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Abstract

Drug resistance remains a vexing problem in the treatment of cancer patients. While many studies 

have focused on cell autonomous mechanisms of drug resistance, we hypothesized that the tumor 

microenvironment may confer innate resistance to therapy. Here we developed a co-culture system 

to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 

cancer cell lines to 35 anti-cancer drugs. We found that stroma-mediated resistance is surprisingly 

common – particularly to targeted agents. We further characterized the stroma-mediated resistance 

of BRAF-mutant melanoma to RAF inhibition because most of these patients exhibit some degree 

of innate resistance1-4. Proteomic analysis showed that stromal secretion of the growth factor 

hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of 

the MAPK and PI3K/AKT pathways, and immediate resistance to RAF inhibition. 

Immunohistochemistry confirmed stromal HGF expression in patients with BRAF-mutant 

melanoma and a statistically significant correlation between stromal HGF expression and innate 

resistance to treatment. Dual inhibition of RAF and MET resulted in reversal of drug resistance, 

suggesting RAF/MET combination therapy as a potential therapeutic strategy for BRAF-mutant 

melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal 

and glioblastoma cell lines. More generally, these studies indicate that the systematic dissection of 

tumor-microenvironment interactions may reveal important mechanisms underlying drug 

resistance.

Oncoprotein-targeted drugs hold enormous promise for the future of cancer treatment. 

However, complete clinical responses are rare, suggesting that mechanisms exist to render a 

substantial portion of tumor cells resistant to treatment. For example, melanomas harboring 

the BRAF V600E mutation show a dramatic response to RAF inhibitors, but responses are 

almost always partial, and tumors often recur within 6 months1-4.

We hypothesized that innate drug resistance might be caused at least in part by factors 

secreted by the tumor microenvironment. While growth and metastasis-promoting effects of 

the microenvironment have been well documented5,6, a role in drug resistance has only been 

partially explored7-11. To test the hypothesis that stromal cells might confer innate resistance 

to cancer cells, we developed a co-culture system whereby GFP-labeled tumor cells are co-

cultured with stromal cells, and the ability of the stromal cells to modulate drug sensitivity is 

measured by monitoring GFP levels over time (Supplementary Fig. 1). Forty-five GFP-

labeled human cancer cell lines were cultured either alone or in combination with a panel of 

up to 23 human stromal cell lines in the presence of increasing doses of 35 widely used anti-

cancer drugs (Supplementary Tables 1 and 2).

Our analysis of cancer cell-stromal cell-drug interactions (Supplementary Tables 3 and 4) 

yielded a striking result – anti-cancer drugs capable of killing tumor cells when cultured 
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alone, frequently are rendered ineffective when tumor cells are cultured in the presence of 

stroma (Figure 1a). For example, certain dermal fibroblasts were able to confer complete 

resistance of colorectal and pancreatic cancer cell lines to the cytotoxic agent gemcitabine 

(Figure 1b and Supplementary Fig. 2). Different stromal cells conferred resistance to BRAF-

mutant melanoma cell lines treated with RAF inhibitors, and ERBB2 over-expressing breast 

cancer cell lines treated with ERBB2 inhibitors (Figure 1c, 1d and Supplementary Fig. 3 and 

4). The stroma-mediated resistance phenomenon was particularly pronounced with targeted 

agents compared with conventional cytotoxic chemotherapy (P < 0.001; Supplementary 

Table 2). Overall, of the 23 targeted agents in the panel, 15 (65%) showed evidence of 

microenvironment-mediated resistance (Supplementary Table 2 and Supplementary 

methods).

We next explored the mechanism of stroma-mediated innate resistance to the RAF inhibitor 

PLX4720 (an analog of which, vemurafenib, was recently FDA-approved for the treatment 

of BRAF-mutant melanoma). In a recent phase 3 clinical trial, 48% of BRAF mutant 

melanoma patients treated with vemurafenib had a confirmed response, and only 0.9% of 

patients had a complete response, indicating a high rate of innate resistance2. We tested 18 

stromal cell lines for their ability to confer resistance of 7 BRAF V600E melanoma cell lines 

to PLX4720. Of these, 6 fibroblast lines conferred resistance (Figure 1c and Supplementary 

Fig. 3).

