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Multiscale Modeling of a Red Blood Cell and its Fluid-Structure

Interaction
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Zhangli Peng

Doctor of Philosophy in Structural Engineering
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Professor Qiang Zhu, Chair

We develop a three-level multiscale approach of the red blood cell (RBC)

membrane and couple this approach with a boundary element method (BEM) for the

surrounding Stokes flow to simulate the mechanical behavior of a RBC under various

in vitro and in vivo conditions.

Our multiscale approach of this membrane includes three models: in the whole

cell level (Level III), a finite element method (FEM) is employed to model the lipid

bilayer and the cytoskeleton as two distinct layers of shells with sliding-only inter-

action. The mechanical properties of the cytoskeleton are obtained from a coarse-

grained molecular dynamics model (Level II) of the junctional complex. The spectrin,

a major protein of the cytoskeleton, is simulated using a molecular-based constitutive

model (Level I), including its domain folding/unfolding reactions. A BEM of the

surrounding Stokes flow is coupled with the FEM model of the membrane through a

staggered coupling algorithm.

Using this method, we first predict the resting shapes of healthy and diseased

RBCs.

Secondly, we simulate three quasi-static experiments of the micropipette as-

piration, the optical tweezer stretching, and the flow channel stretching. Detailed

distributions of the bilayer-skeleton interaction force that may cause their dissocia-

tion and lead to phenomena such as vesiculation are predicted. Specifically, our model
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predicts a correlation between the occurrence of spectrin unfolding and increase in

the mechanical load upon individual bilayer-skeleton pinning points in micropipette

aspirations. A simulation of the necking process after bilayer-skeleton dissociation is

also conducted.

Thirdly, we study RBC dynamics in capillary flow and find that the skeleton

density is large near the vessel wall, and the maximum bilayer-skeleton interaction

force occurs at the trailing edge.

Finally, we investigate the tumbling, tank-treading, and swinging motions of

RBCs in shear flow. The dependencies of tank-treading frequency on the blood

plasma viscosity and the membrane viscosity we found match well with the exist-

ing experimental and computational data. The simulation results show that during

tank-treading there is almost no protein density variation of the skeleton due to the

significant bilayer-skeleton friction. The distributions of shear deformation, bilayer-

skeleton interaction forces are also predicted.

xxii



Chapter 1

Introduction: Structure vs.

Function

The investigation of the molecular structure vs. physiological functions of

cells is at the frontier of today’s scientific adventure (Discher et al., 2009; Lim et al.,

2006). Among all types of cells, erythrocyte (red blood cell, or RBC) possesses one

of the simplest and best characterized molecular structure as well as several critical

physiological functions. In the following, the molecular structure of red blood cells

and their physiological functions are presented.

1.1 The molecular structure of red blood cells

Without a nucleus, a mature RBC contains a liquid cytosol enclosed within

a highly flexible yet surprisingly strong cell membrane. This composite membrane,

consisting of a lipid bilayer supported from inside by a cytoskeleton as shown in Fig.

1.1a, is essential to the structural integrity, the stability and the beautiful biconcave

shape of the RBC.

The lipid bilayer is a thin membrane made of two layers of lipid molecules. It

is a two-dimensional liquid with almost zero shear stiffness and a thickness of 4 nm.

The cytoskeleton is a protein network. It is composed of several major pro-

teins: α and β spectrin (Sp), ankyrin, band 3, protein 4.1, protein 4.2, and actin, as

well as some minor proteins such as myosin, tropomyosin (TM), and tropomodulin

1
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Figure 1.1: (a) Red blood cell membrane consisting of the lipid bilayer and the
cytoskeleton. (b) Molecular-detailed structure of the junctional complex (JC).
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(E-Tmod). Structurally, the cytoskeleton is organized into approximately 33,000 re-

peating units called junctional complexes (JCs) as shown in Fig. 1.1b. As revealed by

transmission electron microscopy (TEM), each JC is viewed as a small “spoked” but

edge-free hexagon, with 6 long αβ spectrin dimers radiating from a central short actin

protofilament. Spectrins behavior like cables or strings, and actin protofilaments are

like cylinders. These repeating units connect with each other through the head-to-

head association of Sp dimers from two neighboring units (Cohen et al., 1980). The

basic molecular architecture of a JC, and its connectivity with the lipid bilayer, is

shown in Fig. 1.1b.

Besides the junctional complex (JC), there is also another basic unit in the

cytoskeleton called suspension complex. Suspension complexes (SCs) function as the

primary connections between the protein network (the cytoskeleton) and the lipid

bilayer (Bruce et al., 2003). A SC consists mainly of band 3 (a transmembrane

protein), ankyrin, and protein 4.2 (Bennett and Stenbuck, 1979). The secondary

linkage between the protein network to the lipid bilayer involves the actin (Chang

and Low, 2001), protein 4.1 and the glycophorin C, another transmembrane protein

with a single transmembrane domain (Reid et al., 1990).

1.2 The physiological functions of red blood cells

1.2.1 The primary physiological function

The primary physiological function of erythrocytes (red blood cells, or RBCs)

is to deliver oxygen to the tissues through blood flow. Its cytoplasm is rich in

hemoglobin, an iron-containing biomolecule that can bind oxygen and is responsi-

ble for the blood’s red color. Red blood cells take up oxygen in the lungs and release

it while squeezing through the body’s capillaries. Capillaries are tiny blood vessels.

Hemoglobin in the erythrocytes also carries some of the waste product carbon dioxide

back from the tissues; most waste carbon dioxide, however, is transported back to

the pulmonary capillaries of the lungs as bicarbonate dissolved in the blood plasma.

The diameter of a red blood cell is around 7.8 µm (Fung, 1993) and the

diameter of a capillary which RBCs pass through may be as small as 3 µm. During this
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process, the red blood cell routinely undergoes large deformations and even structural

remodeling. These deformations are determined by the molecular structure of its

membrane as well as its interaction with the surrounding tissues and fluids.

1.2.2 Secondary physiological functions

Red blood cells also have several secondary physiological functions.

They can release ATP (adenosine triphosphate) which causes the vessel walls

to relax and dilate so as to promote normal blood flow, when they undergo shear

stress in blood vessels (Wan et al., 2008). When their hemoglobin molecules are

deoxygenated, erythrocytes release S-nitrosothiols which also acts to dilate vessels

(Diesen et al., 2008), thus directing more blood to areas of the body depleted of

oxygen.

It has been recently demonstrated that erythrocytes can also synthesize nitric

oxide (NO) enzymatically, using L-arginine as substrate, just like endothelial cells

(Kleinbongard et al., 2009). Endothelial cells are cells that line up the interior sur-

face of blood vessels, forming an interface between circulating blood in the lumen

and the rest of the vessel wall. Exposure of erythrocytes to physiological levels of

shear stress activates nitric oxide (NO) synthase and export of nitric oxide, which

may contribute to the regulation of vascular tonus (Ulker et al., 2009), which is the

continuous and passive partial contraction of the arterioles (a small diameter blood

vessel in the microcirculation that extends and branches out from an artery and leads

to capillaries).

Erythrocytes can also produce hydrogen sulfide, a signalling gas that acts to

relax vessel walls. It is believed that the cardioprotective effects of garlic are due to

erythrocytes converting its sulfur compounds into hydrogen sulfide (Benavides et al.,

2007).

The erythrocyte also plays an important role in the body’s immune response.

When lysed by pathogens such as bacteria, their hemoglobin releases free radicals

which break down the pathogen’s cell wall and membrane, and kill it (Jiang et al.,

2007).



5

1.3 Motivations

To explore the relationships between the molecular structure of the RBC and

its physiological functions as described above, this dissertation presents a multiscale

modeling of a RBC and its fluid-structure interaction, and focuses on the mechanical

aspect of these structure-function relationships. Specifically, there are several general

motivations for the research on red blood cell biomechanics.

1.3.1 Red blood cell diseases and dysfunctions

First, there are more than 1 billion people (1 in 6 humans in the world) are

affected by red cell abnormalities as a result of natural selection driven by severe forms

of malaria (Mohandas and Gallagher, 2008), which makes them the most common of

inherited disorders.

Many of these abnormalities are related to the altered mechanical properties

of the red blood cell membrane. It is crucial to understand these abnormalities from

a mechanical point of view before we can make significant steps in treatments of these

diseases. For example, the mechanical properties, structural stability, and occurrence

of mechanically induced structural remodeling and phase transitions of RBCs are

affected by a number of genetic defects. Typical defects include: (a) Southeast Asian

ovalocytosis (SAO) (Palek and Lambert (1990); Jarolim et al. (1991); Liu et al. (1995);

Sarabia et al. (1993); Liu et al. (1990); Liu et al. (1995); (b) Hereditary spherocytosis

(HS) (Savvides et al. (1993); Palek and Lambert (1993); Liu et al. (1990); Waugh

and Agre (1988)); (c) Hereditary pyropoikilocytosis (HPP) (Liu et al. (1990); Waugh

(1983)); and (d) Hereditary elliptocytosis (HE) (Liu et al. (1983); Waugh (1983)).

These mutations affect the intra-protein and inter-protein interactions in the skeleton

as well as the skeleton-bilayer connectivity, and lead to variations in the mechanical

properties of the cell and its malfunction.

Besides these genetic defects of membrane proteins, in malaria and sickle cell

disease, the mechanical properties of red blood cells are changed dramatically as

well. Malaria is a parasitic disease that involves high fevers, shaking chills, flu-like

symptoms, and anemia. The sickle cell disease is a blood disorder characterized by

red blood cells that assume an abnormal, rigid, sickle shape because of a mutation in
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the hemoglobin gene. A detailed review of these diseases from a mechanical point of

view can be found in Diez-Silva et al. (2010).

Even for a healthy red blood cell, its structural integrity is known to be altered

by mechanical loads. In natural conditions, during its life span of approximately four

months, a RBC circulates around the circulatory system. During this process the cell

sustains large dynamic deformation owing to the combined effect of the fluid loading

and confinement within capillaries and the slits of venous sinuses such as in the spleen

(Mebius and Kraal, 2004). The loading associated with such deformation may affect

the structural integrity of the cell (especially for those cells with molecular defects),

as manifested in structural remodeling, structural failure and cell dysfunction.

The possibility of flow-induced cell damage is more pronounced within artificially-

created flow fields inside mechanical circulatory support apparatus (for example

within artificial blood pumps). It has been reported that flow with high shear rates

and strong turbulence inside artificial heart valves can destroy these cells, causing

blood hemolysis (see for example Deutsch et al., 2006).

1.3.2 Model system for general cellular mechanics

The second motivation for red blood cell biomechanics research is that the red

blood cell can be studied as a model system for general cellular mechanics since it

possesses one of the simplest and best characterized molecular architectures.

The red blood cell has no nucleus and its cytoskeleton is on a two-dimensional

surface. Most proteins in the RBC cytoskeleton have been extensively studied, e.g.

spectrin (Rief et al., 1997; Law et al., 2003) and ankyrin (Lee et al., 2006), and these

proteins are organized in a very regular geometry as shown in Fig. 1.1b. However,

a general animal cell usually has a nucleus, many organelles and a three-dimensional

cytoskeleton consisting of actin filaments, intermediate filaments and microtubules.

For most of these cells, the intracellular architecture is very complicated. Neither the

exact geometry nor the connectivities between proteins are very clear. In addition,

cells such as white blood cells and endothelial cells can actively generate forces and

migrate by the growth of actin filaments and the contractility of myosin proteins.

The motility behavior makes it harder to study these cells, while red blood cells are
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almost passive. Owing to the simplicity of RBC and the large amount of data of its

molecular architecture, it serves as an ideal model system for structure vs. response

and fluid-structure interactions of living cells.

The biomechanical studies on red blood cells greatly facilitated the general

cellular mechanics (Fung, 1993). For example, significant advances were made in

understanding the mechanical properties of the lipid bilayer through red blood cell

research (Seifert, 1997). Furthemore, many cells have a cortical cytoskeleton made

of actin filaments. The investigation of the bilayer-skeleton interaction, which is the

focus of this dissertation, may shed insights on the interaction between the lipid

bilayer and the cortical cytoskeleton for general cells.

Finally, a lot of cells circulate around the circulatory system through blood

flow, e.g., white blood cells and cancer cells. The fluid-structure interaction model of

red blood cells may help understand the circulation of these cells in many aspects.

1.3.3 Biomimetic applications

The red blood cell has a very strong yet flexible membrane structure. It can

pass through a capillary with a much smaller diameter. As mentioned before, the

diameter of a red blood cell is around 7.8 µm (Fung, 1993) and the diameter of a

capillary through which RBCs pass may be as small as 3 µm. Furthermore, red

blood cells need to squeeze through these capillaries about half a million times in

their lifetime.

This remarkable mechanical performance may inspire many biomimetic ap-

plications. For example, Skelton and de Oliveira (2009) showed that the red blood

cell cytoskeleton may be organized based on an architectural concept of tensegrity,

which is a conjunction of the two words tension and integrity. Tensegrity is a type of

structure with an integrity based on a balance between tension and compression com-

ponents. In a tensegrity structure the compressive members are connected to each

other by tensile members. For example, I made a tensegrity torus consisting of cables

and bars shown in Fig. 1.2 (see Peng et al. (2007); Yuan et al. (2008)). The biologist

Don Ingber at Harvard proposed tensegrity models of other cell cytoskeletons (see

for example Wang et al. (1997)). It was found that the mechanical behavior in living
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(a)

(b)

Figure 1.2: (a) Tensegrity torus (Peng et al., 2007). (b) Local connections.
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animal cells is consistent with the tensegrity model. We may be able to build high

performance artificial structures with special features by learning from the molecular

structures of red blood cells and other cells.

1.4 Canonical experiments on red blood cells

Before the existing studies are reviewed, I would like to briefly describe sev-

eral important and canonical experiments conducted on red blood cells to determine

their mechanical properties. Since these experiments will be studied and simulated

extensively in this dissertation, it is desirable to introduce them first in this chapter.

1.4.1 Micropipette aspiration

Micropipette aspiration is one of the most useful experiments for determining

the mechanical properties of cells (Lim et al., 2006). It is also one of the earliest

methods used to study red blood cells (Jay, 1973; Jay and Canham, 1973). In this

experiment, a tiny glass pipette (tube) with a diameter around 2-5 µm is prepared.

By connecting it to a pressure system (e.g., a U-tube system), a negative pressure is

applied to aspirate (suck) the cell into the micropipette as shown in Fig. 1.3a. The

predicted shape from our simulation is also shown in 1.3b. The contour shows the

skeleton density variation, which will be explained in Chapter 3.

By applying this technique on red blood cells and labeling the membrane

proteins using fluorescence imaging, several important phenomena can be observed,

including the relationship between aspiraton length and pressure, skeleton density

variation, vesiculation and necking. Utilizing fluorescence imaging, membrane pro-

teins (e.g. spectrins, band 3 and ankyrin) are labeled with different fluorescent mark-

ers. Based on the intensity of the fluorescence image, the protein density variation

can be measured (Discher et al., 1994). In vesiculation, a small portion of the lipid

bilayer will separate (detach) from the cytoskeleton and form a lipid vesicle when

the negative pressure is extremely large. Before this vesiculation, a necking usually

happens for the tongue of the cell aspirated into the pipette.
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(a)

(b)

Figure 1.3: (a) Micropipette aspiration experiment (Courtesy of Dr. Carlos Vera,
Bioengineering, UC San Diego). (b) Simulation of micropipette aspiration.
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(a) (b)

Figure 1.4: (a) Optical tweezer stretching of a red blood cell (Reprinted from Dao et al.
(2006), with kind permission from Elsevier. Courtesy of Dr. Ming Dao, Mechanical
Engineering, MIT). (b) Simulation of optical tweezer stretching.

1.4.2 Optical tweezer stretching

Optical tweezers are scientific instruments that use a highly-focused laser beam

to provide an attractive or repulsive force (typically on the order of piconewtons),

depending on the refractive index mismatch to physically hold and move microscopic

dielectric objects. In the optical tweezer stretching of red blood cells, an erythrocyte

is stretched by two attached beads at two ends. The motion of two beads is optically

controlled by laser beams as shown in Fig. 1.4. As reported by Dao et al. (2006), the

stretching force is applied by two silica beads, which are attached at the opposite ends

of the cell over a small oval region with a diameter of 1∼2 µm. Using this technique,

the quasi-static and dynamic mechanical properties of healthy and diseased red blood

cells can be extracted.

1.4.3 Flow channel stretching

Flow channel stretching experiments have been developed to examine the re-

sponse of cells attached to a substrate under shear stresses exerted by an incoming

flow. This is also called flow channel shearing. In order to distinguish it from the

experiment by imposing shear flow on red blood cells using a rheometer, in this dis-

sertation this experiment will be referred to as flow channel stretching . In a typical

flow channel stretching setup, erythrocytes are allowed to sediment inside a channel

consisting of two parallel plates. The substrate is coated with bovine serum albumin
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(a) (b)

Figure 1.5: (a) Flow channel stretching of a red blood cell (Reprinted from Waugh
and Bauserman (1995), with kind permission from Springer Science+Business Media.
Courtesy of Dr. Richard E. Waugh, Biomedical Engineering, University of Rochester).
(b) Simulation of flow channel stretching.

(BSA) so that most cells do not adhere to the bottom with large attaching areas.

When external flows are introduced the cells deform while one (in some cases more

than one) point remains attached to the substrate. As shown in Fig. 1.5a (Waugh

and Bauserman, 1995), long membrane strands (tethers) may appear when the flu-

idic shear surpasses a threshold value (∼1.5 dyn/cm2, or 0.15 pN/µm2) (Hochmuth,

1973). A simulation of this experiment is shown in Fig. 1.5b.

1.4.4 Microfluidic experiments of tube flow and shear flow

There are two major microfluidic experiments on red blood cells. For example,

red blood cells can be pumped to pass through small flow channels made of glass

tubes to mimick capillary flow, in which the tube is usually larger than the glass

tube in micropipette experiment as shown in Fig. 1.6a (Pozrikidis, 2003a; Pries and

Secomb, 2008). The other important microfluidic experiment is to impose a shearing

flow on the red blood cells using rheometers (Abkarian et al., 2007; Fischer, 2004) as

illustrated in Fig. 1.6b (Pozrikidis, 2003a), in which the red blood cells are suspended

in a free space. It is different from the flow channel stretching experiment, in which

some small regions of the red blood cells are attached to the subtrate. Fig. 1.6b shows

a time sequence of the cell images. The time direction is from top left to top right,

then from bottom left to bottom right. A bead is attached to the RBC membrane
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and circulates around the cell in a tank-treading motion. A comprehensive review of

microfluidic experiments on red blood cells can be found in Abkarian et al. (2008).

1.5 Existing studies

Due to its important physiological functions and structural simplicity, the

mechanics of the red blood cell has been extensively studied during the past fifty

years. Existing studies fall into three categories: (I) those concentrating on the

macroscopic response of the complete cell, including experimental investigations us-

ing micropipettes (see for example Waugh and Evans, 1979; Discher et al., 1994),

optical tweezers (Henon, 1999; Sleep et al., 1999; Dao et al., 2003), optical magnetic

twisting cytometry (Puig-De-Morales-Marinkovic et al., 2007), full-field laser inter-

ferometry techniques (Park et al., 2009), as well as numerical models of complete

cells without considering effects of surrounding fluids (Discher et al., 1998; Dao et al.,

2006; Li et al., 2007; Kabaso et al., 2010); (II) those focusing on the mechanical

response and constitutive properties of single molecules or interconnectivity between

molecules, for example that of spectrin (Rief et al., 1997; Law et al., 2003) or of ankryn

(Lee et al., 2006), by using atomic force microscopy (AFM) or molecular-dynamics

(MD) simulations; (III) those focusing on fluid-structure interactions, including in

vitro experiments using flow channels (Hochmuth, 1973; Berk and Hochmuth, 1992),

microfluidic tools (see for example Fischer, 2004; Abkarian et al., 2007), as well as

various analytical and numerical studies (see for example Pozrikidis, 2003a, 2010).

Since the primary goal of this dissertation focuses on the whole cell behavior, more

detailed reviews are given on categories I and III as follows.

1.5.1 Macroscopic response of the complete cell

In earlier studies, Evans and Fung (1972) measured the biconcave geometry

of red blood cells very precisely. An insightful theoretical consideration of the mem-

brane equilibrium was given in the book by Fung (1993). Evans and Skalak (1980)

established an elasticity theory of the red blood cell membrane. Despite extensive

investigations in the past few decades, there are still many remaining questions about
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(a)

(b)

Figure 1.6: (a) Red blood cells in glass tubes (Reprinted from Pozrikidis (2003a),
with kind permission from CRC PRESS LLC. Courtesy of Dr. Axel R. Pries, Free
University of Berlin, Germany). (b) A red blood cell in shear flow (Reprinted from
Pozrikidis (2003a), with kind permission from CRC PRESS LLC. Courtesy of Dr.
Thomas M. Fischer, RWTH-Aachen, Germany).
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the mechanics of erythrocytes. For example, it is still not fully understood what de-

termines its resting biconcave shape (this is the first of eight mysteries about RBCs

proposed by Hoffman (2001)). Herein a pivotal issue is the effect of the protein

skeleton upon cell shape. Although a stomatocyte-discocyte-echinocyte sequence was

obtained numerically based on the bilayer-coupled hypothesis (Lim et al., 2002) and

the stabilizing function of the skeleton in maintaining the biconcave shape was ex-

plored by Khairy et al. (2008), the relaxed stress-free reference shape of the skeleton

remains controversial. Indeed, if a spherically relaxed skeleton is assumed, to obtain

the biconcave shape the elasticity of the skeleton must be significantly reduced (Li

et al., 2005). Otherwise, nonspherical (e.g. biconcave (Zarda et al., 1977) or oblate

(Lim et al., 2002; Khairy et al., 2008)) relaxed shapes must be assumed. These are

beyond the state-of-the-art knowledge about RBCs.

Moreover, much is unknown about the response of cells undergoing large defor-

mations. One remaining issue is the strength of the skeleton-bilayer linkage (Hwang

and Waugh, 1997). Under sufficiently large dissociation forces this linkage may rup-

ture, causing cell remodelings such as vesiculation. The current understanding is

based upon the adhesion energy theory by Hochmuth and Marcus (2002). Being es-

sentially phenomenological, this theory does not offer much insight into the molecular

origin of the lipid-skeleton dissociation. In large deformations, the effects of spectrin

unfolding (Zhu and Asaro, 2008) and dissociation of spectrin head-to-head connec-

tions (Li et al., 2007) upon the mechanical behavior of the cell are also unexplored.

1.5.2 Fluid-structure interaction of red blood cells

Regarding the fluid-structure interaction of RBCs, the asymptotic theories by

Barthès-Biesel (1980) and Barthès-Biesel and Rallison (1981) showed the influence of

interfacial elasticity on the small deformation of a capsule consisting of a thin elastic

solid skin, enclosing a Newtonian incompressible liquid, and the rheology of dilute

suspensions of capsules. Keller and Skalak (1982) studied the motion of a tank-

treading ellipsoidal particle in a shear flow using an analytical approach. Secomb

et al. (1986) applied lubrication theory to investigate the motion of axisymmetric

RBCs in narrow capillaries (also see Halpern and Secomb, 1992). Skotheim and
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Secomb (2007) obtained the complete phase diagram from tumbling to tank-treading

motions for red blood cells in shear flow. Following these analytical studies, various

numerical models were developed to study large deformation and non-axisymmetric

cases of capsules in Stokes flows, including the boundary element methods developed

by Pozrikidis (1990), Zhou and Pozrikidis (1990), Ramanujan and Pozrikidis (1998),

Pozrikidis (2001), Pozrikidis (2003b), Pozrikidis (2005a), Lac et al. (2004), Kessler

et al. (2004), Zhao et al. (2010), the immersed boundary methods by Eggleton and

Popel (1998), Bagchi (2007), Zhang et al. (2008), Le (2010), and multiparticle collision

dynamics method by Noguchi and Gompper (2005) and McWhirter et al. (2009). The

RBC membrane is considered as a uniform continuum media in these models, and

the detailed molecular structure was neglected.

1.5.3 Existing multiscale models

Recently multiscale models have been developed to study the static and dy-

namic response of RBCs (see for example Fedosov et al., 2010a,b). These models,

however, do not explicitly address the detailed internal connectivity of the cell (e.g.

the connectivity between the protein skeleton and the lipid bilayer), making them

inappropriate to use in simulations involving structural remodeling caused by large

deformations. Also, important molecular-level processes such as protein unfolding

were not considered due to the absence of models for molecular connectivity. Contro-

versies arise due to the lack of detailed modeling of internal connectivity. For example,

it is still not clear whether density of the cytoskeleton will change significantly dur-

ing tank-treading motions. According to the model by Dodson and Dimitrakopoulos

(2010), considerable area dilation of the cytoskeleton is possible. This is in contradic-

tion with Fischer (1992), who found that during tank treading there was not enough

time for bilayer-skeleton slip to happen.

1.6 Dissertation outline

Due to the limitations of existing computational models described above, this

dissertation presents a new three-level multiscale model of the red blood cell mem-
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brane, in which the lipid bilayer and the cytoskeleton are modeled as two distinct

layers and the detailed molecular structures are considered as well.

The rest of this dissertation is organized as follows. A three-level quasi-static

multiscale model is described in Chapter 2, that includes the spectrin model (Level

I), the junctional complex model (Level II) and the complete cell finite element model

(Level III). The continuum-based shell element and the master-slave penalty contact

algorithm are formulated in details. In Chapter 3, the resting shape problem and the

quasi-static experiments including optical tweezer stretching, micropipette aspiration

and flow channel stretching are investigated. In Chapter 4, we extend the quasi-

static multiscale model of the RBC membrane presented in Chapter 2 to a dynamic

version by including the fluid-structure interaction and the membrane viscoelasticity.

