a). These studies have used

lesion-symptom mapping methods to show that the principal

components are associated with neural correlates that sup-

port the labels applied [e.g. components labelled ‘phonology’

having neural correlates in left posterior perisylvian cortical

(e.g. superior temporal gyrus) and subcortical regions (e.g.

arcuate fasciculus) (Butler et al., 2014; Halai et al., 2017),

dorsal parietal white matter (Lacey et al., 2017), which have

previously been shown to be involved in phonological

processing].

Although outside the scope of this study, neuroimaging in-

formation could help to elucidate and further delineate the

underlying principal dimensions of variance in both forms of

aphasia. Aphasia can be caused by brain injury to cortical

but also subcortical brain areas (Naeser et al., 1987, 1989;

Hillis et al., 2002, 2004). Therefore, the location of the le-

sion/atrophy is a critical piece of information to help under-

stand the mapping between behavioural dimensions and

neural substrates (Naeser and Palumbo, 1994). For example,

situating lvPPA and comprehension-impaired PSA in the

same multidimensional space with neuroimaging measures

could help to further understand the nature of ‘Wernicke’s

area’ (Mesulam et al., 2015). The location of the lesion/atro-

phy also relates to functional connectivity changes associated

with aphasia (Yang et al., 2016; Ranasinghe et al., 2017).

Future research could combine the PCA framework used in

this study with single- or multimodality imaging information

(such as white matter integrity or functional connectivity) to

explore how the underlying nature of the brain injury (i.e.

abrupt insult versus progressive neurodegeneration) leads to

similar/differing neural changes and consequently to similar/

differing behavioural symptoms in PSA and PPA; for ex-

ample, functional connectivity information could explore the

possibility of neuronal preservation in PPA compared to

PSA (Sonty et al., 2003). Another avenue for future research

could be to include longitudinal neuropsychological data in

this PCA framework, in order to contrast the temporal pro-

files of recovery (in a less chronic PSA cohort) versus degen-

eration. This would inform our understanding of how

different aetiologies of brain damage result in a changing

aphasic profile in these populations.

The fact that the same underlying dimensions were found

for PPA as well as PSA indicates that these dimensions might

reflect core ‘primary systems’ for language activities

(Patterson and Lambon Ralph, 1999; Ueno et al., 2014;

Woollams et al., 2018). Past work has associated these pri-

mary systems with different brain areas: phonological proc-

essing and working memory with posterior superior

temporal lobe and supra-marginal gyrus (Paulesu et al.,

1993); semantic representation with anterior temporal lobe

(ATL) (Patterson et al., 2007; Lambon Ralph et al., 2017);

speech programming and fluency with premotor cortex and

key underpinning white matter pathways (Basilakos et al.,

2014); and executive functions with frontoparietal networks

(Jurado and Rosselli, 2007; Marek and Dosenbach, 2018).

As these regions can be affected in both middle cerebral ar-

tery PSA (Phan et al., 2005) and PPA (Gorno-Tempini et al.,

2004), the similarity of their phenotypic spectra could reflect

varying degrees of impairment to these core primary

systems.

Plotting all patients’ factor scores into the shared multidi-

mensional space showed that the non-semantic dementia

PPA and PSA cases occupied an almost completely overlap-

ping region of the phonology-semantics space. This contrasts

with the semantic dementia cases who occupied an exclusive

region of the multidimensional space, signifying their select-

ive semantic impairment in the context of relatively

Table 2 Distribution of misclassifications between clinical and data-driven diagnostic PPA groups

Clinical diagnostic groups (n) Data-driven diagnostic groups

Hits Misclassifications

lvPPA mPPA PNFA SD None 41

lvPPA (4) 100.0 – 50.0 100.0 0.0 0.0 100.0

mPPA (26) 92.3 0.0 – 38.5 0.0 3.8 34.6

PNFA (24) 91.7 4.2 20.8 – 0.0 4.2 16.7

Semantic dementia (28) 100.0 0.0 25.0 3.6 – 0.0 28.6

The cut-off values giving optimum sensitivity for each diagnostic group were treated as data-driven diagnostic criteria. Rows represent ‘real’ clinical diagnostic categories. The ‘Hits’

