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ARTICLE

Integrating central nervous system metagenomics
and host response for diagnosis of tuberculosis
meningitis and its mimics
P. S. Ramachandran1,2,3,4,14, A. Ramesh1,14, F. V. Creswell 5,6,7, A. Wapniarski 1, R. Narendra 1,

C. M. Quinn8, E. B. Tran8, M. K. Rutakingirwa6, A. S. Bangdiwala9, E. Kagimu6, K. T. Kandole6, K. C. Zorn 4,10,

L. Tugume6, J. Kasibante6, K. Ssebambulidde 6, M. Okirwoth6, N. C. Bahr11, A. Musubire6, C. P. Skipper6,9,

C. Fouassier1, A. Lyden12, P. Serpa12, G. Castaneda12, S. Caldera12, V. Ahyong12, J. L. DeRisi4,10,12,

C. Langelier 12,13, E. D. Crawford12, D. R. Boulware 9, D. B. Meya6,9 & M. R. Wilson 1,3,4✉

The epidemiology of infectious causes of meningitis in sub-Saharan Africa is not well

understood, and a common cause of meningitis in this region, Mycobacterium tuberculosis

(TB), is notoriously hard to diagnose. Here we show that integrating cerebrospinal fluid (CSF)

metagenomic next-generation sequencing (mNGS) with a host gene expression-based

machine learning classifier (MLC) enhances diagnostic accuracy for TB meningitis (TBM) and

its mimics. 368 HIV-infected Ugandan adults with subacute meningitis were prospectively

enrolled. Total RNA and DNA CSF mNGS libraries were sequenced to identify meningitis

pathogens. In parallel, a CSF host transcriptomic MLC to distinguish between TBM and other

infections was trained and then evaluated in a blinded fashion on an independent dataset.

mNGS identifies an array of infectious TBM mimics (and co-infections), including emerging,

treatable, and vaccine-preventable pathogens including Wesselsbron virus, Toxoplasma

gondii, Streptococcus pneumoniae, Nocardia brasiliensis, measles virus and cytomegalovirus. By

leveraging the specificity of mNGS and the sensitivity of an MLC created from CSF host

transcriptomes, the combined assay has high sensitivity (88.9%) and specificity (86.7%) for

the detection of TBM and its many mimics. Furthermore, we achieve comparable combined

assay performance at sequencing depths more amenable to performing diagnostic mNGS in

low resource settings.
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M ycobacterium tuberculosis (TB) affects 10 million
(8.9–11 million) people worldwide and carries devas-
tating consequences, including ~1.2 million deaths in

2019 alone. With significant public health resources required for
the COVID-19 pandemic, the global TB burden will likely only
increase in the coming years1,2. Meningitis is the most severe
complication of TB, carrying a 50–60% mortality rate in persons
living with HIV3. The diagnosis of TB meningitis (TBM) is
notoriously difficult yet essential, as early and appropriate treat-
ment is critical to prevent significant morbidity and mortality4.
Due to the paucibacillary nature of TB infection in the central
nervous system (CNS), culture and nucleic acid detection (e.g.,
TB PCR) are insensitive diagnostic tools4–7 compared to the TBM
Uniform Case Definition (UCD), which was created to standar-
dize research studies8. However, the clinical, radiological, and
laboratory criteria that comprise the UCD lack specificity9. Thus,
there is a double-edged problem of patients with delayed or
missed diagnoses of TBM due to the inadequate sensitivity of
available diagnostic tests as well as patients inappropriately
diagnosed and empirically treated for TBM based on nonspecific
clinical, laboratory, and radiologic criteria who have other
infectious (and non-infectious) causes of meningitis10–12.

Metagenomic next-generation sequencing (mNGS) is a vali-
dated diagnostic assay for neuroinfectious diseases that can test
for a wide variety of infections by amplifying all the genetic
material (host and pathogen) from a cerebrospinal fluid (CSF)
sample13. We and others have published case reports and case
series demonstrating that CSF mNGS can diagnose TBM (and
other infections that can clinically mimic TBM). These studies
suggest that mNGS is specific but only moderately sensitive for
detecting the small amounts of TB nucleic acid in the CSF of
patients with TBM10,11,14–16. Here, we investigated the clinical
utility of CSF mNGS in a large population of prospectively
enrolled Ugandan adults living with HIV and suspected TBM.
We sought to enhance test performance by leveraging the human
gene expression component of the CSF mNGS data to develop a
complementary machine learning classifier (MLC) that cate-
gorizes patients as having TBM or not. While host-based MLCs
derived from blood and respiratory fluids are increasingly avail-
able to distinguish between infectious and non-infectious diseases
(including TB)17–21, the picogram quantities of RNA in a typical
CSF sample have thus far stymied the development of analogous
host-based classifiers for patients with neuroinflammatory
disease.

Results
Cohort demographics. From 2018–2019, 368 patients consented
for the study. The median age was 35 years [IQR 29–41 years]
with 42.7% female. Among the patients for whom the CD4 cell
count was measured (n= 95), the median was 41 cells/mm3 [IQR
13–80 cells/mm3]. At the time of admission, 181 patients (49.1%)
were documented as being on antiretroviral therapy (ART), with
41/181 (22.6%) of these patients known to have commenced ART
in the prior month. Median duration of headache prior to
admission was 14 days [IQR 7–21 days]. Median Glasgow Coma
Scale (GCS) at presentation was 14 [IQR 14–15], 185/362 (51.1%
of those with known GCS) had GCS < 15. Mortality at discharge
or last contact was 25.9% (94/362) (Table 1).

