Title
Genetic correlation between amyotrophic lateral sclerosis and schizophrenia.

Permalink
https://escholarship.org/uc/item/6r8064rn

Journal
Nature communications, 8(1)

ISSN
2041-1723

Authors
McLaughlin, Russell L
Schijven, Dick
van Rheenen, Wouter
et al.

Publication Date
2017-03-21

DOI
10.1038/ncomms14774

Peer reviewed
Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; \(P = 1 \times 10^{-4} \)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (\(P = 8.4 \times 10^{-7} \)).

A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically.

We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition characterized by progressive loss of upper and lower motor neurons, leading to death from respiratory failure in 70% of patients within 3 years of symptom onset. Although ALS is often described as a primarily motor-system disease, extramotor involvement occurs in up to 50% of cases, with prominent executive and behavioural impairment, and behavioural variant frontotemporal dementia (FTD) in up to 14% of cases.1 A neuropsychiatric proemone has been described in some people with ALS–FTD, and higher rates of schizophrenia and suicide have been reported in first and second degree relatives of those with ALS, particularly in kindreds associated with the C9orf72 hexanucleotide repeat expansion.2 These clinical and epidemiological observations suggest that ALS and schizophrenia may share heritability.

ALS and schizophrenia both have high heritability estimates (0.65 and 0.64, respectively)3,4; however, the underlying genetic architectures of these heritable components appear to differ. Analysis of large genome-wide association study (GWAS) datasets has implicated over 100 independent risk loci for schizophrenia3 and estimated that a substantial proportion (23%) of the variance in underlying liability for schizophrenia is due to additive polygenic risk (many risk-increasing alleles of low individual effect combining to cause disease) conferred by common genetic variants.6 This proportion, the single nucleotide polymorphism (SNP)-based heritability, is lower in ALS (8.2%), in which fewer than ten risk loci have been identified by GWAS.7 Nevertheless, both diseases have polygenic components, but the extent to which they overlap has not been investigated.

Recently, methods to investigate overlap between polygenic traits using GWAS data have been developed8–10. These methods assess either pleiotropy (identical genetic variants influencing both traits) or genetic correlation (identical alleles influencing both traits). Genetic correlation is related to heritability; for both measures, binary traits such as ALS and schizophrenia are typically modelled as extremes of an underlying continuous scale of liability to develop the trait. If two binary traits are genetically correlated, their liabilities covary, and this covariance is determined by both traits having identical risk alleles at overlapping risk loci. Studies of pleiotropy and genetic correlation have provided insights into the overlapping genetics of numerous traits and disorders, although none to date has implicated shared polygenic risk between neurodegenerative and neuropsychiatric disease. Here, we apply several techniques to identify and dissect the polygenic overlap between ALS and schizophrenia. We provide evidence for genetic correlation between the two disorders which is unlikely to be driven by diagnostic misclassification and we demonstrate a lack of polygenic overlap between ALS and other neuropsychiatric and neurological conditions, which could be due to limited power given the smaller cohort sizes for these studies.

Results

Genetic correlation between ALS and schizophrenia. To investigate the polygenic overlap between ALS and schizophrenia, we used individual-level and summary data from GWAS for ALS7 (36,052 individuals) and schizophrenia3 (79,845 individuals). At least 5,582 control individuals were common to both datasets, but for some cohorts included in the schizophrenia dataset this could not be ascertained so this number is likely to be higher. For ALS, we used summary data from both mixed linear model association testing11 and meta-analysis of cohort-level logistic regression12. We first used linkage disequilibrium (LD) score regression with ALS and schizophrenia summary statistics; this technique models, for polygenic traits, a linear relationship between a SNP’s LD score (the amount of genetic variation that it captures) and its GWAS test statistic.13 This distinguishes confounding from polygenicity in GWAS inflation and the regression coefficient can be used to estimate the SNP-based heritability (h^2) for single traits.13. In the bivariate case, the regression coefficient estimates genetic covariance (ρ_g) for pairs of traits, from which genetic correlation (r_g) is estimated; these estimates are unaffected by sample overlap between traits. Using constrained intercept LD score regression with mixed linear model ALS summary statistics, we estimated the liability-scale SNP-based heritability of ALS to be 8.2% (95% confidence interval = 7.2–9.1; mean χ^2 = 1.13; all ranges reported below indicate 95% confidence intervals), replicating previous estimates based on alternative methods.7 Estimates based on ALS meta-analysis summary statistics and free-intercept LD score regression with mixed linear model summary statistics were lower (Supplementary Table 1), resulting in higher genetic correlation estimates (Supplementary Table 2); for this reason, we conservatively use constrained intercept genetic correlation estimates for ALS mixed linear model summary statistics throughout the remainder of this paper. Heritability estimates for permuted ALS data were null (Supplementary Table 1).