The fluid-bilayer interaction problem is solved by coupling the finite element method

(FEM) and the boundary element method (BEM), and the corresponding cytoskeleton

dynamics is also presented. In Chapter 5, red blood cell dynamics, including the

deformation of a RBC in tube flow, and the tumbling, tank-treading and swinging

motions of a RBC in shear flow, are studied. A final summary and future directions

are provided in Chapter 6.



Chapter 2

Three-level Quasi-static Multiscale

Modeling Approach

In this chapter, we describe the three-level quasi-static multiscale modeling

approach of the red blood cell membrane. A dynamic version of this approach will

be presented in Chapter 4. A quasi-static process is a thermodynamic process that

happens infinitely slowly. However, no real process is quasi-static. If the experiments

are performed at very slow rates, such as with micropipette aspiration and optical

tweezer stretching, which will be described in Chapter 3, they can be treated approx-

imately as quasi-static processes. In these experiments,the concern is with the final

configuration of the deformed cell. In the beginning of this chapter, detailed back-

ground on inter- and intra-protein interactions within the red blood cell cytoskeleton

is reviewed. The spectrin model (Level I), the junctional complex model (Level II)

and the complete cell finite element model (Level III) are then formulated in details

respectively. We also derive the mathematical formulation of the continuum-based

shell element (Hughes-Liu shell element) at the complete cell level, and describe the

master-slave penalty contact algorithm to calculate the bilayer-skeleton interaction

and the interaction between the lipid bilayer and analytical surfaces, e.g., the mi-

cropipette surface.

18
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2.1 Background on inter- and intra-protein inter-

actions within the red blood cell cytoskeleton

A red blood cell possesses a thin skeletal network coupled with a lipid bi-

layer. The network is composed primarily of flexible spectrin (Sp) dimers (a dimer

is a macromolecular complex formed by two, usually non-covalently bound, macro-

molecules like proteins or nucleic acids), and relatively rigid actin protofilaments,

and structurally organized into approximately 33,000 junctional complexes (JCs). As

shown in Fig. 2.1, each JC contains a central piece of actin protofilament as well as

(up to) six Sp dimers. Horizontally, the JCs are linked via the Sp dimer/tetramer

reaction (i.e. the head-to-head association that connects two dimers into a tetramer).

Vertically, this membrane skeleton is mainly connected to the lipid bilayer at pinning

points called suspension complexes (SCs). Each SC consists of ankyrin, protein 4.2,

and band 3. Band 3 is a transmembrane protein. In addition, the actin protofila-

ments are also connected to the lipid bilayer through protein 4.1 and glycophorin C

(another transmembrane protein). This linkage is usually referred to as the secondary

connection. Both band 3 and glycophorin C can drift within the lipid bilayer, ren-

dering horizontal mobility of the skeleton-bilayer connection. Inter- and intra-protein

reactions are essential to the structural integrity and mechanical response of the cell

(Mohandas and Evans, 1994).

It has been illustrated that in the erythrocyte membrane there exists a dynamic

equilibrium as a result of dynamic balances between associated and dissociated states

of many inter-protein and protein-to-lipid linkages. These balances can be disturbed

by mechanical loads. The connections that may rupture under mechanical loads

include: the head-to-head association between Sp dimers that link the neighboring

JCs (DeSilva et al., 1992; An et al., 2002), the band 3–ankyrin “bridge” that is the

connection between the SC and the lipid bilayer (Anong et al., 2006), the protein 4.1–

band 3 connection (An et al., 1996), and the band 3–lipid bilayer connection (Butler

et al., 2008). These dissociations dramatically change the mechanical properties of

the membrane, causing structural instability and even permanently damaging the cell.

For example, as shown in micropipette aspirations and flow channel experiments, the

rupture of the band 3–lipid linkage causes detachment of the skeleton from the lipid
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Figure 2.1: Schematic of a junctional complex (JC).

bilayer, leading to creation of vesicles (vesiculation) or tethers (Knowles et al., 1997;

Butler et al., 2008). A vesicle is an entity formed by part of the cell membrane which

contains no protein skeleton. Vesiculation is associated with membrane loss, with

changes in the shape and physiology of the cell.

To understand conditions related with these cell remodeling processes, numer-

ical models are required to correlate cell deformation to mechanical loads on these

connections. Since cell deformation and mechanical forces on these connections oc-

cur at different length scales, it is desirable to develop a multiscale approach with

models at different length scales to explore their relationships. In the following, our

three-level multiscale approach motivated by this purpose will be presented.

2.2 Information-passing multiscale approach

The quasi-static multiscale approach consists of three models characterized

by different length scales. These are referred to models at Levels I, II, and III. At

the complete cell level (Level III as shown in Fig. 2.2a) the membrane is modeled

as two distinct layers of continuum shells using the finite element method, in which

the skeleton-bilayer interactions are depicted as a slide in the lateral (i.e. in-plane)

direction (caused by the mobility of the skeleton-bilayer pinning points) and a normal
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interaction force. The constitutive laws of the inner layer (the protein skeleton) are

obtained from a molecular-detailed model of the junctional complex (Level II as

shown in Fig. 2.2b). The mechanical properties of the Sp, including its domain

folding/unfolding reactions, are obtained with a molecular-based thermally activated

constitutive model (Level I as shown in Fig. 2.2c). These three models are coupled

through an information-passing multiscale algorithm, in which predictions of Level

I and Level II models are employed as constitutive laws in the Level II and Level

III models, respectively. The information-passing multiscale methods are also called

hierarchical multiscale methods (Fish, 2010). In these methods, the response of a

representative volume or surface element at the fine-scale is first computed over a

range of expected inputs, and then a stress-strain law is extracted. They are different

from the concurrent multiscale methods, in which the fine-scale model is embedded

in the coarse-scale model and is directly and intimately coupled to it (Fish, 2010).

In the following, these three models are described in detail, respectively.

2.3 Level I: Spectrin (Sp) model

Multidomain proteins such as spectrin (Sp) can undergo overstretching due to

unfolding of domains or multiple repeats (Rief et al., 1999; Lee and Discher, 2001; Law

et al., 2003; Paramore and Voth, 2006; Rief et al., 1997) (ref. Fig. 2.2c). As illustrated

in AFM experiments, the transient force-extension curve of Sp stretching displays a

trademark sawtooth pattern related to unfolding of the domains (Rief et al., 1999).

Each peak in this curve corresponds to the unfolding of one or more than one domains

(Law et al., 2003). The exact characteristic of this curve is dependent on the rate

of extension. With an infinitely slow extension rate, the quasi-static (equilibrium)

force-extension curve contains a strain-stiffening part before the first unfolding event.

Afterwards, a distinctive plateau appears, where the extension force remains almost

a constant due to the successive unfolding of domains.

Based on this description, a quasi-static/dynamic model of a Sp was developed

by Zhu and Asaro (2008). Using this model, Zhu and Asaro (2008) have quantitatively

reproduced the experimentally-measured force-extension relation of a Sp. It has also

been demonstrated that the calculated shear modulus near the natural configuration
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Figure 2.2: Multiscale models of an erythrocyte: (a) the double-layer continuum shell
model, (b) the molecular-detailed JC model, and (c) the constitutive model of a Sp
including the folding/unfolding reactions. (b) and (c) are modified from Zhu and
Asaro (2008).
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is consistent with those found in previous studies (around 5-10 µN/m).

2.3.1 Quasi-static response

In the quasi-static model of spectrin, Zhu and Asaro (2008) consider a Sp

with N domains stretched by a force F . When there is Nf folded domains and

Nu unfolded domains in a Sp (note that N = Nu + Nf), the projected end-to-end

distance x (i.e. the end-to-end distance projected to the direction of F ) is given

as x = Nf xf + Nuxu, where xf and xu are the projected extensions of folded and

unfolded domains, respectively. Let φu = Nu/N , we have

x

NLf
= (1 − φu)

xf

Lf
+ φu

xu

Lu

(

Lu

Lf

)

, (2.1)

where Lf and Lu are the contour lengths for folded and unfolded domains, respec-

tively. The contour length of a polymer chain (a big molecule consisting of many

similar smaller molecules) is its length at maximum physically possible extension.

In the equilibrium state, by considering the balance between the unfolding

and the folding processes via the Arrhenius rate relation (the Arrhenius equation is

a simple, but remarkably accurate, formula for the temperature dependence of the

reaction rate constant, and therefore, rate of a chemical reaction), φu is expressed as

φu =
exp

(
(F −F1/2)∆∆x∗

kBT

)

1 + exp
(

(F −F1/2)∆∆x∗

kBT

) , (2.2)

where ∆∆x∗ = ∆xf→u − ∆xu→f , the difference between the activation length of the

unfolding process and that of the refolding process. F1/2 is the force F corresponding

to the state when half of the domains are unfolded. kB is the Boltzmann constant,

and T is the temperature (assumed to be 300K in our simulations).

xf /Lf and xu/Lu can be evaluated via the freely joint chain model (see for

example Weiner (1983)) as,

xi

Li
= coth

(
2Fpi

kBT

)

− kBT

2Fpi
, i = f, u, (2.3)
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where pf and pu are the persistence lengthes of each domain in folded and

unfolded states, respectively. The persistence length is a basic mechanical property

quantifying the bending stiffness of a long polymer. The persistence length is defined

as

pi =
κi

kBT
, i = f, u. (2.4)

where κi is the bending stiffness of the polymer. The larger the persistence length is,

the stiffer the polymer is.

xf /Lf and xu/Lu can be also evaluated via the worm-like chain (WLC) model

(Discher et al., 1998; Li et al., 2005) as

F =
kBT

pi

(

1

4(1 − xi/Li)2
− 1

4
+

xi

Li

)

, i = f, u. (2.5)

The freely joint chain model and the worm-like chain (WLC) model are two

most commonly used models in polymer physics to describe the behavior of semi-

flexible polymers. In the following formulations and simulations, we will use the

worm-like chain (WLC) model.

Based upon the molecular architecture of Sp as well as comparisons with ex-

periments by Rief et al. (1999), we took: N = 19, Lf = 5.3 nm, Lu = 39 nm, pf = 8

nm, pu = 0.8 nm, ∆∆x∗ = 12.6 nm, and F1/2 = 5 nm.

2.3.2 Dynamic response

For dynamics responses of spectrins, a Monte Carlos method was used by

Zhu and Asaro (2008) to study the potential influence of rate-dependent domain

unfolding-refolding. Zhu and Asaro (2008) developed a simple numerical algorithm

to include the kinetics of unfolding, and simulated the Atomic Force Microscopy

(AFM) experiments of Rief et al. (1997, 1999) and Law et al. (2003). A constant rate

of stretching is imposed in this algorithm. We compute the spectrin force based on

Eqns. 2.1 to 2.5 after each time step. The probaility of unfolding is calculcated as

P (F ) = kf→u(0) exp(F∆xf→u/kBT )∆t, (2.6)
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where xf→u is the activation length and kf→u is the rate of transition as defined in

Zhu and Asaro (2008).

Based on this probability function, we poll each folded domain to determine

if it should be unfolded at the new time or not. The steps of this algorithm are

summarized as follows:

1. Initialize the stretching rate ẋ = ∂x/∂t, ∆t, ∆xf→u, and set x = 0,

2. x = x + ẋ∆t,

3. Compute force, F , based on Eqns. 2.1 to 2.5,

4. Calculate probability P via Eq. 2.6,

5. Poll each folded domain for unfolding (nb unfolds found?)

(a) Update φu = φu + nb/N ,

(b) Recalculate F , based on Eqns. 2.1 to 2.5,

(c) Save (F, x), go to Step 2.

Using this model, Zhu and Asaro (2008) have quantitatively reproduced the experimentally-

measured force-extension relation of a Sp.

After obtaining the force-extension relation of a Sp, it is passed to our next

level model of junctional complex as the constitutive law of the spectrins.

2.4 Level II: Junctional Complex (JC) model

Our model of a JC is based upon the three-dimensional description of a single

JC unit by Sung and Vera (2003) (also see Vera et al. (2005)) and implemented within

the mechanical model of Zhu et al. (2007) and Zhu and Asaro (2008). According to

this depiction (Fig. 2.1), in a JC the protofilament functions as a mechanical axis,

anchoring 3 pairs of Sp. Each Sp pair is arranged in a back-to-back fashion.

The dynamic and quasi-static responses of individual and multiple JCs inter-

acting with the lipid bilayer have been studied via a hybrid scheme that simulated

the response to thermal fluctuations and applied displacements or stresses Zhu et al.
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Figure 2.3: Topology of a spoked hexagon (JC) in the erythrocyte membrane skeleton
- a three-dimensional view showing a protofilament with 6 pairs of G actin associated
with 6 Sp. Each Sp may connect to a SC in the lipid bilayer, forming a small hexagon
without physical edges. (Modified from Zhu et al. (2007)).

(2007); Zhu and Asaro (2008). From such simulations constitutive properties for JC

units and JC assemblies are extracted, yielding shear and area moduli.

2.4.1 Physical model of the junctional complex

Vera et al. (2005) studied the 3-D nanomechanics of a junctional complex (JC)

in red blood cells. They found the exact geometry of JC, including the structure of

the actin filament and the attachment sites between the spectrin and actin filament.

An actin protofilament is composed of 12-13 G-actins (globular actins) arranged in

a helical fashion. Because the persistence length of the actin protofilament is about

100 times larger than its actual length in the RBC cytoskeleton, it is modeled as a

rigid cylinder.
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A local Lagrangian Cartesian coordinate system (x, y, z) is built within this

actin filament modeled as a cylinder as shown in Fig. 2.3. The origin of this coordinate

system is at the center of the actin, x is parallel to the actin, and both y and z are

perpendicular to x.

Another global fixed Eulerian coordinate system (X, Y, Z) is built within the

lipid bilayer, which is defined that the undisturbed lipid bilayer lies with in the X −Y

plane and Z points toward the JC.

An arbitrary vector v can be represented in either as (vX , vY , vZ) in the Eu-

lerian system or the Lagrangian system as (vx, vy, vz). The transformation between

these two systems is









vx

vy

vz









= C ·









vX

vY

vZ









, (2.7)

where

C =









β2
0 + β2

1 − β2
2 − β2

3 2(β1β2 + β0β3) 2(β1β3 − β0β2)

2(β1β2 − β0β3) β2
0 − β2

1 + β2
2 − β2

3 2(β2β3 − β0β1)

2(β1β3 + β0β2) 2(β2β3 − β0β1) β2
0 − β2

1 − β2
2 + β2

3









, (2.8)

is the transformation matrix, where β0, β1, β2, β3 are Euler parameters, also called

unit quaternions, which represent rotations in three dimensions through the use of

the four numbers.

The Sp-actin attachment sites and the locations of SCs (ref Fig. 2.3) are

shown in Tables 2.1 and 2.2, respectively.

2.4.2 Fourier Space Brownian Dynamics (FSBD) of the lipid

bilayer

Based on the Langevin equation, Zhu et al. (2007) used Fourier Space Brow-

nian Dynamics (FSBD) to model the lipid bilayer, stemming from the work by Lin

and Brown (2005). In statistical physics, a Langevin equation (Langevin, 1908) is a

stochastic differential equation describing the time evolution of a subset of the degrees
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Table 2.1: Sp-actin attachment sites in the local Lagrangian Cartesian coordinate
system (x, y, z)

Spectrins Sp-actin attachment sites
Sp1 (12.38,0,4.5)
Sp2 (9.63,-1.08,-4.37)
Sp3 (1.38,3.70,2.56)
Sp4 (-1.38,-4.21,-1.60)
Sp5 (-9.63,4.21,-1.60)
Sp6 (-12.38,-3.70,2.56)

Table 2.2: SC sites in the global Eulerian coordinate system (X, Y, Z)

SC SC sites in the lipid bilayer
SC1 (0,30,0)
SC2 (0,-30,0)
SC3 (26,15,0)
SC4 (-26,-15,0)
SC5 (26,-15,0)
SC6 (-26,15,0)

of freedom. These degrees of freedom typically are collective (macroscopic) variables

changing only slowly in comparison to the other (microscopic) variables of the system.

The nonlocal Langevin equation for a lipid bilayer with uniform tension σ is written

as,

∂h(X, t)

∂t
=
∫∫

dX′Λ(X − X′)[−κc ▽4 h(X′, t)

+σ ▽2 h(X′, t) + F (X′, t) + ζ(X′, t)], (2.9)

where h is the vertical position of the bilayer. Λ(X − X′) = 1/8πηf |X − X′| is the

diagonal component of the Oseen hydrodynamic tensor, ηf is the dynamic viscosity

of the surrounding fluid, and κc the bending modulus of the bilayer. σ is the existing

tension. F (X′, t) and ζ(X′, t) are the interaction force (Z direction) and the random

thermal fluctuation force respectively.

The interaction force (Z direction) can be divided into the following three
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parts as,

F (X, t) = F (c)(X, t) + F (p)(X, t) + F (s)(X, t), (2.10)

where F (c)(X, t) is the force due to the tension of spectrins, F (p)(X, t) the repul-

sive force between the bilayer and the actin, F (s)(X, t) the repulsive force between

spectrins and the bilayer.

F (c)(X, t) =
6∑

i=1

fiZ(t)

π(l/4)2
exp

(

−
∣
∣
∣
∣

X − X(c)

c1/4

∣
∣
∣
∣

2
)

, (2.11)

where fiZ(t) is the Z-component of the stretching force inside the ith Sp, which

is evaluated based on the spectrin model (Level I). c1 is a localization parameter. X(c)

is the location of the SCs as shown in Table 2.2. l is the length of the spectrin.

F (p)(X, t) = −γ
Np∑

α=1

sα exp

(

−Z(p)
α − h(X, t)

c2

−
∣
∣
∣
∣

X − X(c)

c1/4

∣
∣
∣
∣

2
)

, (2.12)

where γ is the magnitude of interaction and c2 = 0.2nm is its steepness. F (p)(X, t)

is the short-range repulsive interaction force between the actin and the bilayer. The

actin protofilament is divided into Np elements. (X(p)
α , Z(p)

α ) is the center of each

element with area sα(α = 1, ..., Np).

F (s)(X, t) = η
6∑

i=1

exp



−ZP i − h(X, t)

c2

− 1

A2
i + B2

i

[

AiX + BiY + Ci

c1/4

]2


 . (2.13)

where η is a constant characterizing the magnitude of the repulsive interaction. AiX+

BiY + Ci = 0 is a straight line of the projection of ith spectrin on the mean plane of

lipid bilayer (Z = 0).

Detailed descriptions of these three kinds of interaction forces can be found in

Zhu et al. (2007).

Zhu et al. (2007) modeled the random thermal fluctuation force ζ(X, t) as a

Gaussian variable with zero mean

〈ζ(X, t)〉 = 0, (2.14)
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and a variance.

〈ζ(X, t)ζ(X′, t)〉 = 2kBTΛ−1(X − X′)δ(t − t′), (2.15)

where kB is Boltzmann’s constant, T temperature and δ the Dirac delta-function.

Numerically, an efficient Fourier spectral algorithm is used to solve the above

equations. For a doubly periodic function f(X), the Fourier transform and reverse

Fourier transform are

f̃(k) =
∫∫

L×L
f(X) exp(−ik · X)dX, (2.16)

f(X) =
1

L2

∫∫

L×L
f̃(k) exp(ik · X)dk. (2.17)

where k = (2mπ/L, 2nπ/L) with m, n = −N/2, ..., N/2−1 are N ×N Fourier modes.

In Fourier space Eq. 2.9 becomes

∂h̃(k, t)

∂t
= Λ(k)

[

−(κck
4 + σk2)h̃(k, t) + F̃ (k, t) + ζ̃(k, t)

]

, (2.18)

where k = |k| and Λ(k) = 1/4ηfk. The modes of Eq. 2.18 are decoupled and Eq.

2.18 can be integrated by

h̃(k, t + ∆t) = h̃(k, t) + ∆tΛ(k)
[

−(κck
4 + σk2)h̃(k, t) + F̃ (k, t)

]

+ R(k, ∆t),

(2.19)

where R(k, ∆t) is the Brownian random term. The computational cost of this algo-

rithm is only proportional to N2 log N2.

2.4.3 Dynamics of the actin protofilament

Since at this length scale, the inertial force is negligible, the motion of the actin

protofilament can be described by the micro-hydrodynamics in the Stokes regime. The
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linear and angular velocities are calculated as

vi =
f

(s)
i + f

(b)
i + f

(ζ)
i

Di
, (2.20)

ωi =
M

(s)
i + M

(b)
i + M

(ζ)
i

DMi
, (2.21)

i = x, y, z, (2.22)

where f
(s)
i , f

(b)
i , f

(ζ)
i are forces on the actin due to spectrin, bilayer, Brownian fluctua-

tion, respectively. M
(s)
i , M

(b)
i , M

(ζ)
i are corresponding moments. Dx is the tangential

drag coefficient and Dy = Dz are the normal drag coefficients. DMx, DMy, DMz are

corresponding rotational coefficients.

The normal and tangential drag coefficients per unit length are

KN =
4πηf

ln(2q/a) + 1/2
, (2.23)

KT =
2πηf

ln(2q/a)
, (2.24)

where q is a length scale that measures the correlation length along the length of the

actin, and a = 4.5nm is the actin radius. Following Lamb’s theory of two-dimensional

Stokes flow around a circular cylinder, the normal drag coefficient is given as

KN =
4πηf

2 − ln(Re)
, (2.25)

where Re = 2aρ
√

v2
y + v2

z/ηf is the Reynolds number. ρ is the density of the surround-

ing fluid. q is obtained by comparing Eq. 2.25 with Eq. 2.23 . Then we calculate the

drag coefficients as

Dx = bKT , (2.26)

Dy = bKN , (2.27)

Dz = bKN , (2.28)
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where b = 35.75nm is the length of the actin filament, and

DMx = a2Dx, (2.29)

DMy =
b2Dy

12
, (2.30)

DMz =
b2Dz

12
. (2.31)

Detailed evaluation of forces and moments f
(s)
i , f

(b)
i , f

(ζ)
i and M

(s)
i , M

(b)
i , M

(ζ)
i can be

found in Zhu et al. (2007).

The Euler parameters of the actin protofilament orientation are then deter-

mined through

d

dt









X0

Y0

Z0









=









vX

vY

vZ









= C−1 ·









vx

vy

vz









,

d

dt












β0

β1

β2

β3












=
1

2












β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0












·












0

ωx

ωy

ωz












. (2.32)

Eq. 2.32 is integrated in time using the central difference method.

2.5 Level III: Complete cell model

Following Evans and Skalak (1980), we calculate the shear and area moduli of

a JC undergoing finite deformations based upon the strain energy Φ stored in the Sp.

In this approach, an arbitrary in-plane deformation is achieved by stretching in two

orthogonal axes, axis 1 and axis 2, with stretching ratios λ1 and λ2 (λ1 ≥ λ2). Two
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Figure 2.4: Shear modulus (µN/m) of the protein skeleton as predicted by the single-
JC model containing the constitutive model of Sp.

independent deformation parameters are also defined as

α = λ1λ2 − 1, (2.33)

β = (λ2
1 + λ2

2)/(2λ1λ2) − 1. (2.34)

It is seen that α represents area change, and β a change of aspect ratio or eccentricity,

which is a measure of shear deformation.
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Figure 2.5: Area modulus (µN/m) of the protein skeleton as predicted by the single-
JC model containing the constitutive model of Sp.
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2.5.1 Shear stiffness

The shear modulus of the skeleton, µs, is then given as

µs =
1

A0

∂Φ

∂β

∣
∣
∣
∣
α
, (2.35)

where A0 is the projected area of a JC without deformation (i.e. the area of the

hexagon formed by the six SCs). α is a constant that corresponds to anisotropic

deformation. The potential energy stored inside each Sp dimer is calculated by inte-

grating its internal tension times the extension, starting from the natural state. Φ is

then evaluated by summing up the total potential energy in the six dimers.

2.5.2 Isotropic tension and area stiffness

To obtain area stiffness, we first evaluate the isotropic tension T̄ in an equibi-

axial deformation (β = constant). We have (see Evans and Skalak (1980))

T̄ =
1

A0

∂Φ

∂α

∣
∣
∣
∣
β

− C/A2, (2.36)

where the second term corresponds to a steric effect in the form suggested by Discher

et al. (1998) (see also Dao et al. (2006)), i.e. the compression of the network causes a

repulsive force due to interactions among components of the protein skeleton. A0 and

A are the initial projected area of a JC and the deformed area of a JC, respectively.

The value of C is determined by assuming that the tension T̄ vanishes at the natural

configuration. Applying this isotropic tension, the area modulus Ks is given as

Ks =
∂T̄

∂α
. (2.37)

Using the single-JC model we performed simulations of the quasi-static and

ensemble-averaged response of a JC undergoing in-plane deformation. Thermal fluc-

tuations, which may have potential impact on local dynamic responses and cause

phenomena such as mode switching Zhu et al. (2007), are not included in this sim-

ulation. The shear and area moduli of the protein skeleton are extracted by using

Eqns. 2.35-2.37. We obtain that in its natural configuration (λ1 = λ2 = 1), the
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protein skeleton has a shear modulus µs ∼ 6 µN/m, and an area modulus Ks ∼ 12

µN/m. Both predictions are consistent with experimental measurements and model

simulations reported in the literature. For a more general case, in Fig. 2.4 and Fig.

2.5 we plot µs and Ks of a JC undergoing general in-plane stretching (including both

shear deformation and area variation) characterized by the two principle stretching

ratios λ1 and λ2. In our calculations we use
√

λ1/λ2 and
√

λ1λ2 as metrics to measure

shear and area deformations in general cases.