CSF was collected for mNGS from 368 patients. Of note, a
second CSF sample was available for 14 patients, and results are
represented as pathogens detected per patient, not per sample.
Basic CSF studies (i.e., cell counts, chemistry) are listed in Table 1.
One hundred eighty (48.9%) were diagnosed with cryptococcal
meningitis (CM) based on: a positive serum cryptococcal antigen
(CrAg) as well as a positive CSF CrAg and/or positive fungal

culture (Not-TBM group). 2.9% (11/368) of patients were
diagnosed with bacterial meningitis (Not-TBM group). 10/366
(2.7%) were diagnosed as viral meningitis (Not-TBM group).

Sixty-three patients (17.1%) were classified as probable or
definite TBM, of which 61.9% (39/63) had definite TBM and 38%
(24/63) were classified as probable TBM. Definite TBM was
diagnosed by Xpert MTB/RIF Ultra in 97.4% (38/39) of cases.
66.6% (12/18) of cases were TB culture positive (11/18 cases were
positive for TB by both Xpert MTB/RIF Ultra and culture).
16.3% (60/368) of cases were classified as possible TBM. 11.9%
(44/368) were categorized as indeterminate. Nine cases had
missing data for their TBM UCD score, 6 of these cases had
cryptococcal antigenemia, and 3 cases had a final hospital
diagnosis listed as unknown. These patients were classified as
indeterminate.

Training and test cohorts. Two hundred forty patients were
included in the training cohort, ~2/3 of the cohort. Within this
cohort, 70 samples had either definite TBM or some other neu-
rological disease (OND) (see Methods) and were used for the
training of the MLC. The learning curves generated show that
further addition of samples would have diminishing improve-
ments to performance of the classifier (Supplementary Fig. 1).
One hundred thirty patients were included in the test cohort.
Apart from two cases, cases were exclusive to either the training
or test cohorts. In one case, the CSF was used in both the training
and test cohorts, and in the other case, CSF collections from
2 separate days from a single case were split between the training
and test cohorts. In the training cohort, the percentage of cases
with definite TBM was 12.6% (n= 30) whereas in the test cohort,
it was 6.3% (n= 8) (Supplementary Table 1).

Training cohort mNGS results. Median sequencing depth for the
RNA-Seq libraries after removal of External RNA Control Con-
sortium (ERCC) sequences (both through bioinformatic filtering
and depletion of abundant sequences by hybridization (DASH))22,23

was 5,668,087 paired-end reads (IQR 2,804,906–13,858,372). The
median RNA input mass was 4.37 pg (0.8–1326.4 pg). The median
sequencing depth for the DNA-Seq libraries was 27,341,015 (IQR
19,161,771–32,158,040). Transcripts aligning to an average of 3212
protein-coding genes (113–5335) were detected. We did not observe
a strong correlation between the total number of protein-coding
genes for which transcripts were detected in each sample and RNA
mass, cell count, and library preparation method (i.e., with or
without ERCC DASH) (Supplementary Fig. 2A).

TBM detection by mNGS. We evaluated all definite TBM cases
that were mNGS positive for TB. The median number of
sequences aligning to the TB genome was 24 in the DNA-seq
libraries (2–552 sequences) (median 1.4 reads per million reads
(rpM) sequenced, 0.1–25.2 rPM), and 3683 in the RNA-seq
libraries (1–116,083 sequences) (median 155.7 rPM, 0.1–9050
rpM). No TB reads were detected in the 8 “no template” water
controls. Given the very low abundance of TB reads in definite
TBM CSF and the lack of any TB sequences detected in the “no
template” water controls, detection of TB by mNGS was defined
as 1 or more sequences, with the entire sequence aligning (with
no alignment to any other mycobacterial species) to the TB
genome with ≥98% nucleotide sequence identity.

Training cohort machine learning classifier. Seventy micro-
biologically proven samples (TBM: n= 32 and OND: n= 38)
infections, identified in the training cohort, were used for the
training of the MLC. Samples were sequenced across two batches
(TBM: batch 1 (n= 12), batch 2 (n= 20); OND: batch 1 (n= 19),
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batch 2 (n= 19)) to mitigate batch effects. Sixteen thousand six
hundred seventeen different iterations of the classifier were run to
determine the optimal parameters: all combinations of five ML
methods (with parameters) with/without feature selection, addi-
tion of the co-variate matrix variables before/after feature selec-
tion, class weights (TBM, OND) and prior count for logCPM. We
wanted to identify a small set of features to distinguish the TBM
versus OND, and hence chose L1 regularization. The first round
of iterations (n= 16,050) of the classifier was bootstrapped 100
times. A second round of iterations (n= 567) to fine tune the
classifier was run 1000 times. A cutoff of ≥50% was used for the
diagnosis of TBM.

Two support vector machine (SVM) classifiers, with L1
regularization (regularization parameter C= 0.1), independent
of the co-variate matrix, with highest sensitivities were chosen:
MLC1 and MLC2. MLC1 had a prior count= 75, and top 50
features, and MLC2 had a prior count= 75, top 40 features and
class weight for TBM= 2. This class weight of 2 further increased
the sensitivity of TBM detection in our training cohort.

MLC1 had an area under the receiver operator characteristics
curve (AUC)= 0.94, sensitivity= 0.84 and specificity= 0.95 on
the training cohort. Of the 10 resequenced samples, MLC1
classified 4/5 TBM and 5/5 OND correctly. A total of 15 genes
were used to classify TBM and 111 genes to classify OND
(bootstrap= 1000) (Supplementary Data 1). For the TBM group,
four genes were used predominantly (>500/1000 bootstrap) for
classification: FTL (528/1000), NFKBIA (674/1000), SOD2 (999/
1000), and GBP5 (1000/1000). For the OND group, three genes
were used predominantly for classification: EEF1A1 (532/1000),
TMSB4X (544/1000), and ACTB (717/1000). We created two
additional classifiers (SVM, C= 0.1, prior count= 75) based on
these top genes to classify TBM vs. OND: a four-gene (FTL,
NFKBIA, SOD2, and GBP5) and seven-gene (FTL, NFKBIA,
SOD2, GBP5, EEF1A1, TMSB4X, and ACTB) classifier. In the
main manuscript we only discuss results from MLC1. Perfor-
mance of the MLC2, four-gene and seven-gene classifiers are
described in the Supplementary Information (Supplementary
Note 1).