LD score regression estimated the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; $P = 1 \times 10^{-9}$). Results were similar for a smaller schizophrenia cohort of European ancestry (21,856 individuals),14 indicating that the inclusion of individuals of Asian ancestry in the schizophrenia cohort did not bias this result (Supplementary Fig. 1). In addition to schizophrenia, we estimated genetic correlation with ALS using GWAS summary statistics for bipolar disorder15, major depressive disorder16, attention deficit-hyperactivity disorder17, autism spectrum disorder17, Alzheimer’s disease (Supplementary Note 1)18, multiple sclerosis19 and adult height20, finding no significant genetic correlation between ALS and any secondary trait other than schizophrenia (Fig. 1; Supplementary Table 2).

Polygenic risk score analysis. We supported the positive genetic correlation between ALS and schizophrenia by analysis of...
polygenic risk for schizophrenia in the ALS cohort. Polygenic risk scores (PRS) are per-individual scores based on the sum of alleles associated with one phenotype, weighted by their effect size, measured in an independent target sample of the same or a different phenotype10. PRS calculated on schizophrenia GWAS summary statistics for twelve P-value thresholds (\(P_T\)) explained up to 0.12% (\(P_T = 0.2\), \(P = 8.4 \times 10^{-7}\)) of the phenotypic variance in a subset of the individual-level ALS genotype data that had all individuals removed that were known or suspected to be present in the schizophrenia cohort (Fig. 2; Supplementary Table 5). ALS cases had on average higher PRS for schizophrenia compared to healthy controls and harbouring a high schizophrenia PRS for \(P_T = 0.2\) significantly increased the odds of being an ALS patient in our cohort (Fig. 3; Supplementary Table 4) and including sex and significant principal components as covariates (Supplementary Fig. 2). Values are provided in Supplementary Table 5.

Modelling misdiagnosis and comorbidity. Using BUHMBOX21, a tool that distinguishes true genetic relationships between diseases (pleiotropy) from spurious relationships resulting from heterogeneous mixing of disease cohorts, we determined that misdiagnosed cases in the schizophrenia cohort (for example, young-onset FTD–ALS) did not drive the genetic correlation estimate between ALS and schizophrenia (\(P = 0.94\)). Assuming a true genetic correlation of 0%, we estimated the required rate of misdiagnosis of ALS as schizophrenia to be 1.17 (1.08–1.26), and the same for schizophrenia given ALS (Supplementary Fig. 4). From a clinical perspective, to achieve 80% power to detect a significant (\(\alpha = 0.05\)) excess of schizophrenia in the ALS cohort as a result of this genetic correlation, the required population-based incident cohort size is 16,448 ALS patients (7,310–66,670).

Figure 2 | Analysis of PRS for schizophrenia in a target sample of 10,032 ALS cases and 16,627 healthy controls. \(P\)-value thresholds (\(P_T\)) for schizophrenia SNPs are shown on the x axis, where the number of SNPs increases with a more lenient \(P_T\). Explained variances (Nagelkerke \(R^2\), shown as a %) of a generalized linear model including schizophrenia-based PRS versus a baseline model without polygenic scores (blue bars) are shown for each \(P_T\). – \(\log_{10}P\)-values of \(\Delta\) explained variance per \(P_T\) (red dots) represent \(P\)-values from the binomial logistic regression of ALS phenotype on PRS, accounting for LD (Supplementary Table 4) and including sex and significant principal components as covariates (Supplementary Fig. 2). Values are provided in Supplementary Table 5.