The shear modulus (Fig. 2.4) clearly displays a strain-induced unstiffening

feature: for fixed projected area (
√

λ1λ2 = constant) it reaches a peak value with

increasing shear (
√

λ1/λ2); afterwards it starts to decay (albeit moderately). The

threshold of unstiffening decreases with increasing
√

λ1λ2. This phenomenon is re-

lated to Sp unfolding and may be corroborated theoretically as discussed in Zhu and

Asaro (2008). Corresponding to the unstiffening of µs, slightly negative area modulus

appears (as shown in dashed lines in Fig. 2.5). This is again inferred theoretically:

the tension inside a Sp approaches a constant with the unfolding of its domains; thus

the internal pressure of the network decays as the area increases, leading to negative

area stiffness. This is reminiscent of the negative bulk stiffness as reported in com-

posite materials, which is often related to post-buckling behavior or phase transition

(Wang and Lakes, 2004). A more detailed explanation of the occurrence of negative

area stiffness is provided in Appendix A. It is also necessary to point out that the

occurrence of negative area stiffness is directly related to the quasi-static assumption

– any finite deformation rate will eliminate it. Moreover, it has been found that

the occurrence of negative area stiffness often generates numerical instability. For

these reasons in the following finite element simulations we use a small yet positive

area stiffness which is 10% the value at the initial state, if the negative area stiffness

occurs.

The lipid bilayer consists of an (almost) incompressible fluid-like membrane.

It therefore possesses a large area modulus and a quite small shear modulus. For

numerical stability we take µb, the shear stiffness of the lipid bilayer, to be a finite

value 10−3 µN/m, which is about three orders of magnitude smaller than that of the

protein skeleton. The area stiffness of the bilayer is taken to be Kb
.
= 5 × 105 µN/m

(Mohandas and Evans, 1994). This value is sufficiently large to guarantee small area
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variations so that its exact value has negligible effect on the result (the area variation

of the lipid bilayer is less than 3% in all of our simulations).

2.5.3 Constitutive model

We relate the in-plane components of Cauchy stress Θ in the finite element

method with the deformation via the constitutive law provided by Evans and Skalak

(1980). For the inner layer (skeleton network), we use

Θijh = T̄ δij +
µs

J2

(

bij − b11 + b22

2
δij

)

, i, j = 1, 2. (2.38)

J =

∣
∣
∣
∣
∣
∣

F ℓ
11 F ℓ

12

F ℓ
21 F ℓ

22

∣
∣
∣
∣
∣
∣

, (2.39)

is the in-plane Jacobian, and

F ℓ
ij =

∂yℓ
i

∂xℓ
j

, (2.40)

are the deformation gradients (Asaro and Lubarda, 2006).

bℓ
ij =

2∑

k=1

F ℓ
ikF ℓ

jk, (2.41)

are components of the in-plane left Cauchy-Green deformation tensor. T̄ and µs are

the isotropic tension and the shear modulus, which are defined in Eqs. (2.35) and

(2.36). h is the thickness of the shell. δij is the Kronecker delta.

For the outer layer (lipid bilayer), since it is nearly incompressible, we use

Θijh = Kb(J − 1)δij +
µb

J2

(

bij − b11 + b22

2
δij

)

, i, j = 1, 2, (2.42)

where Kb = 5 × 105 pN/µm is the area modulus of the outer layer. Although the

outer layer is a fluidic and its shear modulus is nearly zero, for numerical stability we

choose a small but nonzero value. In practice this value is chosen to be three orders

of magnitude smaller than the shear modulus of the inner layer. Through sensitivity

tests it has been shown that its actual value has no influence upon the results.
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2.6 Finite element method for the complete cell

model (Level III)

At the top level of our multiscale model, the cell membrane is represented by

two coupled continuous layers (ref. Fig. 2.2a). Numerically, we employ the finite

element method and simulate each of these layers as congregations of shell elements.

The development of this finite element model is summarized below.

2.6.1 Finite element representation of a thin shell

We model both the outer layer (the lipid bilayer) and the inner layer (the

protein skeleton) by using Hughes-Liu shell elements. The choice of this method

rather than alternatives (e.g. the Belytschko-Tsay shell elements) is based upon the

fact that the Hughes-Liu shell element is suitable for problems with arbitrarily large

strain, which is a characteristic of erythrocyte deformations. On the other hand,

although the C1-conforming thin shell elements may be more accurate (Cirak et al.,

2000; Feng and Klug, 2006; Ma and Klug, 2008; Benson et al., 2010; Le, 2010) to

model the lipid bilayer, for simplicity and numerical robustness, in our current study

we choose the C0 explicit Hughes-Liu elements (Hughes and Liu, 1981a).

In the following, the Hughes-Liu shell element formulation, including the gen-

eral 3D version and the axisymmetric version, is briefly reviewed. We will first intro-

duce the geometry and kinematics of the shell element, and then give the governing

equations for general solid continua. After that, we will discretize the weak form of

the governing equations for general solid continua, and apply shell assumptions. This

procedure is called degenerating a solid brick element to a shell element, because the

shell kinematic constraints are applied at the level of finite element discretization

rather than the level of governing equations. Detailed formulation can be found in

Hughes and Liu (1981a) and Hughes and Liu (1981b). Modifications to accommodate

our specific physical problem are given here as well.
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Figure 2.6: 3D iso-parametric mapping from a bi-unit cube to the physical shell
element domain.

Figure 2.7: Displacements and position vectors of the deformed configuration
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2.6.2 Geometry

The Hughes-Liu shell element method involves an isoparametric coordinate

system (ξ, η, ζ) and a global Cartesian coordinate system with unit direction vectors

e1, e2, and e3. A local lamina Cartesian coordinate system with unit direction vectors

eℓ
1, eℓ

2, and eℓ
3 is also used, which will be defined later. In the global coordinate

system, the initial configuration is represented by x, and the deformed configuration

is denoted by y. Hereafter we use bold capital symbols to represent tensors or multi-

column matrices, and bold lower-case symbols to represent vectors or single-column

matrices.

A bi-unit cube within the (ξ, η, ζ) space is mapped to the geometry of a shell

element x based on the iso-parametric representation as shown in Fig. 2.6. In the

physical space, the lines corresponding to constant ξ and η (i.e. the lines in ζ di-

rection) are called fibers. The surfaces of constant ζ are called laminae. Four nodes

are chosen at ζ = 0, the middle lamina (ζ = 0) which is called the reference surface.

With the bilinear in-plane interpolation, x of a shell element is given as

x(ξ, η, ζ) = x̄(ξ, η) + x′(ξ, η, ζ), (2.43)

where

x̄(ξ, η) =
4∑

a=1

N (a)(ξ, η)x̄(a), (2.44)

and

x′(ξ, η, ζ) =
4∑

a=1

N (a)(ξ, η)x′(a)(ζ). (2.45)

x̄ denotes the position vector of a point at the reference surface. x′ is the point vector

which starts from x̄ and points towards the fiber direction. a = 1, 2, 3, 4 correspond

to the four nodes shown in Fig. 2.6. The superscript ‘(a)’ denotes quantities at node

‘a’. For example, x̄(1) and x′(1) are the position and the point vectors at node ‘1’,

respectively. N (a) are the shape (interpolation) functions at node ‘a’, which are given
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Figure 2.8: Axisymmetric isoparametric mapping from a square to the physical shell
element domain.

as

N (1) =
1

4
(1 − ξ)(1 − η),

N (2) =
1

4
(1 + ξ)(1 − η),

N (3) =
1

4
(1 + ξ)(1 + η),

N (4) =
1

4
(1 − ξ)(1 + η). (2.46)

In our formulation, we consider the thicknesses h of both layers to be constants.

Correspondingly, at node ‘a’ we also define a unit point vector x̂′(a) so that

x′(a)(ζ) =
h

2
ζx̂′(a). (2.47)

In some special cases, e.g. aspiration of an erythrocyte into a cylindrical

micropipette from its dimple region, the configuration is axisymmetric so that ax-

isymmetric shell elements can be employed to reduce the computational effort (Fig.

2.8). Similar to the 3D elements, the geometry of an axisymmetric shell element is

described upon a unit square within the (η, ζ) space (ζ corresponding to the fiber

direction) as

x(η, ζ) = x̄(η) + x′(η, ζ), (2.48)
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where

x̄(η) =
2∑

a=1

N (a)(η)x̄(a), (2.49)

x′(η, ζ) =
2∑

a=1

N (a)(η)x′(a)(ζ), (2.50)

and

N (1) =
1

2
(1 − η),

N (2) =
1

2
(1 + η), (2.51)

x′(a)(ζ) =
h

2
ζx̂′(a). (2.52)

2.6.3 Kinematics

Similar to the geometry description, we decompose the displacement u into

two parts, the displacement of the reference surface and the displacement of the fiber

directions. In 3D cases, we have

u(ξ, η, ζ) = ū(ξ, η) + u′(ξ, η, ζ), (2.53)

where

ū(ξ, η) =
4∑

a=1

N (a)(ξ, η)ū(a), (2.54)

u′(ξ, η, ζ) =
4∑

a=1

N (a)(ξ, η)u′(a)(ζ), (2.55)

and

u′(a)(ζ) =
h

2
ζû′(a). (2.56)

In axisymmetric cases, we have

u(η, ζ) = ū(η) + u′(η, ζ), (2.57)
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where

ū(η) =
2∑

a=1

N (a)(η)ū(a), (2.58)

u′(η, ζ) =
2∑

a=1

N (a)(η)u′(a)(ζ), (2.59)

and

u′(a)(ζ) =
h

2
ζû′(a). (2.60)

Clearly, the deformed geometry y = x + u. We also have

y = ȳ + y′, (2.61)

where

ȳ = x̄ + ū,

y′ = x′ + u′. (2.62)

These relations are shown in Fig. 2.7.

2.6.4 Lamina coordinate system

In order to formulate the constitutive equations in an appropriate way, we

build a lamina reference system with three directional vectors eℓ
1, eℓ

2 as shown in Fig.

2.6, and eℓ
3 defined as

eℓ
1 = y,ξ/

∣
∣
∣
∣y,ξ

∣
∣
∣
∣, (2.63)

eℓ
3 = eℓ

1 × y,η/

∣
∣
∣
∣e

ℓ
1 × y,η

∣
∣
∣
∣, (2.64)

and

eℓ
2 = eℓ

3 × eℓ
1, (2.65)

where y,ξ and y,η denote the partial derivatives of y with respect to ξ and η, respec-

tively. The transformation matrix Q from the global coordinate system to the lamina
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coordinate system is given as

Q =
[

eℓ
1 eℓ

2 eℓ
3

]T
. (2.66)

The inverse transformation is achieved by QT .

For axisymmetric cases, the lamina coordinate system is established as follows

eℓ
1 =




eℓ

11

eℓ
12



 = y,η/
∣
∣
∣
∣y,η

∣
∣
∣
∣, (2.67)

eℓ
2 = eℓ

11e2 − eℓ
12e1. (2.68)

Note that the out-of-plane direction in the axisymmetric cases is eℓ
2 instead of

eℓ
3 as shown in Fig. 2.8. It is different from the 3D cases.

Correspondingly, the transformation matrix is

Q =
[

eℓ
1 eℓ

2

]T
. (2.69)

2.6.5 Governing equations

For a nonlinear solid mechanics problem in small length scales (i.e. the inertial

effect is negligible), the momentum equation with updated Lagrangian description can

be stated as follows,

c
∂u

∂t
− ∇ · Θ = 0. (2.70)

The boundary conditions are







u = g on ΓD

Θ · n = f ext on Γext,N

Θ · n = f cnt on Γcnt,N

(2.71)

c is the viscous damping coefficient. Θ is the Cauchy stress. ∇ is the spatial gradient

operator with respect to y. ΓD is the Dirichlet part of the boundary. Γext,N is

the Neumann part of the boundary where external forces are applied. Γcnt,N is the

Neumann part of the boundary where contact interaction forces are applied. n is the

normal vector to the surface. f ext represents the external forces (e.g. the pressure force
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inside a micropipette). f cnt is the contact force between the two layers, and between

the outer layer and boundaries (e.g. micropipettes). g is the specified displacements

on the boundary. Generally speaking, c, Θ, f ext, f cnt and g are functions of u, v and

t, where v = ∂u/∂t is the velocity.

Let Ω denote the physical space occupied by the shell in its current configura-

tion, V = V (Ω) the trial function space for displacements, and W = W (Ω) the test

function space for the momentum equations. By using the principle of virtual power

(Belytschko et al., 2000), the variational form (weak form) of Eq. (2.70) is stated as:

finding u ∈ V such that for ∀δv ∈ W ,

∫∫∫

Ω
δv · c∂u

∂t
dΩ+

∫∫∫

Ω
∇δv : ΘdΩ =

∫∫

Γext,N
δv · f extdΓ+

∫∫

Γcnt,N
δv · f cntdΓ. (2.72)

The assumption that the two layers are shells instead of general solid leads to

a number of conditions, including: (1) The fibers remain straight; (2) The normal

stress vanishes (i.e. plane stress condition); (3)The momentum in the fiber direction is

neglected. The first condition is already applied in the aforementioned geometry and

kinematics implementations. The second condition will be applied in the constitutive

equations. The third condition is implied in the assumption of constant thickness.

2.6.6 Spatial discretization and temporal integration

We apply the geometry and kinematics of shell element to the weak form

equation (Eq. (4.10)) to get the finite element discretization. For convenience, we

rewrite the Cauchy stress Θ, which is a tensor, as a vector σ by using the Voigt

notation. In 3D cases, the nonzero components of Θ are included in σ and expressed

within the lamina coordinate system as

σ
ℓ =















Θℓ
11

Θℓ
12

Θℓ
22

Θℓ
23

Θℓ
31















, (2.73)
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where the superscript ‘ℓ’ denotes quantities measured in the lamina coordinate system.

Θℓ
33 = 0 due to the plane stress condition.

For axisymmetric cases, we have

σ
ℓ =









Θℓ
11

Θℓ
12

Θℓ
33









. (2.74)

Note that the out-of-plane direction in the axisymmetric cases is eℓ
2 instead of eℓ

3 as

shown in Fig. 2.8. Θℓ
22 = 0 due to the plane stress condition. It is different from the

3D cases.

The finite-element approximation is formulated based upon Ω, the configura-

tion at the last time step. We divide Ω into element domains Ωe, and its boundary Γ

into element boundaries Γe (e = 1, · · · , ne). At each element, we employ the Galerkin

approximation as

u = Nue

δu = Nδue. (2.75)

The subscript ‘e’ represents quantities in element e. N is a matrix consisting

of shape functions. The element displacement vector ue assembles the displacement

vectors of all the nodes within an element expressed in the global coordinate system,
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and δue is the corresponding part for δu. For 3D cases, they are given as

ue =










































ū
(1)
1

ū
(1)
2

ū
(1)
3

û
′(1)
1

û
′(1)
2

û
′(1)
3

...

ū
(4)
1

ū
(4)
2

ū
(4)
3

û
′(4)
1

û
′(4)
2

û
′(4)
3










































, δue =










































δū
(1)
1

δū
(1)
2

δū
(1)
3

δû
′(1)
1

δû
′(1)
2

δû
′(1)
3

...

δū
(4)
1

δū
(4)
2

δū
(4)
3

δû
′(4)
1

δû
′(4)
2

δû
′(4)
3




















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











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
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

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, NT =




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



. (2.76)

Since
∂û′(a)

∂t
= ω

(a) × û′(a) = Λ(a)
ω

(a), (2.77)

where ω
(a) is the angular velocity at node a, and

Λ(a) =









0 û
′(a)
3 −û

′(a)
2

−û
′(a)
3 0 û

′(a)
1

û
′(a)
2 −û

′(a)
1 0









, (2.78)

the velocity of a general point in the shell can be expressed as

v =
∂u

∂t
= N

∂ue

∂t
= NTeve, (2.79)

and

δv = NTeδve, (2.80)
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where

ve =










































v̄
(1)
1

v̄
(1)
2

v̄
(1)
3

ω
(1)
1

ω
(1)
2

ω
(1)
3

...

v̄
(4)
1

v̄
(4)
2

v̄
(4)
3

ω
(4)
1

ω
(4)
2

ω
(4)
3










































, δve =










































δv̄
(1)
1

δv̄
(1)
2

δv̄
(1)
3

δω
(1)
1

δω
(1)
2

δω
(1)
3

...

δv̄
(4)
1

δv̄
(4)
2

δv̄
(4)
3

δω
(4)
1

δω
(4)
2

δω
(4)
3










































, (2.81)

Te =
[

I Λ(1) I Λ(2) I Λ(3) I Λ(4)
]

, (2.82)

and v̄ = ∂ū/∂t.

By substituting Eq. (2.79) and (2.80) into Eq. (2.72) and making the finite

element discretization, we get

ne∑

e=1

(

δvT
e TT

e

∫∫∫

Ωe

cNT NdΩTe
∂ve

∂t

)

+
ne∑

e=1

δvT
e TT

e

∫∫∫

Ωe

ΦT BT
σ

ℓdΩ

=
ne∑

e=1

δvT
e TT

e

∫∫

Γext,N
e

NT f extdΓ +
ne∑

e=1

δvT
e TT

e

∫∫

Γcnt,N
e

NT f cntdΓ. (2.83)

Φ is a transformation matrix from global coordinate system to lamina coordi-

nate system so that

vℓ
e = Φve. (2.84)

It is clear that in terms of the transformation matrix Q defined in §2.6.4, Φ is a

24 × 24 matrix with diagonal sub-matrices Q. In axisymmetric cases, the definitions

of ve and Φ are similar.

B is the strain-displacement matrix which relates the local strain rate to the
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vector ∂uℓ
e/∂t in the lamina coordinate system, i.e.

γ̇ℓ = ∇γ(∂uℓ/∂t) = ∇γN ∂uℓ
e/∂t = B ∂uℓ

e/∂t, (2.85)

where γ̇ℓ is the strain rate vector and ∇γ is a gradient operator related to strain rate.

In 3D cases, we have

γ̇ℓ =















γ̇ℓ
11

2γ̇ℓ
12

γ̇ℓ
22

2γ̇ℓ
23

2γ̇ℓ
31















, ∇γ(·) =
















∂(·)1

∂yℓ
1

∂(·)1

∂yℓ
2

+ ∂(·)2

∂yℓ
1

∂(·)2

∂yℓ
2

∂(·)2

∂yℓ
3

+ ∂(·)3

∂yℓ
2

∂(·)1

∂yℓ
3

+ ∂(·)3

∂yℓ
1
















, (2.86)

and

B =
[

B(1) B(2) B(3) B(4)
]

, (2.87)

where

B(a) =















B
(a)
1 0 0 B

(a)
4 0 0

B
(a)
2 B

(a)
1 0 B

(a)
5 B

(a)
4 0

0 B
(a)
2 0 0 B

(a)
5 0

0 B
(a)
3 B

(a)
2 0 B

(a)
6 B

(a)
5

B
(a)
3 0 B

(a)
1 B

(a)
6 0 B

(a)
4















, (2.88)

B
(a)
i =







N
(a)
,i i = 1, 2, 3

h
2

(

N (a)ζ
)

,i−3
i = 4, 5, 6

. (2.89)

The subscript ‘, i’ denotes derivatives with respect to yℓ
i .

∂N (a)

∂yℓ
i

=
∂N (a)

∂ξ

∂ξ

∂yℓ
i

+
∂N (a)

∂η

∂η

∂yℓ
i

+
∂N (a)

∂ζ

∂ζ

∂yℓ
i

, (2.90)

and








∂ξ
∂yℓ

1

∂ξ
∂yℓ

2

∂ξ
∂yℓ

3

∂η
∂yℓ

1

∂η
∂yℓ

2

∂η
∂yℓ

3

∂ζ
∂yℓ

1

∂ζ
∂yℓ

2

∂ζ
∂yℓ

3









=









yℓ
1,ξ yℓ

1,η yℓ
1,ζ

yℓ
2,ξ yℓ

2,η yℓ
2,ζ

yℓ
3,ξ yℓ

3,η yℓ
3,ζ









−1

. (2.91)
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In axisymmetric cases, we have

B(a) =









B
(a)
1 0 B

(a)
4 0

B
(a)
2 B

(a)
1 B

(a)
5 B

(a)
4

Q11B3 Q21B
(a)
3 Q11B

(a)
6 Q21B

(a)
6









, (2.92)

where Q11, Q21 are components of the transformation matrix Q, and

B
(a)
i =







N
(a)
,i i = 1, 2

N (a)/r i = 3

h
2

(

N (a)ζ
)

,i−3
i = 4, 5

h
2
N (a)ζ/r i = 6

(2.93)

r is the radial coordinate. If e2 is chosen as the axisymmetric axis, then r = |y1|.
The element vectors ue, δue , ve and δve are related to the global vectors ug,

δug, vg and δvg respectively by

ue = Leug, δue = Leδug, ve = Levg, δve = Leδvg, (2.94)

where Le is the connectivity matrix, which consists of the integers 0 and 1. For the

example shown in Figure 2.9, the connectivity matrices can be obtained as:

L1 =












I6 0 0 0 0 0

0 I6 0 0 0 0

0 0 0 0 I6 0

0 0 0 0 0 I6












, L2 =












0 I6 0 0 0 0

0 0 I6 0 0 0

0 0 0 I6 0 0

0 0 0 0 I6 0












, (2.95)

where I6 is a 6 × 6 identity matrix.

Collecting δvT
g in Eq. (2.83) , we obtain

δvT
g

[
ne∑

e=1

(

LT
e TT

e

∫∫∫

Ωe

cNT NdΩ TeLe

)

· vg +
ne∑

e=1

(

LT
e TT

e

∫∫∫

Ωe

ΦT BT
σ

ℓdΩ
)]

= δvT
g

[
ne∑

e=1

(

LT
e TT

e

∫∫

Γext,N
e

NT f extdΓ
)

+
ne∑

e=1

(

LT
e TT

e

∫∫

Γcnt,N
e

NT f cntdΓ
)]

. (2.96)
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Figure 2.9: A simple example for connectivity matrix. 1,2,3,4 denote local nodal
index and (1),(2),(3),(4),(5),(6) denote global nodal index.

Eliminating δvT
g , we get

ne∑

e=1

(

LT
e TT

e

∫∫∫

Ωe

cNT NdΩ TeLe

)

vg +
ne∑

e=1

(

LT
e TT

e

∫∫∫

Ωe

ΦT BT
σ

ℓdΩ
)

=
ne∑

e=1

(

LT
e TT

e

∫∫

Γext,N
e

NT f extdΓ
)

+
ne∑

e=1

(

LT
e TT

e

∫∫

Γcnt,N
e

NT f cntdΓ
)

. (2.97)

In matrix form, these equations can be rewritten as

Cvg + f int
g = f ext

g + f cnt
g , (2.98)

Overall, there are nnode nodes in the shell (due to overlapping of nodes in neighboring

elements, nnode < 4ne). Each node contributes six components to the displacement

vector, three of them representing position changes and the other three orientation

changes. Therefore, altogether vg contains 6nnode components.

C =
ne∑

e=1

(

LT
e TT

e

∫∫∫

Ωe

cNT NdΩ TeLe

)

, (2.99)

is the assembled damping matrix. In Chapter 2 and Chapter 3, we concen-

trate upon quasi-static cases so that C is a numerical parameter which affects the
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convergence via dynamic relaxation but not the final result. In Chapter 4, a bound-

ary element method (BEM) will be developed to model the damping effect from the

surrounding fluid to simulate the real dynamic process. f ext
g and f cnt

g are the global

external force vector and the global contact force vector, respectively.

f int
g =

ne∑

e=1

(

LT
e TT

e

∫∫∫

Ωe

ΦT BT
σ

ℓdΩ
)

=
ne∑

e=1

(LT
e TT

e f (e)int),

is the global internal force vector, which comes from elastic stiffness. In 3D cases,

f (e)int is given as

f (e)int =
∫ +1

−1

∫ +1

−1

∫ +1

−1
ΦT BT

σ
ℓjdξdηdζ, (2.100)

and

j =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

yℓ
1,ξ yℓ

1,η yℓ
1,ζ

yℓ
2,ξ yℓ

2,η yℓ
2,ζ

yℓ
3,ξ yℓ

3,η yℓ
3,ζ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.101)

where yℓ
1, yℓ

2, and yℓ
3 are the components of yℓ in eℓ

1, eℓ
2, and eℓ

3 directions, respectively.

In axisymmetric cases, we have

f (e)int =
∫ +1

−1

∫ +1

−1
ΦT BT

σ
ℓjdηdζ, (2.102)

where

j = r ·
∣
∣
∣
∣
∣
∣

yℓ
1,η yℓ

1,ζ

yℓ
2,η yℓ

2,ζ

∣
∣
∣
∣
∣
∣

. (2.103)

The integrations are carried out numerically by using Gaussian quadratures. One-

point reduced integration at (ξ = 0, η = 0) with hourglass control is used in each

lamina to avoid locking (Belytschko et al., 2000). Three-points integration is used in

the thickness direction.

To integrate Eq. (2.98) from time step n to time step n + 1, we first compute

vg,n = C−1
(

f ext
g,n + f cnt

g,n − f int
g,n

)

. (2.104)

The displacement of reference surface ūg at node ‘a’ is then updated by using explicit



53

Euler algorithm as

ū
(a)
g,n+1 = ū(a)

g,n + ∆tv̄(a)
g,n, (2.105)

where ∆t is the time step. For the direction displacement part u′
g, we employ the

Hughes-Winget formula (Hughes and Winget, 1980) to update it as

u
′(a)
g,n+1 = R(a)u′(a)

g,n , (2.106)

where

R(a) =
(

I − 1

2
Ω(a)

)−1 (

I +
1

2
Ω(a)

)

, (2.107)

Ω(a) =









0 −ω
(a)
3 ∆t ω

(a)
2 ∆t

ω
(a)
3 ∆t 0 −ω

(a)
1 ∆t

−ω
(a)
2 ∆t ω

(a)
1 ∆t 0









, (2.108)

and ω
(a)
i is the angular velocity component in vg,n for node ‘a’ in i direction.

2.6.7 Constitutive equations

To close our finite element formulations, we relate the in-plane components

of stress Θ with the deformation via the constitutive law provided by Evans and

Skalak (1980) as shown in Eqns. 2.38 and 2.42 in §2.5.3. The stress-strain relation

for axisymmetric cases is similar.