Test cohort mNGS and MLC detection of TBM. Median
sequencing depth for RNA-seq after removal of ERCCs (both
through bioinformatic filtering and DASH) was 2,576,270 (IQR
1,274,462–13,761,173). The median sequencing depth for DNA-
seq was 21,698,038 (IQR 9,842,494–29,087,373) The median RNA
mass was 7.03 pg (2.7–4750 pg).

There were nine cases of definite TBM and 13 probable TBM
cases in the test cohort. mNGS detected TB in six of the definite
TBM cases, for a sensitivity of 6/9 (66.6%). In the probable TBM
group, mNGS detected one case of TB, one case of Toxoplasma
gondii, one case of C. neoformans, one case of T. gondii and
varicella zoster virus (VZV) co-infection, and one case of T.
gondii and C. neoformans co-infection. The case with T. gondii
and C. neoformans co-infection was a repeat CSF sample present
in the training cohort which the authors were blinded to.

The MLC correctly called seven out of nine cases of definite
TBM as TBM for a sensitivity of 77.7%. The MLC called three
cases as TBM in the probable TBM group. One of these cases had
TB detected by mNGS (Fig. 1), and the other two cases had no
pathogen identified. We compared the MLC failures and
successes and saw no statistically significant differences regarding
their RNA mass, CSF cell counts or the number of protein-coding
genes with non-zero counts (Supplementary Fig. 2B).

mNGS results for entire cohort. Sequences aligning to M.
tuberculosis were detected by RNA-seq, DNA-seq or both in 37

cases throughout the cohort (Supplementary Table 2). TB was
detected by mNGS in 74.4% (29/39) of definite TBM cases. TB
was detected by mNGS in 12.5% (3/24) of cases classified as
probable TBM (i.e., negative CSF TB PCR and TB culture). Thus,
overall sensitivity for detecting TB by mNGS in cases defined as
definite or probable TBM was 50.8% (32/63). Sensitivity increased
to 54.2% (32/59) when excluding cases from the probable TBM
group in which mNGS detected alternate infections. TB was
detected in 3.8% (4/104) of cases classified as possible TBM or
indeterminate. TB was identified as a co-infection in one patient
with CM (Not-TBM group) for whom TB culture and Xpert Ultra
had not been performed. Regarding alternate infections, one
definite TBM case had a T. gondii co-infection detected by
mNGS. As stated, mNGS detected four cases with non-TB
infections in the probable TBM group, including three cases
previously mentioned in the test cohort results section (C. neo-
formans in one case, T. gondii in one case and a T. gondii and
VZV co-infection in another), and one case of a T. gondii and C.
neoformans co-infection in the training cohort.

Viral infections. Nineteen neuroinvasive viruses (other than
HIV-1) were detected by mNGS across the entire cohort
(Table 2). As described above, VZV was detected as a co-infection
with T. gondii in a case classified as probable TBM. Ten viruses
were detected in the possible TBM and indeterminate groups
(herpes simplex virus type 1 (HSV-1) n= 1, HSV-2 n= 1, VZV
n= 3, cytomegalovirus (CMV) n= 2, human parvovirus B19
n= 1, rubella virus n= 1, Wesselsbron virus n= 1). Wesselsbron
virus, a neuroinvasive flavivirus endemic to sub-Saharan
Africa24,25, was identified along with TB (see Supplementary
Information for clinical history). mNGS yielded 5739.5 rPM with
96.1% coverage across the Wesselsbron virus genome (Fig. 2D
and Supplementary methods for phylogenetic tree).

Nine additional viruses were detected in the Not-TBM group:
HSV-2 n= 1, VZV n= 2, CMV n= 1, human parvovirus B19
n= 1, measles virus n= 1, John Cunningham (JC) virus n= 1,
and Epstein-Barr virus (EBV) n= 2 were detected as co-
infections in patients with CM (Fig. 2C). In addition, viral reads
to likely nonpathogenic viruses were detected (Supplementary
Data 2).

Bacterial infections. We identified nine cases of bacterial
meningitis, including four cases of Streptococcus pneumoniae
(Fig. 2C). All four of the cases were categorized as acute bacterial
meningitis by hospital discharge diagnosis (Not-TBM group)
(Table 2). One case of Nocardia brasiliensis was detected by CSF
mNGS in a patient classified as possible TBM. Four cases of
Neisseria meningitidis were detected. Two of these cases had a
clinical diagnosis of bacterial meningitis (Not-TBM group). One
case was in the possible / indeterminate group, and the other case
was a co-infection in a patient with CM (Not-TBM group).
mNGS also detected C. neoformans in this case (9.21 rPM).

Parasitic infections. Fifteen cases of T. gondii were identified.
One case was identified as a co-infection in a patient with definite
TBM, three cases were identified in patients classified as probable
TBM, one case which also had C. neoformans identified on mNGS
(CSF CrAg negative), and another with a co-infection with VZV
(as described above). Six cases of T. gondii were identified in
patients classified as possible TBM, and four were identified as co-
infections in patients with CM (Table 2).