To determine if the rescue effect was mediated by direct fibroblast-tumor contact or by the 

secretion of soluble factors, we tested the ability of fibroblast-conditioned growth media to 

recapitulate the resistance effect. Fibroblast-conditioned media rescued BRAF-mutant 

melanoma cells from PLX4720, indicating that the rescue was due to a factor secreted by the 

fibroblasts (Figure 2a). To identify the rescuing secreted factor, we performed an antibody 

array-based analysis of 567 secreted factors (Supplementary Tables 5 and 6), comparing the 

conditioned media from the 6 rescuing to 12 non-rescuing stromal cells. The factor best 

correlated with PLX4720 resistance was hepatocyte growth factor (HGF), a well-

characterized growth factor whose secretion by mesenchymal cells induces activation of the 

MET receptor tyrosine kinase (Figure 2b and Supplementary Fig. 5 and 6). While MET has 

been reported to be overexpressed12,13 and contribute to the progression of melanoma12, it 

has not been previously implicated in RAF-inhibitor resistance. A potential role of MET 

activation in the development of resistance to the EGFR inhibitor gefitinib in non-small cell 

lung cancer, however, has been recently reported10,14.

We next tested HGF expression by immunohistochemistry in 34 BRAF V600E melanoma 

patient-derived biopsies taken just prior to treatment with BRAF inhibitor (or a combination 

of BRAF and MEK inhibitors). HGF was detected in the tumor-associated stromal cells in 

23/34 patients (68%) (Fig. 3a, 3b and Supplementary Table 7), and phospho-MET 

immunofluorescence studies similarly documented MET phosphorylation (activation) in 

patient samples (Supplementary Fig. 7).

Our in vitro studies predict that the presence of stromal HGF should be associated with 

innate resistance. Indeed, patients with stromal HGF had a significantly poorer response to 

treatment compared to those lacking expression (P < 0.05; Fig 3c). Interestingly, only one of 
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the 34 patients had a durable complete response (14 months and continuing), and this patient 

lacked HGF expression (Supplementary Table 7). On-treatment biopsies taken 2 weeks after 

treatment initiation were also available from 10 patients, and for 5 of those (50%), stromal 

HGF expression was found to be increased compared to pre-treatment (Fig. 3 and 

Supplementary Table 7). Whether this increase is attributable to recruitment of HGF-

secreting fibroblasts to the tumor or up-regulation of HGF in existing fibroblasts remains to 

be determined. Of note, both normal skin and benign nevi exhibited stromal HGF expression 

(Supplementary Fig. 8). Our results thus support the clinical relevance of HGF-mediated 

resistance to BRAF inhibitors. Importantly, Settleman and colleagues similarly observed an 

association between plasma HGF levels and response to BRAF inhibitor treatment (Wilson 

et al, manuscript submitted15).

To establish HGF as the cause of drug resistance, and not simply a biomarker of it, we tested 

the ability of recombinant HGF to induce resistance, as well as the ability of HGF-

neutralizing antibody or the MET-inhibitory small-molecule crizotinib to block fibroblast-

induced PLX4720 resistance. These experiments indicated that HGF is both necessary and 

sufficient for conferring the resistance phenotype (Figure 2c, 2d and Supplementary Fig. 

9,10 and 11). Consistent with this observation, the extent to which different BRAF-mutant 

melanoma cell lines (n=20) could be rescued by HGF was highly correlated with their level 

of MET expression (Supplementary Fig. 12).

While our stromal cell profiling studies pointed to the HGF/MET axis as the most relevant 

in mediating PLX4720 resistance, it is conceivable that other ligands of receptor tyrosine 

kinases (RTK) might similarly confer resistance. To test this possibility, we collected 22 

well-characterized RTK ligands and tested their ability to rescue BRAF-mutant melanoma 

cells from either PLX4720 or the MEK inhibitor PD184352. Surprisingly, despite many 

RTKs being expressed and activated by their cognate ligands, HGF was the only ligand that 

conferred substantial resistance to RAF or MEK inhibition (Figure 2e, Supplementary Fig. 

13, 14 and 15 and Supplementary Table 8).

We next sought to clarify the precise mechanism by which HGF/MET is uniquely capable of 

inducing primary resistance to PLX4720. MET is known to activate both the MAP kinase 

(MEK/ERK) and the PI-3-kinase (PI3K/AKT) pathways (Supplementary Fig. 16), and both 

pathways have been suspected to be involved in acquired resistance to BRAF inhibitors16-18. 