Furthermore, we update the transverse shear stresses Θℓ
23 and Θℓ

31 by using

the linear elastic model expressed as

Θ̇ℓ
23h = Gγ̇ℓ

23, Θ̇ℓ
31h = Gγ̇ℓ

31, (2.109)

where γ̇ℓ
23 and γ̇ℓ

31 are the relevant strain rates obtained from Eq. (2.85). G = κµ is

the transverse shear stiffness. κ is the correction coefficient that results from matching

the transverse shear energy to that of a three-dimensional structure in pure bending.

For a linear orthotropic elastic material, κ = 5
6
. In our model, since both the inner

layer and the outer layer are very thin, the transverse shear should be negligibly small.

We find that as long as the transverse shear stiffness is sufficiently large (e.g. κ ≥ 1),

its actual value has no influence on the results.
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2.6.8 Bending stiffness

Considering a shell with thickness h described by Evans and Skalak (1980),

its bending stiffness kc and area modulus K are related by

kc =
∫ + h

2

− h
2

y2 K

h
dy =

Kh2

12
. (2.110)

For the lipid bilayer, we use h = 2.2 nm and K = Kb = 5 × 105 pN/µm (see §2.5),

then kc = 2 × 10−19 J. This is the same as the value used in Mohandas and Evans

(1994). It is also within the range of reported bending stiffness (from 4 × 10−14 to

3 × 10−13 µNm) (Mohandas and Evans, 1994; Discher et al., 1998; Lin and Brown,

2005; Hwang and Waugh, 1997; Marcelli et al., 2005; Bo and Waugh., 1989). The

discrepancy between the bilayer thickness used herein and its actual value (5 nm) is

attributed to the fact that in our study the bilayer is simplified as a continuous (but

anisotropic) shell without considering its detailed molecular architecture.

The bending stiffness of the protein skeleton is negligibly small (experiments

show that the persistence length of a Sp is only around O(1) nm (Rief et al., 1999),

indicating that it has a small bending stiffness). It is found that if its thickness h is

chosen to be comparable to that of the bilayer (in our simulations we choose h = 2

nm), this characteristics can be duplicated in our model. For example, with small

deformations a typical value of the area modulus of the skeleton is around 20 pN/µm,

leading to a bending stiffness of 6.67 × 10−24 J, which is five orders smaller than that

of the lipid bilayer.

2.6.9 Bilayer spontaneous curvature and skeleton in-plane

prestress

The lipid bilayer may possess a spontaneous curvature as illustrated in Fig.

2.10 (see also Seifert (1997); Seifert et al. (1991)). To account for the in-plane prestress

and the spontaneous curvature of the two layers, we replace the deformation gradient

tensor Fℓ, defined as
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Figure 2.10: (a) Spontaneous configuration. (b) Initial configuration. (c) Deformed
configuration.

Fℓ =









F ℓ
11 F ℓ

12 F ℓ
13

F ℓ
21 F ℓ

22 F ℓ
23

F ℓ
31 F ℓ

32 F ℓ
33









, (2.111)

with F̂ℓF̃ℓ, where F̃ℓ is the initial deformation gradient caused by in-plane prestress

and/or spontaneous curvature, and F̂ℓ is the deformation caused by external loading.

In its free state the lipid bilayer may possess a spontaneous curvature C0,

referring to the curvature a free membrane patch cut from a vesicle would acquire

spontaneously (Helfrich, 1973). On the other hand, to date there exists no widely

accepted value of C0. In most of our simulations, we consider the spontaneous con-

figuration to be flat so that C0 = 0, except predicting the resting shape of red blood

cells. The initial deformation gradient caused by the spontaneous curvature is then

calculated as

F̃ℓ =
∂xℓ

∂xℓ
0

=
∂(x̄ℓ + x′ℓ)

∂(x̄ℓ + x′ℓ
0 )

, (2.112)

where x′ℓ is the director of the initial configuration and x′ℓ
0 =

[

0 0 ζh/2
]T

is the

direction of the spontaneous configuration. For example, if the shell is spherical, the
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initial stretches will be λ1 = λ2 = (R + h/2)/R on the outer surface (pretensioned)

and λ1 = λ2 = (R − h/2)/R on the inner surface (precompressed), where R is the

radius and h is the thickness. Consequently the initial deformation gradient

F̃ℓ =









λ1 0 0

0 λ2 0

0 0 1









. (2.113)

Besides the spontaneous curvature, the area difference elasticity (ADE) theory based

on the bilayer-couple hypothesis (Lim et al., 2002) can be also incorporated in the

spontaneous curvature model using the finite element method, which is described in

Appendix B. But for simplicity, the area difference elasticity (ADE) theory is not

considered in our following simulations.

For the protein skeleton, in the literature two possible initial states have been

suggested, pre-compressed (Boal, 1994) or pre-stretched (Svoboda et al., 1992). Fol-

lowing Discher et al. (1998), two different scenarios of prestress are considered. In

the first scenario the skeleton has no initial tension inside it (stress-free case with

T̄0 = 0). In this case pf=5.625 nm, Lf =6.257 nm. In the second scenario the skeleton

is prestressed with nonzero T̄0. Here we use pf =11.118 nm, Lf =6.388 nm. Note that

all these parameters are from Discher et al. (1998). Two different levels of prestress

are considered, T0 = −15 pN/µm (following Discher et al. (1998)) and T0 = −30

pN/µm (which provides best comparison with experiments), which will be shown in

Chapter 3.

2.6.10 Interaction between bilayer and skeleton

The interaction between the outer layer and the inner layer in the vertical

direction is modeled as uniformly distributed penalty springs. Tangentially, the two

layers are allowed to slide viscously against each other. In Chapter 4, the exact

magnitude of the viscous drag in the tangential direction rendered by the mobility

of the transmembrane proteins band 3 and glycophorin C will be formulated, but

for quasi-static processes, it is irrelevant since we consider quasi-static cases through

dynamic relaxation. A master-slave penalty contact formulation is employed (Malone
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and Johnson, 1994). The outer layer is treated as the master surface and the nodes

on the master surface are called master nodes, while the inner layer is considered

as the slave surface and the nodes on the slave surface are called slave nodes. All

the slave nodes are projected to the master surface, and the distances between the

slave nodes and master surface are calculated. The contact stress depends linearly

upon these distances with a penalty stiffness. The contact force, defined as the

contact stress times element area, is distributed to the slave nodes and master nodes.

The penalty stiffness is tested numerically so that it is sufficiently large to enforce

the contact constraint accurately, and small enough so that it does not introduce

numerical instability during time integration. In addition, we ignore the thicknesses

of the shells in this contact algorithm and consider the reference surfaces of the shell

elements as the contact surfaces.

In the following, the detailed formulations for these master-slave penalty con-

tact algorithms are presented for both 3D and axisymmetric cases.

3D case

In 3D cases, each shell element on the master surface is divided into four tri-

angles by adding a virtual node A at the center of the element BCDF as shown in

Fig. 2.11. Then for each triangle, the following algorithm is applied to calculate the

projection point K and contact force as shown in Fig. 2.12.

The plane of the master segment (triangle ABC) can be written as

ax1 + bx2 + cx3 + d = 0, (2.114)

where

d = −(axA
1 + bxA

2 + cxA
3 ), (2.115)

where xA
i is the coordinate component of point A at direction i.

n = (a, b, c) =
AB ⊗ AC

|AB ⊗ AC| , (2.116)

is the normal to the plane ABC, where ⊗ denotes the cross product of vectors.
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Figure 2.11: Break a quadrilateral shell element into four triangles.

Figure 2.12: Slave node S contacts with the master segment ABC
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The projection point K is given as

xK
i = xS

i + niϕ, (2.117)

where

ϕ =
−(axS

1 + bxS
2 + cxS

3 + d)

an1 + bn2 + cn3

, (2.118)

where xS
i are coordinates of the slave node S.

The distance between the slave node and the master surface is calculated as

δ = |xK − xS|. (2.119)

Then we can get the contact force as

FS = k(xK − xS)AS, (2.120)

where AS is the nodal area of the node S and k is the penalty stiffness.

Finally, the contact force is also distributed to the master nodes of the quadri-

lateral element as

Fa = Na(ξ, η)FS, (2.121)

where Na(ξ, η) are the shape functions, and the isoparametric coordinates ξ, η are

obtained through, e.g.,

ξ = 1.0 − area(BCK)

area(BCF )
,

η = −1.0 +
area(BKF )

area(BCF )
, (2.122)

where area(BCK) denotes the area of triangle BCK. More detailed formulations

can be found in Malone and Johnson (1994). Furthermore, damping is added in both

normal and tangential directions in the contact algorithm for stability and robustness.

For our simulation, usually we use the same mesh for both the cytoskeleton

and the lipid bilayer. In the beginning of the simulation, it is very easy to assign the

master-slave pairs. Also because they are sliding only (no dissociation), the global

search is not needed. For the local search, we identify the closest master node to the
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Figure 2.13: Slave node K contacts with segment AB.

slave node first, then search the elements connected to this master node.

Axisymmetric case

The axisymmetric problem is simplified as calculating the distance between

the slave node S and the master line segment AB. First, the normal is calculated by

n = AB ⊗ e3, (2.123)

where e3 = (0, 0, 1)T . d is obtained by

d = −(n1xA
1 + n2xA

2 ). (2.124)

Then, the contact distance is calculated by

ϕ =
n1x

S
1 + n2x

S
2 + d

n2
1 + n2

2

. (2.125)

The projection point K is given as

xK
i = xS

i + niϕ. (2.126)
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The distance between the slave node and the master surface is calculated as

δ = |xK − xS|. (2.127)

Then we can get the contact force as

FS = k(xK − xS)AS, (2.128)

where AS is the nodal area of the node S.

Finally, the contact force is also distributed to the master nodes as

Fa = Na(η)FS, (2.129)

where η is obtained via

η = −1.0 + 0.5
|AK|
|AB| . (2.130)

2.6.11 Interaction between the bilayer and rigid walls

A similar master-slave penalty contact algorithm is applied for the interaction

between the outer layer and analytical surfaces, e.g., the micropipette inner surface in

micropipette aspiration experiment and the subtrate plane in the flow channel exper-

iment. In the case of the interaction between the lipid bilayer and analytical surfaces,

the analytical surfaces are considered as master surfaces. The contact algorithm is

illustrated in the following.

Micropipette aspiration

The micropipette aspiration experiment is introduced in §1.4.1 in Chapter 1.

The micropipette inner surface is modeled as a rigid analytical surface and considered

as the master surface, while the outer layer of the cell is considered as the slave surface.

The micropipette internal surface is divided into a spherical part and a cylindrical

part as shown in Fig. 2.14. x1 is chosed as in the axial direction of the pipette.
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Figure 2.14: The contact algorithm for the interaction between the lipid bilayer and the pipette inner surface.
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For the spherical part, the point Q is given by

xQ
1 = xen, (2.131)

xQ
2 =

xS
2

√

(xS
2 )2 + (xS

3 )2
(Rp + Rs), (2.132)

xQ
3 =

xS
3

√

(xS
2 )2 + (xS

3 )2
(Rp + Rs), (2.133)

where xen is the coordinate in x1 direction where cylindrical part starts, which is a

constant, and Rp, Rs are the micropipette inner radius and the radius of the spherical

part.

Then, the projection point K is given by

xK = xQ +
xS − xQ

|xS − xQ|Rs. (2.134)

The distance between the slave node and the master surface is calculated as

δ = |xK − xS|. (2.135)

Then we can get the contact force as

FS = k(xK − xS)AS, (2.136)

where AS is the nodal area of the node S.

For the cylindrical part, the projection point K ′ is given as

xK ′

1 = xS′

1 (2.137)

xK ′

2 =
xS′

2
√

(xS′

2 )2 + (xS′

3 )2
Rp (2.138)

xK ′

3 =
xS′

3
√

(xS′

2 )2 + (xS′

3 )2
Rp (2.139)

The contact distance is calculated as
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δ = |xK ′ − xS′ |. (2.140)

Then we can get the contact force as

FS′

= k(xK ′ − xS′

)AS′

, (2.141)

where AS′

is the nodal area of the node S ′.

Flow channel stretching experiment

The flow channel stretching experiment was introduced in §1.4.3 in Chapter

1. The substrate rigid plate in the flow channel experiment is put at z = 0. The

projection point K is given by

xK
1 = xS

1 (2.142)

xK
2 = xS

2 (2.143)

xK
3 = 0 (2.144)

The distance between the slave node and the master surface is calculated as

δ = |xK − xS|. (2.145)

Then we can get the contact force as

FS = k(xK − xS)AS, (2.146)

where AS is the nodal area of the node S.

2.6.12 Cell volume conservation

The internal volume of the cell is conserved through the following penalty

algorithm

∆P = −kv∆V, (2.147)
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where ∆V is the volume change of the cell and ∆P is the internal pressure due to

the volume change. ∆P is uniformly distributed upon the outer layer against volume

change. kv is the penalty parameter. A large kv enforces volume conservation so

that in all of our simulations the volume change is less than 3%. An exception is

the deformation of a cell from spherical shape. With the overall surface area fixed,

a sphere encloses the maximum possible volume and it is impossible to deform it

without volume loss. An analysis of this case is given in Appendix C. Indeed, in that

particular case a volume loss of 20-30% is predicted by our model.

2.7 Summary and remarks

In this chapter, we formulated our three-level quasi-static multiscale approach

of the RBC membrane and focused on the finite element model in the Level III,

including the continuum-based shell element and the master-slave penalty contact

algorithm.

Although in this dissertation, we only used the information-passing multiscale

algorithm, the concurrent multiscale method may be very useful in simulating several

problems for RBC biomechanics. For example, in the tether forming experiments

described in Chapter 3, e.g., flow channel stretching, there are some very small points

where large deformations occur. It is desirable to employ the concurrent multiscale

method to model these small region using the junctional complex model directly while

applying the finite element model for the rest of the cell.

Besides the spectrin unfolding, the dissociation of spectrins also plays an im-

portant role for the softening behavior of the cytoskeleton, which may be considered

in our model in the future.

Currently we modeled the suspension complex as a pinning point. By exploring

the molecular structure of the suspension complex, we can build an exact model of it

and incorporate it to our multiscale approach.

A more accurate isogeometric shell element (Benson et al., 2010) or the sub-

division shell element (Cirak et al., 2000; Feng and Klug, 2006; Ma and Klug, 2008)

can be used instead of Hughes-Liu shell element for the red blood cell membrane.

In our master-slave penalty contact algorithm, we break the quadrilateral el-



66

ement into four triangles. A more accurate way is to find the projection point based

on the curved quadrilateral surface directly by solving some cubic nonlinear algebraic

equations.

Chapter 2, in part, is a reprint of the material as it appears in ‘Multiscale

modeling of erythrocyte membranes’, Physical Review E, 81: 031904, 2010. Zhangli

Peng, Robert J. Asaro and Qiang Zhu, 2010. The dissertation author was the primary

investigator and author of this paper.



Chapter 3

Resting Shape and Quasi-static

Deformation of Red Blood Cells

In this chapter, we apply our three-level quasi-static multiscale approach de-

scribed in Chapter 2 to study problems involving mechanical responses of RBC, in-

cluding the resting shape as well as cell deformations and skeleton-bilayer interactions

in three canonical experiments: optical tweezer stretching, micropipette aspiration

and flow channel stretching.

3.1 Why does a red blood cell have a biconcave

resting shape?

The beautiful biconcave shape of red blood cells (RBCs) is the first of eight

mysteries about RBCs proposed by Hoffman (2001) for physiologists to ponder in

this millenium. Although this mystery is still not completely understood, it is well

accepted that the resting shapes of RBCs are related to the mechanical properties

of the composite membrane consisting of the lipid bilayer and the skeleton network.

However, the roles played by each of these components are unclear. On the one hand,

by washing away the lipid bilayer using non-ionic surfactants, Svoboda et al. (1992)

showed that the remaining protein skeleton was no longer biconcave. On the other

hand, in some diseases (e.g. hereditary elliptocytosis) a weakened skeleton network

67
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changes the cell to an elliptical shape. The implication is that both the skeleton and

the lipid bilayer contribute to the resting shape.

Accordingly, an important factor is the relaxed (zero shear energy or stress-

free) reference state of the protein skeleton. The simplest choice is to use a spherical

shape as the reference state. However, it was shown that under this assumption

the cell rested at a cup shape (Li et al., 2005). To recover the biconcave shape the

elasticity of the skeleton has to be significantly reduced (Li et al., 2005). Although

the biconcave shape can be stabilized by using the biconcave shape itself (Zarda

et al., 1977) or an oblate ellipsoidal shape (Lim et al., 2002; Khairy et al., 2008) as

the relaxed skeleton reference, experiments are needed to explain why red cells have

those nonspherical relaxed skeletons.

In the following, we first predict the shape of a lipid vesicle without the cy-

toskeleton and compare it with existing studies to validate our numerical method.

Then using our multiscale approach, we simulate the resting shapes of RBCs and

compare the results with predictions made in existing studies.

3.1.1 Lipid bilayer only

We first neglect the effect of the protein skeleton and study the dependence of

the lipid vesicle shape upon its internal volume V . By assuming that the spontaneous

curvature C0 = 0 as defined in §2.6.9 of Chapter 2, we plot the cell shapes at three

different values of V/Vsphere in Fig. 3.1 (Vsphere is the volume of a sphere with the same

surface area as the cell). It is seen that with our model we can accurately duplicate the

stomatocyte-oblate-prolate sequence and its dependence upon V obtained by Seifert

et al. (1991).

We also considered different spontaneous curvatures of the lipid bilayer, the

results are consistent with the phase diagram by Seifert et al. (1991). Furthermore, the

area-difference-elasticity (ADE) theory can be also incorporated in the finite element

method framework as shown in Appendix B. But for simplicity, area-difference-

elasticity theory is not considered in our current simulations.



69

Figure 3.1: Resting shapes of a RBC when the lipid bilayer is considered: (a) stoma-
tocyte (V/Vsphere=0.59), (b) oblate (V/Vsphere=0.65) and (c) prolate (V/Vsphere=0.8).

3.1.2 Lipid bilayer and cytoskeleton

We then take into account the protein skeleton and re-simulate the case with

pf=5.625nm, Lf=6.257nm, kc = 8.3 × 10−20J , and C0 = 0, where pf and Lf are the

persistence length and contour length of folded domains in spectrins, and kc is the

bilayer bending stiffness. Following Li et al. (2005), we start with a spherical shell

of radius 3.27 µm (which also serves as the relaxed reference state of the skeleton),

and gradually reduce the volume to 65% of its original value. Instead of a biconcave

shape, a cup shape is obtained (Fig. 3.2a). After we reduce the shear stiffness of the

skeleton by one hundred times, biconcave shape is recovered. This is consistent with

the report by Li et al. (2005).

To explain the paradox about the shear stiffness of the skeleton, Li et al. (2005)

proposed that over large time scales the skeleton might be fluidic due to remodeling

and possesses a much smaller shear stiffness than that measured under finite deforma-

tion rates. This appears to be reasonable, however, it fails to explain why weakened

skeleton causes dramatic shape change such as observed in elliptocytosis (at C0 = 0,

the biconcave shape is the ground state for µs → 0 at V/Vsphere=0.65 as demonstrated

in Fig. 3.1b).

Alternatively, we find that with some positive spontaneous curvature the bi-
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Figure 3.2: Resting shapes of the RBC when both the lipid bilayer (light color) and the
skeleton network (dark color) are considered: (a) cup shape (c0 = 0, µs = 11 pN/µm,
V/Vsphere=0.65), (b) biconcave shape (c0 = 2.6, µs = 0.4 pN/µm, V/Vsphere=0.65).
The gap between lipid bilayer and skeleton is exaggerated.

concave shape can be obtained with a small skeleton shear stiffness. For example, if

we assume that the reduced spontaneous curvature c0 = 2.6 (c0 is the reduced spon-

taneous curvature defined as c0 = C0 · R0 and R0 = 3.27µm is the radius of the initial

sphere), the biconcave shape is achieved at a skeleton shear stiffness of 0.4 pN/µm

as shown in Fig. 3.2b. This is consistent with the behavior of elliptocytosis because

the lipid bilayer with such a positive spontaneous curvature tends to be prolate if

the shear stiffness of skeleton approaches zero due to the weakened skeleton. In ad-

dition, the recent work by Park et al. (2009) also showed that when the stiffness of

the cytoskeleton is reduced by depletion of ATP, the shape of red blood cells becomes

elliptical similar to the shape in elliptocytosis. While the small shear stiffness (0.4

pN/µm) of a normal red cell can be rationalized under the theory of Li et al. (2005).

Additional evidence can be found in the experimental work of membrane fluctuation

by Peterson et al. (1992) and the theoretical study by Boal et al. (1992), both sug-

gesting that the shear modulus may be considerably smaller than that determined by

micropipette experiments (6 ∼ 9 pN/µm) (Waugh and Evans, 1979).

A complete phase diagram with respect to shear stiffness and spontaneous

curvature should be explored further, which is beyond the scope of this dissertation.

Through comparisons with benchmark results, the aforementioned simulations
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confirm the validity and accuracy of our models (especially the Level III FEM model).

They have also demonstrated that additional studies, both theoretical and experimen-

tal, are required to explain the resting shape of RBC.

3.2 Simulations of optical tweezer stretching

In the following we concentrate upon mechanically induced deformations of the

cell in three canonical experiments: optical tweezer stretching, micropipette aspiration

and flow channel stretching.

In these simulations, we use the initial configuration as the relaxed reference

state (shear-free state) of the skeleton and consider the bilayer with a spontaneous

curvature C0 = 0 for simplicity. Following Discher et al. (1998), two different scenarios

are considered. In the first scenario the skeleton has no initial tension inside it (stress-

free case with T̄0 = 0). In this case pf=5.625 nm, Lf=6.257 nm. In the second scenario

the skeleton is prestressed with nonzero T̄0. Here we use pf=11.118 nm, Lf =6.388

nm. Note that all these parameters are from Discher et al. (1998). Two different levels

of prestress are considered, T0 = −15 pN/µm (following Discher et al. (1998)) and

T0 = −30 pN/µm (which provides the best comparison with experiments). Unless

otherwise specified, for all the following cases we use: N = 19, Lu = 39 nm, pu = 0.8

nm, ∆∆x∗ = 12.6 nm, and F1/2 = 12pN.

We test the model through comparisons with experimental measurements of

RBC deformability through optical tweezers. In this setup, an erythrocyte is stretched

by two attached beads, whose motions are optically controlled by laser beams. In

our model, the initial shape of the cell is biconcave as shown in Fig. 3.3 and is

mathematically depicted by Evans and Fung (1972) as,

z = ±0.5R0

√

1 − x2 + y2

R2
0



C1 + C2
x2 + y2

R2
0

+ C3

(

x2 + y2

R2
0

)2


 , (3.1)

where C1 = 0.21, C2 = 2.03, C3 = −1.12, and R0 = 3.9 µm. (x, y, z) is a Cartesian

coordinate system with its origin located at the centroid of the undeformed cell. As

reported by Dao et al. (2006), the stretching force is applied by two silica beads,

which are attached at the opposite ends of the cell over a small oval region with a
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Figure 3.3: The initial shape of the cell described by Eq. 3.1.

diameter of 1∼2 µm (Fig. 3.4). In our simulation, this diameter is chosen to be 1.5

µm.

The force versus displacement curve is shown in Fig. 3.5. As we see, the model

predictions match well with the experimental measurements. The prestress cases are

softer than the stress-free case because the persistence length is larger. The case with

T̄0 = −30 pN/µm is a little bit stiffer than the case with T̄0 = −15 pN/µm. It also

provides best comparison with the experiment among the three cases.

3.3 Simulations of micropipette aspiration

Micropipette aspiration is one of the most useful experiments to determine the

mechanical properties of cells (Lim et al., 2006). By applying this technique on red

blood cells with fluorescence imaging, several important phenomena can be observed,

including the relation between aspiraton length and pressure, skeleton density (protein

density) variation, vesiculation and necking. In the following, these phenomena are

simulated using our multiscale approach and compared with the experiments.

3.3.1 Aspiration length vs. pressure

We simulate the canonical micropipette aspirations and obtain the correlation

between the applied pressure and the aspiration length L (i.e. the length of the cell
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Figure 3.4: Cell deformation stretched by optical tweezers as predicted by our multi-
scale model (stress-free case).

sucked into the pipette). In this simulation, a rigid cylindrical surface is employed

to represent the pipette. The interaction between the outer layer of the RBC and

the pipette is simulated by using a master-slave algorithm similar to the one used to

study the bilayer-skeleton interaction, which is presented in Chapter 2. As indicated in

experiments by Discher and Mohandas (1996), during the aspiration the membrane is

usually separated from the pipette by a small gap of fluid so that the friction between

them is insignificant and thus not considered in our model. We further simplify the

fluid pressure distribution inside the pipette as a uniform pressure difference ∆P

applied on the cap region of the lipid bilayer and a linear distribution along the

aspiration length (the pressure difference equals zero at the entrance).

Following Waugh and Evans (1979), we study a flaccid, unswollen cell aspired

from the dimple region (Fig. 3.6). The initial shape of the cell is depicted by Eq.

(3.1). The cell is aspirated into a pipette with an inner radius Rp of 0.668 µm.

In Fig. 3.7, it is seen that the normalized aspiration length L/Rp depends

almost linearly on the two-dimensional pressure defined as ∆P Rp/2. Also plotted in

the figure are the experimental measurements by Waugh and Evans (1979) and the

results of the coarse-grained model by Discher et al. (1998). Good agreements are
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Figure 3.6: Schematic of a micropipette aspiration.