A combined microbial and host-based MLC assay for diag-
nosing TBM and its mimics in a Ugandan HIV-positive cohort.
The host MLC alone classified cases in the blinded test set as
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TBM vs OND with a sensitivity of 77.8% (CI: 40–97.2%) (7/9)
sensitive and 76% (CI: 64.8–85.1%) (57/75) specific with an AUC
of 0.74 (p= 0.02). The combined mNGS and host MLC displayed
88.9% (CI:51.8–99.7%) (8/9) sensitivity, 86.7% (CI:76.8–93.4%)
(65/75) specificity, with an AUC of 0.87 (p= 0.0003). Con-
cordance was 50% (11/22) against the UCD of definite and
probable TBM and 61% (11/18) when cases of non-TB pathogens
detected in the probable group were excluded. The combined
assay detected three cases of TB in the probable TBM group and
eight additional TBM cases initially classified as possible TBM.
Improvement in specificity of the combined assay from the
standalone host MLC classifier was due to eight cases that were

classified as TBM by the MLC but were found to have other
pathogens detected on mNGS, which overruled the MLC classi-
fication. These were three cases of N. meningitidis, three cases of
C. neoformans, one case of VZV, and one case of EBV. One case
of definite TBM had lumbar punctures (LPs) performed on days 1
and 3 post-initiation of TBM treatment. Day 1 CSF was used as
part of the MLC training cohort, and TB was detected by mNGS.
Day 3 CSF was used in the test cohort to which the authors were
blinded. mNGS failed to detect TB in the day 3 CSF; however, the
MLC still classified this sample as TBM. We considered this a
failure of TB detection by mNGS when analyzing the test
cohort data.

Fig. 1 Development of a host-based machine learning classifier from cerebrospinal fluid RNA-seq data. AWorkflow for creation of the machine learning
classifier using 70 microbiologically proven samples, through PCR or conventional testing, identified in the training cohort. B Most predictive 4 genes of a
15 gene classifier to classify TBM vs OND. C Left: ROC curve for the combined mNGS and MLC assay. Blue dotted line is the MLC assay alone, and the
green solid line is the combined assay. If the MLC categorized a case as TBM, but mNGS detected a non-TB pathogen, then mNGS overruled the MLC
result, thus increasing specificity of the overall assay. Right: In silico prediction of shallow depth (i.e., 100,000 reads for the RNA-seq library and 500,000
reads for the DNA-seq library) sequencing results. Pink dotted line is the MLC assay alone, red solid line is combined assay with mNGS. Current cost
prediction for shallow depth sequencing in $75 per patient. CPM counts per million, GBP5 guanylate binding protein 5, FTL ferritin light chain, NFKBIA NF-
kappa-B inhibitor alpha, SOD2 superoxide dismutase 2, TBM tuberculous meningitis, OND other neurological disease, MLC machine learning classifier,
mNGS metagenomic next-generation sequencing, AUC area under the receiver operator curve. Source data are provided as a Source Data file.
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In silico evaluation of mNGS and host gene expression MLC
with shallow depth sequencing for low resource settings.
Shallow depth sequencing of the test set had no impact on MLC
sensitivity or specificity: MLC1 correctly identified 7/9 definite
TBM cases (100% concordance with deep sequencing MLC
results) as TBM, and 59/75 OND cases as OND at all subsampled
depths down to 100,000 reads. The final AUC, sensitivity, and
specificity for the MLC1 were calculated once the optimal
threshold was determined for the mNGS assay.

mNGS subsampling. mNGS results from the original samples
were used as a baseline for comparison at various subsampling
depths. DNA-seq libraries in which TB was detected for the entire
cohort at the original sequencing depth (n= 25) had TB detected

with 56% sensitivity (14/25) at 2,000,000 reads and 32% sensi-
tivity at 500,000 reads (8/25). RNA-seq libraries in which TB was
detected for the entire cohort at the original sequencing depth
(n= 9) had TB detected with 100% sensitivity (9/9) at a sub-
sampling depth of 2,000,000 reads and 88.9% sensitivity (8/9) at
100,000 reads (Supplementary Table 3).

For non-TB pathogens, 15 DNA and 6 RNA samples consisting
of viral, bacterial, and parasitic infections were analyzed, including
one sample with a co-infection. For DNA-seq, at a subsample
depth of 500,000 reads, mNGS detected 100% of the pathogens that
were detected at the original sequencing depth. At the lowest
subsample depth of 100,000 reads, 13/15 (86.67%) of pathogens
were detected. When subsampling RNA-seq libraries at a depth of
2,000,000 or 100,000 reads, 6/6 (100%) of pathogens detected at the
original sequencing depths were detected (Supplementary Table 3).

Table 2 All non-TBM pathogens detected in entire cohort.

