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Abstract: Nonregular designs are used widely in experiments due to their run size economy and

flexibility. These designs include the Plackett-Burman designs and many other symmetrical and

asymmetrical orthogonal arrays. Supersaturated designs have become increasingly popular in

recent years because of the potential in saving run size and its technical novelty. In this paper,

a novel combinatorial criterion, called minimum moment aberration, is proposed for assessing

the goodness of nonregular designs and supersaturated designs. The new criterion, which is to

sequentially minimize the power moments of the number of coincidence among runs, is a good

surrogate with tremendous computational advantages for many statistically justified criteria,

such as minimum G2-aberration, generalized minimum aberration and E(s2). In addition, the

minimum moment aberration is conceptually simple and convenient for theoretical development.

The general theory developed here not only unifies several separate results, but also provides

many novel results on nonregular designs and supersaturated designs.
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1 Introduction

Nonregular designs are used widely in experiments due to their run size economy and flexibility

(Wu and Hamada 2000). These designs include the Plackett-Burman designs (with run size not a

power of two) and many other symmetrical and asymmetrical orthogonal arrays (OA) as described

in Dey and Mukerjee (1999), Hedayat, Sloane and Stufken (1999) and Wu and Hamada (2000).

Nonregular designs are traditionally used for screening the main effects only. Hamada and Wu

(1992) proposed an analysis strategy to demonstrate that some interaction effects in such designs

can also be entertained and estimated. The success of their analysis strategy is due to the fact

that nonregular designs have some (hidden) projection properties, which are further studied by

Lin and Draper (1992), Wang and Wu (1995), Cheng (1995, 1998) and Box and Tyssedal (1996).

Along this line of research, Deng and Tang (1999) and Tang and Deng (1999) proposed the concept

of generalized resolution and aberration for assessing nonregular two-level designs. By studying

ANOVA models and contrasts, Xu and Wu (2001) proposed a generalized minimum aberration

(GMA) criterion for general nonregular designs. The GMA restrained on regular designs is the

well-known minimum aberration (Fries and Hunter 1980). The literature on minimum aberration

is rich and includes Franklin (1984), Chen and Wu (1991), Chen (1992, 1998), Chen, Sun and

Wu (1993), Chen and Hedayat (1996), Tang and Wu (1996), Suen, Chen and Wu (1997), Cheng,

Steinberg and Sun (1999), Cheng and Mukerjee (1998), and Fang and Mukerjee (2000).

Supersaturated designs have become increasingly popular in recent years because of the potential

in saving run size and its technical novelty. Many authors have proposed methods and algorithms

for constructing supersaturated designs. See, among others, Lin (1993, 1995), Wu (1993), Tang and

Wu (1997), Nguyen (1996), Li and Wu (1997), Cheng (1997), Yamada and Lin (1997), Gupta and

Chatterjee (1998), Deng, Lin and Wang (1999), Lu and Meng (2000), and Liu and Zhang (2000)

for two-level supersaturated designs; Yamada and Lin (1999) and Yamada, Ikebe, Hashiguchi and

Niki (1999) for three-level supersaturated designs and Fang, Lin and Ma (2000) for multi-level

supersaturated designs. A popular criterion in the supersaturated design literature is the E(s2)

criterion (Booth and Cox 1962), which is limited to the two-level case. The extensions to the

multi-level case are not unique. One extension is an average χ2 statistic (Yamada and Lin 1999),

which measures the goodness of a three-level supersaturated design. Another extension is the

GMA criterion (Xu and Wu 2001), which can assess the goodness of general supersaturated designs

(including mixed-level cases). However, neither paper provides general optimality results, due to
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the complexity of the design problem itself and the lack of proper tools (though some general results

are available for the two-level case).

At the initial stage of an experiment, it is often the case that a practitioner does not have

enough confidence about which factorial effects will turn out to be significant. Therefore, it is

vital for success to use a factorial design that is robust against the model uncertainty. GMA

nonregular designs have the desirable model robustness as Xu and Wu (2001) showed that they

tend to minimize the contamination of non-negligible two-factor and higher-order interactions on

the estimation of the main effects.

It is, however, often a hard task to find an optimal nonregular design according to the GMA

criterion. There are two major difficulties. The first difficulty arises from the complexity of non-

regular designs. It is impossible, except for some special simple cases, to search over a complete

list of all possible designs because either a complete list is not available in the literature or the

list is too large. For instance, a list of all OAs of 18 runs, 6 factors and 3 levels is not available

in the literature. A common practice is to search for the best design from some popular OAs.

Nevertheless, it is still a difficult task because it is inevitable to enumerate and compare all possible

subdesigns since nonregular designs may not have any structure. In addition, such designs may not

have GMA because some OAs are maximal in the sense that they can not be embedded into any

larger OAs (Mukerjee and Wu 1995; Beder 1998). Therefore, it is extremely difficult to show that

a design has GMA. It calls for new technique to show that a design has GMA without searching

over the complete design list. In particular, the same problems exist for supersaturated designs.

The second difficulty arises from the GMA criterion itself. Its definition involves the coding of

all main effects and interactions, which is quite complicated in general. One consequence is that the

GMA criterion is inefficient for computation. As a matter of fact, the complexity of the criterion

is in an exponential order of the number of factors, which implies that it is infeasible to implement

the GMA for many commonly used designs. Another consequence is that it is inconvenient to study

the GMA criterion theoretically, which explains why few optimality results are known for the GMA

criterion. Therefore, it is of both practical and theoretical interest to propose a new criterion that

is statistically reasonable, cheap to compute, and convenient for theoretical development.

The purpose of this paper is to propose a new criterion that is conceptually simple and cheap

to compute. The key innovation is to investigate the relationship between runs (i.e., rows), instead

of studying the relationship between factors (i.e., columns). The new criterion, called minimum
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moment aberration, is to sequentially minimize the power moments of the number of coincidence

among runs. Avoiding the complex coding of factorial effects, it has tremendous savings in compu-

tation over the GMA criterion. In addition, the minimum moment aberration is statistically sound

because it is equivalent to the GMA for symmetrical designs and weakly equivalent to the GMA

for asymmetrical designs.

The minimum moment aberration criterion is also convenient to study theoretically. The con-

ceptual simplicity of the criterion allows us to investigate some hard problems in depth. Sufficient

conditions are given to show when a design has minimum moment aberration; therefore, it becomes

possible to assess the GMA property without searching over a complete list of designs. Furthermore,

based on the new criterion, a unified theory is developed for nonregular designs and supersaturated

designs, which includes several separated results in the literature as special cases.