76

 1

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30

L
/R

p

∆PRp/2 (µN/m)

Waugh and Evans 1979

Stress-free
Prestress (T0=-15pN/µm)

Prestress (T0=-30pN/µm)

Prestress (Discher)

Stress-free (Discher)

Figure 3.7: The aspiration length as a function of the applied pressure difference ∆P
as compared with the experiment by Waugh and Evans (1979) and the coarse-grained
model by Discher et al. (1998).



77

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2  0  2  4  6  8

z/Rp

Discher et al. 1998
Stress-free

Prestress(T0=-15pN/µm)
Prestress(T0=-30pN/µm)

ρ
/ρ

0

                 (T0=-15pN/µm)-

-
-
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achieved with the coarse-grained model. The prestress case with T0 = −30 pN/µm

provides the best agreement with the experiment.

3.3.2 Skeleton density variation

To further test the capacity of our model, we use it to study areal deformation

of the skeleton and compare with experimental measurements as well as predictions

by the coarse-grained model. The areal variation of the protein skeleton can be

denoted as the density ratio ρ/ρ0, i.e. the density of skeleton-attached proteins ρ

normalized by its value ρ0 in the undeformed state. This ratio is related to λ1 and

λ2 by ρ/ρ0 = 1/(λ1λ2).

In Fig. 3.8 we plot the density profiles predicted by the current model for

stress-free and prestress cases, and compare them with the reported result using the
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Figure 3.9: (a) Area deformation of the protein skeleton at L = 8Rp. (b) Shear
deformation of the protein skeleton at L = 8Rp.
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coarse-grained model for prestress case with T̄0 = −15 pN/µm (Discher et al., 1998).

In Fig. 3.10 we plot how the skeleton density changes with L/Rp at the cap and

the pipette entrance regions predicted by the prestress case with T̄0 = −30 pN/µm,

and compare it with experimental data by Discher et al. (1994). To match the setup

utilized in Discher et al. (1998), in this particular simulation at the initial state the

cell is slightly swollen and its initial shape is depicted as a sphere with diameter 5.34

µm, while in all other simulations a flaccid biconcave shape as described in Eq. 3.1

is used as the initial shape. The radius of the pipette is 0.668 µm. Based upon the

tendency demonstrated in Fig. 3.10, it is clear that our prediction of the density

profile is consistent with experimental measurements by Discher et al. (1994), i.e.

the skeleton is expanded near the cap and compressed near the neck.

The area and shear deformation contours of the protein skeleton at L = 8Rp

are shown in Fig. 3.9 for the case with T̄0 = −15 pN/µm. We can see the maximum

shear deformation happens near the entrance and there is no shear deformation in

the tip region.

Fig. 3.10 demonstrates that for the same prestress level (T̄0 = −15 pN/µm),

the skeleton density of the cap region predicted by our model is lower than that by

the coarse-grained model (Discher et al., 1998). This is partially attributed to the

fact that in the coarse-grained model the deformed shape of the cell is artificially

assumed (perfect semi-sphere is assumed for the cap), but in our model the deformed

shape is directly computed based on continuum mechanics. Although our computed

deformed shape is just slightly different from the assumed shape by Discher et al.

(1998), additional constraints usually make the structure stiffer. The difference is also

due to another fact that at L/Rp = 8 the number of junctional complexes is relatively

small in the cap region where the surface is curved so that the difference between our

continuum description and the discretized description in the coarse-grained model

may be pronounced. Since in reality there are approximately 33,000 JCs in the cell

while 18,434 JCs are considered in the coarse-grained model by Discher et al. (1998),

the real density profile should be between our result and that of the coarse-grained

model.

Fig. 3.8 also shows that the prestress level influences the skeleton density

significantly. In fact, the accurate prestress level, even the type of the prestress
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Figure 3.11: Distributions of contact pressure.

(precompression or pretension), is still controversial (Discher et al., 1998; Svoboda

et al., 1992; Kozlov and Markin, 1990). In our following simulations we use T̄0 = −30

pN/µm, which matches the experimental data as shown in Fig. 3.10 (and also in

Figs. 3.5 and 3.7).

As illustrated in the Appendix C, in this case the initial shape of the cell

is spherical and it is thus impossible to simultaneously conserve area and volume.

Indeed, if we assume that the cap area is semi-spherical and the part outside of the

pipette remains spherical during aspiration, it can be geometrically proven that when

the surface area is conserved the volume loss in this case should be 27% as L = 8Rp,

a value consistent with our numerical simulation.

For all simulations below we use the following parameters: pf=11.118 nm,

Lf =6.388 nm, and T̄0 = −30 pN/µm. Through numerical simulations we have shown

that this set of parameters provides consistently good comparisons with experiments

in terms of cell deformations induced by micropipettes and optical tweezers, as well

as density variations of the protein skeleton during micropipette aspirations.
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3.3.3 Bilayer-skeleton interaction force and the effect of spec-

trin unfolding

Hereafter we concentrate upon the vertical interaction force (contact force)

between the two layers during the micropipette aspiration of a cell from its biconcave

state.

Fig. 3.11 displays the distributions of the contact pressure pc between the two

layers during a micropipette aspiration with an applied pressure of 256 pN/µm2. By

definition, a negative contact pressure refers to a scenario in which the two layers

are pulled apart (dissociation tendency), and a positive contact force means that the

layers are pushed together (adhesion/association tendency). It is seen that positive

(association) contact pressure is concentrated close to the entrance, and negative

(dissociation) contact pressure exists mostly near the cap. This phenomenon can be

explained by considering the local curvature of the inner layer: due to the its own

internal tension, the protein skeleton is pulled away from the lipid bilayer at places
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where it has a convex shape (Fig. 3.13a) and is pulled towards the lipid bilayer at

places where it is concave (Fig. 3.13b).

In our simulation, negative (dissociation) contact pressure with peak value of

about -130 pN/µm2 is recorded in the area close to the cap. To relate the contact

pressure pc to mechanical loading on the molecular structure of the protein skeleton,

it is convenient to define a contact force per JC, (i.e. the total contact force acting

on the area covered by the hexagon formed by the six SCs in a JC) as

fjc =
135cm2

33000

ρ0

ρ
pc, (3.2)

where ρ and ρ0 are the current and initial protein densities of the cytoskeleton. In

practice, this density ratio is determined as ρ/ρ0 = 1/(λ1λ2), where λ1 and λ2 are

principal in-plane stretches of the cytoskeleton. fjc takes into account variations of

the density distribution of the pinning points between the protein skeleton and the

lipid bilayer. The distribution of fjc along the cell is also plotted in Fig. 3.12. It is

seen that near the cap the decreased skeleton density amplifies the concentration of

dissociation force.

Sp unfolding may play an important role in determining the skeleton density,

and subsequently fjc, near the cap region. Unfolding will unstiffen the skeleton,

causing larger area expansion and thus increasing fjc even if pc remains unchanged. To

understand this effect, we recalculate the case above by using a smaller F1/2 (F1/2 =

7.5 pN), which encourages the occurrence of unfolding. In this case, since the Sp

domains will successively unfold under constant external pressure (256 pN/µm2), the

skeleton will deform continuously until structural failures happen, e.g. the skeleton-

bilayer dissociation. In practice we terminate the simulation when the deformation

reaches L/Rp = 12. We also note that this unstiffening behavior is only possible under

the quasi-static assumption. Any finite deformation rate will introduce finite elasticity

and limit the amount of deformation (Zhu and Asaro, 2008). As shown in Fig.

3.12, with F1/2 = 7.5 (and the same aspiration pressure) the unfolding effect greatly

increases the magnitude of fjc near the cap area, which may increase the possibility of

vertical skeleton-bilayer dissociation. Consequently, our simulation suggests that F1/2

(which is not considered in any other models) is a key parameter in RBC remodeling,
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Figure 3.13: To overcome the effect of internal tension f inside the protein skeleton,
there must exist (a) negative (dissociation) contact force between the protein skeleton
and the lipid bilayer in locations with convex shape, or (b) positive (association)
contact force in locations with concave shape.

which deserves dedicated experimental investigation.

3.3.4 Post-dissociation behavior – necking

In the previous section, we studied the interaction force (contact force) between

the two layers before the dissociation. Our model is also capable of exploring the

subsequently response after skeleton/bilayer dissociation. When the negative pressure

in micropipette aspiration is sufficiently high, a vesicle will be separated from the

cell. A vesicle is an entity formed by part of the cell membrane is deficient in skeleton

proteins such as band 3 (Knowles et al., 1997), suggesting a scenario wherein its

formation is caused by the skeleton separating from the lipid bilayer. It was observed

in experiments that before a vesicle is created a region of reduced caliber, i.e. a

neck, was formed in the middle section between the cap and the entrance (Knowles

et al., 1997). The location of the neck may appear to be at odds with the fact the

skeleton-bilayer dissociation should first occur close to the cap, where the maximum

dissociation force occurs.

To shed light on this phenomenon, we simulate the post-dissociation behavior

by assuming that the two layers separate when the magnitude of the dissociation

force per JC reaches a critical value f̃jc=20 pN for the case with F1/2=7.5 pN in

the previous section. We note that the choice of f̃jc does not affect the qualitative

simulations that follow. However, further experiments are required to pinpoint its
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Figure 3.14: FEM simulation of the necking process before vesiculation (lipid bilayer
in light color and skeleton in dark color).

exact value. As shown in Fig. 3.14b, the separation is first observed in the cap

region, consistent with the distribution of the dissociation force. Subsequently in Fig.

3.14c, when the skeleton network shrinks to certain extent, a separation between the

lipid bilayer and the pipette inner surface begins, which eventually leads to formation

of a neck (Fig. 3.14d). The tendency for necking is primarily due to two factors: 1)

For a cylindrical tether of lipid bilayer, Waugh and Hochmuth (1987) showed that

f0 = 2πkc/Rt, (3.3)

where f0 is the resultant force applied on the tether, Rt is the radius of the cylindrical

tether and kc is the bending stiffness. For the lipid bilayer part without skeleton in Fig.

3.14c, we can also qualitatively apply this relation without considering the negative

pressure in radial direction.

f0 = πR2
p∆P = 359pN, (3.4)
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and kc = 0.2pN · µm so that

Rt = 2πkc/f0 ≈ 0.003µm. (3.5)

It means the lipid bilayer cannot sustain the pressure of 256pN/µm until it reduces

to a tether with Rt = 0.003µm, which is even smaller than the thickness of the lipid

bilayer. It shows the lipid bilayer will neck to a very small tether and then break

to form a vesicle; 2) The skeleton at the cap region is significantly expanded before

separation. After separation, it tends to contract, generating a large pulling force

on the lipid bilayer in the radial direction toward the center of the pipette, which

encourages the necking of the bilayer.

We also found that under the aforementioned conditions (i.e. external pressure

of 256 pN/µm2 and F1/2=7.5 pN) the skeleton/bilayer dissociation occurs before Sp

unfolding only if f̃jc <∼4.0 pN, otherwise the separation occurs after Sp unfolding.

Therefore, Sp unfolding may play a critical role in skeleton/bilayer separation. Addi-

tional experiments (especially the experiments to determine key parameters such as

f̃jc and F1/2) are necessary to illustrate the role of Sp unfolding on skeleton/bilayer

separation.

It is necessary to point out that this simulation is qualitative rather than quan-

titative – to accurately capture the dynamic separation process an accurate evaluation

of the damping matrix C in Chapter 4 is required. This matrix summarizes the effect

of the viscosity of the lipid bilayer and the protein skeleton, the friction between these

two, and the effects of the surrounding fluid.

3.4 Simulations of flow channel stretching

In this section, we will simulate an experiment called flow channel stretching.

Flow channel stretching experiments have been developed to examine the response

of cells attached to a substrate to the shear stresses exerted by an incoming flow. In

a typical flow channel setup, erythrocytes are allowed to sediment inside a channel

consisting of two parallel plates. The substrate is coated with bovine serum albumin

(BSA) so that most cells do not adhere to the bottom with large attachment areas.
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When external flows are introduced the cells deform while one (in some cases more

than one) point remains attached to the substrate. Long membrane strands (tethers)

may appear when the fluidic shear surpasses a threshold value (∼1.5 dyn/cm2, or

0.15 pN/µm2) (Hochmuth, 1973).

The critical contact force between the lipid bilayer and the protein skeleton

that triggers dissociation is determined by numerically duplicating the critical state

of a cell in a flow channel before formation of tethers.

The substrate under the red cell is modeled as a rigid body. In this simulation,

we focus on the final configuration of the cell deformation, instead of solving the fully-

coupled fluid-structure interaction problem and obtaining the fluid loading on the cell

as described in Chapter 4, herein we simplify the fluid effect as a uniform distribution

of shear force on −x direction acting on the upper surface of the cell (z > 0).

In reality the cell attaches to the substrate not at a geometric point, but

within a small attachment area. In our model this attachment area is depicted as

a circular area on the cell membrane whose diameter Da is chosen to be within the

same range as the diameter of the tether estimated from optical and scanning electron

photomicrographs, i.e. 0.1-0.2 µm (Hochmuth, 1973) (it is important to notice here

that the two are not expected to be exactly the same, since the radius of the tether Rt

depends on the applied force f0 by the relation Rt = 2πkc/f0 (Waugh and Hochmuth,

1987)). We consider that the attachment point is located at the bottom rim of the

cell where the cell makes contact with the substrate.

Fig. 3.15 and Fig. 3.16 show the area and shear deformations of the inner layer

(the cytoskeleton) with a flow shear stress of 0.15 pN/µm2 when the diameter of the

contact area is 0.2 µm. Fig. 3.17 shows the contact pressure (i.e. contact force per

unit area) between the two layers. The amount of cell deformation is consistent with

experimental observations under similar magnitude of flow shear (see Figs. 1 and 2 in

Chien et al. (1992)). By definition, a negative contact pressure refers to a scenario in

which the two layers are pulled apart (dissociation tendency), and a positive contact

force means that the layers are pushed together (adhesion/association tendency). In

our simulation, a negative (dissociation) contact pressure with a peak value of about

380 pN/µm2 is recorded in the area around the attachment area. As shown in Fig.

3.17 due to its own internal tension, the protein skeleton is pulled away from the lipid
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Table 3.1: FEM prediction of the critical contact force based upon flow channel
experiments.

Da (µm) pc (pN/µm2) −fjc(pN) W0 (pN/µm)
0.10 1813 28.0 63.5
0.13 1185 16.8 41.5
0.16 449 6.2 15.8
0.20 380 4.5 13.3

bilayer at places where it has a convex shape and is pulled towards the lipid bilayer

at places where it is concave. Larger local curvature usually leads to greater contact

force. For this reason, the diameter of the contact area has a large effect upon the

contact force.

For perspective, we compare this contact force with the skeleton-bilayer ad-

hesion energy reported in Hwang and Waugh (1997) (∼60 µJm−2). Following the

scenario that during dissociation band 3 is separated from the bilayer, this adhesion

energy is related to the energy to pull band 3 out. Taking into account the fact

that band 3 is a chain which crosses the bilayer 14 times (Lux, 1989), the subsequent

adhesion energy is the energy required to pull all these crossings sequentially out. As-

suming that during the process the applied force decreases linearly from the critical

contact force to zero as the band 3 is completely out, the adhesion energy W0 is given

as pc × 35 nm.

The predicted critical contact force and adhesion energy at four different con-

tact areas are shown in Table 3.1.

The interaction force per JC fjc in Table 3.1 is in the same order as the value

predicted in the micropipette aspiration simulations. They are consistent. Further-

more, the adhesion energy W0 predicted in Table 3.1 is consistent with the estimation

by Hwang and Waugh (1997).

We also studied the dependence of the critical interaction force on the flow

shear stress as shown in Fig. 3.18.



89

Figure 3.15: Area deformation of the inner layer (the protein skeleton) during a flow
channel simulation with the flow shear stress of 0.15 pN/µm2.

Figure 3.16: Shear deformation of the inner layer (the protein skeleton) during a flow
channel simulation with the flow shear stress of 0.15 pN/µm2.



90

Figure 3.17: Contact pressure of the inner layer (the protein skeleton) during a flow
channel simulation with the flow shear stress of 0.15 pN/µm2.

3.5 Summary and remarks

In this chapter, by using a three-level quasi-static multiscale modeling tech-

nique we have quantitatively studied the deformation of the composite erythrocyte

membrane prompted by mechanical loads as well as the interactions between the pro-

tein skeleton and the lipid bilayer. The primary purpose of this study is to build

a framework for understanding erythrocyte mechanics upon which new knowledge

from future experiments can be incorporated. Such a model analysis will also help

us design new experiments to illustrate the exact mechanism of mechanically-induced

membrane morphological changes, and to achieve quantitative predictions of the oc-

currence of vesiculation and budding of normal or defected erythrocytes. The focus

is to quantify the critical dissociation contact force, the amount of normal load be-

tween the protein skeleton and the lipid bilayer that may cause dissociation based

upon existing data. By numerically duplicating the flow channel experiment, we cor-

relate the critical flow shear that triggers tether formation with the normal detaching

force acting on each JC considering the density change of the protein skeleton in the
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Figure 3.18: The maximum negative contact force per unit JC −fjc as a function of
the flow shear stress (the dashed line marks the critical state where tether formation
starts).



92

deformed state. The accurate determination of the normal contact force depends

upon the capacity to predict the response of the protein skeleton in large shear and

area changing deformations determined by the nonlinear constitutive properties of

the protein skeleton, and the curvature of the composite membrane in response to

external loads determined by the bending response of the lipid bilayer as well as its

interaction with the protein skeleton. To achieve these, we developed a model which

takes into account the constitutive properties of the protein skeleton during large

deformations (including effects of Sp folding/unfolding) and lateral slide between the

protein skeleton and the lipid bilayer.

Compared with existing models of the RBC membrane (Discher et al., 1998;

Mukhopadhyay et al., 2002; Svetina et al., 2004), our model has the following char-

acteristics: (1) Our multiscale approach not only delivers accurate predictions of

whole-cell response (due to the involvement of the detailed molecular structure and

responses at different levels), but also allows us to address physical mechanisms at dif-

ferent length scales and to correlate mechanical loads on the cell with detailed stress

distributions within the composite structure. This model has predicted phenomena

that had never been found by other models (e.g. bifurcation, mode switching, and

stress-induced unstiffening due to unfolding) (Zhu et al., 2007; Zhu and Asaro, 2008);

(2) our model explicitly incorporates the local interactions between the skeleton and

the bilayer, as well as the inter- and intra-molecule interactions inside the skeleton; (3)

This model is inherently dynamic and capable of studying time-dependent responses

at different length scales, which will be developed in Chapter 4.

The exact molecular mechanism of the skeleton-bilayer uncoupling in phys-

iological conditions remains unresolved. As mentioned earlier, the skeleton-bilayer

connectivity is achieved via both SC and the protein 4.1/glycophorin C assembly.

Therefore, the skeleton-bilayer uncoupling may be attributed to dissociation of mul-

tiple inter-protein and protein-to-lipid linkages. For example, there exists a dynamical

balance between the ruptured and the reattachment states of the band 3-ankyrin link-

age (Anong et al., 2006). Although this balance has been found insensitive to shear

deformations (lateral loads), it is likely to be disturbed by vertical loads, which may

favor the ruptured state. Vertical load resulting from the negative contact pressure

may cause widespread band 3-ankyrin dissociation. This scenario is consistent with
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Figure 3.19: Simulation of the tether forming experiment by Hwang and Waugh
(1997); Waugh and Bauserman (1995).

a recent experiment (Borghi and Brochard-Wyart., 2007), which indicates that band

3 can be separated from the rest of the protein skeleton rather than the previously-

discussed scenario that band 3 is pulled out of the lipid bilayer, suggesting that

different physiological mechanisms may be involved in different conditions (e.g. de-

formation rates). It will thus be interesting to examine the dependence of the critical

contact force on deformation rates. In addition, the tangential forces between the

protein skeleton and the lipid bilayer, which are not considered in the current study

due to the quasi-static assumption, may play a significant role if time-dependent

responses are included.

It is necessary to indicate that the flow channel simulations suffer from uncer-

tainties about the location and the detailed configuration of the contact area between

the cell membrane and the substrate. Moreover, a precise rendition of the fluid-

structure interaction is also crucial. The fluid-dynamics problem falls into the low
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Reynolds number Stokes/Oseen flow regime, and can be resolved via a boundary

element approach as described in Chapter 4. Our preliminary results using such a

method show that in this configuration the fluid force is indeed concentrated mainly

on the upper half of the cell, confirming our assumptions in the current study. We note

that there exists another set of experiments in which tether formation was reported.

In these experiments the cell is deformed either by the gravitational load from an

attached glass bead, or by loads imposed through a cantilever, while it is fixed with a

micropipette (Hwang and Waugh, 1997; Waugh and Bauserman, 1995). A predicted

shape in a preliminary simulation of this experiment is shown in Fig. 3.19. Tethers

were formed as the applied force reaches a critical value (∼50 pN). To numerically

duplicate this set of experiments and accurately predict the critical contact force, we

also need to resolve a number of uncertainties. For example, in those experiments

the erythrocytes were usually pre-swollen in a hypotonic solution and were held by

a micropipette. The internal pressure, which significantly affects the cell response,

it difficult to specify. In addition, tether formation involves a tiny contact area and

subsequently a small number of pinning points. Although our continuous model is

adequate in determining the contact pressure between the two layers, in relating this

to the exact loading upon each pinning point its accuracy is limited since it only

accounts for the average value, not the variations (which could be significant if only a

small number of points are involved). A possible solution of this problem is to develop

a hybrid model combining a detailed molecular description of the skeleton near the

contact area and a continuous model of the skeleton elsewhere.

At the current stage of model development, micropipette aspiration experi-

ments provide a setup that is easier to be duplicated numerically. Experimentally,

what is required is a sequence of aspirations using different pipette sizes and de-

formation rates, from which the exact conditions that lead to vesiculation can be

extracted. Fluorescent labels will assist in pinpointing the occurrence of vesiculation,

and in determining the exact linkage that may rupture under the load.

Chapter 3, in part, is a reprint of the material as it appears in ‘Multiscale

modeling of erythrocyte membranes’, Physical Review E, 81: 031904, 2010. Zhangli

Peng, Robert J. Asaro and Qiang Zhu, 2010. The dissertation author was the primary

investigator and author of this paper.



Chapter 4

Dynamic Multiscale Modeling

Approach with Fluid-Structure

Interaction and Viscoelasticity

In this chapter, we will extend the quasi-static multiscale approach described

in Chapter 2 to a dynamic version by incorporating the fluid-structure interaction

and the membrane viscoelasticity. The fluid-structure interaction (FSI) problem is

solved by coupling a boundary element method of Stokes flow with the finite element

model of the membrane (Level III). The membrane viscoelasticity is considered by

using a Voigt-Kelvin constitutive model. In addition, the cytoskeleton dynamics is

also presented.

4.1 Fluid-bilayer interaction

We consider a red blood cell filled with an interior fluid (cytoplasm, hereafter

referred to as fluid 2) and immersed in an exterior fluid (e.g. blood plasma, referred to

as fluid 1) as illustrated in Fig. 4.1. Ωf and Ωb are the volumes occupied by the fluids

and the bilayer, respectively. The boundary between the bilayer and the exterior fluid

is Γfb,1. The boundary between the bilayer and the interior fluid is Γfb,2. For a general

problem, two types of boundary conditions are specified: Dirichlet boundary ΓfD,

and Neumann boundary ΓfN . Ω = Ωb ∪ Ωf is the entire computational domain, and

95
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Figure 4.1: Schematic of a red blood cell immersed in two fluids with different vis-
cosites (the cytoskeleton is not drawn, and the dashed line denotes the middle surface
of the lipid bilayer).
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Γ = ΓfN ∪ ΓfD ∪ Γfb,1 ∪ Γfb,2 is the entire boundary. Hereafter we use the superscript

‘b’ to represent the lipid bilayer, ‘f ’ the fluid, and ‘s’ the cytoskeleton. Furthermore,

we use bold capital symbols to represent tensors or multi-column matrices, and bold

lower-case symbols to represent vectors or single-column matrices.

4.1.1 Governing equations

The dynamic responses of both the lipid bilayer and the fluids are controlled

by the conservation of momentum and the conservation of mass. No body force is

considered here, and the inertial force is negligible at this length scale. With the

updated Lagrangian description, the governing equation of the lipid bilayer is

∇ · Θb = 0, (4.1)

where ∇ is the spatial gradient operator. Θb is the Cauchy stress tensor inside Ωb.

The constitutive equations of the lipid bilayer from which Θb is obtained will be

presented in §4.3. In Eq. (4.1) and what follows, the single dot denotes the scalar

product.

Within the Eulerian description, the Stokes equation of Stokes flow and the

continuity equation for interior/exterior Newtonian fluids are expressed as

∇ · Θf = −∇pf + ηl∇2vf = 0, (4.2)

∇ · vf = 0, (4.3)

where Θf is the Cauchy stress tensor inside the fluids. vf is the fluid velocity vector.

pf is the fluid pressure. ηl is the dynamic viscosity of fluid (l = 1, 2 stand for the

exterior and interior fluids, respectively). For normal in vivo red blood cells, η1 = 1.2

cP=0.0012 pN/µm2·s and η2 = 6 cP=0.006 pN/µm2·s (see for example Chien, 1987).

Λ = η2/η1 is the viscosity contrast ratio.

Stokes flow (named after George Gabriel Stokes), also named creeping flow, is

a type of fluid flow where advective inertial forces are small compared with viscous
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forces. The Reynolds number is low, i.e. Re << 1, where

Re =
ρf V L

η
, (4.4)

where V is the mean fluid velocity, ρf is the fluid density, L is a characteristic linear

dimension and η is the dynamic viscosity of the fluid.