Patient Pathogen rPM (DNA/RNA) Orthogonal confirmation Group Co-infection Cohort

1 HSV-1 391.4 PCR Possible TBM/Indeterminate Training
2 HSV-2 189 PCRa not-TBM Training
3 HSV-2 8.1 PCR Possible TBM/Indeterminate T. gondii Training
4 VZV 4660.1 PCR Possible TBM/Indeterminate Training
5 VZV 6823.1 PCR Possible TBM/Indeterminate Training
6 VZV 7065.4 PCR Probable TBM T. gondii Test
7 VZV 21.8 PCR not-TBM CM Training
8 VZV 5.1 PCRa not-TBM Training
9 VZV 741.9 PCR Possible TBM/Indeterminate Test
10 CMV 5607.5 PCR Possible TBM/Indeterminate Training
11 CMV 223.2 PCRa not-TBM CM Training
12 CMV 377.9 PCR Possible TBM/Indeterminate Test
13 Parvovirus B19 181.6 PCR Possible TBM/Indeterminate CM Training
14 Parvovirus B19 78.5 PCR not-TBM Training
15 Measles virus 6663.2 mNGS not-TBM CM Training
16 Wesselsbron virus 5739.5 mNGS Possible TBM/Indeterminate TB Training
17 Rubella virus 37.3 mNGS Possible TBM/Indeterminate Training
18 EBV 787.3 mNGS not-TBM Test
19 EBV 80 mNGS not-TBM Test
20 JCV 1.5 mNGS not-TBM CM Training
21 Nocardia brasiliensis 465.5 mNGS Possible TBM/Indeterminate Training
3 T. gondii 3799.7 PCR Possible TBM/Indeterminate HSV-2 Training
22 T. gondii 2305.4 PCR Definite TB TB Training
23 T. gondii 1838.9 PCR Possible TBM/Indeterminate Test
24 T. gondii 242.4 PCR Probable TBM CM Training
25 T. gondii 653.7 PCR not-TBM CM Training
26 T. gondii 847.1 PCR Possible TBM/Indeterminate Training
27 T. gondii 362.3 PCR Possible TBM/Indeterminate Training
28 T. gondii 355.4 PCR not-TBM CM Training
29 T. gondii 572.5 PCR Possible TBM/Indeterminate Test
30 T. gondii 626.7 PCR Possible TBM/Indeterminate Test
31 T. gondii 369.1 PCR not-TBM CM Test
6 T. gondii 251.3 PCR Probable TBM VZV Test
32 T. gondii 31.9 PCR not-TBM CM Training
33 T. gondii 4960 PCR Probable TBM Test
34 T. gondii 4956.2 PCR Possible Indete/

Indeterminate
Test

35 S. pneumoniae 232.1/644.4 mNGS not-TBM Training
36 S. pneumoniae 4015.8/4381.1 PCRa not-TBM Training
37 S. pneumoniae 1728.4/868211.2 PCRa not-TBM Training
160 S. pneumoniae 66.0/296.1 mNGS Not_TBM Training
38 N. meningitidis 365.2/930.3 mNGS not-TBM Test
39 N. meningitidis 1964.1/22646.3 PCRa not-TBM Test
40 N. meningitidis 894.3/1144.5 mNGS Possible Indete/

Indeterminate
Test

41 N. meningitidis 402.1/767.6 mNGS not-TBM CM Test

HSV herpes simplex virus, VZV varicella zoster virus, CMV cytomegalovirus, EBV Epstein-Barr virus, JCV JC virus, PCR polymerase chain reaction, mNGS metagenomic next-generation sequencing, TB
Mycobacterium tuberculosis, CM cryptococcal meningitis.
aOrthogonal testing confirmed with Biofire.
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Based on these results, the optimal sequencing depth for the
detection of non-TBM pathogens was considered 100,000 paired-
end reads for RNA-seq and 500,000 pair end reads for DNA-seq.
While TB detection by mNGS at shallow sequencing depths was
insensitive, the MLC classifier still maintained similar sensitivity to
classify TBM at 100,000 paired-end reads. We therefore reran all
microbiologically proven samples from the final test cohort
(n= 84) at 100,000 reads for RNA-seq and 500,000 reads for
DNA-seq for through the MLC and the open source, cloud-based
metagenomics pipeline (Chan Zuckerberg ID or CZID)26 pipeline
to assess AUC, sensitivity and specificity of our in silico low depth

sequencing model. The MLC had an AUC of 0.76 (p= 0.01) with a
sensitivity of 77.8 (CI:40–97.2%) and a specificity of 78.7
(CI:67.8–87.3%). The combined MLC and mNGS assay had an
AUC of 0.88 (p= 0.0002) with a sensitivity of 88.9%
(CI:51.8–99.7%) and a specificity of 88% (CI:78.4–94.4%) (Fig. 1C).

Cost analysis. At a depth of 100,000 reads for the RNA library
and 500,000 reads for the DNA library, one sample would require
600,000 total paired-end reads. An Illumina iSeq generates
8,000,000 paired-end reads per flow cell. Thus, at 600,000 reads

Fig. 2 Pathogen detection by mNGS. A Detection of TB for entire cohort. Blue circle represents definite TBM (i.e., detected by GeneXpert Ultra and/or
culture). Pink circle represents probable TBM cases based on clinical consensus but GeneXpert Ultra and/or culture negative. Green circle is TBM detected
by mNGS. Five additional cases of TBM were detected in possible TB, indeterminate and Not-TBM groups. B Breakdown of pathogens found in possible
TBM and indeterminate groups. C Top two graphs are log10(rPM) for normalized DNA-seq and RNA-seq reads to Streptococcus pneumoniae and Neisseria
meningitidis detected in every sample sequenced. Red dots indicate samples with greater than 1 log fold abundance greater than the mean cohort
abundance in both the DNA-seq and RNA-seq datasets relative to the remaining cohort. Red dots circled in black indicate samples that were diagnosed as
bacterial meningitis during hospital admission in Uganda. Bottom two graphs demonstrate a similar method performed for Epstein-Barr virus and
cytomegalovirus as both these viruses can be seen in low abundance in neuroinflammatory conditions. Red dots indicate samples with Epstein-Barr virus or
cytomegalovirus with rPM 2 log fold higher than the mean cohort abundance in DNA-seq. D Phylogenetic tree for Wesselsbron virus detected in 1 patient
in the possible TBM group. Phylogenetic tree was built with a multiple sequence alignment using the assembled genome and reference genomes obtained
from National Center for Biotechnology Information. The best-fitting evolutionary model was picked by ModelTest-NGv0.1.5, and a phylogenetic tree was
built using RAxML-ng v0.6.0. Scale bar indicates length associated with 4.0 nucleotide substitutions. TBM tuberculous meningitis, TB Mycobacterium
tuberculosis, mNGS metagenomic next-generation sequencing, RNA-seq ribonucleic acid sequencing, DNA-seq deoxyribonucleic acid sequencing, rPM
reads per million. Source data are provided as a Source Data file.
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per sample, it would be possible to evaluate 13 samples/run. The
current cost of the iSeq cartridge at the time of writing was
$USD495, or $38 per sample. With our current library prepara-
tion protocol, the total cost of reagents would be $28.25/sample at
a 0.5× reaction volume with the NEBNext® Ultra™ II kits: NEB-
Next Ultra II RNA library kit (NEB Cat No. E7770) $15.75/
sample, NEBNext® Ultra™ II FS DNA Library Prep Kit (E7805L)
$12.50/sample. SPRIselect 450 mL reagent kit (B23319) $5/sam-
ple, and QIAseq FastSelect—rRNA HMR Kit (334386) at 1:100
dilution $4.60/sample. The overall cost/sample would be $75.85,
excluding the upfront costs of the Illumina iSeq and ongoing
service contracts.