The paper is organized as follows. Preliminary notation and results are given in Section 2. The

minimum moment aberration criterion is introduced in Section 3 and a unified theory is developed

for nonregular designs and supersaturated designs in Section 4. Applications and extensions of the

new concept and theory are given in Section 5 and Section 6, respectively. Concluding remarks are

given in Section 7. For the simplicity of the presentation, all proofs are given in the appendix.

2 Preliminary Notation and Results

For a set S, let |S| be its cardinality. For an integer k > 0, let
(
x
k

)
= x(x − 1) · · · (x − k + 1)/k!.

For convenience, let
(
x
0

)
= 1 and

(
x
k

)
= 0 if k < 0. For integers k, j ≥ 0, let S(k, j) be a Stirling

number of the second kind, i.e., the number of ways of partitioning a set of k elements into j

nonempty sets. Clearly S(k, k) = 1, S(k, k − 1) =
(
k
2

)
and S(k, j) = 0 if j > k. It is well known

that S(k, j) = (1/j!)
∑j

i=1(−1)j−i
(
j
i

)
ik for k ≥ j ≥ 0. For convenience, let 00 = 1.

For a real number x, let bxc be the largest integer that does not exceed x. For integers m,n ≥ 0,

let

h(m,n) = bm/nc2n + (2bm/nc + 1)(m − bm/ncn).

Clearly h(m,n) = m2/n if m is a multiple of n. The following minimization problem, related to

h(m,n), is elementary and quite useful in the theoretical development for the minimum moment

aberration.
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Lemma 1. Suppose that x1, . . . , xn are nonnegative integers and that
∑

xi = m. Then
∑

x2
i ≥

h(m,n) with equality if and only if all xi equals bm/nc or bm/nc + 1.

An asymmetrical (or mixed-level) design of N runs, n factors and with levels s1, . . . , sn is

denoted by (N, s1 · · · sn). An (N, s1 · · · sn)-design is an N ×n matrix [rij ]N×n with rij from a set of

sj symbols, say, {0, 1, . . . , sj−1}. For example, an (N, sn1
1 sn2

2 )-design has n1 factors of s1 levels and

n2 factors of s2 levels. In particular, an (N, sn)-design is symmetrical. Two designs are isomorphic

if one can be obtained from the other through permutations of rows, columns and symbols in each

column.

An asymmetrical (or mixed-level) orthogonal array (OA) of N runs, n factors, strength t and

with levels s1, . . . , sn, denoted by OA(N, s1 · · · sn, t) or OA(t), is an (N, s1 · · · sn)-design in which all

possible level combinations for any t factors appear equally often. A balanced design is an OA(1).

For an OA(N, s1 · · · sn, 2), the Rao bound says that N − 1 ≥
∑n

i=1(si − 1). An (N, s1 · · · sn)-design

is saturated if N −1 =
∑n

i=1(si−1) and supersaturated if N −1 <
∑n

i=1(si−1). A supersaturated

design does not have enough degrees of freedom to estimate all the main effects. In the literature,

nonregular designs are often referred to OA(2)’s that are not completely specified by some defining

relations among factors.

The definition of OA(t) requires that all level combinations for any t factors appear equally

often. This condition is often too strong to satisfy. The following concept of weak strength t is

more useful in many cases.

A design is called an OA of weak strength t, denoted by OA(t−), if all level combinations for

any t columns appear as equally often as possible, that is, the difference of occurrence of level

combinations does not exceed one. It is easy to show that an OA(t−) is always an OA(t) if the

latter exists. It is important to note that an OA(t−) is not necessary an OA((t − 1)−).

Now we briefly describe the GMA criterion proposed by Xu and Wu (2001). For an (N, s1 · · · sn)-

design D, consider the following ANOVA model

Y = X0β0 + X1β1 + · · ·+ Xnβn + ε,

where Y is the vector of N observations, βj is the vector of all j-factor interactions, Xj is the matrix

of contrast coefficients for βj and ε is the vector of independent random errors. For j = 0, . . . , n, if

Xj = [xik], let

Aj(D) = N−2
∑

k

∣∣∣∣∣
N∑

i=1

xik

∣∣∣∣∣
2

. (1)
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The Aj(D) defined in (1) are invariant with respect to the choice of orthonormal contrasts. The

vector (A1(D), . . . , An(D)) is called the generalized wordlength pattern. Xu and Wu showed that

the generalized wordlength pattern has the following important property.

Lemma 2. D is an OA(t) if and only if Aj(D) = 0 for 1 ≤ j ≤ t.

Definition 1. For two (N, s1 · · · sn)-designs D1 and D2, D1 is said to have less aberration

than D2 if there exists an r, 1 ≤ r ≤ n, such that Ar(D1) < Ar(D2) and Aj(D1) = Aj(D2) for

j = 1, . . . , r−1. D1 is said to have generalized minimum aberration if there is no other design with

less aberration than D1.

Xu and Wu showed that the GMA reduces to the minimum aberration (Fries and Hunter 1980)

for regular designs and the minimum G2-aberration (Tang and Deng 1999) for two-level nonregular

designs.

Finally, we turn to optimality criteria for supersaturated designs. For an (N, 2n)-design D, the

popular E(s2) criterion (Booth and Cox 1962) can be defined as

E(s2) = N2A2(D)/[n(n − 1)/2].

For an (N, sn)-design D = [rij ]N×n, let nkl(a, b) = |{i : rik = a, ril = b}| and

χ2
kl =

s−1∑
a=0

s−1∑
b=0

[nkl(a, b)−N/s2]2/(N/s2).

The average χ2 statistic (Yamada and Lin 1999) is

ave χ2 =
∑

1≤k<l≤n

χ2
kl/[n(n − 1)/2].

Yamada and Lin showed that E(s2) = Nave χ2 for a balanced (N, 2n)-design. As mentioned in the

introduction, the GMA criterion can serve as an optimality criterion for supersaturated designs. It

will be shown in Section 5 that both E(s2) and ave χ2 are special cases of the GMA.

3 Minimum Moment Aberration

For simplicity of the presentation, only symmetrical designs are considered in this and the next two

sections. Extensions to asymmetrical designs are given in Section 6.
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For an (N, sn)-design D = [rij ]N×n and a positive integer t, define the tth power moment to be

Kt(D) = [N(N − 1)/2]−1
∑

1≤i<j≤N

[δij(D)]t ,

where

δij(D) =
n∑

k=1

δ(rik, rjk) (2)

is the number of coincidence between the ith and jth rows and δ(x, y) is the Kronecker delta

function, which equals 1 if x = y and 0 otherwise. It is important to note that n− δij(D) is known

as the Hamming distance between the ith and jth rows in algebraic coding theory.

The minimum moment aberration criterion is to sequentially minimize the power moments. A

formal definition is given below.