The boundary conditions of this fluid-structure interaction problem are given

as

vf = v̄fD on ΓfD, (4.5)

tf = t̄fN on ΓfN , (4.6)

vb = vf on Γfb,1 and Γfb,2, (4.7)

tb = tf on Γfb,1, (4.8)

tb − τ
bs = tf on Γfb,2, (4.9)

where v̄fD is the prescribed velocity vector on ΓfD, and t̄fN is the prescribed traction

vector on ΓfN . tb = Θb · n and tf = Θf · n are the surface tractions of the bilayer

and fluid domains (traction is defined as force per unit area on a surface). n is the

normal vector of the boundaries pointing towards fluid 1. τ
bs is the bilayer-skeleton

interaction force per unit area applied on the cytoskeleton, which will be presented

in §4.2.

In our approach, the lipid bilayer is modeled as a viscoelastic solid with tiny

shear stiffness and large area stiffness (since the lipid bilayer is close to a fluid).

Equation (4.1), together with the constitutive relations, is solved through a finite

element algorithm, which has been formulated in details in §2.6 in Chapter 2. It will

briefly be reviewed in (§4.1.2).

A boundary element algorithm is adopted to solve dynamics of both the inte-

rior and the exterior fluids. The basic formulations of this method are summarized

in §4.1.3.
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4.1.2 Variational form of bilayer equations and finite element

discretization

As shown in §2.6 in Chapter 2, by using the principle of virtual power (Be-

lytschko et al., 2000), the variational form (weak form) of Eq. (4.1) with its boundary

conditions is stated as: finding ub ∈ V such that for ∀δvb ∈ W ,

∫∫∫

Ωb
∇δvb : ΘbdΩb =

∫∫

Γfb,2
δvb · τ

bsdΓ +
∫∫

Γfb,1∪Γfb,2
δvb · tfdΓ, (4.10)

where vb = ∂ub/∂t is the velocity vector of the lipid bilayer. V = V (Ωb) denotes the

trial function space for the displacement ub, and W = W (Ωb) the test function space

for the momentum equation Eq. (4.1).

Numerically, we employ the FEM to solve Eq. (4.10) by modeling the lipid

bilayer as congregations of shell elements. By using the Hughes-Liu shell element

representation described in §2.6 in Chapter 2, the lipid bilayer domain Ωb between

the surfaces Γfb,1 and Γfb,2 is represented by a single middle reference surface Γfb

shown as the dashed line in Fig. 4.1. After finite element discretization, the governing

equation (4.1) is re-expressed as 6NFE (NFE is the number of nodes in finite elements)

algebraic equations symbolically expressed as

f b
FE = f bs

FE + f fb
FE, (4.11)

mb
FE = mbs

FE + mfb
FE, (4.12)

where f b
FE is the global nodal vector of internal force related to material constitutive

equations of the lipid bilayer, f bs
FE is the global nodal vector of external force from the

bilayer-skeleton interaction, and f fb
FE is the global nodal vector of fluid-bilayer inter-

action force on the surface Γfb. mb
FE is the global nodal vector of internal moment of

the lipid bilayer, mbs
FE is the global nodal vector of external moment from the bilayer-

skeleton interaction, and mfb
FE is the global nodal vector of fluid-bilayer interaction

moment on the surface Γfb. All these vectors have the dimension of 3NFE. Detailed

forms of these vectors can be found in §2.6 in Chapter 2.
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4.1.3 Boundary integral representation for fluid equations

and boundary element discretization

By using the Lorentz reciprocal theorem (Pozrikidis, 1992), Eqns. (4.2) and

(4.3) can be described by a boundary integral representation. First, we write the

velocity field around the lipid bilayer as

vf = v̄f + vf ′, (4.13)

where v̄f is the undisturbed flow in the absence of the cell, and vf ′ is the disturbance

flow due to the cell.

Then we focus on the volume occupied by fluid 1, which is enclosed by bound-

aries ΓfN , ΓfD and Γfb,1. For a point x0 lying in this volume, the disturbance velocity

is written as

vf ′(x0) = − 1

8πη1

∫∫

ΓfD∪ΓF N ∪Γfb,1
G(x0, x) · tf(x)dΓ(x)

+
1

8π

∫∫

ΓfD∪ΓfN ∪Γfb,1
vf ′(x) · T(x, x0) · n(x)dΓ(x), (4.14)

where η1 is the viscosity of fluid 1. tf is the traction on the surface. The first right-

hand term is the single-layer potential, which represents the contribution from the

distribution of point forces associated with the Green’s function for velocity. The

second term is the double-layer potential, which represents contributions from point

sources and point force dipoles. G contains the free-space Green’s function for velocity

Gij expressed as

Gij(x0, x) =
δij

|x − x0|
+

(xi − x0i
)(xj − x0j

)

|x − x0|3
, (4.15)

where δij is Kronecker’s delta. T is the Green’s function for stress. Its components

are

Tijk(x0, x) = −6
(xi − x0i

)(xj − x0j
)(xk − x0k

)

|x − x0|5 . (4.16)

We assume that the fluid Neumann boundary ΓfN is sufficiently far from the

cell so that vf ′ vanishes at ΓfN , and vf = v̄fD = 0 on the fluid Dirichlet boundary
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ΓfD. Following Pozrikidis (2005b), we apply the reciprocal theorem over the cell

volume twice and then obtain an integral representation for the exterior flow of fluid

1 as

vf (x0) = v̄f (x0) − 1

8πη1

[ ∫∫

Γfb
G(x0, x) · ∆tf (x)dΓ(x)

+
∫∫

ΓfN
G(x0, x) · t̄f(x)dΓ(x) +

∫∫

ΓfD
G(x0, x) · tf(x)dΓ(x)

]

+
1 − Λ

8π

∫∫

Γfb
vf (x) · T(x, x0) · n(x)dΓ(x), (4.17)

where v̄f (x0) is the prescribed undisturbed velocity field. η1 is the viscosity of the

exterior fluid, and Λ = η2/η1. ∆tf = tf,1 − tf,2 is the discontinuity in the interfacial

surface traction, where tf,1 is the traction in the outside surface Γfb,1 of the interface,

and tf,2 is the traction in the inside surface Γfb,2 of the interface.

When x0 is located on the interface Γfb, the boundary integral equation be-

comes

vf (x0) =
2

1 + Λ
v̄f (x0) − 1

4πη1(Λ + 1)

[ ∫∫

Γfb
G(x0, x) · ∆tf(x)dΓ(x)

+
∫∫

ΓfN
G(x0, x) · t̄f(x)dΓ(x) +

∫∫

ΓfD
G(x0, x) · tf(x)dΓ(x)

]

+
1 − Λ

4π(1 + Λ)
−
∫∫

Γfb
vf (x) · T(x, x0) · n(x)dΓ(x), (4.18)

where −
∫∫

denotes the principal value integration.

Similarly, when x0 is located on the Dirichlet boundary ΓfD (vf = v̄fD = 0),

the boundary integral equation becomes

v̄f(x0) − 1

8πη1

[ ∫∫

Γfb
G(x0, x) · ∆tf (x)dΓ(x)

+
∫∫

ΓfN
G(x0, x) · t̄f(x)dΓ(x) +

∫∫

ΓfD
G(x0, x) · tf(x)dΓ(x)

]

= 0. (4.19)

Numerically, we apply the boundary element method (BEM) to discretize the

boundary integral equations (Eqns. (4.18) and (4.19)). The collocation method is

employed. A constant four-node quadrilateral element is developed. We discretize the

boundaries Γfb, ΓfD, and ΓfN into Nfb
BE, NfD

BE , and NfN
BE elements, respectively. The
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single-layer potential kernel with a weak 1/r (r = |x − x0|) singularity is integrated

by segmenting the quadrilateral into flat triangles and the integration is performed

analytically in a polar coordinate system. The weak 1/r singularity in the double-

layer potential kernel is removed by using the relation

−
∫∫

Γfb
vf (x)·T(x, x0)·n(x)dΓ(x) =

∫∫

Γfb
[vf(x)−vf (x0)]·T(x, x0)·n(x)dΓ(x)+4πvf (x0).

(4.20)

Applying the boundary integral equation at the collocation points of boundary

Γfb, and after discretization of Eq. (4.18), we get 3Nfb
BE algebra equations, which is

written symbolically in matrix form as

vfb
BE = v̄fb

BE − Sfb,fbqfb
BE − Sfb,fDqfD

BE − Sfb,fN qfN
BE + Dfb,fbvfb

BE, (4.21)

where vfb
BE is the global vector including velocities at all collocation points on Γfb

(i.e. its dimension is 3Nfb
BE). v̄fb

BE is the global vector of undisturbed velocities. qfb
BE,

qfD
BE , qfN

BE are the global surface traction vectors on Γfb, ΓfD, and ΓfN . Sfb,fb, Sfb,fD,

Sfb,fN are the single-layer potential coefficient matrices on the interface Γfb by itself,

the surface ΓfD, and the surface ΓfN respectively. Dfb,fb is the double-layer potential

coefficient matrix on the interface Γfb by itself. The matrix vector multiplication

Dfb,fbvfb
BE is achieved by using Eq. (4.20).

Next, we apply the boundary integral equation Eq. (4.19) at the collocation

points on boundary ΓfD. Applying the no-slip and no-penetration boundary condi-

tions on ΓfD, we get

v̄fD
BE − SfD,fbqfb

BE − SfD,fDqfD
BE − SfD,fN qfN

BE = 0, (4.22)

where v̄fD
BE is the global vector of velocities at every collocation point on ΓfD with

dimension 3NfD
BE .

Solving Eq. (4.22) for qfD
BE , we get

qfD
BE = (SfD,fD)−1

[

v̄fD
BE − SfD,fbqfb

BE − SfD,fNqfN
BE

]

. (4.23)
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Solving Eq. (4.21) for vfb
BE, we get

vfb
BE = (I − Dfb,fb)−1

[

v̄fb
BE − Sfb,fbqfb

BE − Sfb,fDqfD
BE − Sfb,fN qfN

BE

]

, (4.24)

where I is an identity matrix. For numerical efficiency, the solution of Eq. (4.24)

is obtained by using successive substitutions instead of direct matrix inversion (I −
Dfb,fb)−1 (Pozrikidis, 1992).

Now the interfacial velocity vfb
BE is expressed in terms of qfD

BE (obtained from

Eq. (4.23)), qfN
BE (prescribed), and qfb

BE (transferred from finite elements of the lipid

bilayer, which is discussed in §4.1.4).

In the special case when Λ = 1 (i.e. the viscosities of the interior and the

exterior fluids are identical), the computation is much simplified since Eq. (4.24) is

reduced to

vfb
BE = v̄fb

BE − Sfb,fbqfb
BE − Sfb,fDqfD

BE − Sfb,fN qfN
BE . (4.25)

If the fluid domain is a free space without any Neumann and Dirichlet bound-

aries, e.g., a red blood cell in shear flow as studied in this paper, Eq. (4.24) can be

simplified as

vfb
BE = (I − Dfb,fb)−1

[

v̄fb
BE − Sfb,fbqfb

BE

]

. (4.26)

Many problems can be simplified by using proper Green’s functions as well.

For example, the problem of a file of periodic RBCs in a cylindrical tube with axisym-

metric configuration can be greatly simplified by using a Green’s function representing

a periodic array of point force rings inside a circular cylinder (Pozrikidis, 1992), which

is used in our simulations.

4.1.4 Coupling finite element and boundary element meth-

ods

According to the boundary conditions (Eqns. (4.7), (4.8) and (4.9)), the lipid

bilayer and the fluid share the same velocity and balance the tractions on the interface.

To achieve this, numerically we employ a staggered algorithm to couple FEM and

BEM (Walter et al., 2010).

For the constant quadrilateral elements in BEM, four nodes are shared with the
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quadrilateral shell element derived in §4.1.2. In axisymmetric cases, the axisymmetric

Hughes-Liu shell elements (Hughes and Liu, 1981b) are coupled with the axisymmetric

boundary elements with the special Green’s function mentioned in §4.1.3 by sharing

two nodes.

Furthermore, it is necessary to relate the global nodal force and moment vec-

tors f fb
FE and mfb

FE of finite elements to the surface traction vector qfb
BE in boundary

elements. Walter et al. (2010) employed iso-parametric elements for both FEM and

BEM, and related the nodal force f fb
FE of membrane elements in FEM with the nodal

traction qfb
BE of BEM by solving a linear equation expressed as

Mqfb
BE = f fb

FE, (4.27)

where the square matrix M has a similar structure as the consistent mass matrix

in FEM. However, for the continuum-based shell element described in §4.1.2, there

are also rotational degrees of freedom at the nodes. If iso-parametric elements are

used for both FEM and BEM, the system will be over-determined, i.e. there will

be 3NFE unknowns (qfb
BE) but 6NFE equations (f fb

FE and mfb
FE). In addition, it is very

expensive to solve this equation even if a sparse solver is employed. To deal with this

problem, in our coupling algorithm we use constant value elements in BEM. Instead

of solving Eq. (4.27), we employ a lumping technique for both the translational and

rotational degrees of freedom. This method is similar to the mass lumping technique

in the finite element method with explicit time integration (Belytschko et al., 2000),

and greatly reduces the computational cost. Detailed description of the algorithm is

provided as follows.

We consider a node ‘a’ with nodal force f (a) and moment m(a), which is con-

nected with n elements with indexes i = 1, ..., n. To conserve the linear momentum,

we distribute finite element nodal forces f (a) to the connected neighboring elements

as surface tractions based on the weights of element areas, i.e. q̄
(a)
i = f (a)/A(a), where

q̄
(a)
i is the surface traction on element i from node ‘a’ due to its nodal force, and A(a)

is the area sum of connected elements on node ‘a’.

To conserve the angular momentum, we distribute the nodal moments to the

neighboring elements as force couples. Let ri denote the relative position vector from
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the node ‘a’ to the collocation point (the centroid) of the element i, the moment m
(a)
i

assigned to element i as

m
(a)
i = (Ri)

2 · W−1 · m(a), (4.28)

where

Ri =









0 −r̂i,3 r̂i,2

r̂i,3 0 −r̂i,1

−r̂i,2 r̂i,1 0









,

r̂i = ri − 1

n − 1

n∑

j=1(j 6=i)

rj,

and

W =
n∑

i=1

(Ri)
2,

where r̂i,1, r̂i,2, and r̂i,3 are the three components of the vector r̂i.

We note that
∑n

i=1 m
(a)
i = m(a) and m

(a)
i · r̂i = 0, i.e. m

(a)
i is perpendicular to

r̂i, which guarantees the existence of an equivalent force couple for m
(a)
i associated

with position vector r̂i. This equivalent force couple is obtained by applying a force

f
(a)′
i = Ri ·W−1 ·m(a) at the center of this element while applying opposite sign forces

−f
(a)′
i /(n−1) with zero net resultant at the centers of other connected elements. The

corresponding surface traction is

q
(a)′
ij =







f
(a)′
i /A

(a)
j if i = j

− 1
n−1

f
(a)′
i /A

(a)
j if i 6= j

, (4.29)

where A
(a)
j is the area of element j connected to node ‘a’.

The total surface traction on an element is obtained by summing the contri-

butions from the nodal force and moment of all its neighboring nodes.

Applying Eq. (4.24), the velocity at the element collocation point can be

obtained. We relate the nodal velocity v(a) to the velocity at the element collocation

point vi by

v(a) =
1

A(a)

n∑

i=1

viA
(a)
i . (4.30)

The continuum-based shell element used here stems from the Reisser-Mindlin
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shell theory (see Belytschko et al. 2000). In this approach, the fiber is not necessary

to be perpendicular to the shell reference surface, and it can rotate locally. The local

fiber rotation is determined by the nodal moments as follows.

Let qfb′
BE denote the global surface traction vector attributed to the nodal mo-

ments. We express the global velocity vector vfb′
BE at the element collocation point

due to qfb′
BE as

vfb′
BE = (I − Dfb,fb)−1Sfb,fbqfb′

BE. (4.31)

If node ‘a’ rotates locally as a rigid body with a local angular velocity ω
(a),

then the velocity at the collocation point of connected elements can be written as

v′
i − v(a)′ = ω

(a) × ri =









0 −ω
(a)
3 ω

(a)
2

ω
(a)
3 0 −ω

(a)
1

−ω
(a)
2 ω

(a)
1 0









· ri (4.32)

where

v(a)′ =
1

A(a)

n∑

i=1

v′
iA

(a)
i (4.33)

There are 3n equations but 3 unknowns (ω
(a)
1 , ω

(a)
2 , ω

(a)
3 , the three components of the

angular velocity vector at node ‘a’). A least square method is used to solve these

equations for ω
(a).

After the nodal velocities and the local angular velocities are obtained, at each

time step we need to update both the locations of the nodes and the orientations of

the shell elements at the nodes (i.e. the ‘fiber orientation’ mentioned in Hughes and

Liu (1981a)). The nodal coordinates are updated using the explicit Euler method.

Then the fiber direction of node ‘a’, x′(a) (a unit direction vector), is updated first by

averaging the normals of connected elements based on the updated coordinates, then

by applying the local rotation ω
(a) using Hughes-Winget’s formula as

x′(a) = Φ(a)x′(a), (4.34)

where

Φ(a) =
(

I − 1

2
Ω(a)

)−1 (

I +
1

2
Ω(a)

)

, (4.35)
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Ω(a) =









0 −ω
(a)
3 ∆t ω

(a)
2 ∆t

ω
(a)
3 ∆t 0 −ω

(a)
1 ∆t

−ω
(a)
2 ∆t ω

(a)
1 ∆t 0









. (4.36)

∆t is the time step. For the axisymmetric case, a similar coupling algorithm is

developed as the above three dimensional case. Finally, the procedure of the staggered

coupling algorithm is summarized as:

1. Generate the FE and BE meshes based on the geometry;

2. Assemble the matrix SfD,fD from boundary ΓfD in Eq. (4.23). Invert it and

store it;

3. Calculate the internal forces and moments of the shell elements based on the

deformation and the constitutive laws, and subtract external forces and mo-

ments (e.g. from the skeleton-bilayer interaction) to obtain the fluid-structure

interaction forces and moments on the interface;

4. Project the interaction forces and moments to surface tractions on the boundary

elements using the lumping technique;

5. Apply Eq. (4.22) to obtain the velocities of the collocation points of the bound-

ary elements. If Λ 6= 1, the method of successive substitutions is needed to solve

the equations;

6. Project the velocities of BE collocation points to FE nodal velocities and cal-

culate the local nodal angular velocities;

7. March coordinates with FE nodal velocities and update the fiber directions;

8. Return to step (c) and repeat the calculation for the new configuration.

4.2 Cytoskeleton dynamics

The motion of the cytoskeleton is determined through its constitutive equa-

tions, its elastic interaction with the lipid bilayer, its viscous friction with the lipid

bilayer via the transmembrane proteins, and its hydrodynamic interaction with the
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lipid bilayer via the cytoplasm. Hereby we only consider the hydrodynamic loads

upon the cytoskeleton, whereas its influence on the surrounding flow field is not con-

sidered. Due to the proximity of the cytoskeleton to the lipid bilayer, it is reasonable

to assume that the cytoplasm near the lipid bilayer, in which the cytoskeleton is im-

mersed, moves at the same speed as the lipid bilayer. In that sense, the interaction

between the cytoskeleton and the cytoplasm can be merged with the cytoskeleton’s

interaction with the lipid bilayer. The balance of internal forces and external forces

of the cytoskeleton leads to τ
bs + ts = 0, where τ

bs is the total interaction force per

unit area between the lipid bilayer and the cytoskeleton (applied on the skeleton),

and ts is the internal force per unit area of the cytoskeleton due to its internal stress

Θs. ts is calculated using the finite element method, whereas Θs is presented in §4.3.

For convenience we also use the shell element formulation presented in §4.1.2

to model the cytoskeleton. One Gaussian integration point is used in the thickness

direction so that the shell elements are actually reduced into membrane elements

without bending stiffness. Thus the rotational degrees of freedom of the shell elements

do not need to be considered for the cytoskeleton. Numerically, ts is calculated at

the nodes via dividing the nodal forces by the nodal areas.

After ts and τ
bs are obtained, the velocity of the cytoskeleton is calculated as

follows. A local Cartesian system is defined so that z is in the normal direction of

the cytoskeleton surface, x and y are tangential to the surface. The skeleton velocity,

vs = [vs
x vs

y vs
z]T , is obtained as

vs
x =

τ bs
x

cf + cxy
+ vb

x, (4.37)

vs
y =

τ bs
y

cf + cxy
+ vb

y, (4.38)

vs
z = vb

z, (4.39)

where vb = [vb
x vb

y vb
z]T is the velocity vector of the lipid bilayer. cf is the vis-

cous friction coefficient between the lipid bilayer and the cytoskeleton, which will be

formulated in §4.2.1. cxy and cz are tangential and vertical hydrodynamic drag coef-

ficients, which will be formulated in §4.2.2. Strictly speaking, cf is applied in front

of the relative velocity between the skeleton and the lipid bilayer, whereas cxy should
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be applied in front of the relative velocity between the skeleton and the cytoplasm.

However, in the vicinity of the lipid bilayer these two are close to each other owing

to the no-slip condition. For this reason in the current study we do not distinguish

them. Eq. (4.39) enforces the normal no-penetration condition between the lipid

bilayer and the cytoskeleton. Numerically, vs is calculated at the node ‘a’ of the cy-

toskeleton mesh, while vb is calculated at the projection point of node ‘a’ on the lipid

bilayer mesh in the master-slave contact algorithm (Malone and Johnson, 1994; Peng

et al., 2010). Note that although τ bs
z is not shown in Eqns 4.37, 4.38 and 4.39, it can

be obtained using τ
bs = −ts. τ bs

z includes both the elastic interaction and the normal

hydrodynamic interaction forces between the lipid bilayer and the cytoskeleton.

After the velocity of the cytoskeleton is obtained, the coordinates of the cy-

toskeleton are updated using explicit time integration (e.g. explicit Euler method).

4.2.1 Viscous friction between the lipid bilayer and the cy-

toskeleton due to the mobilities of transmembrane pro-

teins

By applying the Stokes-Einstein relation, the drag force on a protein anchored

in the lipid bilayer is given as

f = − v

bT
= −kBTv

DT
, (4.40)

where v is the translational velocity of the protein. The minus sign refers to the fact

that the drag force is in the opposite direction of the velocity. DT is the translational

diffusivity of the protein. bT is the translational mobility of the protein. kB =

1.38 × 10−23 JK−1 is the Boltzmann constant and T is the absolute temperature.

The translational diffusivities of band 3 and glycophorin C in the lipid bilayer are

measured experimentally as 0.0014∼0.022 µm2/s (normal intact RBCs) (Kodippili

et al., 2009) and 4.0 µm2/s (Kapitza et al., 1984), respectively. For ghost RBCs, the

band 3 diffusivity becomes 0.53µm2/s (Tomishige, 1998). In this study we use the

upper bound (0.022 µm2/s) of the band 3 diffusivity of normal intact RBCs. Thus

the drag forces on a band 3 and a glycophorin C are fB = −0.194 pN·s/µm·v and
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fG = −0.001 pN·s/µm·v, respectively.

In our problem, the translational velocity v of the proteins is equal to the

relative tangential velocity between the lipid bilayer and the cytoskeleton. Consid-

ering 33,000 JCs with three band 3 (since the band 3’s are shared by neighboring

JCs) and six glycophorin C per JC in a total area of 135 µm2 (the surface area of a

normal human red blood cell) with a normal human temperature T = 310 K. The

friction coefficient between the lipid bilayer and the cytoskeleton per unit area is then

calculated as

cf = − ρ

ρ0

(fB/v + 2fG/v) × 3 × 33000

135µm2
=

ρ

ρ0

· 144 pN · s/µm3, (4.41)

where ρ and ρ0 are the current and initial protein densities of the cytoskeleton. The

protein density is defined as the number of proteins per unit area. The factor ρ/ρ0 is

associated with cytoskeleton deformation and its effect upon the density of skeleton-

bilayer pinning points (i.e. transmembrane proteins). This ratio also represents the

density of skeleton-attached proteins, whose variations are experimentally measurable

(see for example Discher et al., 1994). In practice, this density ratio is determined as

ρ/ρ0 = 1/(λ1λ2), where λ1 and λ2 are principal in-plane stretches of the cytoskeleton.

In our model, λ1 and λ2 are readily determined through FEM simulations of the inner

layer (Peng et al., 2010).

4.2.2 Hydrodynamic drag on the cytoskeleton

Although the cytoskeleton is a porous network with three-dimensional struc-

ture, for computational efficiency when considering its interaction with the surround-

ing fluid we simplify it as a planar triangular network (i.e. only the Sps are con-

sidered). The overall drag is calculated as the summation of drag forces on each

individual Sp, and the hydrodynamic interactions between Sps are not considered.

Specifically, we consider each Sp as a cylindrical bar with length l and radius r im-

mersed in infinite Stokes flow as shown in Fig. 4.2a.
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Hereby the drag coefficients are defined as

f⊥ = −c⊥v⊥ (4.42)

f‖ = −c‖v‖, (4.43)

where f⊥ is the transverse drag (i.e. the drag perpendicular to the cylinder axis), f‖

is the longitudinal drag (the drag parallel to the cylinder axis), v⊥ is the transverse

velocity component, and v‖ is the longitudinal velocity component as shown in Fig.

4.2b. If ǫ = r
l

<< 1, then

c⊥ =
4πη2l

ln( l
r
) + 1

2

[

1 + O(ǫ2)
]

, (4.44)

c‖ =
2πη2l

ln( l
r
)

[

1 + O(ǫ2)
]

, (4.45)

where η2 = 6 cP=0.006 pN/µm2·s is the viscosity of the interior cytoplasm solution.

Note that for ǫ << 1, c⊥ ∼ 2c‖. For a Sp tetramer (i.e. two Sp dimers linked by

head-to-head connection), the length is l = 75 nm and the radius is around r = 1

nm. Thus the drag coefficients are estimated as c⊥ = 1.174 × 10−3 pN·s/µm and

c‖ = 0.655 × 10−3 pN·s/µm.

We now consider a perfect triangle as shown in Fig. 4.3 with length l on each

side located inside the xy plane moving in a Stokes flow with a velocity v = [vx, 0, vz].