We used Western blotting to assess ERK and AKT activation status in a panel of 7 BRAF-

mutant melanoma cell lines treated with BRAF inhibitor together with various RTK ligands. 

HGF treatment led to sustained activation of both ERK and AKT, whereas such dual 

activation was not seen with any of the other RTK ligands in any of the melanoma lines 

(Figure 4a and Supplementary Fig. 17). We note that while EGF, FGF-1 and PDGF-BB 

reactivated ERK in most cell lines, phospho-ERK levels were modest compared to cells 

treated with HGF. Moreover, these ligands failed to activate AKT. Similarly, insulin or 

IGF-1 treatment led to a transient increase in phospho-AKT, but did not activate ERK 

(Figure 4b and Supplementary Fig. 18). HGF was thus unique in its ability to induce 

sustained activation of both ERK and AKT (Figure 4c and Supplementary Fig. 19 and 20). 

Importantly, we found that HGF-mediated activation of ERK was most profound under 

BRAF inhibition compared to MEK inhibition (Figure 4c and Supplementary Fig. 19). This 
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may be best explained by the fact that in the presence of BRAF inhibitors, MET can 

reactivate MEK through RAF1 (CRAF), thus bypassing BRAF, which is not possible under 

conditions of direct MEK inhibition (Figure 4c, Supplementary Fig. 16).

Our model thus predicts that both the MAPK pathway and the PI3K/AKT pathway 

contribute to the primary resistance induced by HGF-secreting stromal cells. In agreement 

with this model, we have found that i) HGF-induced resistance is greater under BRAF 

inhibition compared to MEK inhibition (Figure 2d), ii) combination BRAF- and MEK-

inhibitor treatment is not sufficient to eliminate HGF-induced resistance, as this combination 

does not silence AKT (Supplementary Fig. 21), and iii) combination treatment with MEK 

and AKT inhibitors suppresses the majority of HGF-induced drug resistance 

(Supplementary Fig. 21).

Our discovery of HGF-mediated innate resistance to BRAF inhibitors should be 

distinguished from recent reports proposing dysregulation of IGF, PDGF, COT, BRAF or 

MEK as BRAF-inhibitor resistance mechanisms18-22. In these reports, the emergence of late, 

acquired drug resistance was studied (e.g. following exposure to drug for many months), 

whereas we find that HGF-secreting stromal cells confer immediate, innate resistance to 

BRAF inhibitors. For example, the p61BRAF(V600E) splice variant that was recently 

shown to confer resistance to RAF inhibitors21 was never seen in tumors prior to RAF 

inhibitor treatment, implicating this splice variant as a mechanism for acquired rather than 

innate resistance. Whether HGF has a role in acquired resistance as well remains to be 

determined.

Activation of the EGF receptor was recently shown to drive the resistance of some BRAF 

V600E colorectal cancer cell lines to RAF inhibition23,24. In order to explore a possible role 

for MET activation in BRAF-mutant non-melanoma cancers, we tested 7 non-melanoma 

BRAF-mutant cell lines (5 colorectal and 2 glioblastoma), and found that all 7 had evidence 

of phospho-MET expression (Supplementary Fig. 22). Although stromal HGF expression is 

less common in colorectal cancer compared to melanoma (Supplementary Fig. 8a), MET 

overexpression and HGF autocrine secretion have been documented in colorectal 

cancer25-27. We indeed identified two HGF-secreting, BRAF-mutant non-melanoma cell 

lines (one colorectal (RKO) and one glioblastoma (KG-1-C); Supplementary Fig. 6), and in 

these cell lines, combined RAF and MET (but not EGFR) inhibition resulted in a clear 

synergistic effect (Supplementary Fig. 22 and 23). Synergy between BRAF and MET 

inhibitors was more variable among non-HGF-secreting BRAF-mutant cell lines 

(Supplementary Fig. 22). As predicted by our proposed mechanism of resistance, mono-

therapy with BRAF or MEK inhibitors had no effect on pAKT and caused little inhibition of 

pERK in HGF-secreting cell lines. However, dual inhibition of BRAF and MET resulted in 

significant inhibition of both pERK and pAKT (Supplementary Fig. 24). The extent to 

which autocrine or microenvironment-mediated MET activation in non-melanoma BRAF-

mutant tumors explains their failure to respond to BRAF inhibition deserves further 

investigation.