Definition 2. For two (N, sn)-designs D1 and D2, D1 is said to have less moment aberration

than D2 if there exists a t, 1 ≤ t ≤ n, such that Kt(D1) < Kt(D2) and Ki(D1) = Ki(D2) for

i = 1, . . . , t − 1. D1 is said to have minimum moment aberration if there is no other design with

less moment aberration than D1.

The minimum moment aberration has a geometrical interpretation. The number of coincidence

is a similarity measure. The power moments measure the overall similarity among all possible pairs

of rows (runs). Minimizing the first power moment means minimizing the average similarity (or

maximizing the average dissimilarity or distance) among runs. Given the first power moment, min-

imizing the second power moment means minimizing the variance of the dissimilarity (or distance)

among runs. Sequentially minimizing higher-order power moments makes all runs be as dissimilar

as possible.

It is important to note that the power moments measure not only the row similarity directly, but

also the column nonorthogonality implicitly. Indeed, the first power moment measures the overall

balance within each column. The second power moment measures the overall nonorthogonality be-

tween all pairs of columns. In general, the tth power moment measures the overall nonorthogonality

among all possible t columns. It will be proven in the next section that sequentially minimizing

the power moments is equivalent to sequentially minimizing the generalized wordlength patterns.

Therefore, the minimum moment aberration is indeed equivalent to the GMA though they are quite

different in definition. As a consequence, the former can be used as a surrogate for the latter, which

is statistically well justified.
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The minimum moment aberration has tremendous computational advantages over the GMA.

The complexity of computing Aj according to the definition (1) is O(
(
n
j

)
(s − 1)jN) because Xj =

[xik] is an N ×
(
n
j

)
(s− 1)j matrix; hence, the complexity of computing the generalized wordlength

pattern is O(Nsn). The exponential order implies that it is prohibitive to implement the GMA in

practice. In contrast, the complexity of computing Kj is O(N2n) for any j. Thus, the complexity of

computing the first n power moments is O(N2n2), which is much less than O(Nsn), the complexity

of computing the generalized wordlength pattern, if n is large.

There are also substantial savings in computation when the minimum moment aberration is

used to assess the goodness of a supersaturated design. A practical exercise for supersaturated

designs is to compute and compare A2 or K2, which includes E(s2) and ave χ2 as special cases.

The complexity of A2 (and ave χ2) is O(n2(s− 1)2N), which is greater than the complexity of K2,

O(N2n), for a supersaturated design. The difference is enormous when the number of factors, n,

is much larger than the number of runs, N , which is common for supersaturated designs. This

observation implies that many algorithms will speed up significantly if we replace E(s2) with K2

as the objective function.

Remark 1. A related but different concept is optimal moments proposed by Franklin (1984).

The moments in his definition are functions of wordlengths of defining contrasts among factors while

our moments are functions of the number of coincidence among runs. In addition, the minimum

moment aberration defined here is equivalent to the GMA (see the next section) while the optimal

moments is not.

4 Theory of Minimum Moment Aberration

Our first theorem shows that the power moments are linear combinations of the generalized

wordlength patterns. The proof of this theorem involves the generalized Pless power moment

identities, a deep and fundamental result in algebraic coding theory.

Theorem 1. For an (N, sn)-design D and t = 1, 2, . . .,

Kt(D) = αtAt(D) + αt−1At−1(D) + . . . + α1A1(D) + α0 − c0, (3)

where

αi = αi(t;N,n, s) = [N/(N − 1)]
t∑

k=0

(−1)k+i

(
t

k

)
nt−k

 k∑
j=0

j!S(k, j)s−j(s− 1)j−i

(
n − i

j − i

) ,
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c0 = nt/(N −1) and S(k, j) are Stirling numbers of the second kind. In particular, αt = t!N/[(N −

1)st], αt−1 = t![n + (t − 1)(s− 2)/2]N/[(N − 1)st].

Because the leading coefficient αt in (3) is positive, it is clear that sequentially minimizing

Kt(D) for t = 1, 2, . . . is equivalent to sequentially minimizing At(D) for t = 1, 2, . . .. Therefore,

we have the following important result.

Theorem 2. For symmetrical designs the minimum moment aberration is equivalent to the

GMA. In particular, a symmetrical design has GMA if and only if it has minimum moment aber-

ration.

Another important consequence of Theorem 1 is that results of the power moments can be

obtained through that of the generalized wordlength pattern, and vice versa. For example, Theorem

1 and Lemma 2 together lead to the following result regarding the power moments.

Corollary 1. For an OA(N, sn, e)-design D and t = 1, 2, . . . , e, Kt(D) = α0(t;N,n, s) −

nt/(N − 1) is a constant depending only on t, n,N and s.

The identities in Theorem 1 involving Stirling numbers of the second kind are complicated in

general. The first three identities of (3) are of most interest in practice and therefore are given

below explicitly.

K1(D) = {[A1(D) + n]N − ns}/[(N − 1)s],

K2(D) = {[2A2(D) + (2n + s− 2)A1(D) + n(n + s− 1)]N − (ns)2}/[(N − 1)s2],

K3(D) = {[6A3(D) + 6(n + s− 2)A2(D) + (3n2 + 6ns + s2 − 9n − 6s + 6)A1(D)

+n(n2 + 3ns + s2 − 3n − 3s + 2)]N − (ns)3}/[(N − 1)s3].

With these identities and the fact that Aj(D) ≥ 0, we can establish a series of lower bounds for

Kt(D). For example, we have the following lower bounds:

Corollary 2. (i) K1(D) ≥ [n(N − s)]/[(N − 1)s] with equality if and only if D is an OA(1).

(ii) K2(D) ≥ [Nn(n + s− 1)− (ns)2]/[(N − 1)s2] with equality if and only if D is an OA(2).

(iii) K3(D) ≥ [Nn(n2 + 3ns + s2 − 3n − 3s + 2) − (ns)3]/[(N − 1)s3] with equality if and only

if D is an OA(3).

These lower bounds in Corollary 2 are valuable; nevertheless, they provide no more information

than Lemma 2. In the following, we shall develop new lower bounds for Kt(D), which are more
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useful than those in Corollary 2. Note that the lower bound of Kt(D) in Corollary 2 is tight if and

only if an OA(t) exists. Recall that all level combinations of any t columns of an OA(t) appear

equally often. When the equal occurrence cannot be met, it is reasonable to expect that a design

of which all level combinations of any t columns appear as equally often as possible should have a

minimum Kt(D) value. Formally, we have the following results.

Theorem 3. Kt(D) is minimized if D is an OA(i−) for i = 1, . . . , t.

Corollary 3. (i) K1(D) ≥ [nh(N, s)−Nn]/[N(N − 1)].

(ii) K2(D) ≥ [n(n − 1)h(N, s2) + nh(N, s)−Nn2]/[N(N − 1)].