The y direction is chosen to be in the triangle plane and perpendicular to the moving

direction, and z direction is chosen to be the normal direction to the triangle. We

assume that the total drag on this triangle equals the sum of the drags on the three

edges.

A simple calculation shows that the in-plane drag f∆,x of the triangle is

isotropic (independent of the orientation of the triangle), and no lateral force (force

in the y direction) is generated. The drags are calculated as

f∆,x = −3

2
(c⊥ + c‖)vx = −(2.74 × 10−3pN/µm · s)vx, (4.46)

f∆,y = 0, (4.47)

f∆,z = −3c⊥vz = −(3.52 × 10−3pN/µm · s)vz. (4.48)



112

Figure 4.2: (a) Geometry of the slender cylinder. (b) Drags and velocities of the
slender cylinder.

Figure 4.3: Drag coefficients of a moving perfect triangle.
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For a cytoskeleton network with a total area of 135µm2, there are 33,000 actin protofil-

aments. Each protofilament is in connection with six Sp tetramers, whereas each

tetramer is connected with two protofilaments. Based on this, there should be 33,000

independent triangles (as the one described above) in the network. Therefore the

tangential drag force of the network per unit area is

cxy = − ρ

ρ0
· 33000/135µm2f∆,x/vx =

ρ

ρ0
· 0.67pN · s/µm3,

and the normal drag force of the network per unit area is

cz = − ρ

ρ0
· 33000/135µm2f∆,z/vz =

ρ

ρ0
· 0.86pN · s/µm3.

These hydrodynamic drags are included in τ
bs and transferred to the lipid

bilayer through the boundary condition (Eq. (4.9)). Note that cf >> cxy, i.e. the

bilayer-skeleton viscous friction is much larger than the hydrodynamic drag in the

tangential direction. Strictly, the wall effect of the lipid bilayer on the motion of

spectrins should be considered. In practice, however, since the hydrodynamic drag

is much smaller than the bilayer-skeleton viscous friction, the current approach is

sufficiently accurate.

4.3 Membrane viscoelasticity

The viscoelasticity of the bilayer-skeleton system is essential for its ability to

maintain structural stability under large dynamic loads. The viscosity stems from

the following sources: (a) the viscosity of the lipid bilayer, (b) the viscosity of the

cytoskeleton, (c) the skeleton-bilayer viscous friction due to the mobility of the trans-

membrane proteins (band 3 and glycophorin C) within the lipid bilayer and the

bilayer-skeleton hydrodynamic drags, and (d) the viscosity of the surrounding flow.

Effects (c) and (d) have been considered in §4.2.1 and §4.2.2, respectively.

4.3.1 Voigt-Kelvin model
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Evans and Hochmuth (1976) applied a generalized Voigt-Kelvin stress-strain

relation to simulate the viscoelastic response of the membrane. Puig-De-Morales-

Marinkovic et al. (2007) found that the viscoelastic property of the RBC membrane

followed a power law. Fractional order models were used by Craiem and Magin

(2010) to study the viscoelasticity of RBCs. Lubarda (2010) presented a rate-type

constitutive theory of elastic and viscoelastic response of an erythrocyte membrane

for arbitrary isotropic strain energy functions. For simplicity, we use the generalized

Voigt-Kelvin stress-strain relation by Evans and Hochmuth (1976), which is written

as

Θ1h = T̄ +
µi

2λ2
1λ

2
2

(λ2
1 − λ2

2) + 2νi
1

λ1

Dλ1

Dt
, (4.49)

Θ2h = T̄ +
µi

2λ2
1λ

2
2

(λ2
2 − λ2

1) + 2νi
1

λ2

Dλ2

Dt
, (4.50)

where D/Dt is the material derivative with respect to time t. νi is the surface vis-

cosity. µi is the surface shear stiffness (i = b, s stands for the lipid bilayer or the

cytoskeleton, respectively). T̄ is the isotropic tension. For the cytoskeleton, µs and

T̄ are calculated based on the molecular-detailed model of the junctional complex,

and the exact formulations are presented in Peng et al. (2010). For the lipid bilayer,

T̄ = Kb(λ1λ2 − 1), where Kb = 5 × 105pN/µm is the bilayer area stiffness. λ1 and λ2

are principal stretches. Since the lipid bilayer is a fluid and its shear modulus is nearly

zero, for numerical stability we choose a small but nonzero value as µb = 10−3µs. h

is the thickness of the bilayer (2.2 nm) or the cytoskeleton (2 nm). The discrepancy

between the bilayer thickness used herein and its actual value (4-5 nm) is attributed

to the fact that in our study the bilayer is simplified as a continuous (but anisotropic)

shell without considering its detailed molecular architecture. The detailed explana-

tions of the bilayer and skeleton thicknesses used here can be found in Peng et al.

(2010). Θ1 and Θ2 are principal stresses.

The viscosity for the lipid bilayer is given as νb = 10−9 Pa·m·s (Otter and

Shkulipa, 2007). Since the total membrane viscosity is measured as 5 × 10−8 Pa·m·s
(Tran-Son-Tay et al., 1984), which is 50 times higher than the lipid bilayer viscosity,

it is reasonable to assume that the membrane viscosity is mainly attributed to the
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Figure 4.4: An approximation of the Voigt-Kelvin model.

viscosity of the cytoskeleton. Thus we assign the viscosity of the cytoskeleton as

νs = 5 × 10−8 Pa·m·s.

4.3.2 Numerical implementation

Through numerical tests it was shown that for our modeling approach de-

scribed in the previous sections, a direct numerical implementation of the Voigt-Kelvin

stress-strain relation as described in Eqns. 4.49 and 4.50 is not very stable. Following

the numerical implementation of the viscous foam (material type 62) in the com-

mercial package LS-DYNA (Hallquist, 1998), similarly we add an elastic term with

a shear stiffness µ′
i = 100µi in series with the viscous term (νi) to approximate the

generalized Voigt-Kelvin model of Evans and Hochmuth (1976) and prevent timestep

problems as shown in Fig. 4.4. It is noteworthy that if µ′
i = ∞, this formulation

is exactly the same as the generalized Voigt-Kelvin model of Evans and Hochmuth

(1976). The numerical implementation of this viscoelastic model with finite strains

can be found in Hallquist (1998) and Holzapfel (2000).

4.4 Summary and remarks

In this chapter, we coupled the finite element method (FEM) and the boundary

element method (BEM) to solve the fluid-structure interaction (FSI) problem of red
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blood cells immersed in Stokes flow. The fluid problem of Stokes flow is solved using

BEM based on the work by Pozrikidis (1992), while the membrane is modeled using

the multiscale model described in Chapter 2. Furthermore, we employed a Voigt-

Kelvin constitutive model to consider the membrane viscoelasticity and described

the cytoskeleton dynamics based on protein mobility and hydrodynamic drags.

Zienkiewicz et al. (1977) claimed that coupling FEM and BEM is a ‘Marriage

a la mode: the best of both worlds’. Our numerical experiments show that our algo-

rithm of coupling FEM and BEM is fast, robust and accurate for the fluid-structure

interaction (FSI) problem of red blood cells.

First, the boundary element method reduces the 3D fluid problem to a 2D

problem and significantly decreases the number of elements. For a 3D single red

blood cell immersed in shear flow, usually it only takes 5 hours to simulate a motion

period using a single CPU. For an axisymmetric problem of red blood cells immersed

in tube flow, it only takes half an hour. But, as well known, the computational cost

of the BEM scales with N2, where N is the number of the degrees of freedom. If

multiple red blood cells are considered, we may need fast boundary element methods

to speed up this algorithm, e.g., using the fast multipole boundary element method

(Liu, 2009).

Secondly, this coupling algorithm is also very robust. It employs explicit time

integration. No equation solver is needed, even a linear solver, so that the trouble-

some convergence problem for implicit calculations is avoided. In addition, since the

boundary elements are only located on a surface or a line, there is no domain element

distortion.

Finally, due to the analytical Green’s function used in boundary element meth-

ods, this algorithm is also very accurate.

However, the Stokes problem solved by the BEM is only valid in the small

length scale. If the inertial effect must be considered in some cases, other methods

for fluid problem may be needed, e.g., the Immersed Boundary Method (IBM) (see for

example, Shoele and Zhu (2010), Eggleton and Popel (1998), Bagchi (2007), Zhang

et al. (2008), Le (2010)).

As mentioned before, experiments (Puig-De-Morales-Marinkovic et al., 2007)

showed that the viscoelastic property of the RBC membrane followed a power law
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so that fractional order models may be more appropriate to study the viscoelasticity

of RBCs (Craiem and Magin, 2010). Fractional order models can be also easily

incorporated in the finite element method framework.

Chapter 4, in part, has been submitted for publication of the material as it

may appear in ‘Molecular-detailed modeling of erythrocytes in Stokes flow’, Journal

of Fluid Mechanics, 2011. Zhangli Peng, Robert J. Asaro and Qiang Zhu, 2011. The

dissertation author was the primary investigator and author of this paper.



Chapter 5

Red Blood Cells in Tube Flow and

Shear Flow

In this chapter, we will simulate the red blood cells in tube (capillary) flow

and shear flow. They are closely related to the in vivo physiological conditions.

As shown in Fig. 5.1, when the diameter of the blood vessel is as small as the

red blood cell, it can be considered a capillary flow case. When the blood vessel is

very large, e.g., an artery, then the flow around the cell is approximately of a linear

profile as shown in Fig. 5.1. In this case, it can be idealized as a simple shear flow. In

the following, we first validate our numerical method of fluid-structure interaction by

simulating some benchmark problems and comparing the results with existing studies.

Then we will use our multiscale approach to study the RBC behaviors in tube flow

and shear flow.

5.1 Model validations

The fluid-structure interaction model is validated by simulating three canonical

cases: 1) RBCs passing through a cylindrical tube 2) a spherical capsule in shear flow

3) a RBC in shear flow with low shear rates. The predictions are then compared with

benchmark results from previous studies. To be consistent with these existing studies,

in this validation work we consider a reduced version of our model, in which the cell

membrane is modeled as a single-layer structure (i.e. the detailed bilayer-skeleton

118
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Figure 5.1: Capillary flow and shear flow.

architecture is not specified) with uniform mechanical properties. Furthermore, the

mechanical parameters and the constitutive relations are kept the same as those in

the corresponding previous studies to be compared with.

5.1.1 Red blood cells in tube flow

First, we simulate a file of RBCs passing through a cylindrical tube (which

resembles cell motion inside capillaries), and compare our results with the predictions

by Pozrikidis (2005a). As shown in Fig. 5.2(a), the problem is considered to be

axisymmetric with respect to the x axis (the centerline of the tube). y represents

the distance measured from the centerline towards the boundary of the tube. As

discussed in §4.1.3, in axisymmetric cases the Green function is spatially periodic

so that the method is capable of simulating an infinite sequence of cells without

additional computational effort. The cell membrane is modeled as a Skalak material

defined as

Θ1h =
K

2
λ1λ2(λ

2
1λ2

2 − 1) +
µ

2

λ1

λ2
(λ2

1 − 1), (5.1)

Θ2h =
K

2
λ1λ2(λ

2
1λ

2
2 − 1) +

µ

2

λ2

λ1
(λ2

2 − 1), (5.2)

where µ is the membrane shear modulus and K is the membrane area modulus.

We use L/a = 3.0, b/a = 1.0, G = 0.5, where L is the space between periodic

cells (see Fig. 5.2a), a = (3V/4π)1/3 ≈ 2.82µm is the equivalent cell radius (V ≈
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98µm3 is the cell volume), and b is the tube radius. The undisturbed velocity profile v̄f

is a parabolic function of y with the maximum speed is reached at y = 0. G = ηUm/µ

is the reduced flow rate, where Um is the maximum undisturbed flow velocity and

η = η1 = η2 = 1.2cP=0.0012 pN/µm2·s is the fluid viscosity. We use the same

moduli as in Pozrikidis (2005a), i.e., µ = 4.2pN/µm, ηUm/K = 200, and bending

stiffness κc = 1.8 × 10−19J . The predicted shape of the RBCs is shown in Fig. 5.2a,

which is graphically indistinguishable from that obtained in Pozrikidis (2005a) (see

Fig. 8 in that paper). The distributions of membrane tensions in both the meridional

and azimuthal directions along the arc length s are shown in Fig. 5.2b, which again

demonstrate consistency with the study of Pozrikidis (2005). The arc length s is

measured from the front point as shown in Fig. 5.2a. st is the total arc length from

the front point to the trailing point. The tensions are normalized by ηUm.

Furthermore, a time sequence of RBC shapes at different time points are shown

in Fig. 5.3, in which G = 0.5 and other parameters are the same. These predicted

shapes are consistent with the results by Pozrikidis (2005a).

5.1.2 A spherical capsule in shear flow

Secondly, we simulate the motion of a spherical capsule in a simple shear flow

with undisturbed velocity ky in the horizontal direction, where k is the shear rate

and the center of the cell lies at y = 0 (see Fig. 5.4). In this simulation, both the

mechanical parameters (G = ηka/µ = 0.20, where a is the equivalent radius and µ

is the shear modulus of the membrane, and Λ = 1) and the constitutive law of the

capsule with an energy function of a neo-Hookean form are taken from Ramanujan

and Pozrikidis (1998). This constitutive law, as well as its related surface strain

invariants, was originally derived by Barthès-Biesel and Rallison (1981). As shown

in Fig. 5.5 and Fig. 5.6, our results, in this case for the inclination angle θxy of the

maximum dimension with respect to the x axis in the xy plane (the mid-plane) and

the Taylor deformation parameter Dxy = (A − B)/(A + B) (A, B are the maximum

and minimum dimensions in xy plane; see Fig. 5.4 for definitions of θxy, A, and B)

match well with the reported data in Ramanujan and Pozrikidis (1998). In practice,

to calculate A and B we adopt the approach suggested by Ramanujan and Pozrikidis
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Figure 5.2: (a) The shape of RBCs passing through a cylindrical tube driven by flow.
(b) Distributions of membrane tensions in meridional and azimuthal directions along
the arc length s (compared with Pozrikidis (2005)). The tensions are normalized by
ηUm.



122

Figure 5.3: Time evolution of RBC shapes at different time points (from top to
bottom t=0, 1.2, 5.2, 18).
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Figure 5.4: Schematic of a RBC (or capsule) in simple shear flow.

(1998). The basic procedure is: a) calculate the inertia tensor of the cell or the

capsule; b) calculate the dimensions of an equivalent triaxial ellipsoid with the same

inertia tensor; c) calculate A and B of this ellipsoid, and use these to find Dxy of the

cell.

5.1.3 Tumbling of a red blood cell in shear flow

Finally, we simulate the tumbling motion of a RBC in a shear flow by in-

corporating both bending stiffness and area stiffness of its membrane, and compare

our results with those in Pozrikidis (2003b). The constitutive law used here is the

same as in Pozrikidis (2003b), which is similar to the one for capsules in Ramanujan

and Pozrikidis (1998) but with an extra area stiffness term. The reduced shear rate

G = 0.1, the bending stiffness kc = 1.8×10−19J, the shear modulus µ = 3pN/µm, and

the normalized area stiffness K/η1ka=200, where K is the area stiffness. Following

Pozrikidis (2003b), we use Λ = 5 (η2 = 0.006 pN/µm2·s). Fig. 5.7 shows snapshots of

the cell motion/deformation as well as the cell profiles in the xy plane. These results

are very close to the predictions by Pozrikidis (2003) (see Fig. 4a in that paper). The

corresponding time evolution of the inclination angle is plotted in Fig. 5.8, which

agrees well with Pozrikidis (2003b).
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Figure 5.7: Cell shapes (top) and profiles in the xy plane (bottom) at (a) kt=0, (b)
kt=4, (c) kt=8.15, and (d) kt=11.80.
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The multiscale model of the membrane has been validated extensively in Chap-

ter 3.

In the following we apply the fluid-structure coupled multiscale model to ex-

amine the deformation of the cytoskeleton (which is related to the mechanical loads

inside it), and the interaction forces between the lipid bilayer and the skeleton in both

tangential and normal (i.e. vertical with respect to the lipid bilayer) directions in

the aforementioned scenarios associated with Stokes flows (inside a tube and a shear

flow). Specifically, we will study the area deformation and the shear deformation of

the skeleton. Herein the areal change of the skeleton is directly related to the protein

density in the membrane, and is thus experimentally measurable through fluorescent

marking (Discher et al., 1994). Large skeleton deformations may trigger structural

remodeling such as Sp unfolding or dissociation of the head-to-head connection be-

tween Sp dimers (Li et al., 2007) (which causes a phase transition of the skeleton).

Both the area deformation and the shear deformation contribute to the internal ten-

sion inside the skeleton, which, together with the local curvature of the membrane

determines the normal interaction force between the bilayer and the skeleton (Peng

et al., 2010). In quasi-static cases there is tiny tangential force between the bilayer

and the skeleton owing to the near-fluidic nature of the bilayer. In dynamic cases,

whenever there is sliding motion between the two there will be tangential force, which

is determined by the sliding speed and the mobilities of the transmembrane proteins

as discussed before. Sufficiently large bilayer-skeleton interaction forces can lead to

dissociation between the two, causing physiologically important phenomena such a

budding, vesiculation, or tether formation. Systematic experiments are required to

explore that exact conditions for these to happen. On the other hand, state-of-the-art

experimental techniques are not able to resolve the distribution of mechanical loads

inside a cell. In this sense, the multiscale numerical capacity developed in this study

provides a complementary measure to predict the mechanical loads inside the cell,

enabling quantitative prediction of mechanically induced structural remodeling.
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5.2 Skeleton density variation and bilayer-skeleton

interaction forces of red blood cells in tube

flow

Using our multiscale model, we herein predict the protein density of the skele-

ton and the interaction force between the lipid bilayer and the skeleton (Fig. 5.9) in

RBC membranes in a tube flow. For flow conditions, we use the same parameters as

in §5.1, e.g., L/a = 3.0, b/a = 1.0, G = 0.5, and a = 2.82µm. The parameters of the

cytoskeleton, including the persistence lengths of folded and unfolded domains in Sp,

the contour lengths of the folded and unfolded domains, the difference between the

activation length of the unfolding process and that of the refolding process, and the

force corresponding to the state when half of the domains are unfolded, are obtained

from Peng et al. (2010). Lac and Barthès-Biesel (2005) and Lefebvre and Barthès-

Biesel (2007) showed that the membrane prestress plays an important role for RBC

motions in both tube flow and shear flow. To match the skeleton density variation

recorded in micropipette aspirations, the prestress of the cytoskeleton is set to be

T̄0 = T̄ |λ1=1,λ2=1 = −30pN/µm (Peng et al., 2010). The spontaneous curvature of the

bilayer is assumed to be 0, i.e. in its unloaded state a piece of lipid bilayer remains

flat. Since in this particular case we only focus on the final steady configuration, the

membrane viscosity, the bilayer-skeleton friction, and the plasma viscosity contrast

are irrelevant.

5.2.1 Skeleton density variation

Fig. 5.9 shows the distribution of the density ratio along the arc length s. It is

seen that the skeleton is expanded (ρ/ρ0 < 1) at the head region (the head of the bullet

shape) and the trailing region (the bottom) , whereas it is compressed (ρ/ρ0 > 1) at

the side of the cell that is almost parallel to the tube wall (0.3 < s < 0.6). A slight

variation of the density ratio occurs at the edge formed between the bottom and the

side (s ∼ 0.7). The increase of protein density near the wall (0.3 < s < 0.6) as shown

in Fig. 5.9 might help facilitating the biochemical interaction between the RBC

cytoskeleton and the endothelial cells on the vessel wall. Indeed, it has been showed
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that RBCs can release nitric oxide (NO) (Kleinbongard et al., 2009) to dilate the

blood vessel and improve blood perfusion, as well as adenosine triphosphate (ATP)

to regulate blood pressure (Wan et al., 2008).

5.2.2 Normal bilayer-skeleton interaction force

The normal interaction force between the lipid bilayer and the skeleton is

also plotted in Fig. 5.9. No tangential force exists since the sliding between the

lipid bilayer and the cytoskeleton has been already finished before this final steady

configuration. The quantity we show is the interaction force applied on one junctional

complex (JC), which is obtained as the product between the interaction force per unit

area τ
bs and the area of one JC after the deformation of the skeleton in that particular

location as

fjc =
135cm2

33000

ρ0

ρ
τ

bs. (5.3)

This force is negative when 0 < s < 0.8 (a negative normal interaction force refers

to the scenario when the skeleton and bilayer tend to separate from each other (dis-

sociation tendency)). The maximum negative interaction force occurs at the trailing

edge of the bullet shape. For 0.8 < s < 1, this force is positive, i.e. the skeleton and

bilayer are pushed towards each other (association tendency).

A noteworthy phenomenon is that in tube flow (capillary flow) both the protein

density variation and the bilayer-skeleton interaction forces are much lower than those

during the micropipette aspiration experiments. During micropipette aspirations,

the maximum interaction force per JC (i.e. the force that induces bilayer-skeleton

separation) is 5∼20 pN as shown in Peng et al. (2010), whereas in capillary flow the

value is less than 0.3 pN. This may help explain the structural stability and durability

of RBCs when they pass through the capillaries.
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5.3 Tank-treading motion of a red blood cell in

shear flow

In §5.1, we discussed the tumbling motion of RBC in shear flow. When the

shear rate is sufficiently large, however, these cells may demonstrate a new type

of response called tank-treading motion, in which a RBC deforms to an ellipsoidal

shape and the membrane circulates around while the inclination angle remains almost

unchanged.

To simulate this tank-treading response, we use the same parameters as in

§5.2. The viscosity of the internal fluid η2 = 6cP =0.006 pN/µm2·s.

5.3.1 Tank-treading frequency

In Fig. 5.10, we compare the predicted tank-treading frequency (defined as

the inverse of the period for a point on the membrane to complete one circle around

the cell) with the experimental measurements by Fischer et al. (1978). We show the

relations between shear rate and tank-treading frequency with external fluid viscosi-

ties 13 cP, 31 cP, and 59 cP. It is seen that the tank-treading frequency increases

linearly with the shear rate. Furthermore, our results demonstrate an increase in the

ratio of tank-treading frequency to shear rate when the external fluid viscosity is in-

creased. These features are consistent with experiments by Tran-Son-Tay (1983) and

Fischer (2007), and the numerical results by Dodson and Dimitrakopoulos (2010). If

the membrane viscosities are neglected (νb = νs = 0), then the frequency is overes-

timated as shown in Fig. 5.10. This is consistent with the result by Fedosov et al.

(2010a).

5.3.2 Swinging motion

Our simulations also demonstrate swinging motions of the cell, referring to

variations of the inclination angle θxy and the cell shape (characterized by the Taylor

deformation parameter Dxy) over time. The time histories of θxy and Dxy at shear

rates of 270/s and 1640/s are shown in Fig. 5.11 and Fig. 5.12, respectively. For

the shear rate of 270/s, the time period of swinging motion is found to be 0.08 s,
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which is half of the time period of the tank-treading motion (0.16 s) (Fig. 5.10). This

is consistent with the conclusions by Ramanujan and Pozrikidis (1998) and Fedosov

et al. (2010a).

5.3.3 Skeleton density variation

In the following simulations we consider two typical in vivo shear rates, 270/s

and 1640/s. 270/s is considered as the average shear rate, and 1640/s is considered

as the peak shear rate in human body (Stroeva et al., 2007) or in an artificial heart

(Hochareon, 2003; Deutsch et al., 2006). Our results show that for both shear rates,

the areal dilation and protein density variation of the cytoskeleton are less than 1%

everywhere if the friction coefficients derived in §4.2 are used. This is in contradiction

with simulation results by Dodson and Dimitrakopoulos (2010), in which measurable

cytoskeleton areal dilation was predicted. The primary cause of this discrepancy is

the inclusion of dissipation effects. Specifically, in the model by Dodson and Dimi-

trakopoulos (2010), neither the bilayer-skeleton friction nor the membrane viscosity

are considered. In our simulations, the areal dilation remains very small even if the
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Figure 5.12: Time histories of θxy and Dxy during swinging motions. k=1640/s,
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band 3 diffusivity of ghost RBCs (0.53µm2/s, which is 24 times larger than intact

RBCs and measured by Tomishige (1998)) is used. Significant cytoskeleton areal di-

lation does not appear until we reduce the friction coefficient of intact RBCs by 1000

times. Therefore, our simulations confirm the prediction by Fischer (1992) that the

tank-treading motion is too fast to allow significant bilayer-skeleton slip.

5.3.4 Distributions of shear ratio and interaction forces

Contours of the shear ratio
√

λ1/λ2 as well as the tangential and normal inter-

action forces between the lipid bilayer and the cytoskeleton are shown in Fig. 5.13.

The shear rate is 270/s, and the external fluid viscosity η1 = 13 cP. The correspond-

ing vector field of the tangential interaction forces (the interaction forces on the lipid

bilayer) is shown in Fig. 5.14. The corresponding contours for shear rate 1640/s are

shown in Fig. 5.16. Incidently, the cell shapes shown in Fig. 5.13 and Fig. 5.16 match

well with the experimental pictures as shown in Fig. 4.4.2 in Pozrikidis (2003a).

The results show that in both cases the minimum shear ratios happen at the

tips of the cell and their values are close to 1. The maximum shear ratio is 1.589 for
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Figure 5.13: Contours (top view and side view) of (a) the shear ratio
√

λ1/λ2, (b)

magnitude contour of the tangential interaction force per JC, (c) magnitude contour
of the normal interaction force per JC. k=270/s, η1 = 13cP. Contours are shown at
the instant when Dxy reaches the maximum value.
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Figure 5.14: Vector field of the tangential interaction force applied on the lipid bilayer,
k=270/s, η1 = 13cP. It is shown at the time when Dxy reaches the maximum value.