column represents the percentage of patients meeting the data-driven cut-off values for their own data-driven diagnostic group. The columns under ‘Misclassifications’ represent

the percentage of cases whose factor scores (i) met the cut-off values for a different data-driven diagnostic group; (ii) did not meet the cut-off values for any of the data-driven diag-

nostic groups; and (iii) met the cut-off values for more than one data-driven diagnostic group. These ‘Misclassifications’ columns are not mutually exclusive, so row totals do not add

up to 100%.
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preserved phonological abilities, coupled with motor speech

production and executive function that are comparable to

healthy control subjects. This might reflect the fact that se-

mantic dementia arises from atrophy in extra-sylvian, ATL

regions (Snowden et al., 1989; Hodges et al., 1992; Rosen

et al., 2002), whereas the other forms of PPA and PSA are

associated with damage to perisylvian cortical and subcor-

tical regions (Hillis et al., 2002, 2004; Grossman and Irwin,

2018).

In the space corresponding to visuo-executive function ver-

sus motor speech production, there was separation of the

two aetiologies. PSA patients occupied the region signifying

less fluent speech production combined with relatively unim-

paired visuo-executive ability. Most PPA patients showed

the reverse pattern, although some PNFA and mPPA cases

showed the combination of poor fluency and poor executive

function. This result agrees with previous direct comparisons

restricted to the non-fluent subtypes of PSA and PPA

(Patterson et al., 2006). This separation is clinically interest-

ing and important as it indicates that certain symptom terms

(e.g. fluency) are not used in the same way across patient

types; thus, many non-fluent progressive aphasics were more

fluent than the ‘fluent’ PSA cases (e.g. anomic and conduc-

tion aphasics). This may be relevant for clinical professionals

who work with patients with PSA and with patients with

PPA; if assessments/tools at their disposal are targeted to-

wards ‘non-fluent’ aphasias then it may be useful to have a

formal understanding of how the term ‘fluency’ is applied

across PSA and PPA.

The separation in terms of visuo-executive function could

reflect an aetiology-driven difference in the neural substrates

vulnerable to damage in stroke versus neurodegeneration;

cognitive functions supported by regions at the edges of/out-

side the territory of the middle cerebral artery (MCA) would

be less likely to be impaired in PSA than perhaps in some

forms of PPA. For example, the multi-demand frontoparietal

executive system (Marek and Dosenbach, 2018), and poster-

ior cingulate and other medial regions that support executive

function and attention (Jurado and Rosselli, 2007) are situ-

ated at the edges/outside of the MCA-perfused regions (Phan

et al., 2005), potentially leading to relatively spared visuo-

executive function in our PSA cohort.

In addition to facilitating intergroup comparisons, the

PCA method revealed graded intragroup differences. The

subtypes of non-semantic dementia PPA and PSA occupied

only partially differentiated positions within the 4D space,

with considerable variation within each ‘subtype’ and over-

lap of cases across subtypes. This could reflect the overlap-

ping atrophy/lesions in and around the cortical and

subcortical perisylvian language regions in these forms of

aphasia. Again, these findings indicate that phenotypic varia-

tions in non-semantic dementia PPA and PSA are unlikely to

reflect different categories but rather graded variations along

these dimensions. These graded differences can only be

accounted for in categorical classification systems by using

‘mixed’ classifications (Wertz et al., 1984; Sajjadi et al.,

2012a; Wicklund et al., 2014), but the methods in the

current study were able to account for graded variation in a

single multidimensional framework comprising four, clinical-

ly intuitive underlying dimensions.

Based on this framework, the current diagnostic subtype

labels can be reconceptualized as pointers towards particular

regions of the multidimensional space, rather than labels for

mutually exclusive clinical categories. This approach does

not preclude the fact that some labels might be pointers for

more exclusive regions of space (e.g. semantic dementia or

global PSA) than others (e.g. anomia or PNFA).

In fact, the concept of ‘semantic dementia’ seems to be a

uniquely useful pointer for the exclusive region of the multi-

dimensional space occupied by these cases. This aligns with

(i) the original descriptions of semantic dementia, in particu-

lar the selective nature of their semantic impairment

(Warrington, 1975; Snowden et al., 1989; Hodges et al.,
1992); and (ii) previous work showing that semantic demen-

tia is distinct from other forms of PPA. Bisenius et al. (2017)

found that semantic dementia was the most readily differen-

tiable subtype of PPA using support vector machine

approaches to evaluate the consensus criteria for PPA.