(iii) K3(D) ≥ [n(n − 1)(n − 2)h(N, s3) + 3n(n − 1)h(N, s2) + nh(N, s)−Nn3]/[N(N − 1)].

Corollary 4. An OA(t) has minimum moment aberration if its projection onto any t + 1

columns has no repeated run.

It is clear that Corollary 3 improves Corollary 2. In addition, Theorem 3 and Corollary 4

provide a sufficient condition when Kt(D) is minimized and when a design has minimum moment

aberration. Recall that it is often infeasible to search over a complete list of all possible nonregular

designs because such a list is either unknown or extremely large. Therefore, the sufficient condition

is highly valuable because it avoids searching over a complete list. Examples will be given in the

next section.

The definition of power moments allows us to obtain another series of lower bounds of Kt(D)

easily. It is well known that for a random variable X, (E|X|r)1/r is nondecreasing in r > 0. This

fact indicates the following inequality:

Kt(D)1/t ≥ Kr(D)1/r for t ≥ r ≥ 1. (4)

Combining Corollary 2(i), we obtain the following lower bounds.

Theorem 4. For an (N, sn)-design D,

Kt(D) ≥ [n(N − s)/(s(N − 1))]t for t ≥ 2.

The equality holds if and only if D is an OA(1) and the number of coincidence between any pair of

distinct rows is a constant.
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An important class of designs which satisfy the conditions in Theorem 4 are saturated OA(2)’s.

It is easy to verify that the lower bound of K2(D) in Theorem 4 is tight for an OA(N, sn, 2)

if N − 1 = n(s − 1). As a consequence, we obtain the following important property regarding

saturated OA(2)’s (Mukerjee and Wu 1995).

Corollary 5. The number of coincidence between any distinct pair of rows of a saturated

OA(2) is a constant.

A direct outcome of Corollary 5 and Theorem 4 is that any saturated OA(2) has minimum

moment aberration. In addition, removing one column from (or adding a balanced column to) a

saturated OA(2) results a minimum moment aberration design. In general, we have the following

result.

Theorem 5. If D is an OA(1−) and the difference among all δij(D), i < j, does not exceed

one, then D has minimum moment aberration.

Along the direction of Theorem 4, we can establish many other lower bounds of Kt(D). For

example, by Corollary 2(ii), K2(D) is a known constant for an OA(2). Then the inequality (4)

provides a new lower bound of Kt(D) for t ≥ 3. The procedure is straightforward and the details

are omitted.

5 Applications

In this section, we present some applications of the concept and theory of minimum moment

aberration on the GMA criterion, complementary designs and supersaturated designs.

5.1 Generalized Minimum Aberration

The minimum moment aberration theory developed in the previous section provides a way of

assessing the GMA property without searching over all possible nonregular designs because the

minimum moment aberration is equivalent to the GMA.

Example 1. Consider an OA(18, 37, 2) given in Table 1. Xu and Wu (2001) showed that any

design not containing the first column has GMA among all subdesigns from Table 1. However, they

failed to show that it has GMA among all possible nonregular designs (including other designs that

are not part of Table 1). In contrast, using the new technique, we can show that such a design
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has GMA. Specifically, it is easy to verify that any design not containing the first column is an

OA(2) and its projection onto any 3 columns has no repeated run. Thus, it has minimum moment

aberration by Corollary 4 and hence has GMA.

The minimum moment aberration theory also provides new lower bounds for the generalized

wordlength patterns via key identities in Theorem 1. For example, the following lower bounds of

At(D) are obtained through Corollary 3, Theorem 1 and Lemma 2.

Corollary 6. (i) A1(D) ≥ n[h(N, s)s/N2 − 1].

(ii) A2(D) ≥
(
n
2

)
[h(N, s2)s2/N2 − 1] for an OA(1).

(iii) A3(D) ≥
(
n
3

)
[h(N, s3)s3/N2 − 1] for an OA(2).

The following lower bounds are obtained through the inequality (4), Corollary 2, Theorem 1

and Lemma 2.

Corollary 7. (i) A2(D) ≥ [n(s− 1)(ns − n −N + 1)]/[2(N − 1)] for an OA(1).

(ii) A3(D) ≥ {[Nn(n+s−1)−(ns)2]3/2(N−1)−1/2+(ns)3−Nn(n2+3ns+s2−3n−3s+2)}/(6N)

for an OA(2).

The lower bounds in Corollary 6 are tight if an OA exists. They are useful for assessing the

nonorthogonality of a design. On the other hand, the lower bounds in Corollary 7 are more useful

for assessing nearly saturated or supersaturated designs. Note that these lower bounds are not

available in Xu and Wu (2001).

Example 2. Consider three-level designs of 18 runs (i.e., N = 18, s = 3). The lower bounds of

A3 in Corollary 6 are 0.5, 2, 5, 10 for n = 3, 4, 5, 6, respectively. These bounds are tight and achieved

by the GMA designs from Table 1. However, for n = 7, the lower bound of A3 in Corollary 6 is 17.5

and not tight. It is less than the lower bound of A3 in Corollary 7, which is 18.2. The latter bound

may be used for assessing the efficiency of an (18, 37)-design. For instance, the A3 efficiency of the

OA(18, 37, 2) given in Table 1 is 18.2/22 = 82.8% with respect to the lower bound in Corollary 7.

5.2 Complementary Designs

Many authors have studied the characterization of GMA designs in terms of their complementary

designs. Here we revisit this technique with the minimum moment aberration.
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Suppose H is an (N, sp)-design. Call (D,D) a pair of complementary designs from H if they

are a column partition of H. The characterization problem is to express the generalized wordlength

pattern of D in terms of that of its complementary design D. This is a hard problem and has

been tackled by Tang and Wu (1996) and Tang and Deng (1999) via a combinatorial approach and

by Suen, Chen and Wu (1997) and Xu and Wu (2001) via an algebraic coding approach. Here we

revisit this problem with the minimum moment aberration approach. It turns out to be surprisingly

trivial and straightforward.

If H is a saturated OA(2), by Corollary 5, for i < j,

δij(D) + δij(D) = γ,

where γ is a constant independent of D and D. Then by definition,

Kt(D) =
t∑

i=0

(
t

i

)
(−1)iγt−iKi(D). (5)

By applying these identities and Theorem 1 recursively, we can express the generalized wordlength

pattern of D in terms of that of its complementary design D:

At(D) = (−1)tAt(D) + (−1)t[1 + (s− 2)(t − 1)]At−1(D) + lower order terms (6)

for t = 1, 2, . . .. We reach the same general relations derived by Tang and Wu (1996), Suen, Chen

and Wu (1997), Tang and Deng (1999) and Xu and Wu (2001).