The findings reported here have potentially immediate clinical implications. Several small-

molecule or antibody inhibitors of HGF/MET are in clinical development or have been 
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FDA-approved for other indications. Given the tolerability of those agents and the similar 

tolerability of BRAF inhibitors, combination clinical trials in BRAF-mutant melanoma, 

colorectal cancer, and possibly other tumor types should be considered.

Lastly, we note that the stroma-derived, HGF-mediated RAF inhibitor resistance mechanism 

detailed here was but one of many such stroma-mediated drug resistance interactions 

uncovered in our initial screen (Figure 1a). Our findings point to the microenvironment as an 

important, yet under-studied source of cancer drug resistance. Moreover, the results suggest 

that such resistance mechanisms can be uncovered through the systematic dissection of 

tumor-microenvironment interactions. Future studies should therefore aim to identify such 

resistance mechanisms for all drugs currently in development, potentially leading to 

mechanism-based combination regimens such as the BRAF-MET combination proposed 

here.

METHODS SUMMARY

Stromal mediated chemoresistance co-culture screen

On day 0 stromal cells (1700 cells in 20ul/well) were plated in 384-clear bottom plates 

(Corning #3712), together with GFP-labeled cancer cells (1700 cells/20ul). Cells were 

treated on day 1 with 10 uL of 5X drug using the Cybi-Well Vario 384/25 (CyBio). On day 

4, the media in all wells was replaced with fresh media and fresh drug was added to all wells 

containing melanoma cell lines (all other cancers were treated on day 1 only). GFP was read 

on Days 1, 4, and 7 by SpectraMax M5e microplate reader (Molecular Devices). 

Fluorescence microscope with high throughput screening (HTS) capabilities (Zeiss Axio 

observer Z1) was used to document bright field and GFP images on day 7. All screens were 

done in quadruplicate. See Supplementary information for full methods description.

Methods

1. Stromal mediated chemoresistance co-culture screen

On day 0 stromal cells (1700 cells in 20ul/well) were plated in 384-clear bottom plates 

(Corning #3712), together with GFP-labeled cancer cells (1700 cells/20ul). Cells were 

treated on day 1 with 10 uL of 5X drug using the Cybi-Well Vario 384/25 (CyBio). On day 

4, the media in all wells was replaced with fresh media and fresh drug was added to all wells 

containing melanoma cell lines (all other cancers were treated on day 1 only). GFP was read 

on Days 1, 4, and 7 by SpectraMax M5e microplate reader (Molecular Devices). 

Fluorescence microscope with high throughput screening (HTS) capabilities (Zeiss Axio 

observer Z1) was used to document bright field and GFP images on day 7. All screens were 

done in quadruplicate.

2. Cell lines and reagents

The sources of all used cell lines are listed in Supplementary table 1. All cells were in 

maintained in DMEM (Invitrogen – 10569-010) with 10% FBS and 1x Pen Strep Glutamine 

(Invitrogen - 15140-122). Cancer cell lines were lentivirally transduced using 

pLex_TRC206 plasmid. The sources of all used drugs are listed in Supplementary table 2. 
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Antibodies to MET (#3148), pMET (#3077, 3133), pRAF1 (#9427), pERK (#4370), AKT 

(#2920), pAKT (#4060), MEK1/2 (#4694), pMEK1/2 (#9154), and GAPDH (#2118) were 

purchased from Cell Signaling. Antibody to Raf1 (#ab656) was purchased from Abcam. 

Antibody to ERK (#sc-135900) was purchased from Santa Cruz. Anti-rabbit (#926-32211) 

and anti-mouse (#926-32220) secondary antibodies purchased from Licor. The following 

cytokines were purchased from R&D systems: Angiopoietin-1 (923-AN-025), BDNF (248-

BD-005), EGF (236-EG-200), Ephrin-A4 (369-EA-200), FGF1 (231-BC-025), flt-3 ligand 

(308-FK-025), Gas6 (885-GS-050), GDNF (212-GD-010), IGF-1 (291-G1-050), MSP (352-

MS-010), neuregulin 1 alpha (5898-NR-050), NGF (256-GF-100), NT3 (267-N3-005), 

PDGF-BB (220-BB-010), Pleiotrophin (252-PL-050), VEGF-A (293-VE-010), VEGF-C 

(2179-VC-025). HGF (228-10702-2) was purchased from Raybiotech. Insulin (I9278) was 

purchased from Sigma. Stem Cell Factor (569600-10UG) was purchased from EMD. Type 

II collagen (ab7534) and Wnt1 (ab84080) were purchased from Abcam. Skin tissue 

microarrays (TMA) of Normal skin, Nevi and Melanomas were purchased from US Biomax 

(#ME1004a and #ME803a). Colorectal cancer TMAs were prepared as previously 

described31.