Figure 3 | Odds ratio for ALS by PRS deciles for schizophrenia. The figure applies to schizophrenia \(P\)-value threshold (\(P_T\)) = 0.2. The \(P\)-value thresholds were converted to ten deciles containing near identical numbers of individuals. Decile 1 contained the lowest scores and decile 10 contained the highest scores, where decile 1 was the reference and deciles 2–10 were dummy variables to contrast to decile 1 for OR calculation. The case:control ratio per decile is indicated with grey bars. Error bars indicate 95% confidence intervals. Significant differences from decile 1 were determined by logistic regression of ALS phenotype on PRS decile, including sex and principal components as covariates and are indicated by *\(P<0.05\) or **\(P<0.001\).
Pleiotropic risk loci. We leveraged the genetic correlation between ALS and schizophrenia to discover novel ALS-associated genomic loci by conditional false discovery rate (cFDR) analysis22 (Fig. 4; Supplementary Table 8). Five loci already known to be involved in ALS were identified (corresponding to MOBP, C9orf72, TBK1, SARM1 and UNC13A) along with five potential novel loci at cFDR < 0.01 (CNTN6, TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1). No gene set was significantly enriched (after Bonferroni correction) in genome-wide cFDR values when analysed using MAGENTA.

Discussion

There is evolving clinical, epidemiological and biological evidence for an association between ALS and psychotic illness, particularly schizophrenia. Genetic evidence of overlap to date has been based primarily on individual genes showing Mendelian inheritance, in particular the C9orf72 hexanucleotide repeat expansion, which is associated with ALS and FTD, and with psychosis in relatives of ALS patients2. In this study, we have replicated SNP-based heritability estimates for ALS and schizophrenia using GWAS summary statistics, and have for the first time demonstrated significant overlap between the polygenic components of both diseases, estimating the genetic correlation to be 14.3%. We have carefully controlled for confounding bias, including population stratification and shared control samples, and have shown through analysis of polygenic risk scores that the overlapping polygenic risk applies to SNPs that are modestly associated with both diseases. Given that our genetic correlation estimate relates to the polygenic components of ALS ($h^2 = 8.2\%$) and schizophrenia ($h^2 = 23\%$) and these estimates do not represent all heritability for both diseases, the accuracy of using schizophrenia-related PRS to predict ALS status in any patient is expected to be limited.

Significant overlap between the polygenic components of both disorders has been shown by analysis of cFDR in ALS GWAS9,22 (Fig. 4; Supplementary Table 8). Five loci already known to be involved in ALS were identified (corresponding to MOBP, C9orf72, TBK1, SARM1 and UNC13A) along with five potential novel loci at cFDR < 0.01 (CNTN6, TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1). No gene set was significantly enriched (after Bonferroni correction) in genome-wide cFDR values when analysed using MAGENTA.

Further investigation into the biological roles of these genes may yield novel insight into the pathophysiology of certain subtypes of ALS and schizophrenia, and as whole-genome and exome datasets become available in the future for appropriately large ALS case–control cohorts, testing for burden of rare genetic variation across these genes will be particularly instructive, especially given the role that rare variants appear to play in the pathophysiology of ALS7.
Our data suggest that other neuropsychiatric conditions (bipolar disorder, autism and major depression) do not share polygenic risk with ALS. This finding contrasts with our recent observations from family aggregation studies and may be unexpected given the extensive genetic correlation between neuropsychiatric conditions. This could relate to statistical power conferred by secondary phenotype cohort sizes, and future studies with larger sample sizes will shed further light on the relationship between ALS and neuropsychiatric disease. It is also possible that the current study underestimates genetic correlations due to the substantial role that rare variants play in the genetic architecture of ALS and future fine-grained studies examining heritability and genetic correlation in low-minor allele frequency and low-LD regions may identify a broader relationship between ALS and neuropsychiatric diseases.