The complementary design technique is very powerful for regular designs but is not so powerful

for nonregular designs. For example, by (6), Tang and Wu (1996) and Suen, Chen and Wu (1997)

showed that any design obtained by removing one column from a saturated regular design has

minimum aberration. However, we cannot conclude from (6) that such a design has GMA among

all possible nonregular designs. In contrast, it is easy to show that such a design has minimum

moment aberration by Theorem 5 and hence has GMA.

5.3 Supersaturated Designs

Here we use the concept of minimum moment aberration to study supersaturated designs. As done

in the literature, we shall consider only balanced designs, which minimize the first power moment

K1(D). In the spirit of minimum moment aberration, a good optimality criterion for supersaturated

designs is the minimization of K2(D).
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It can be shown (in the appendix) that for a balanced (N, sn)-design D

ave χ2 = [(N − 1)s2K2(D)−Nn(n + s− 1) + (ns)2]/[n(n − 1)]. (7)

Then by Theorem 1 and Lemma 2,

ave χ2 = NA2(D)/[n(n − 1)/2].

Since E(s2) and ave χ2 optimality are special cases of the minimum moment aberration and

GMA, we obtain many results for free. For example, Corollary 7 implies the following lower bounds:

E(s2) ≥ N2(n −N + 1)/[(n − 1)(N − 1)],

ave χ2 ≥ [N(s− 1)(ns− n −N + 1)]/[(n − 1)(N − 1)].

Nguyen (1996) and Tang and Wu (1997) derived independently the lower bound of E(s2). Yamada

and Lin (1999) reported a special case of the lower bound of ave χ2 for three-level supersaturated

designs.

The theory of minimum moment aberration also provides many optimality results for supersat-

urated designs. For example, Theorem 5 and Corollary 5 together imply the following result.

Corollary 8. If D1, . . . , Dm are m saturated OA(2)’s, their column juxtaposition D = (D1, . . . , Dm)

has minimum moment aberration. In addition, removing one column from or adding one column

to D results a minimum moment aberration design.

The special case of Corollary 8 for two-level supersaturated designs and E(s2) optimality is

first obtained by Tang and Wu (1997) (for the first statement) and Cheng (1997). Furthermore,

the E(s2) optimality of Lin’s (1993) half-Hadamard designs, proved by Nguyen (1996) and Cheng

(1997), also follows from Theorem 5 and Corollary 5.

As another application, we propose a novel construction method which is an extension of

Lin’s (1993) half-Hadamard construction method. The new method is illustrated with a satu-

rated OA(27, 313, 2). Taking any three-level column as the branching column, we obtain three

one-third fractions according to the level of the branching column. Each one-third fraction is an

OA(9, 312, 1) and any two-third fraction is an OA(18, 312, 1) after removing the branching column.

Following Theorem 5 and Corollary 5, it is easy to show that all these designs have minimum

moment aberration and thus have GMA.
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6 Extensions

In this section we extend the concept and theory of minimum moment aberration to the asymmet-

rical case.

Consider an (N, s1 · · · sn)-design D = [rij ]N×n. In order to handle mixed levels, we introduce

weights and modify the definition of δij(D) in (2). For the kth column, assign weight wk > 0. Let

δij(D) =
n∑

k=1

wkδ(rik, rjk) (8)

be the weighted coincidence number between the ith and jth rows. With this modification, the

definitions of power moments and minimum moment aberration remain the same. Then most

results developed earlier can be extended easily to the asymmetrical case. In particular, Theorems

3 and 5 remains unchanged, and Theorem 4 becomes

Theorem 6. For an (N, s1 · · · sn)-design D,

Kt(D) ≥
[∑

wk(N/sk − 1)/(N − 1)
]t

for t ≥ 2.

The equality holds if and only if D is OA(1) and δij(D) defined in (8) is a constant for all i < j.

On the other hand, the results regarding to the GMA need more attention. Recall that for

symmetrical designs, the power moments are linear combinations of the generalized wordlength

patterns; thus, minimum moment aberration is equivalent to GMA. For asymmetrical designs,

the relationship between the power moments and the generalized wordlength patterns is more

complicated and minimum moment aberration is not equivalent to GMA in general. Nevertheless,

minimum moment aberration is still a good surrogate for GMA because these two criteria are

weakly equivalent, which is expressed in the following theorem.

Theorem 7. For an asymmetrical (N, s1 · · · sn)-design D, if wk = λsk for all k, then

Kt(D) = λt[N(N − 1)−1t!At(D) + γt] for t = 1, 2, . . . , e + 1,

where e is the strength of D and γt are constants depending on t, n,N and the levels s1, . . . , sn.

For convenience, the choice of wk = λsk is called natural weights. Natural weights provide a

reasonable connection between minimum moment aberration and GMA. An important property

regarding natural weights is the following result (Mukerjee and Wu 1995).
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Lemma 3. Suppose D is an saturated OA(N, s1 · · · sn, 2). Then δij(D) defined in (8) is a

constant for all i < j if wk = λsk for all k.

Now consider complementary designs. Suppose that D and D are a pair of complementary

designs of a saturated (asymmetrical) OA(2). Then the relationship between Kt(D) and Kt(D) in

(5) still holds with natural weights. In contrast, the relationship between At(D) and At(D) in (6)

no longer holds. Nevertheless, the following weak result can be obtained through Theorem 7 and

(5):

A3(D) = −A3(D) + constant.

Finally, as an application, consider constructing minimum moment aberration designs from a

commonly used OA(36, 312211, 2), which is given in Table 2 and Wu and Hamada (2000, Table

7C.7). It can study up to 12 three-level factors and 11 two-level factors simultaneously. Natural

weights are considered here. To find a minimum moment aberration design of n3 three-level factors

and n2 two-level factors, it is necessary to enumerate all
(
12
n3

)(
11
n2

)
subdesigns. To reduce the

burden of computation, the criterion is relaxed to compare only K3,K4 and K5, which should

meet the practical need. Indeed it makes no difference if the first eight moments are used. The

complementary design technique is used to further reduce the computation if n3 + n2 > 11. In

particular, no computation is needed if n3 + n2 = 21 or 22 because the complementary designs

have only one or two columns and thus are indistinguishable under minimum moment aberration.

Table 3 lists minimum moment aberration designs from Table 2 with n3 three-level factors and n2

two-level factors for n3 ≤ 12 and n2 ≤ 11. No design is given in Table 3 if all possible subdesigns

are indistinguishable under minimum moment aberration.

7 Concluding Remarks

The concept of minimum moment aberration is proposed for assessing the goodness of nonregular

designs and supersaturated designs. It is to sequentially minimize the power moments of the

number of coincidence among runs. The minimum moment aberration is conceptually simple,

cheap to compute, and convenient for theoretical development.