Discussion
Characterizing the epidemiology of infectious and non-infectious
etiologies of meningitis and encephalitis is inherently challenging
and only compounded by the limited diagnostic capacity in sub-
Saharan Africa27–29. Because of the high prevalence of advanced
HIV-1 and TB infections in Uganda, C. neoformans and TB are
the most commonly diagnosed causes of meningitis. Yet, the
etiology of many other cases of meningitis and/or encephalitis is
never known30. Here, we utilized unbiased CSF mNGS to obtain a
more comprehensive profile of neurologic infections (and co-
infections) in Ugandan adults with subacute meningitis living
with HIV. We identified many treatable and vaccine-preventable
infections. In addition, we describe the first use of human tran-
scriptomic data generated by a CSF mNGS assay to combine
direct detection of pathogens with a host-based MLC that iden-
tifies patients with or without TBM.

The diagnosis of TBM remains difficult due to the paucibacillary
nature of the disease. While mNGS can detect TB in CSF, mNGS
still has limited sensitivity, akin to TB PCR14–16. Here, mNGS
demonstrated 74.4% concordance against microbiologically con-
firmed cases of TBM (i.e., definite TBM) and 54.2% concordance
against the UCD of definite and probable TBM after removing
probable TBM cases in whom mNGS identified an alternate
infection. We detected an additional five cases of TBM missed by
conventional testing in the possible TBM and indeterminate
groups and a sixth case in a patient diagnosed with CM (Not-TBM
group), who did not undergo conventional testing for TBM.

mNGS identified 43 additional neurological infections that
were either sole or co-infections, including neuroinvasive viruses
like Wesselsbron virus, a flavivirus endemic to the region that
mainly infects livestock24 but with several reports of human
infections, including neuroinvasive disease25,31. This virus was
present in a patient co-infected with TB (Supplementary Infor-
mation). We also identified 14 cases of treatable viruses (HSV-1,
HSV-2, VZV, CMV, and EBV) and 2 vaccine-preventable viruses
(measles virus and rubella virus). Measles can present with
varying CNS manifestations, including measles inclusion body
encephalitis occurring in HIV-infected patients32. Two cases of
human parvovirus B19 were detected. Neurological manifesta-
tions of human parvovirus B19 have been previously described in
both immunocompetent and immunocompromised patients33. In
addition to viral infections, we found 15 cases of CNS tox-
oplasmosis and 1 case of CNS Nocardia, highly morbid but
treatable conditions if diagnosed early34,35.

Despite the relatively pauci-cellular content of many CSF samples
in this cohort of immunocompromised patients, we recovered a rich
human gene expression dataset, detecting transcripts to an average
of more than 3000 genes/sample. Leveraging these data, we built a
sensitive MLC to distinguish TBM from ONDs that can mimic
TBM. Five of six definite TBM cases in the test cohort were classified
correctly, improving upon the direct detection of TB in 3/6 cases by
mNGS. Our MLC primarily uses four genes to classify TBM: GBP5,

SOD2, NFKBIA, and FTL. GBP5, which promotes NLRP3 inflam-
masome responses to pathogenic bacteria36,37, and is part of a 3
gene signature (GBP5, DUSP3, and KLF2) that distinguishes active
pulmonary TB from other infections38,39. Additional studies using
GBP5 have also distinguished TB from non-TB pneumonia with
>90% sensitivity and specificity40,41. The three other primary genes
(SOD2, NFKBIA, and FTL) used in our MLC have not been
described in other TB host gene expression signatures. Interestingly,
SOD2-mediated acidification of phagosomes has been shown to
promote survival of TB in their host and serves as a marker for
oxidative stress42–44. Ferritin has been recognized as an important
factor in host immunity against TB, and ferritin heavy chain in
particular has been shown to protect against TB in murine studies45.
NFKBIA is a member of the NF-kappa-B (NF-κB) inhibitor family.
NF-κB signaling dynamics, triggered via tumor necrosis factor-α
binding to receptors on macrophages, has been shown to play a key
role for survival of TB46. Particularly, Bai et al., reported that NF-κB
inhibition, decreased survival of TB in macrophages47.

Overall, the MLC was optimized for high sensitivity, but there
was a trade-off with specificity. The MLC performed poorly
classifying OND cases that had infections which were not present
in the training cohort. For instance, three of four cases of N.
meningitidis were classified as TBM. Fortunately, coupling case
classification by the host MLC with direct detection of pathogens
by mNGS enhanced the overall specificity of the assay. In other
words, direct detection of a pathogen by mNGS overruled the
MLC if a pathogen other than TB was detected. Training the
MLC on a larger cohort of patients with a wider range of ONDs
will further improve accuracy.