A potential criticism of this study is that the polygenic overlap between ALS and schizophrenia could be driven by misdiagnosis, particularly in cases of ALS–FTD, which can present in later life as a psychotic illness and could be misdiagnosed as schizophrenia. This is unlikely, as strict diagnostic criteria are required for inclusion of samples in the schizophrenia GWAS dataset. Furthermore, since core schizophrenia symptoms are usually diagnosed during late adolescence, a misdiagnosis of FTD-onset ALS–FTD as schizophrenia is unlikely. In this study, we found no evidence for misdiagnosis of ALS as schizophrenia (BUHMBOX P = 0.94) and we estimated that a misdiagnosis of 4.86% of ALS cases would be required to spuriously observe a genetic correlation of 14.3%, which is not likely to occur in clinical practice. We are therefore confident that this genetic correlation estimate reflects a genuine polygenic overlap between the two diseases and is not feature of cohort ascertained, but the possibility of some misdiagnosis in either cohort cannot be entirely excluded based on available data.

A positive genetic correlation between ALS and schizophrenia predicts an excess of patients presenting with both diseases. Most neurologists and psychiatrists, however, will not readily acknowledge that these conditions co-occur frequently. Our genetic correlation estimate confers an odds ratio of 4.86% of ALS cases would be required to spuriously observe a genetic correlation of 14.3%, which is not likely to occur in clinical practice. We are therefore confident that this genetic correlation estimate reflects a genuine polygenic overlap between the two diseases and is not feature of cohort ascertained, but the possibility of some misdiagnosis in either cohort cannot be entirely excluded based on available data.

Methods

Study population and genetic data. For ALS, 7,740,343 SNPs genotyped in 12,577 ALS patients and 23,475 healthy controls of European ancestry organized in 27 platform- and country-defined strata were used. The schizophrenia dataset comprised GWAS summary statistics for 9,444,230 SNPs originally genotyped in 34,241 patients and 45,604 controls of European and Asian ancestry. For LD score regression, GWAS summary statistics were generated for the ALS cohort using mixed linear model association testing implemented in Genome-wide Complex Trait Analysis11 or logistic regression combined with cross-stratum meta-analysis using METAL12. To evaluate sample overlap for PRS and GWAS analyses, we also obtained individual-level genotype data for 27,647 schizophrenia cases and 33,675 controls from the schizophrenia GWAS (Psychiatric Genomics Consortium5 and dbGaP accession number phs000021.v3.p2). Using 88,971 LD-pruned (window size 250 SNPs; shift 20 SNPs; r2 > 0.25) SNPs in both datasets (INFO score > 0.8; MAF > 0.2), with SNPs in high-LD regions removed (Supplementary Table 4), samples were removed from the ALS dataset if they were duplicated or had a cryptically related counterpart (PLINK ID > 0.1; 5,582 individuals) in the schizophrenia cohort and whole strata (representing Finnish and German samples; 3,811 individuals) were also removed if commonality with the schizophrenia cohort could not be ascertained (due to unavailability of individual-level genotypic data in the schizophrenia cohort) and in which a sample overlap was suspected (Supplementary Table 3).

LD score regression. We calculated LD scores using LDSC v1.0.0 in 1 cM Spencer103 Morgan windows around 13,307,412 non-singleton variants genotyped in 379 European individuals (CEU, FIN, GBR, IBS and TSI populations) in the phase 1 integrated release of the 1,000 Genomes Project33. For regression weights33, we restricted LD score calculation to SNPs included in both the GWAS summary statistics and HapMap phase 3; for r2 estimation in pairs of traits this was the intersection of SNPs for both traits and HapMap. Because population structure and confounding were highly controlled in the ALS summary statistics by the use of mixed linear model association tests, we constrained the LD score regression intercept to 1 for r2 estimation in ALS and in which a sample overlap was suspected. For r2 estimation in pairs of traits and r2 was a free parameter. We also estimated r2 using AL-MA meta-analysis results with free and constrained intercepts and with permuted data conserving population structure. Briefly, principal component analysis was carried out for each stratum using smartpca40 and the three-dimensional space defined by principal components 1–3 was equally subdivided into 1,000 cubes. Within each cube, case-control labels were randomly swapped and association statistics were re-calculated for the entire stratum using logistic regression. Study-level P-values were then calculated using inverse variance weighted fixed effect meta-analysis implemented in METAL33. The r2 was estimated for these meta-analysed permuted data using LD score regression (Supplementary Table 1).