The statistical justification developed by Xu and Wu (2001) for the GMA also works for the

minimum moment aberration because the two criteria are equivalent for symmetrical designs and

weakly equivalent for asymmetrical designs.
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Without explicitly handling with the coding of treatment contrasts, the power moments are easy

to program. The minimum moment aberration provides a unified and efficient treatment for regular

and nonregular designs, nonsaturated and supersaturated designs, orthogonal and nonorthogonal

designs, symmetrical and asymmetrical designs. As an application, Xu (2000) developed an efficient

algorithm for constructing a variety of mixed-level orthogonal and nearly orthogonal arrays.

Finally, data from an experiment using nonregular designs or supersaturated designs can be

analyzed by stepwise selection or Bayesian variable selection procedure. Examples and details are

available in Hamada and Wu (1992), Lin (1993, 1995), Chipman, Hamada, and Wu (1997), and

Wu and Hamada (2000, Chapter 8).
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Appendix: Proofs

Some concepts and results in algebraic coding theory are necessary to prove Theorem 1. The readers

are referred to MacWilliams and Sloane (1977), Pless (1989) and van Lint (1999) for details.

For an (N, sn)-design D, let dij(D) = n − δij(D) and

Bk(D) = N−1 |{(i, j) : dij(D) = k, i, j = 1, . . . , N}| for k = 0, . . . , n.

In coding theory, dij(D) is called the Hamming distance and the vector (B0(D), B1(D), . . . , Bn(D))

is the distance distribution. It is clear that for k = 0, 1, . . .,

N∑
i=1

N∑
j=1

[dij(D)]k = N
n∑

i=0

ikBi(D). (A.1)

Xu and Wu (2001) showed that the distance distributions are linear combinations of the generalized

wordlength patterns, that is, for j = 0, . . . , n,

Bj(D) = N s−n
n∑

i=0

Ai(D)Pj(i;n, s), (A.2)
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where Pj(x;n, s) =
∑j

i=0(−1)i(s− 1)j−i
(
x
i

)(
n−x
j−i

)
are the Krawtchouk polynomials.

The following identities, extensions of the Pless power moment identities (Pless 1963), relate

the moments of the distance distribution and the generalized wordlength pattern.

Lemma 4. For an (N, sn)-design D and integers k ≥ 0,

n∑
i=0

ikBi(D) = N
n∑

i=0

(−1)iAi(D)θi(k;n, s),

where θi(k;n, s) =
∑k

j=0 j!S(k, j)s−j(s − 1)j−i
(
n−i
j−i

)
and S(k, j) is a Stirling number of the second

kind.

Proof of Lemma 4. Let f(z) = (1 − z)x[1 + (s − 1)z]n−x and Dz be the differentiation operator

with respect to z. It is known that, for an integer x, 0 ≤ x ≤ n, f(z) =
∑n

j=0 Pj(x;n, s)zj . Thus,∑n
j=0 jkPj(x;n, s) = (zDz)kf(z)|z=1. It is also known that (zDz)k =

∑k
j=0 S(k, j)zj(Dz)j . Noting

that

f(z) = (1 − z)x[s + (s− 1)(z − 1)]n−x = (−1)x
n−x∑
i=0

(
n − x

i

)
sn−x−i(s− 1)i(z − 1)x+i,

we have (Dz)jf(z)|z=1 = (−1)xj!
(
n−x
j−x

)
sn−j(s− 1)j−x and

n∑
j=0

jkPj(x;n, s) =
k∑

j=0

S(k, j)zj(Dz)jf(z)|z=1 = (−1)x
k∑

j=0

j!S(k, j)
(

n − x

j − x

)
sn−j(s− 1)j−x.

Finally, by (A.2), we obtain

n∑
j=0

jkBj(D) =
n∑

j=0

jkNs−n
n∑

i=0

Pj(i;n, s)Ai(D) = N

n∑
i=0

Ai(D)

 n∑
j=0

s−njkPj(i;n, s)


= N

n∑
i=0

Ai(D)

(−1)i
k∑

j=0

j!S(k, j)s−j(s− 1)j−i

(
n − i

j − i

) .

Proof of Theorem 1. By (A.1) and Lemma 4, for t = 1, 2, . . .,

Kt(D) = [N(N − 1)]−1
N∑

i=1

N∑
j=1

[δij(D)]t − (N − 1)−1nt

= [N(N − 1)]−1
N∑

i=1

N∑
j=1

[n − dij(D)]t − c0
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= [N(N − 1)]−1
N∑

i=1

N∑
j=1

t∑
k=0

(−1)k

(
t

k

)
nt−k[dij(D)]k − c0

= (N − 1)−1
t∑

k=0

(−1)k

(
t

k

)
nt−k

n∑
i=0

ikBi(D)− c0

= (N − 1)−1
t∑

k=0

(−1)k

(
t

k

)
nt−k

(
N

n∑
i=0

(−1)iAi(D)θi(k;n, s)

)
− c0

= N(N − 1)−1
n∑

i=0

Ai(D)

(
t∑

k=0

(−1)k+i

(
t

k

)
nt−kθi(k;n, s)

)
− c0

=
n∑

i=0

αi(t;N,n, s)Ai(D)− c0.

It is easy to verify from definition that αt(t;N,n, s) = t!N/[(N − 1)st], αt−1(t;N,n, s) = t![n+(t−

1)(s− 2)/2]N/[(N − 1)st] and αi(t;N,n, s) = 0 if i > t.

Proof of Theorem 3. We state a proof for t = 2 only. The general case is essentially the same with

more complicated notation.

For an (N, sn)-design D = [rij ]N×n, let nkl(a, b) = |{i : rik = a, ril = b}|. Then

N(N − 1)K2(D) =
N∑

i=1

N∑
j=1

[
n∑

k=1

δ(rik, rjk)

]2

−Nn2

=
N∑

i=1

N∑
j=1

[
n∑

k=1

n∑
l=1

δ(rik, rjk)δ(ril, rjl)

]
−Nn2

=
n∑

k=1

n∑
l=1

 N∑
i=1

N∑
j=1

δ(rik, rjk)δ(ril, rjl)

−Nn2

=
n∑

k=1

n∑
l=1

[
s−1∑
a=0

s−1∑
b=0

nkl(a, b)2
]
−Nn2

=
n∑

k=1

[
s−1∑
a=0

nkk(a, a)2
]

+
∑

1≤k 6=l≤n

[
s−1∑
a=0

s−1∑
b=0

nkl(a, b)2
]
−Nn2.

Then, by Lemma 1, the first term is minimized if D is an OA(1−) and the second term is minimized

if D is an OA(2−).

Proof of Theorem 5. First, by Theorem 3, K1(D) is minimized for OA(1−). Second, by definition

and Lemma 1, K2(D) is minimized. Finally, by Lemma 1 again, all other Kt(D)’s are determined

uniquely given K1(D) and K2(D).