Implementing these technologies in low resource settings is
critical to improve prospective diagnoses and the institution of
appropriate therapies. The utility of our diagnostic tool is not
only its ability to detect TB, but also co-infections and infectious
TB mimics with enhanced sensitivity for TB enabled by the host
MLC analysis whose data are generated as part of the mNGS
assay. Our in silico analyses suggest that only an average of
600,000 paired-end reads are required to achieve results that
we and others have traditionally achieved with millions or tens of
millions of reads/sample10,14,48. In addition to an estimated per
sample cost of $75, the cost-effectiveness of this assay will likely
be enhanced in low resource settings lacking numerous pathogen-
specific PCR assays and other diagnostic modalities commonly at
the disposal of clinicians in high resource settings. Thus, mNGS,
may serve as a “leapfrog” technology in this context.

This study has several additional limitations. It remains to be
determined how well the genes that comprise the MLC translate
to immunocompetent individuals though we are heartened that
the key genes in our classifier have significant overlap with host
transcriptomic studies in pulmonary TB, including non-HIV-
positive patient populations39. In addition, host responses may
vary between patients with different genetic backgrounds and
based on the virulence of the infecting TB strain. Although almost
all LPs were performed prior to initiation of therapy, we did not
have data about prehospital antibiotic treatment, which may have
impacted CSF pathogen load and host gene expression profiles.
As illustrated in the case vignettes (Supplementary Information),
we made every attempt to clinically correlate candidate pathogens
detected by mNGS (in addition to confirmatory laboratory test-
ing). However, the lack of widely available advanced neuroima-
ging and other testing modalities limited clinical adjudication to
some degree. This is reflected in the fact that we detected high
levels of HIV in the CSF of many patients, some of whom likely
had HIV-associated dementia. However, we were not able to
confidently classify them as such. Additionally, while we had a
large cohort of patients, the number of cases of definite TBM in
the training and test cohorts was small which limited the
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precision of the point estimates for the sensitivity, specificity, and
AUC of the combined assay.

Currently mNGS is an expensive technology; however, research
is underway to make this tool more accessible, especially for low
resource settings where the burden of infectious diseases is high
and the availability of many pathogen-specific assays is low48–50.
Here, we demonstrated that mNGS identified many previously
undiagnosed but treatable neurologic infections, even in patients
already diagnosed with one cause of infectious meningitis. In
addition, we developed a first-of-its-kind combined diagnostic
assay utilizing mNGS and analysis of the CSF host transcriptome
to diagnose TBM vs other non-TB meningitis etiologies. The
accuracy of this method will only increase with the incorporation
of larger patient numbers and holds the promise of more sensi-
tively and rapidly detecting TBM along with TBM co-infections
and TBM mimics, many of which are treatable or vaccine-
preventable illnesses. Lastly, the ability to generate useful host
transcriptomic data from pauci-cellular CSF augurs well for
developing future MLCs that distinguish between other clinically
overlapping neuroinflammatory syndromes like viral and auto-
immune encephalitis.

Methods
Study cohort. All research was conducted complies with all ethical regulations.
Patients were prospectively recruited as part of the “Improving Diagnostics and
Neurocognitive Outcomes in HIV/AIDS-related Meningitis” study
(NCT01802385), a prospective cohort study underway in Uganda. Although some
patients studied here later enrolled into other unrelated clinical trials, the analyses
in this study of baseline CSF specimens are not related to the outcomes of any
therapeutic intervention. Research was approved by University of Minnesota (IRB
Study ID STUDY00006856), Infectious Diseases Institute at Makerere University
and the Mulago Hospital Research and Ethics Committee (IRB Study ID
MHREC1246), and University of California San Francisco (IRB 13–12236). All
HIV-positive patients presenting with signs and symptoms concerning for
meningitis (presentation with some combination of headache, fever, nuchal
rigidity, neurologic deficit, or altered mental status) to Kiruddu Regional Referral
Hospital, Kampala, Uganda from March 2018 to March 2020 were screened for
study inclusion. LP was performed during days 1–3 of admission utilizing a
standardized diagnostic algorithm. All patients had extensive demographic, clinical,
biochemical, and microbial data collected. However, CD4+ T cell counts and HIV
viral loads were not available for the majority of patients. Clinical data included
presenting signs and symptoms, prior TB history and prophylaxis, response to
antimicrobial and adjunctive treatments, and hospital discharge status. Baseline
CSF cell count, protein, glucose, microscopy, gram stain, bacterial cultures, CrAg,
and fungal culture were obtained for all participants. If the CrAg was positive, the
patient was treated for CM, and no further microbiological diagnostic testing was
performed. If the CSF CrAg was negative, CSF Gene Xpert MTB/RIF Ultra and TB
culture were performed to evaluate for TBM8. If TB was detected by either of these
tests, the patient was considered to have definite TBM. The BioFire® FilmArray®

Meningitis/Encephalitis (ME) Panel was performed on a subset (n= 52) of CSF
samples, regardless of presumed diagnosis based on the clinician’s discretion. For
all enrollees, ~1 mL of CSF was collected in Zymo DNA/RNA Shield collection
tubes (Zymo Research; Irving, CA) and subsequently frozen at −70 °C within 8 h of
collection and shipped in batches to the University of California San Francisco
(UCSF) for mNGS on dry ice (Fig. 3).

Final clinical diagnoses and case classifications were adjudicated based on
investigations performed in Uganda and per the consensus TBM UCD8

(Supplementary Table 4), respectively. Cases were categorized into definite TBM
(microbiologically proven), probable TBM (score > 10 points), possible TBM (score
6–9 points), indeterminate (score < 6 points and without a microbiologically
confirmed alternate infection), and Not-TBM (microbiologically confirmed
alternate infection). Alternate diseases in the Not-TBM category included CM,
bacterial meningitis, and viral meningitis (Table 1).