Polygenic risk score analysis. We calculated PRS for 10,032 cases and 16,627 healthy controls in the ALS dataset (duplicate and suspected or confirmed redundant samples with the schizophrenia dataset removed) and schizophrenia-associated alleles and effect sizes reported in the GWAS summary statistics for 6,843,674 SNPs included in both studies and in the phase 1 integrated release of the 1,000 Genomes Project33 (imputation INFO score < 0.3; minor allele frequency < 0.01; A/T and G/C SNPs removed). SNPs were clumped in two rounds (physical distance threshold of 250 kb and a LD threshold of R2 > 0.5 in the first round and a distance of 5,000 kb and LD threshold of > 0.2 in the second round) using PLINK v1.90b3y, removing high-LD regions (Supplementary Table 4), resulting in a final set of 496,584 SNPs for PRS calculations. Odds ratios for autosomal SNPs reported in the schizophrenia summary statistics were log-converted to beta values and PRS were calculated using PLINK’s score function for twelve schizophrenia GWAS P-value thresholds (Pv; 5 × 10−5, 10−5, 5 × 10−6, 5 × 10−7, 5 × 10−8, 5 × 10−9, 10−9, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. A total of 100 principal components (PCs) were generated for the ALS sample using GCTA version 1.24.4. Using R version 3.2.2, a generalized linear model was applied to model the phenotype of individuals in the ALS dataset. PCs that had a significant effect on the phenotype (P < 0.0005; Bonferroni-corrected for 100 PCs) were selected (PCs 1, 4, 5, 7, 8, 10, 11, 12, 14, 36, 49).
To estimate explained variance of PRS on the phenotype, a baseline linear relationship including only sex and significant PCs as variables was modelled first:

\[y = \beta_0 + \beta_1 \text{sex} + \sum \beta_n \text{PC}_n \]

where \(y \) is the phenotype in the ALS dataset, \(x \) is the intercept of the model with a slope \(\beta \) for each variable \(x \).

Subsequently, a linear model including polygenic scores for each schizophrenia PRS \(P_t \) was calculated:

\[y = \beta_0 + \beta_{\text{sex}} + \sum \beta_n \text{PC}_n + \beta_{\text{PC} \times \text{PC}} \]

A Nagelkerke \(R^2 \) value was obtained for every model and the baseline Nagelkerke \(R^2 \) value was subtracted, resulting in a \(\Delta \) explained variance that describes the contribution of schizophrenia-based PRS to the phenotype in the ALS dataset. PRS analysis was also performed on permuted case-control data (1,000 permutations conserving case–control ratio) to assess whether the increased \(\Delta \) explained variance was a true signal associated with phenotype. \(\Delta \) explained variances and \(P \) values were averaged across permutation analyses.

To ensure we did not over- or under-estimate for population effects in our model, we tested the inclusion of up to a total of 30 PCs in the model, starting with the PC with the most significant effect on the ALS phenotype (Supplementary Fig. 2). Increasing the number of PCs initially had a large effect on the \(\Delta \) explained variance, but this effect levelled out after 11 PCs. On the basis of this test we are confident that adding the 11 PCs that had a significant effect on the phenotype suffices to account for the possible confounding due to population differences. For the schizophrenia PRS \(P_t \) for which we obtained the highest \(\Delta \) explained variance \((0.2) \), we subdivided observed schizophrenia-based PRS in the ALS cohort into deciles and calculated the odds ratio for being an ALS case in each decile compared to the first decile using a similar generalized linear model:

\[y = \beta_0 + \beta_{\text{sex}} + \sum \beta_n \text{PC}_n + \beta_{\text{PC} \times \text{decile}} \]

Odds ratios and 95% confidence intervals for ALS were derived by calculating the exponential function of the beta estimate of the model for each of the deciles 2–10.

Diagnostic classification. To distinguish the contribution of misdiagnosis from true genetic pleiotropy we used BUMHBOX21 with 417 independent ALS risk alleles in a sample of 27,647 schizophrenia patients for which individual-level genotype data were available. We also estimated the required misdiagnosis rate \(\beta \) of FTD–ALS as schizophrenia that would lead to the observed genetic correlation estimate as \(\rho / (\rho + 1) \), where \(\rho = \rho_{N@BC}/\rho_{ALS} \) and \(\rho_{ALS} \) and \(\rho_{N@BC} \) are the number of cases in the schizophrenia and ALS datasets, respectively22 (derived in Supplementary Methods 1).