19



Proof of Equation (7). It is easy to verify that for a balanced (N, sn)-design D

χ2
kl = s2/N

s−1∑
a=0

s−1∑
b=0

nkl(a, b)2 −N.

Then, following the proof of Theorem 3,

N(N − 1)K2(D) =
n∑

k=1

[N2/s] +
∑

1≤k 6=l≤n

[(N/s2)(χ2
kl + N)]−Nn2

= nN2/s + (N/s2)n(n − 1)(ave χ2 + N)−Nn2,

and equation (7) follows.

Proof of Theorem 6. Following the proof of Theorem 3, K1(D) ≥
∑

wk(N/sk − 1)/(N − 1) with

equality if and only if D is an OA(1). Then the theorem follows from inequality (4).

Proof of Theorem 7. The proof is similar to that of Theorem 1 with the generalized Pless power

moment identities for asymmetrical designs. The details are omitted.
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Table 1: OA(18, 37, 2)

Run 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1
3 0 2 2 2 2 2 2
4 1 0 0 1 1 2 2
5 1 1 1 2 2 0 0
6 1 2 2 0 0 1 1
7 2 0 1 0 2 1 2
8 2 1 2 1 0 2 0
9 2 2 0 2 1 0 1
10 0 0 2 2 1 1 0
11 0 1 0 0 2 2 1
12 0 2 1 1 0 0 2
13 1 0 1 2 0 2 1
14 1 1 2 0 1 0 2
15 1 2 0 1 2 1 0
16 2 0 2 1 2 0 1
17 2 1 0 2 0 1 2
18 2 2 1 0 1 2 0

24



Table 2: OA(36, 312211, 2)
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0 0 0 1 1 0 0 1 0 2 2 0 1 0 1 0 0 0 1 1 1 0 1
2 0 0 0 0 2 0 2 0 2 0 0 1 1 1 0 1 0 0 0 1 1 1 0
3 0 0 1 0 0 2 1 2 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1
4 0 0 2 2 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1
5 0 1 2 2 0 0 1 1 2 0 2 2 1 1 0 1 1 0 1 0 0 0 1
6 0 1 2 1 2 1 2 2 2 2 1 0 1 1 1 0 1 1 0 1 0 0 0
7 0 1 0 0 2 2 0 2 1 1 2 2 0 1 1 1 0 1 1 0 1 0 0
8 0 1 1 2 1 2 2 0 0 2 0 2 0 0 1 1 1 0 1 1 0 1 0
9 0 2 1 2 1 0 0 2 2 1 1 1 0 0 0 1 1 1 0 1 1 0 1

10 0 2 1 0 0 1 2 1 1 2 2 1 1 0 0 0 1 1 1 0 1 1 0
11 0 2 2 1 2 2 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1
12 0 2 0 1 1 1 1 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0
13 1 1 1 2 2 1 1 2 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1
14 1 1 1 1 0 1 0 1 0 1 1 2 1 1 0 1 0 0 0 1 1 1 0
15 1 1 2 1 1 0 2 0 1 1 2 1 0 1 1 0 1 0 0 0 1 1 1
16 1 1 0 0 1 2 1 1 2 2 1 1 1 0 1 1 0 1 0 0 0 1 1
17 1 2 0 0 1 1 2 2 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1
18 1 2 0 2 0 2 0 0 0 0 2 1 1 1 1 0 1 1 0 1 0 0 0
19 1 2 1 1 0 0 1 0 2 2 0 0 0 1 1 1 0 1 1 0 1 0 0
20 1 2 2 0 2 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0
21 1 0 2 0 2 1 1 0 0 2 2 2 0 0 0 1 1 1 0 1 1 0 1
22 1 0 2 1 1 2 0 2 2 0 0 2 1 0 0 0 1 1 1 0 1 1 0
23 1 0 0 2 0 0 2 2 1 2 1 2 0 1 0 0 0 1 1 1 0 1 1
24 1 0 1 2 2 2 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0
25 2 2 2 0 0 2 2 0 2 1 1 2 1 0 1 0 0 0 1 1 1 0 1
26 2 2 2 2 1 2 1 2 1 2 2 0 1 1 0 1 0 0 0 1 1 1 0
27 2 2 0 2 2 1 0 1 2 2 0 2 0 1 1 0 1 0 0 0 1 1 1
28 2 2 1 1 2 0 2 2 0 0 2 2 1 0 1 1 0 1 0 0 0 1 1
29 2 0 1 1 2 2 0 0 1 2 1 1 1 1 0 1 1 0 1 0 0 0 1
30 2 0 1 0 1 0 1 1 1 1 0 2 1 1 1 0 1 1 0 1 0 0 0
31 2 0 2 2 1 1 2 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0
32 2 0 0 1 0 1 1 2 2 1 2 1 0 0 1 1 1 0 1 1 0 1 0
33 2 1 0 1 0 2 2 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1
34 2 1 0 2 2 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0
35 2 1 1 0 1 1 0 0 2 0 2 0 0 1 0 0 0 1 1 1 0 1 1
36 2 1 2 0 0 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0
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Table 3: Minimum Moment Aberration Designs from Table 2
n3.n2 Three-Level Columns Two-Level Columns