Hoffman et al. (2017) applied k-means clustering to behav-

ioural data in PPA and found that of their three-cluster solu-

tion, only one cluster was selective for a particular subtype

of PPA and this was the semantic dementia cases. This find-

ing agrees with Sajjadi et al. (2017), who found that the at-

rophy patterns for semantic dementia were more easily

distinguishable (high sensitivity and specificity) than the

other forms of PPA. In our study, by plotting PSA and PPA

in the same space we provide support for previous work

showing that semantic impairments in semantic dementia

are unlike those found in PSA (Jefferies and Lambon Ralph,

2006; Lambon Ralph et al., 2017). This result probably

reflects the fact that the distribution of damage in semantic

dementia is distinctly different from those in non-semantic

dementia PPA and PSA phenotypes. Cases with semantic de-

mentia have hypometabolism and atrophy centred on the

ATL bilaterally (Mummery et al., 2000). Data from other

methods in healthy participants and patient groups have

shown the ATL to be a key region for the formation of co-

herent concepts (Lambon Ralph et al., 2010). Mesulam

et al. (2015) showed that the ATL, not regions typically con-

sidered to be in ‘Wernicke’s area’, was consistently associ-

ated with word comprehension in PPA; this provides further

evidence that the ATL is a core component of the language

network, despite this region historically being absent from

the language network in classic aphasiology. PPA and se-

mantic dementia, in particular, represents a unique platform

for investigating the contributions of the ATL to language

and semantic processing. In contrast, there is less informa-

tion to be gleaned about the ATL (other than superior

regions) from PSA because most of this region falls outside

of the middle cerebral artery territory.

Describing the symptomatology of PSA and PPA in terms

of differently graded regions within multidimensional space

has a number of potential clinical implications. First, this ap-

proach allows us to begin to determine both the range and
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type of variations that are associated with each of the pre-

existing clinical labels, rather than reserving the use of each

diagnostic label to a single, invariant prototypical pattern.

Second, by extension, it also allows us to establish when and

why certain subtypes of PPA are most likely to be confused

with each other, and the same for subtypes of PSA. Third, it

provides a single unifying framework within which both

established and ‘mixed’ aphasias can be considered.

Fourth, future clinical research can explore whether con-

sidering the phenotype variations along continuous dimen-

sions (i.e. a transdiagnostic approach) rather than

categorical systems might reveal clearer relationships be-

tween phenotype and atrophy, pathology or genetic

markers. For example, past work in PSA has shown that uti-

lizing raw individual test scores or PSA categories leads to

undifferentiated lesion correlates reflecting the whole middle

cerebral artery territory rather than specific subregions.

When the same lesion-mapping analyses are repeated using

the PCA-derived dimensions then much more discrete and

interpretable subregions are revealed (cf. Butler et al., 2014).

These clearer symptom-lesion maps can then be inverted in

order to generate lesion-based diagnostics and prediction

models (Halai et al., 2018a). Finally, taking this multidimen-

sional approach could inform a transdiagnostic selection

process for treatment, therapy or clinical trials; in order to

select a group of patients with relatively homogeneous be-

havioural symptoms, one could select patients who occupy a

shared region of the multidimensional space (thereby sharing

symptomatology across the core language systems captured

by the dimensions), irrespective of their clinical diagnosis.

Indeed, the importance of a transdiagnostic approach has

been highlighted for frontotemporal lobar degeneration

(FTLD) with regards to shared apathy and impulsivity symp-

tomatology (Lansdall et al., 2017, 2019; Passamonti et al.,

2018).

In conclusion, we have shown that the internal structure

of variation in PSA and PPA, in isolation or in a unified

framework, can be captured with the same four underlying

language-cognitive dimensions. Furthermore, semantic de-

mentia appears to represent a robust diagnostic category,

whilst patients with other forms of PPA and PSA might be

better described in terms of their differently graded positions

along these four principal language-cognitive dimensions.
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