Expected comorbidity. To investigate the expected comorbidity of ALS and schizophrenia given the observed genetic correlation, we modelled the distribution in liability for ALS and schizophrenia as a bivariate normal distribution with the liability-scale covariance determined by LD score regression (Supplementary Methods 2). Lifetime risks for ALS39 and schizophrenia30 of 1/400 and 1/100, respectively, were used to calculate liability thresholds above which individuals develop ALS or schizophrenia, or both. The expected proportions of individuals above these thresholds were used to calculate the odds ratio of developing ALS given schizophrenia, or vice versa (Supplementary Methods 2). The required population size to observe a significant excess of comorbidity was calculated using the binomial power equation.

Pleiotropy-informed risk loci for ALS. Using an adapted cFDR method9 that allows shared controls between cohorts25, we estimated per-SNP cFDR given LD score-corrected4 schizophrenia GWAS \(P \)-values for ALS mixed linear model summary statistics calculated in a dataset excluding Finnish and German cohorts (in which suspected control overlap could not be determined), but including all other overlapping samples (cFDR 5,882). To correct for the relationship between LD and GWAS test statistics, schizophrenia summary statistics were rescaled on LD score by subtracting the product of each SNP’s LD score and the univariate LD score regression coefficient for schizophrenia. cFDR values conditioned on these rescaled schizophrenia GWAS \(P \)-values were calculated for mixed linear model association statistics calculated at 6,843,670 SNPs genotyped in 10,147 ALS cases and 22,094 controls. Pleiotropic genomic loci were considered statistically significant if cFDR < 0.01 (following Andreassen et al45) and were clumped with all neighbouring SNPs based on LD \((r^2 > 0.1)\) in the complete ALS dataset. Associated cFDR genomic regions were then mapped to the locations of known RefSeq transcripts in human genome build GRCh37. Genome-wide cFDR values were also tested for enrichment in 9,711 gene sets included in the MAGENTA software package (version 2.4, July 2011) and derived from databases such as Gene Ontology (GO, http://geneontology.org/), Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.kegg.jp/), Protein ANalysis TThrough Evolutionary Relationships (PANTHER, http://www.pantherdb.org/) and INGENUTY (http://www.ingenunity.com/). SNPs were mapped to genes including 20 kb up- and downstream regions to include regulatory elements. The enrichment cutoff applied in our analysis was based on the 95th percentile of gene scores for all genes in the genome. The null distribution of gene scores for each gene set was based on 10,000 randomly sampled gene sets with equal size. MAGENTA uses a Mann–Whitney rank-sum test to assess gene-set enrichment39.

Data availability. All data used in this study are publically available and can be accessed via the studies cited in the text. Other data are available from the authors upon reasonable request.