3. Clinical samples

Patients with metastatic melanoma containing BRAF V600E mutation (confirmed by 

genotyping) were enrolled on clinical trials for treatment with a BRAF inhibitor or 

combined BRAF + MEK inhibitors (Supplementary Table 7) and were consented for tissue 

acquisition per IRB-approved protocol. Tumor biopsies were performed pre-treatment (day 

0), at 10-14 days on treatment, and at time of progression. Formalin-fixed tissue was 

analyzed to confirm that viable tumor was present via hematoxylin and eosin (H&E) 

staining. Tumor responses were determined by the investigators according to the Response 

Evaluation Criteria in Solid Tumors (RECIST)

4. Analysis of Co-culture screen data

The GFP readings from each well on day 7 were background subtracted by the readings in 

the same wells on day 1, and quadruplicates were averaged. The drug effect for each cancer 

cell line in the presence or absence of stromal cells was calculated by normalizing the 

number of cells (GFP) after 7 days of treatment to the number of cells (GFP) in DMSO 

control wells. The drug effect in the presence of stromal cells was further normalized to the 

effect that each stromal cell type has on cancer cell proliferation when no drug is present 

(See “Without Stroma” and “With Stroma” columns in Supplementary table 3). “Rescue 

score” was calculated by subtracting the “Without stroma” drug effect from the “With 

stroma” drug effect.

5. Analysis of Co-culture screen data

The GFP readings from each well on day 1 were subtracted from the readings in the same 

wells on day 7. Quadruplicates were averaged. The effect of each drug on the proliferation 

of each cancer cell line was calculated by normalizing the GFP reading of the cancer cell 

line when treated with a drug to the GFP reading of the same cancer cell line when treated 

with DMSO control (“No stroma” column in Supplementary table 3). The proliferation of 
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the cancer cell under a drug when co-cultured with a stroma cell line was normalized first to 

the proliferation of the same cancer cell line when grown without drug or stromal cell line 

and then normalized again to the effect that the specific stromal cell line has on the 

proliferation of the cancer cell line (“With Stroma” column in Supplementary table 3). 

“Rescue score” was calculated by subtracting the “No stroma” drug effect from the “With 

stroma” drug effect.

6. Assigning “rescue by stroma” score to all screened drugs (Supplementary table 2)

Only cases in which a drug slowed the proliferation of a cancer cell line to <30% were 

analyzed (Supplementary table 4). Rescue was counted as positive if the rescue score was > 

0.3. Drugs that were rescued by stromal cells in at least 3 different cancer cell lines 

representing >40% of all screened cancer cell lines for this drug got the maximal score: “+

+”. Drugs that were rescued by stromal cells in 3 cancer cell lines that represent only 

20-40% of screened cancer cell lines or that were rescued in only 1 or 2 cell lines that 

represent more than 40% of screened cancer cell lines were scored: “+”.

7. Antibody arrays

Soluble proteins in the media of the stromal cell-lines were measured using RayBio Human 

cytokine array G4000 (#AAH-CYT-G4000-8) and RayBio Biotin Label-based Human 

Antibody Array (#AAH-BLG-1-4), according to recommended protocols. These arrays can 

detect 274 and 507 proteins, respectively. Stromal cells were plated 3 days before the 

experiment in DMEM containing 10% FBS and were 75-90% confluent when media was 

collected and filtered. Media with 10% FBS was also hybridized to the arrays and used later 

for normalization. 10 Technical and Biological replicates were done – both showing a very 

high correlation (Correlation coefficient > 0.9) (Data not shown). Hybridization was done 

overnight in 4°C. All slides were scanned using Axon’s GenePix 4000B scanner and 

analyzed using GenePix Pro 6.0. The F532 Median - B532 score was used and averaged 

across triplicates on each array. Results were then normalized using internal controls and 

values of cytokines in clear media + 10% FBS were subtracted. All results are available in 

Supplementary tables 5 and 6.