0.5 13 14 15 16 17

0.6 13 14 15 16 17 22

1.5 1 13 14 15 16 17

1.6 1 13 14 15 16 17 22

2.1 1 2 20

2.2 1 3 15 16

2.3 2 3 13 15 23

2.4 1 3 15 16 19 20

2.5 1 3 15 16 19 20 22

2.6 1 3 13 15 16 19 20 22

2.7 1 3 13 14 15 16 19 20 22

2.8 1 3 13 14 15 16 18 19 20 22

2.9 1 3 13 14 15 16 18 19 20 22 23

2.10 9 11 13 14 15 16 17 18 19 20 22 23

2.11 8 11 13 14 15 16 17 18 19 20 21 22 23

3.0 1 2 3

3.1 1 2 8 20

3.2 4 9 10 16 21

3.3 2 3 4 15 21 23

3.4 2 3 4 13 15 21 23

3.5 2 3 4 13 15 21 22 23

3.6 1 3 4 13 15 18 19 20 23

3.7 1 3 4 13 15 18 19 20 22 23

3.8 2 4 7 14 15 16 18 20 21 22 23

3.9 7 8 10 13 14 15 17 19 20 21 22 23

3.10 6 8 11 13 14 15 16 17 18 19 20 21 22

3.11 1 6 8 13 14 15 16 17 18 19 20 21 22 23

4.0 1 2 3 7

4.1 1 5 9 10 21

4.2 1 5 9 10 16 21

4.3 1 5 9 10 16 21 23

4.4 1 5 9 10 16 21 22 23

4.5 2 8 11 12 15 19 20 21 23

4.6 2 8 11 12 13 15 19 20 21 23

4.7 2 8 11 12 13 15 17 19 20 21 23

4.8 2 8 11 12 13 15 17 19 20 21 22 23

4.9 2 8 11 12 13 15 17 18 19 20 21 22 23

4.10 7 8 10 11 13 14 15 17 18 19 20 21 22 23

4.11 5 7 10 12 13 14 15 16 17 18 19 20 21 22 23

5.0 1 2 3 7 8

5.1 1 2 6 7 11 21

5.2 1 2 6 7 11 18 21

5.3 1 5 8 9 10 21 22 23

5.4 1 5 8 9 10 16 21 22 23

5.5 1 5 8 9 10 13 16 21 22 23

5.6 1 5 6 7 11 13 15 16 17 18 21

5.7 1 5 9 10 12 13 16 17 19 21 22 23

5.8 1 7 9 11 12 13 14 15 17 18 19 21 23

5.9 2 3 5 10 12 13 14 15 16 17 18 19 21 22

5.10 5 7 8 10 11 13 14 15 17 18 19 20 21 22 23

5.11 5 7 8 10 11 13 14 15 16 17 18 19 20 21 22 23

6.0 1 2 3 7 8 9

6.1 1 2 5 6 7 11 21

6.2 1 5 8 9 10 12 21 22

6.3 1 2 5 6 7 11 16 18 21

6.4 1 2 5 6 7 11 15 16 18 21

6.5 1 2 5 6 7 11 15 16 18 19 21

6.6 1 5 8 9 10 12 16 17 19 21 22 23

6.7 1 5 8 9 10 12 13 16 17 19 21 22 23

6.8 1 5 8 9 10 12 13 16 17 18 19 21 22 23

6.9 1 5 8 9 10 12 13 16 17 18 19 20 21 22 23

6.10 1 2 5 6 7 11 13 15 16 17 18 19 20 21 22 23

6.11 2 3 5 7 10 12 13 14 15 16 17 18 19 20 21 22 23
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Table 3: Minimum Moment Aberration Designs from Table 2 (Continued)
n3.n2 Three-Level Columns Two-Level Columns

7.0 1 2 3 4 6 8 10

7.1 1 2 3 5 9 10 11 16

7.2 1 3 5 6 7 8 12 16 17

7.3 1 3 5 6 7 8 12 16 17 20

7.4 1 3 5 6 7 8 12 16 17 19 20

7.5 1 3 5 6 7 8 12 16 17 19 20 22

7.6 1 3 5 6 7 8 12 16 17 18 19 20 22

7.7 1 2 3 5 6 7 11 13 15 16 18 19 21 23

7.8 1 2 3 5 6 7 11 13 15 16 17 18 19 21 23

7.9 1 3 5 6 7 8 12 13 15 16 17 18 19 20 22 23

7.10 2 4 5 6 7 9 12 13 14 15 16 17 18 20 21 22 23

7.11 2 3 5 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23

8.0 1 2 3 4 5 9 10 11

8.1 1 3 4 5 6 7 8 12 17

8.2 2 6 7 8 9 10 11 12 15 19

8.3 1 3 4 5 6 7 8 12 16 17 19

8.4 1 3 4 5 6 7 8 12 16 17 19 22

8.5 1 3 4 5 6 7 8 12 16 17 19 20 22

8.6 1 3 4 5 6 7 8 12 16 17 18 19 20 22

8.7 1 3 4 5 6 7 8 12 15 16 17 18 19 20 22

8.8 1 3 4 5 6 7 8 12 15 16 17 18 19 20 22 23

8.9 1 3 4 5 6 7 8 12 13 15 16 17 18 19 20 22 23

8.10 1 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 22 23

8.11 1 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 21 22 23

9.0 1 2 3 4 6 7 8 9 10

9.1 1 2 4 5 6 7 9 11 12 18

9.2 1 3 4 6 7 9 10 11 12 14 20

9.3 1 3 4 6 7 9 10 11 12 14 17 20

9.4 1 3 4 6 7 9 10 11 12 14 17 20 21

9.5 1 3 4 6 7 9 10 11 12 14 17 20 21 23

9.6 1 3 4 6 7 9 10 11 12 14 17 18 20 21 23

9.7 1 3 5 6 8 9 10 11 12 14 16 18 20 21 22 23

9.8 1 3 5 6 8 9 10 11 12 14 15 16 18 20 21 22 23

9.9 1 3 5 6 8 9 10 11 12 13 14 15 16 18 20 21 22 23

9.10 1 2 3 5 6 7 10 11 12 13 14 15 16 18 19 20 21 22 23

9.11 1 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10.1 1 2 3 4 5 6 7 8 11 12 21

10.2 2 3 5 6 7 8 9 10 11 12 13 18

10.3 1 2 3 4 5 6 8 9 10 11 13 16 18

10.4 2 3 5 6 7 8 9 10 11 12 13 15 18 19

10.5 1 3 4 5 6 7 8 9 11 12 13 14 16 17 18

10.6 1 3 4 5 6 7 8 9 11 12 13 14 16 17 18 22

10.7 1 3 4 5 6 7 8 9 11 12 13 14 16 17 18 20 22

10.8 2 4 5 6 7 8 9 10 11 12 13 15 16 18 19 20 22 23

10.9 2 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 23

10.10 1 2 3 4 5 6 7 8 11 12 13 14 16 17 18 19 20 21 22 23

11.1 1 2 3 5 6 7 8 9 10 11 12 16

11.2 1 2 3 5 6 7 8 9 10 11 12 16 22

11.3 1 2 3 5 6 7 8 9 10 11 12 16 20 22

11.4 1 2 3 5 6 7 8 9 10 11 12 13 16 20 22

11.5 1 2 3 5 6 7 8 9 10 11 12 13 16 20 22 23

11.6 1 2 3 5 6 7 8 9 10 11 12 13 16 19 20 22 23

11.7 1 2 3 5 6 7 8 9 10 11 12 13 14 16 18 20 22 23

11.8 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 23

11.9 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 23

12.1 1 2 3 4 5 6 7 8 9 10 11 12 22

12.2 1 2 3 4 5 6 7 8 9 10 11 12 18 23

12.3 1 2 3 4 5 6 7 8 9 10 11 12 18 22 23

12.4 1 2 3 4 5 6 7 8 9 10 11 12 18 20 22 23

12.5 1 2 3 4 5 6 7 8 9 10 11 12 13 18 20 22 23

12.6 1 2 3 4 5 6 7 8 9 10 11 12 13 18 20 21 22 23

12.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 22 23

12.8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 21 22 23
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