References

38. Johnston, C. A.

40. Farokhnia, M. et al.

41. McVean, G. A. et al.

42. Wray, N. R., Lee, S. H. & Kendler, K. S.

43. Johnston, C. A.

44. Wang, K.-S., Liu, X.-F. & Aragam, N.

45. McVean, G. A.

46. Wray, N. R., Lee, S. H. & Kendler, K. S.

47. Johnston, C. A.

49. McVean, G. A.

50. Wray, N. R., Lee, S. H. & Kendler, K. S.

51. Johnston, C. A.

52. Wang, K.-S., Liu, X.-F. & Aragam, N.

53. McVean, G. A.

54. Wray, N. R., Lee, S. H. & Kendler, K. S.

55. Johnston, C. A.

56. Wang, K.-S., Liu, X.-F. & Aragam, N.

57. McVean, G. A.

58. Wray, N. R., Lee, S. H. & Kendler, K. S.

59. Johnston, C. A.

60. Wang, K.-S., Liu, X.-F. & Aragam, N.

61. McVean, G. A.

63. Johnston, C. A.

64. Wang, K.-S., Liu, X.-F. & Aragam, N.

65. McVean, G. A.

67. Johnston, C. A.

68. Wang, K.-S., Liu, X.-F. & Aragam, N.

69. McVean, G. A.

70. Wray, N. R., Lee, S. H. & Kendler, K. S.

71. Johnston, C. A.

72. Wang, K.-S., Liu, X.-F. & Aragam, N.

73. McVean, G. A.

74. Wray, N. R., Lee, S. H. & Kendler, K. S.

75. Johnston, C. A.

76. Wang, K.-S., Liu, X.-F. & Aragam, N.

77. McVean, G. A.

78. Wray, N. R., Lee, S. H. & Kendler, K. S.

79. Johnston, C. A.

80. Wang, K.-S., Liu, X.-F. & Aragam, N.

81. McVean, G. A.

82. Wray, N. R., Lee, S. H. & Kendler, K. S.

83. Johnston, C. A.

84. Wang, K.-S., Liu, X.-F. & Aragam, N.

85. McVean, G. A.

86. Wray, N. R., Lee, S. H. & Kendler, K. S.

87. Johnston, C. A.

88. Wang, K.-S., Liu, X.-F. & Aragam, N.

89. McVean, G. A.

90. Wray, N. R., Lee, S. H. & Kendler, K. S.

91. Johnston, C. A.
Project MinE GWAS Consortium

References:
10Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia. 11University of Sydney, ANZAC Research Institute, Concord Hospital, Sydney, New South Wales, Australia. 12The Stacey MND Laboratory, Department of Pathology, The University of Sydney, New South Wales, Australia. 13Brain and Mind Research Institute, The University of Sydney, New South Wales, Australia. 14Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia. 15Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands. 16Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. 17Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK. 18Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK. 19Department of Clinical Neurology, Institute of Neurology, University College London, London, UK. 20Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK. 21Centre for Neurodegeneration Research, UCL Institute of Neurology, University College London, London, UK. 22Department of Neurology, Medical School Hannover, Hannover, Germany. 23Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. 24Institute for Clinical Neurobiology, University of Wu¨rzburg, Wu¨rzburg, Germany. 25Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA. 26Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 27Centre for Neuroregenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 28Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 29Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK. 30Department of Clinical Neurology, Institute of Neurology, University College London, London, UK. 31Department of Clinical Neurology, Institute of Neurology, University College London, London, UK. 32Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK. 33Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK. 34Centre for Neurodegeneration Research, UCL Institute of Neurology, University College London, London, UK. 35Department of Neurology, Medical School Hannover, Hannover, Germany. 36Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. 37Department of Neurology, University of Würzburg, Würzburg, Germany. 38Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany. 39Charité University Hospital, Humboldt-Universität, Berlin, Germany. 40Department of Neurology, University of California, San Francisco, California, USA. 41Centre for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 42Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 43Neurodegeneration Research Laboratory, Bogazici University, Istanbul, Turkey. 44Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany. 45Inserm U930, Université François Rabelais, Tours, France. 46APHP, Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière, UPMC Pharmacologie, Paris 6, Paris, France. 47Department of Neurology, Uln University, Ulm, Germany. 48Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France. 49Genethon, CNRS UMR 8587 Evry, France.
Schizophrenia Working Group of the Psychiatric Genomics Consortium