8. Stromal averaged Melanoma rescue scores

The averaged melanoma rescue effect of each stromal cell line was calculated by averaging 

the rescue scores of this cell line (Supp. Table 3) across all melanoma cell lines and all 

PLX4720 concentrations. Only instances in which the treatment caused a drop of 

proliferation below 0.3 when no stromal cells are present were included in this calculation.

9. The effect of pre-conditioned media (PCM)

PCM was prepared by filtering media from 80-90% confluent 15cm plates that were plated 3 

days earlier and then diluting it 1:1 with fresh media. Experiments were performed 

according to the previously described co-culture experiment protocol except for the 

following changes: 1. On day 0, 384-well plates were seeded with 20ul/well of PCM instead 

of 20ul of stromal cells. 2. On day 1, the media from all wells was changed to fresh PCM. 3. 
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On day 4, media was changed to fresh PCM instead of fresh media before re-treating the 

cells.

10. Hierarchical clustering

Unsupervised Hierarchical clustering of stromal cell lines according to their ability to rescue 

melanoma cancer cell lines from 2uM of PLX4720 (Supp. Table 3) was done using GENE-E 

(http://www.broadinstitute.org/cancer/software/GENE-E/). Euclidean distance metric was 

used.

11. HGF ELISA

Cells were plated 3 days before the experiment in DMEM containing 10% FBS and were 

75-90% confluent when media was collected and filtered. HGF ELISA was performed using 

RayBio Human HGF ELISA kit (#ELH-HGF-001) according to the kit’s instructions. The 

media was diluted 1:1 with diluents B before it was added to the assay microplate. For the 

standard HGF curve we used the same HGF that was used for all other experiments 

(#228-10702-2) and not the HGF that comes with the kit. Absorbance at 450nm was read 

using Spectramax M5e (Molecular Devices).

12. Neutralizing HGF by Anti-HGF antibodies

Co-culture experiments were performed as described above except for the addition of 

Neutralizing anti-HGF antibodies (R&D Systems #MAB294) on days 0 and on day 4 after 

the media was changed.

13. Western blot analysis and quantification

Cells were plated a day before treatment in a 6-well plate at 5×105 cells/well, and were 

treated the next day. At the designated time points, cells were lysed with lysis buffer 

containing 50mM Tris (pH 7.4), 150mM NaCl, 2mM EDTA, 1% NP-40, 1mg/mL NaF, a 

one pellet per 10ml each of Roche PhosStop phosphatase inhibitor (04906837001) and 

Roche Complete Mini protease inhibitor (Roche). Protein concentrations were determined 

by BioRad DC Protein Assay Kit II. Samples were mixed with 4x protein sample loading 

buffer (Li-Cor #928-40004) and NuPage sample reducing agent (Invitrogen #NP0009), and 

run on a 4-12% Bis-Tris gel (NuPage #WG1402BOX) at 120V. Membranes were 

transferred using Program 4 on the iBlot Gel Transfer Device (Invitrogen #IB1001). 

Western blotting was performed with standard methods, with immunoblotting performed 

according to antibody manufacturer specifications. Near-infrared (NIR) fluorescence was 

detected with the Odyssey Infrared Imaging System (Licor), and signal intensity was 

quantified with Odyssey Application Software (Licor). All quantifications were first 

normalized to background intensity, and then to GAPDH loading control.

14. High throughput westerns

High throughput western blot experiments (Fig 4a and Supp. Figure 17) were performed as 

described above, except for the following changes: 1) Cells were seeded in a 96-well plate at 

5×104 cells/well, 2) Samples were mixed with E-Page 4x loading buffer (Invitrogen 
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#EPBUF-01) and run on 6% E-PAGE 96-well gels (Invitrogen #EP09606). For the transfer 

Program 3 of the iBlot Gel Transfer Device was used.

15. Rescue of melanoma cell lines by cytokines

One day prior to treatment, cancer cells were seeded in black, 384-well plates (Corning 

#3712) at a concentration of 2500 cells/well. On day 1, all 22 ligands were added at 5 

different concentrations to 6 melanoma cell lines treated with PLX4720, PD184352, or 

DMSO control. On day 4, media was changed to fresh and cells were retreated with drugs 

and cytokines. GFP was read of the plates on Days 1, 4, and 7 by SpectraMax M5e 

microplate reader (Molecular Devices).