Figure 5.15: Vector field of the normal interaction force applied on the lipid bilayer,
k=270/s, η1 = 13cP. It is shown at the time when Dxy reaches the maximum value.
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Figure 5.16: Contours (top view) (a) the shear ratio
√

λ1/λ2, (b) magnitude contour

of the tangential interaction force per JC, (c) magnitude contour of the normal inter-
action force per JC. k=1640/s, η1 = 13cP. Contours are shown at the time when Dxy

reaches the maximum value.
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Figure 5.18: Tangential interaction force per JC in the cross section by xy plane
(shown at the time when Dxy reaches the maximum value).
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at the time when Dxy reaches the maximum value).

shear rate 270/s and 2.120 for shear rate 1640/s, occurring near the middle region of

the cell but off from the center plane (the xy plane).

For the tangential interaction force, the maximum values occur at the tips of

the cell (0.042 pN per JC for shear rate 270/s and 0.313 pN per JC for shear rate

1640/s). In the top view of the vector field (Fig. 5.14) it is seen that there are points

(P & Q) where the tangential interaction force changes direction. In Fig. 5.14, the

bilayer-skeleton interaction force on the lipid bilayer instead of on the skeleton is

shown for clarity.

For normal interaction forces, the maximum value again occurs at the tips

of the cell (0.182pN per JC for shear rate 270/s and 0.551pN per JC for shear rate

1640/s). Since we consider pre-compression of the cytoskeleton with prestress T̄0 =

−30pN/µm Peng et al. (2010), the cytoskeleton pushes the lipid bilayer outwards.

The normal interaction forces mainly depend on the prestress and the curvature of
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Figure 5.20: The equilibrium of an infinitely small element of the cytoskeleton at the
center line (cross section by xy plane).

the shape. The top view of the vector field is shown in Fig. 5.15.

The distributions of the shear ratio and interaction forces along the cell profile

within the xy plane are shown in Figs. 5.17, 5.18 and 5.19 for shear rates 270/s, and

1640/s.

To better understand the distributions of the tangential and normal interaction

forces, we consider an infinitely small element of the cytoskeleton along the center

line (the xy cross section) as shown in Fig. 5.20. The equilibriums of the cytoskeleton

(a membrane without bending stiffness) in the tangential direction and the normal

direction (the Laplace’s law) lead to

∂Tx

∂s
+ f bs = 0, (5.4)

Tx

rx

+
Tz

rz

− pbs = 0, (5.5)

where Tx = Θxh and Tz = Θzh. rx and rz are the radii of the curvatures in x and z

directions, respectively. f bs is the friction force per unit area (the component of τ
bs

in the tangential direction) and pbs is the normal interaction force per unit area (the

component of τ
bs in the normal direction).

There is almost no area change (λ1λ2 ≈ 1) in the cytoskeleton so that the

mean stress due to area change is extremely small (T̄ ≈ T̄0) and the shear ratio

γ =
√

λ1/λ2 ≈ λ1. T̄0 = −30pN/µm is the prestress. If we ignore the cytoskeleton
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viscosity temporarily (νs = 0), Tx and Tz can be written as

Tx = T̄0 +
µs

2
(γ2 − 1/γ2), (5.6)

Tz = T̄0 − µs

2
(γ2 − 1/γ2), (5.7)

as shown in Eqns. (4.49) and (4.50). Therefore Eq. (5.4) can be re-expressed as

f bs = −∂Tx

∂s
= −∂Tx

∂γ

∂γ

∂s
= −µs

2

(

2γ +
2

γ3

)

∂γ

∂s
. (5.8)

Eq. (5.8) relates the friction force f bs to the derivative of γ with respect to

the arch length s. This relation is demonstrated in Figs. 5.17 and 5.18. Indeed, it

can be shown that there are two points where the derivative of γ with respect to the

arch length s equals to zero in Fig. 5.17, corresponding to two points (P & Q) in Fig.

5.18 where the tangential force equals zero. The drifts of the two points in arc length

positions from Fig. 5.17 to Fig.5.18 are caused by the cytoskeleton viscosity (νs 6= 0).

For normal interaction forces, if we ignore the cytoskeleton viscosity temporar-

ily (νs = 0), Eq. (5.5) can be rewritten as

T̄0

(
1

rx
+

1

rz

)

+ Ts

(
1

rx
− 1

rz

)

− pbs = 0. (5.9)

This relation explains characteristics of Fig. 5.19. At the convex tips the curvatures

(1/rx and 1/rz) are significantly larger than those in other places on the surface and

Ts is very small due to small shear (γ ≈ 1), therefore the maximum normal interaction

force pbs happens in the tips.

5.3.5 Effect of the skeleton reference shape

Although the cell shapes predicted in Fig. 5.13 and Fig. 5.16 match well with

the experiments, our simulations show significant swinging motions, while there is

no significant swinging motion based on the experimental pictures by Fischer et al.

(1978) and Fig. 1.6b by T.M. Fischer (Pozrikidis, 2003a). A possible cause of this

discrepancy is the choice of the reference configuration of the cytoskeleton, i.e. the

configuration with zero shear deformation. In our simulations, we chose the biconcave
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shape as the reference configuration, but existing studies (e.g. Lim et al. (2002))

suggest that the actual reference configuration may be between the biconcave shape

and the spherical shape. By deflating a spherical cell into a biconcave shape first as

we did in our previous work (Peng et al., 2010), we simulate the tank-treading motion

of this red blood cell with a spherical shape as its reference configuration. It is found

that in this scenario there is almost no swinging motion. This confirms the work by

Tsubota and Wada (2010). On the other hand, the reference shape may not be a

perfect sphere for in vivo red blood cells. According to the experiment by Fischer

(2004), red blood cells have shape memory. This implies that the reference shape

of the cell is not perfectly spherical (otherwise all points on the membrane will be

indistinguishable so that there will be no shape memory. Thus, our results provide

indirect evidence that the reference configuration is between the biconcave shape and

the spherical shape.

5.4 Summary and remarks

In this chapter, we applied the dynamic multiscale model described in Chapter

4 to study red blood cells in tube flow and shear flow.

The vital difference between our model and the existing models is the incorpo-

ration of a multiscale structural model to describe the mechanical response of the cell

membrane, which enables predictions of not only highly accurate RBC responses to

external loads, but also the physical mechanisms involved in the dynamic response of

a cell at different temporal and spatial levels. The multiscale simulations illustrated

novel (and potentially important) phenomena in membrane mechanics that had never

been discovered using other models.

Among the important phenomena that have been analyzed are the remodel-

ing of skeleton density and the development of both positive (tensile) and negative

(compressive) forces that act between the lipid bilayer and the attached skeleton. For

example, in our previous investigations the development of negative contact forces

between the skeleton and the lipid bilayer, coupled to protein density changes, was

related to the phenomena of membrane necking and vesiculation during RBC as-

piration into a micropipette (Peng et al., 2010). During aspiration, however, large
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variations in skeleton density are typically forecast as, in fact, found experimentally.

Density variations are easily in the range 0.2 < ρ/ρ0 < 1.4. Accompanying this is the

development of negative contact force (per JC) as large as ∼-20 pN. In contrast, we

show here that within tube flow and shear flow RBCs undergo quite modest protein

density variations as illustrated in the example simulation results shown in Fig. 5.9

where 0.85 < ρ/ρ0 < 1.07. Likewise the local contact forces per JC are also mod-

est. The implication is that micropipette aspirations may exaggerate the mechanical

loading on RBC and the subsequent mechanical responses in most in vivo conditions

(e.g. inside capillaries or blood vessels).

On the other hand, RBCs may sustain much larger loads and deformations

inside spleen, where blood flows from the red-pulp cords (ends of small arterioles)

to the venous sinuses and merges back into the venous system (Mebius and Kraal,

2004). The venous sinuses are made of parallel series of endothelial cells with slits

between them. Normal RBCs can pass through these slits, while aging, defected, or

infected RBCs may be stuck there, where they are phagocytosed by macrophages.

Furthermore, the contractility of the stress fibers in the endothelial cells can control

the opening of these slits and assist the retention of RBCs in the spleen. Further

studies are necessary to illustrate these processes.

Chapter 5, in part, has been submitted for publication of the material as it

may appear in ‘Molecular-detailed modeling of erythrocytes in Stokes flow’, Journal

of Fluid Mechanics, 2011. Zhangli Peng, Robert J. Asaro and Qiang Zhu, 2011. The

dissertation author was the primary investigator and author of this paper.



Chapter 6

Summary and Future Directions

6.1 Summary

The research described in this dissertation focused on multiscale modeling of

a red blood cell and its fluid-structure interaction. The main purpose of this study is

to explore the structure-function relationships of red blood cells.

The main novel contributions of this work are summarized as follows.

• We developed a three-level multiscale modeling approach of the red blood

cell membrane. It includes the spectrin model (Level I), the junctional com-

plex model (Level II) and the complete cell finite element model (Level III).

Compared with existing models of the RBC membrane (Discher et al., 1998;

Mukhopadhyay et al., 2002; Svetina et al., 2004), our model has the following

characteristics: (1) Our multiscale approach not only delivers accurate predic-

tions of whole-cell response (due to the involvement of the detailed molecular

structure and responses at different levels), but also allows us to address phys-

ical mechanisms at different length scales and to correlate mechanical loads on

the cell with detailed stress distributions within the composite structure. This

model has predicted phenomena that had never been found by other models (e.g.

bifurcation, mode switching, and stress-induced unstiffening due to unfolding)

(Zhu et al., 2007; Zhu and Asaro, 2008); (2) Our model explicitly incorporates

the local interactions between the skeleton and the bilayer, as well as the inter-

and intra-molecule interactions inside the skeleton; (3) This model is inherently
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dynamic and capable of studying time-dependent responses at different length

scales as presented in Chapter 4.

• We formulated a master-slave penalty contact algorithm for the interaction

between the lipid bilayer and the cytoskeleton, and the interaction between the

lipid bilayer and some rigid surfaces, e.g., the micropipette inner surface. This

algorithm makes it possible to study the bilayer-skeleton interaction force in the

molecular level.

• We predicted the resting shape of red blood cells using our multiscale model.

We found that the biconcave shape of healthy RBCs and the elliptical shape of

diseased RBCs (elliptocytosis) can be explained if the lipid bilayer has a positive

spontaneous curvature while the skeleton possesses a small shear stiffness.

• We found that the predicted complete cell deformations for quasi-static exper-

iments match well with the micropipette aspiration, optical tweezer stretch-

ing and flow channel stretching, especially for the skeleton under a prestress

T̄0 = −30pN/µm.

• We predicted the protein density variation in the micropipette aspiration. The

results match well with the micropipette aspiration experiment with the fluo-

rescence imaging and the existing molecular model by Discher et al. (1998).

• We calculated the bilayer-skeleton interaction forces of RBCs in the molecular

level for the micropipette aspiration. We found that the spectrin unfolding

may significantly increase this interaction force, which may lead to the bilayer-

skeleton separation and vesiculation.

• We simulated and explained the necking phenomenon in the micropipette aspi-

ration, and provided some information which cannot be observed in the exper-

iments, which may guide the experiments in the future.

• We predicted the critical bilayer-skeleton interaction force in the molecular

level which causes the bilayer-skeleton separatio by simulating the flow channel
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stretching experiment, and got consistent results with the adhesion energy the-

ory by Hochmuth and Marcus (2002) and the experimental data by Hochmuth

(1973).

• We developed an efficient, robust and accurate fluid-structure interaction al-

gorithm in the cell length scale by coupling the multiscale approach of the

membrane with a boundary element method of the surrounding Stokes flow.

• We incorporated the membrane viscoelasticity into the multiscale approach by

using a Voigt-Kelvin constitutive model. Furthermore, we employed a special

numerical algorithm to stabilize the implementation of this constitutive model.

• We formulated the friction between the lipid bilayer and the cytoskeleton based

on the mobilities of transmembrane proteins and calculated the hydrodynamic

drags on the cytoskeleton. We found that the bilayer-skeleton friction is much

larger than the hydrodynamic drag on the cytoskeleton.

• We investigated the skeleton density variation and the bilayer-skeleton inter-

action force of red blood cells in tube flow. We found that the skeleton den-

sity is large near the vessel wall, which may facilitate the biochemical interac-

tion between the RBC cytoskeleton and endothelial cells. We found the max-

imum bilayer-skeleton interaction force happens in the trailing edge of RBCs,

where the potential vesiculation may happen. The skeleton density and the

bilayer-skeleton interaction force we predicted are much smaller than those in

micropipette experiments. It may help explain why red blood cells are stable

and durable in microcirculation.

• We predicted the tank-treading frequency of a red blood cell in shear flow, which

is consistent with existing experiments. We found there is a linear dependence of

the tank-treading frequency on the extracellular fluid viscosity, which matches

well with the existing numerical studies and experiments. In addition, we found

that the membrane viscosity plays a vital role in determining the tank-treading

frequency.

• We showed that the skeleton density of the red blood cell almost doesn’t change
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in tank-treading motion due to the significant bilayer-skeleton friction. It is con-

sistent with the analysis by Fischer (1992), but contradicts with the numerical

results by Dodson and Dimitrakopoulos (2010).

• We studied the swinging motion of a red blood cell in shear flow, and found

consistent swinging frequency with the existing studies.

• We predicted the distributions of shear deformation, the bilayer-skeleton in-

teraction forces of a RBC in the tank-treading motion, and explained these

distributions by a simple analytical derivation.

• We investigated the effect of the cytoskeleton reference shape on the tank-

treading motion, and found that the cytoskeleton reference shape is close to a

spherical shape by comparing predicted cell shapes with experimental images.

6.2 Future Directions

There are still many open questions and ongoing research for the red blood

cell (RBC), e.g., the deformability of diseased RBCs and the inhomogeneity of the

membrane. Several aspects of our numerical methods can be polished as well. In the

following, we list several future directions.

• A concurrent multiscale model can be developed for problems with some singular

points, e.g. the flow channel stretching. In these singular points, such as the

attachment point in the flow channel stretching experiments, the deformation

and stress are very large, and the continuum model is not very appropriate. To

make the simulations more accurate, our molecular models (Level I and Level

II) can be employed in these small regions, while the continuum model (Level

III) can be used for the rest of the cell.

• Besides the spectrin unfolding, the head-to-head dissociation of spectrins also

plays an important role for the unstiffening behavior of the cytoskeleton, which

may be considered in our model in the future.
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• Currently we modeled the suspension complex as a pinning point. By exploring

the molecular structure of the suspension complex, we can build an exact model

of it and incorporate it to our multiscale approach.

• For the resting shape problem, a full phase diagram with parameters of skeleton

stiffness and bilayer spontaneous curve can be explored. In addition, the area-

difference-elasticity (ADE) theory can be incorporated in the finite element

method as shown in Appendix B. Furthermore, some experiments revealed

that the RBC membrane may be inhomogeneous, i.e., the membrane stiffness

of the dimple region may be different from the membrane stiffness of the rim

region. This membrane inhomogeneity may also contribute to the biconcave

shape of the cell, which can be considered by using our multiscale modeling

approach.

• Both the optical tweezer stretching and micropipette aspiration experiments

were also used to study the dynamic behaviors of the red blood cell based the

relaxation and creep. Our dynamic multiscale modeling approach can be used

directly to simulate these time-dependent experiments. In addition, sophisti-

cated constitutive laws, e.g., the fractional order constitutive model, can be

incorporated in our framework to fit the RBC dynamic responses.

• The dynamic multiscale model in Chapter 4 can be used to study the flow chan-

nel stretching experiment. The accuracy of the predictions may be significantly

improved.

• Instead of the Hughes-Liu shell element, the isogeometric Kirchhoff-Love shell

element (Benson et al., 2010) can be used in our approach to make the FEM/BEM

coupling algorithm more elegant, because the rotational degrees of freedom do

not exist for the isogeometric Kirchhoff-Love shell element.

• The fast boundary element methods, e.g., the fast multipole BEM (Liu, 2009)

and the pre-corrected FFT BEM, can be used to accelerate the FEM/BEM

coupling algorithm for large scale simulations of multiple red blood cells.

• The dynamic multiscale modeling approach can be employed to study how the
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spleen filters out the old and diseased red blood cells. RBCs may sustain much

large loads and deformations inside spleen, where blood flows from the red-

pulp cords (ends of small arterioles) to the venous sinuses and merges back into

the venous system (Mebius and Kraal, 2004). The venous sinuses are made

of parallel series of endothelial cells with slits between them. Normal RBCs

can pass through these slits, while aging, defected, or infected RBCs may be

stuck there, where they are phagocytosed by macrophages. Furthermore, the

contractility of the stress fibers in the endothelial cells can control the opening

of these slits and assist the retention of RBCs in the spleen. Further studies are

necessary to illustrate these processes.

• The deformability of the diseased red blood cells can be investigated further

using our multiscale modeling approach, including the membrane protein defects

in some hereditary RBC diseases, the sickle cell disease and the malaria (Fedosov

et al., 2010b).

• In the aspect of cellular mechanics, the red blood cell is a simple model sys-

tem for other cells, because it has no nucleus and is well characterized. The

multiscale modeling approach and microhydrodynamics we used for RBCs can

be extended to study other cells, e.g., white blood cells, yeast cells, endothelial

cells and cancer cells. However, these cells are usually more complicated due to

the nucleus and the 3D cytoskeleton.

• In terms of the fluid-structure interaction (FSI), RBCs ‘swim’ passively in the

blood flow. The approach we developed for studying the FSI of RBCs by cou-

pling finite element and boundary element methods can be also applied in bac-

teria swimming in a straightforward way.



Appendix A

Occurrence of Negative Area

Stiffness

During the course of our simulations, we noted the occurrence of what ap-

pears to be a negative area stiffness. To illustrate its existence associated with do-

main unfolding, we apply a simplified model and idealize the protein skeleton as a

two-dimensional mesh consisting of triangular units located within the (X, Y ) plane

(Dao et al., 2006). Each unit contains three Sp tetramers, whose configurations are

represented by the vectors a = (aX , aY ), b = (bX , bY ), and c = (cX , cY ). The stress

inside the network is then given as

σij =
1

2A
{F (a)

a
aiaj +

F (b)

b
bibj +

F (c)

c
cicj} − C

A2
δij, i, j = X, Y (A.1)

where a ≡ |a|, b ≡ |b|, and c ≡ |c|. A is the area occupied by the unit. F is the

function determining the tension inside a, b, and c. C is the steric coefficient (same

as the one in Eq. 2.36). The resulting pressure inside the protein skeleton Ps is

obtained as the trace of σij divided by -2. We have

Ps = − 1

4A
{aF (a) + bF (b) + cF (c)} +

C

A2
, (A.2)

In order for Ps to be zero at the natural state a = b = c = a0 and A = A0, the

constant C has to be C = 3
4
A0a0F (a0).

As an example, we consider an equibiaxial deformation in which the Sp tetramers
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are stretched by the same amount. For illustration, we assume that until the occur-

rence of unfolding the tension F can be described by the worm-like-chain (WLC)

model F = kBT
p

{ 1
4(1−x′)2 − 1

4
+ x′}, where p is the persistence length, x′ = a/L (L

is the contour length). Based upon our previous study (Zhu and Asaro, 2008), we

assume that unfolding occurs at x′ = x′
c = 0.85 and the post-unfolding behavior can

be approximated as F = c0 + c1(x
′ − x′

c)
1/2. As an example, we choose c0 = 6.1 pN

and c1 = 3 pN/m1/2. Following Dao et al. (2006), we choose a0 = 87 nm and L = 238

nm. We thus obtain a modified strain-stretch relation. By studying the pressure as a

function of A/A0 − 1, it is found that corresponding to the occurrence of unfolding,

the dependence of the pressure on A changes its direction at A/A0 ∼ 4.5. This clearly

indicates the existence of negative area stiffness.



Appendix B

Area-Differece-Elasticity Theory of

the Lipid Bilayer

For the lipid bilayer, the free bending energy functional Fpm[S] is given as

(Lim et al., 2008)

Fpm[S] = Fsc[S] + Fad[S] + Fg[S], (B.1)

where Fg[S] is Gaussian-curvature term, which is irrelevant (topological invariant)

according to Gauss-Bonnet theorem.

Fsc[S] =
κc

2

∮

S
dA [2H − C0]2 , (B.2)

Fad[S] =
πκ̄

2D2
0A0

(∆A[S] − ∆A0)2, (B.3)

where

H = (C1 + C2)/2, (B.4)

is the mean curvature.

∆A[S] = 2D0

∮

S
dA H, (B.5)

is the area difference of the two leaflets. ∆A0 is the initial area difference of the

two leaflets. κc and κ̄ are the regular bending stiffness and area-difference bending

stiffness, and αb = κ̄/κc. D0 is the distance between the midpoints of the two leaflets.
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Variation of Fpm[S] can be written as

δFpm[S] = δFsc[S] + δFad[S], (B.6)

where

δFsc[S] = −2κcC0

∮

S
dA H + 2κc

∮

S
dA H2, (B.7)

and

δFad[S] = 2κc
παb

D2
0A0

(∆A[S] − ∆A0)
∮

S
dA H. (B.8)

Combine Eq. B.7 and Eq. B.8, it gives

δFpm[S] = 2κc

∮

S
dA H2 − 2κcC

eff
0

∮

S
dA, (B.9)

where

Ceff
0 [S] = C0 − παb

D2
0A0

(∆A[S] − ∆A0). (B.10)

This means, the area difference elasticity (ADE) term can be corporated in

the spontaneous curvature model by replacing C0 by Ceff
0 [S], but it should be noticed

that Ceff
0 [S] is a functional of S while C0 is constant.

The deformation gradient tensor F, defined as

F =









F11 F12 F13

F21 F22 F23

F31 F32 F33









= F̂F̃, (B.11)

where F̂ is the deformation gradient caused by external loading and F̃ is the initial

deformation gradient caused by the spontaneous curvature Ceff
0 [S].

In finite element method, the area difference elasticity (ADE) term can be

incorporated by calculating

∆A[S] =
ne∑

e=1

(

A+
e − A−

e

)

=
ne∑

e=1

[

(J+
e − J−

e )A0
e

]

, (B.12)

where A+
e and A−

e are the areas at top and botttom surfaces and J+
e and J−

e are the

Jacobians at top and botttom surfaces.



Appendix C

Analysis of Two Stages in the

Micropipette Aspiration

Under large negative pressure, the aspiration process can be divided into two

stages as shown in Fig. C.1. In Stage I, the cell part outside the pipette is flaccid.

In Stage II, it becomes spherical. In Stage I, the relation between aspiration length

and pressure mainly depends on the elastic properties of the membrane, i.e. the

shear stiffness. In Stage II, this relation mainly depends on the compressibility of

the volume and the compressibility of the lipid bilayer (surface area). In an extreme

case, if the volume and the surface area of the cell is completely conserved, the cell

can sustain infinitely large negative pressure in Stage II, since any increase of the

aspiration length in Stage II will either increase surface area or decrease volume.

Figure C.1: (a) Stage I. (b) Stage II.
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Critical transition point between Stage I and II

The critical condition between Stage I and Stage II is that the volume V and

surface area A in Stage II should be equal to the initial volume V0 and A0. For a

cylindrical pipette, this condition leads to two equations as

A = 2πR2
p

︸ ︷︷ ︸

semi-sphere at cap Ap

+ (L − Rp) · 2πRp
︸ ︷︷ ︸

cylindrical part

+
[

4πR2
s − 2π(R2

s − Rs

√

R2
s − R2

p)
]

︸ ︷︷ ︸

sphere outside pipette As

= A0Ca

(C.1)

V =
2

3
πR3

p
︸ ︷︷ ︸

semi-sphere at cap

+ (L − Rp) · πR2
p

︸ ︷︷ ︸

cylindrical part

+
[
4

3
πR3

s − π(Rsh
2 − 1

3
h3)

]

︸ ︷︷ ︸

sphere outside pipette

= V0Cv (C.2)

where L is the aspiration length, Rs is the radius of the cell part outside the pipette.

For example, if the pipette radius Rp = 0.59µm. A0 = 129.2µm2 and V0 = 88.0µm3

are the initial area and volume of a cell with diameter 7.65µm. Cv and Ca are the

ratios of volume and surface area change. Cv = 1.0, Ca = 1.0 at this critical condition

because of incompressibility. h = Rs −
√

R2
s − R2

p is the height of the overlap part of

outside sphere and the inner cylinder.

Notice that only two unknowns L and Rs in Eqns.C.1 and C.2, so that they

can be solved together. Then we get L = 11.8997µm, Rs = 2.6189µm at this critical

transition point. They are consistent with the experiments.

Deformation in Stage II

After the critical transition point, the volume of the cell will decrease when

the cell continues to deform in Stage II. Since the area change is less than 1% under

pressure of 1000 mm H2O (Evans and Waugh, 1977), we neglect the area change, i.e.

Ca = 1.0. The volume change can be calculated as Evans and Waugh (1977)

V0 − V

V0

= 1.0 − Cv =
4RwT̄

βCi

(

Ap/2Rp + As/2Rs

Ap + As

)

(C.3)

where Rw = 0.6 is the fraction of total cell volume that is water, β = RT is the

gas constant (R = 8.314471JK−1mol−1) times absolute temperature T = 300K.
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Ci ≈ 0.003 ∼ 0.3 × 103mol/m3 is the molar concentrations of solute, T̄ = ∆P Rp

2(1−Rp/Rs)

is the isotropic tension in the membrane.

Notice that since Cv becomes another unknown in Stage II, there are three

unknowns (Cv,L and Rs) in Equations C.1,C.2 and C.3, they can be solved together.

For pressure of 550 mm H2O and molar concentration of Ci = 0.004 × 103mol/m3 ,

we get L = 14.2003µm, which is consistent with experiment. We get Rs = 2.4650µm,

which is a little bit smaller than the diameter of 5.7µm (Rs = 2.85µm) measured

in experiment, and Cv = 0.89, which is consistent with the experimental result by

Engstrom and Meiselman (1996).
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