Cambridge, Massachusetts, USA. 97Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 98Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College, Dublin, Ireland. 99MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. 100National Centre for Mental Health, Cardiff University, Cardiff, Wales. 101El Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK. 102Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK. 103Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. 104Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, Massachusetts, USA. 105Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 106Department of Psychiatry, Diakonhemmet Hospital, Oslo, Norway. 107NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 108Centre for Integrative Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark. 109National Centre for Register-based Research, Aarhus University, Aarhus, Denmark. 110The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark. 111State Mental Hospital, Haar, Germany. 112Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 113Department of Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA. 114Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA. 115Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA. 116Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. 117Department of Medical Genetics, University of Pécs, Pécs, Hungary. 118Szentagothai Research Center, University of Pécs, Pécs, Hungary. 119Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 120Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. 121University Medical Center Groningen, Department of Psychiatry, University of Groningen, The Netherlands. 122School of Nursing, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA. 123Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, Massachusetts, USA. 124Center for Brain Science, Harvard University, Cambridge Massachusetts, USA. 125Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. 126Department of Psychiatry, University of California at San Francisco, San Francisco, California, USA. 127Department of Human Genetics, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 128Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 129Centre for Clinical Research, Institute of Endocrinology, University of Copenhagen, Denmark. 130Schizophrenia Research Institute, Sydney, Australia. 131School of Psychiatry, University of New South Wales, New South Wales, Sydney, Australia. 132Royal Brisbane and Women’s Hospital, University of Queensland, Queensland, Brisbane, Australia. 133Institute of Psychology, Chinese Academy of Science, Beijing, China. 134Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 135State Ket Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 136Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA. 137Castle Peak Hospital, Hong Kong, China. 138Institute of Mental Health, Singapore. 139Department of Psychiatry, Washington University, St Louis, Missouri, USA. 140Department of Child and Adolescent Psychiatry, Pierre and Marie Curie Faculty of Medicine and Brain and Spinal Cord Institute (ICM), Paris, France. 141Neurosciences Therapeutic Area, Janssen Research and Development, LLC, Raritan, New Jersey, USA. 142Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 143Department of Psychological Medicine, Queen Mary University of London, London, UK. 144Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK. 145Sheba Medical Center, Tel Hashomer, Israel. 146Applied Molecular Genomics Unit, V.I.B. Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium. 147Centre for Integrative Sequencing, ISQ, Aarhus University, Aarhus, Denmark. 148Department of Biomedicine, Aarhus University, Aarhus, Denmark. 149First Department of Psychiatry, University of Athens Medical School, Athens, Greece. 150Department of Psychiatry, University College Cork, Ireland. 151Department of Medical Genetics, Oslo University Hospital, Oslo, Norway. 152Cognitive Genetics and Therapy Group, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland. 153Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA. 154Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois, USA. 155Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, London, UK. 156Department of Child and Adolescent Psychiatry, University Clinic of Psychiatry, Skopje, Republic of Macedonia. 157Department of Psychiatry, University of Regensburg, Regensburg, Germany. 158Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland. 159Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK. 160National Institute for Health and Welfare, Helsinki, Finland. 161Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland. 162Department of Psychiatry, Georgetown University School of Medicine, Washington, District Of Columbia, USA. 163Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. 164Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA. 165Mental Health Service Line, Washington V.A. Medical Center, Washington, District Of Columbia, USA. 166Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany. 167Department of Psychiatry, University of Colorado Denver, Aurora, Colorado, USA. 168Department of Psychiatry, University of Halle, Halle, Germany. 169Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 170Regional Centre for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway. 171Departments of Psychiatry and Human and Molecular Genetics, INSERM, Institut de Myologie, Hôpital de la Pitie-Salpêtrière, Paris, France. 172Mental Health Research Centre, Russian Academy of Medical Sciences, Moscow, Russia. 173Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia. 174Academic Medical Centre University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands. 175Illumina, Inc., La Jolla, California, USA. 176Institute of Biological Psychology, MHC, Sci, Hels, Mental Health Services, Copenhagen, Denmark. 177Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 178JU Peters V.A. Medical Center, Bronx, New York, USA. 179Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, Australia. 180School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle, Australia. 181Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 182School of Neurosciences, Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK. 183Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan. 184Regional Centre for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway. 185Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain. 186Department of Medical Research, The University of Western Australia, Perth, Western Australia, Australia. 187Perkins Institute for Medical Research, The University of Western Australia, Perth, Western Australia, Australia. 188Department of Medical Genetics, Medical University, Sofia, Bulgaria. 189Department of Psychology, University of Colorado Boulder, Boulder, Colorado, USA. 190Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada. 191Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. 192Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 193Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia. 194Latvian Biomedical Research and Study Centre, Riga, Latvia. 195Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California, USA. 196Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 197Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. 198Department of Biology and Medical Genetics, Charles University Prague, Prague, Czech Republic. 199Pierre and Marie Curie Faculty of Medicine, Paris, France. 200Duke-NUS Graduate Medical School, Singapore. 201Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. 202Faculty of Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 203Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 204Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA. 205Department of Psychiatry, Columbia University, New York, USA.