16. Tyrosine kinase phosphorylation profiling

Luminex immunosandwich assays were performed as previously described32 with the 

following modifications: Antibodies were conjugated to Luminex MagPlex microspheres 

(Luminex). Assays were carried out in 384-well ThermoMatrix square bottom plates 

(Thermo) in conjunction with a 96-well (CyBio) and a 384-well (BioMek) liquid handler. 

The data was acquired with a FlexMap 3D instrument (Luminex) according to the 

manufacturer’s instructions. The raw data was normalized by subtracting sample and 

antibody backgrounds.

17. Immunohistochemistry

Deparaffinized tissue sections were treated with Antigen Retrieval Citra Solution (Biogenex 

Laboratories, #HK086-9K) in microwave for 15 min. Tissue sections were then incubated 

with Peroxidase Blocking Reagent (15 min; DAKO #S2001) and Protein Block (15 min; 

DAKO #X0909). Primary antibody against HGF (R&D #AB-294-NA; 0.75 μg/mL), MET 

(Invitrogen #187366; 4 μg/mL), pERK (Cell Signaling #4376; 1:200 dilution) or pAKT 

(Cell Signaling #4060; 1:50 dilution) was applied, and slides were incubated for 16 h at 4 

degrees. For HGF, sections were then incubated with rabbit anti-goat antibody (Vector 

#BA-5000) for 30 min. Signals were visualized using EnVision™+/HRP, Rabbit (for HGF; 

DAKO, #K4003) or Mouse (for MET; DAKO, #K4001) or SignalStain® Boost IHC 

Detection Reagent (for pERK and pAKT; Cell Signaling #8114), diaminobenzidine (DAKO 

#K3468) and hematoxylin counterstain. To detect MET expression in melanoma, VECTOR 

VIP Peroxidase Substrate Kit (Vector #SK-4600) was used instead of diaminobenzidine. All 

Immunostained slides were scored by a pathologist (T.M.) blinded to the clinical outcome 

data.

18. Immunofluorescence

Fresh frozen tissue sections were stained using Cell Signaling Technology’s general 

protocol. Sections were blocked using PBS with 5% normal goat serum (Cell Signaling # 

5425S) and 0.3% Triton-X for 1 hour. Primary antibody against p-Met (Y1234/1235) (Cell 

signaling #3077S;1:100 dilution) diluted in PBS with 1% BSA, and 0.3% Triton-X was 

applied, and slides were incubated for 16 h at 4 degrees. Sections were then washed with 

PBS and incubated with goat anti-rabbit IgG conjugated to Dylight 488 (ThermoFisher 

Scientific, #35552; 1:500 dilution) for 1 hour. Slides were mounted with Prolong anti-fade 
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reagent with DAPI (Life Technologies, CA, #P36935). Experiments were done in parallel 

with SignalSlide Phospho-Met (Tyr1234/1235) IHC control slide (Cell Signaling, #8118) for 

proper staining. Images were captured using a Nikon Eclipse 80i fluorescence microscope.

19. Calculating excess over Bliss

The Bliss independence model predicts the combined response C for two single compounds 

with response A and B according to the relationship C = A + B - A * B, where A is the 

fractional inhibition of compound A at the particular concentration and B is the fractional 

inhibition of compound B at the particular concentration. According to this model, the 

excess above the predicted Bliss independence represents the synergistic effect of the 

combination treatment33.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of stromal cells on chemoresistance of cancer cell lines
a, 45 GFP labeled cancer cell lines were treated with 35 drugs either alone or in co-culture 

with a panel of up to 23 stromal cell lines and primary cells. The drug effect was calculated 

by normalizing the number of cells (GFP) after 7 days of treatment to the number of cells 

(GFP) in DMSO control wells. X-axis represents drug effect in the absence of stromal cells 

while Y-axis represents drug effect in the presence of stromal cells. The Y axis was also 

normalized to the effect that each stromal cell type has on cancer cell proliferation when no 

drug is present (in order to distinguish true rescue from stromal effects on proliferation). The 

middle diagonal line represents the expected result when stromal cells do not confer 

resistance. Upper and lower diagonal lines represent one standard deviation from the mid-

diagonal line. b, Hierarchical clustering of stromal cells according to their ability to rescue 

colorectal (CRC) and pancreatic cancer cell lines from 0.1uM gemcitabine. c, Hierarchical 

clustering of stromal cells according to their ability to rescue melanoma cancer cell lines 

with V600E BRAF mutation from 2uM PLX4720. d, Hierarchical clustering of stromal cells 

according to their ability to rescue HER2 amplified breast cancer cell lines from 2uM 

lapatinib. See Supplementary Figures 1 to 3 for details.
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Figure 2. HGF rescues melanoma cancer cell lines from RAF and MEK inhibitors
a, 3 melanoma cell lines were co-cultured with conditioned media from three fibroblast cell 

lines or with fresh media and treated with 2uM PLX4720. Proliferation was quantified after 

7 days and compared to non-treated cells. Bars represent standard error between replicates 

(n = 3). b, the HGF secretion level of 18 stromal cell lines measured by a protein cytokine 

array (Supplementary Table 5) is plotted vs. the ability of each stromal cell line to rescue 

BRAF V600E melanoma cell lines from PLX4720 (Supplementary Fig. 3). c, Effect of HGF 

(6.25-50ng/ml) on proliferation of melanoma cell lines under PLX4720 or PD184352 

treatment. Bars represent standard error between replicates (n = 3). d, Drug resistance 

manifests only in the presence of HGF-secreting stromal cells, and is reversed by MET 

inhibitor. Melanoma cell lines were co-cultured with nine stromal cell lines, representing 

HGF secreting and non-secreting stromal cells and treated with PLX4720 (2uM) or 

PD184352 (1um) with or without 0.2uM crizotinib. Proliferation was quantified after 7 days 

and normalized to non-treated cells. Results were averaged across 4 stromal cell lines that 

secrete HGF and 5 that do not. Non-averaged results are presented in Supplementary Fig. 

11. Bars represent standard error between replicates (n = 3). e, 22 cytokines were added to 6 

melanoma cell lines that were then treated with 2uM PLX4720 or 1uM PD184352 or DMSO 

control. Proliferation quantified after 7 days and normalized to No-Cytokine. Results shown 

are averaged for all cell lines and both drugs. Bars represent standard error between 

replicates (n = 3).
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Figure 3. HGF is present in the stromal cells of melanoma and correlates with poor response to 
therapy
a, Pre-treatment melanoma section from patient # 32 was analyzed for HGF expression by 

immunohistochemistry (IHC). Black arrow: normal epidermis. Red arrow: tumor cells. Blue 

arrow: HGF-expressing stroma (brown staining). Low magnification image shown on the 

left (scale bar - 200μm) while high magnification image shown on the right (scale bar - 

50μm). b, Melanoma sections from patient # 23 analyzed for HGF expression by IHC. On 

treatment biopsy was obtained 2 weeks after the initiation of treatment with the BRAF 

inhibitor vemurafenib (PLX4032) and one month after the pre-treatment biopsy was 

obtained. Third biopsy was obtained 12 months after the initiation of treatment while the 

patient was progressing under treatment. Low magnification images are shown on top (scale 

bar - 100μm) while high magnification images are shown on the bottom (scale bar - 50μm). 

c, Maximal response to treatment of BRAF V600E melanoma patients with or without 

stromal HGF as measured by IHC. Patients with stromal HGF had a significantly poorer 

response to treatment compared to those lacking expression (*P < 0.05 by two-sample t-test 

assuming equal variance). Median values for each group are depicted above the median line.
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Figure 4. Characterizing the molecular mechanism of HGF-induced primary resistance
a, Activation of ERK by cytokines. Levels of phosphorylated ERK (T202/Y204) were 

assayed by immunoblotting 1 hour after treatment with media (-) or with 22 cytokines in the 

presence of PLX4720 or DMSO (DM) control. b, The activation of AKT by HGF, IGF-1 

(IGF), and Insulin (INS). Levels of phosphorylated AKT (S473) were assayed 1 hour and 24 

hours after treatment with HGF, IGF-1, or insulin in the presence of PLX4720 (2uM). c, 
Effect of HGF (25ng/ml) on melanoma cell lines treated with 2uM PLX4720 or 1uM 

PD184352. MAPK and PI3K/AKT pathways activation was assessed after 24 hours of 

treatment by immunoblot analysis of pRAF1, pMEK, pERK, pAKT and pMET.
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