Cerebrospinal fluid mNGS. Total nucleic acid was extracted from 90 uL of CSF
using the Zymo Quick-DNA/RNA MagBead (Zymo Cat. No. R2130) via the
Agilent Bravo or the Integra Viaflo 96, in batches of 40–96 samples and eluted into
50 uL of sterile water. The nucleic acid was then divided with half undergoing
DNAse treatment to isolate RNA and the remainder being used for DNA
sequencing (DNA-Seq). Total nucleic acid was also extracted from no-template
water controls. ERCC RNAs were spiked into the RNA fractions at 25 pg to later
back-calculate RNA mass and use as positive internal controls23.

RNA sequencing (RNA-Seq) libraries were prepared using the New England
Biolabs’ NEBNext Ultra II RNA library preparation kit (NEB Cat No. E7770) as per
the protocol. Library preparation was performed in bulk using the Echo Labcyte

525 and Agilent Bravo or Integra Viaflo 96 liquid handling robots51. DNA libraries
were prepared using the New England Biolabs’ NEBNext® Ultra™ II FS DNA
Library Prep Kit (E7805L) as per the protocol using the Echo Labcyte 525 and
Agilent Bravo liquid handling robots. Host ribosomal RNA depletion was
performed using the Qiagen QIAseq FastSelect RNA removal kit (Qiagen Cat No.
333180) at 1:100 dilution. The RNA-Seq libraries for 205 samples from both
training and test cohorts underwent ERCC depletion using DASH. DASH is a
CRISPR-Cas9 technology the removes abundant sequences from mNGS libraries.
CRISPR-Cas-9 guide RNAs (gRNAs) were created to target ERCC sequences.
DASH treatment is performed after ligation of adapters and unique barcoding of
the RNA-seq library. gRNAs targe ERCC sequences. These regions in the library
are cleaved, leaving only the fragments with intact adapters on both ends to be
further amplified and sequenced22. Shallow sequencing was performed on an
Illumina iSeq to calculate pooling volumes. Then pooled libraries were size selected
using Ampure beads and sequenced on an Illumina Novaseq 6000 using 146 base
pair paired-end sequencing.

Metagenomic analysis. A open source, cloud-based metagenomics pipeline CZID
was used for mNGS analysis26. Raw sequencing files are uploaded to CZID (czi-
d.org), which performs several processing steps prior to analysis of non-host data.
The first step in the pipeline is an alignment to the human genome to remove host
sequences. Remaining sequences after this initial human alignment step were
deposited in the National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) with the primary accession codes PRJNA773920 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA773920). As a result, these data files
contain non-host sequences not only from pathogens but also from environmental
contaminants from skin and the laboratory, including bacteria, fungi, non-
pathogenic viruses, and even vertebrates. Subsequent steps in the CZID pipeline
(i.e., removal of low-quality reads, duplicate reads. low complexity reads, and
additional human sequence filtering) further reduce contaminating and unin-
formative sequences from the nonhuman dataset. The remaining sequences
undergo an assembly-based alignment using an indexed version of the NCBI’s
GenBank database to identify the source of nonhuman sequences in the datasets.
Additional computational steps detailed below that are specific to different types of
pathogens were used to discriminate between likely environmental contaminants
and candidate pathogens.

Given its paucibacillary nature, the abundance of TB DNA in CSF, as measured
by rpM, can fall below the reporting thresholds in clinical mNGS assays14. We
therefore identified the optimal reporting threshold for TB using the training
cohort and used this threshold on the test cohort. Regarding common causes of
bacterial meningitis, sequences aligning to Streptococcus pneumoniae, Haemophilus
influenzae, and Neisseria meningitidis can be found in low abundance in CSF
mNGS datasets secondary to environmental, specimen handling, and/or water
contamination. Reads aligning to these pathogens were normalized using
compression ratios obtained from the CZID pipeline. The relative abundance for
these organisms was calculated in log10(rpM) by RNA-Seq (x-axis) versus DNA-
Seq (y-axis) (Fig. 2C). When these bacteria were detected with both RNA and DNA
abundance greater than 1 log relative to the mean abundance of the entire cohort,
they were considered likely pathogens rather than environmental contaminants. A
positive detection of a fungus or parasite required an rpM ratio of ≥10, where the
rpM ratio= rpM CSF sample/rpM no-template control (NTC), or rpM
ratio= rpM CSF sample if rpM NTC= 052. Candidate viral pathogens had to have
known neuroinvasive potential and at least one sequence and its mate pair both
aligning specifically to the virus’ genome. Given that EBV and CMV can be
incidentally detected by pathogen-specific PCR and/or CSF mNGS without clear
disease association, only clear outlier cases defined as log10 (rPM) two-fold greater
than the mean abundance of the entire cohort were presumed pathogenic within
the context of patients with advanced HIV infection. Neuroinvasive viruses,
bacteria, fungi, and parasites identified by mNGS were orthogonally validated with
pathogen-specific PCR, clinical microbiological tests performed in Uganda (e.g.,
CrAg and fungal culture) or repeat mNGS on an independent CSF aliquot.

Development of a host gene expression MLC to discriminate between TBM
(without co-infection) and non-TB etiologies. We created a training cohort to
identify the optimal reporting threshold for TB and to build the MLC classifier. The
cohort included patients with definite TBM and other neurological diseases
(ONDs). Patients from the OND group were selected from the probable TBM,
possible TBM / indeterminate and Not-TBM groups, including cases with viral,
bacterial, or fungal pathogens, along with cases with only low abundance HIV,
EBV, and/or CMV. This was done to prevent biasing the training set to a particular
OND and to provide a more accurate representation of the overall patient
population.

The workflow for the training of the MLC is presented in Fig. 3A. Human gene
counts were generated with Spliced Transcripts Alignment to a Reference (STAR)
(v2.5.3a) from the CZID analysis pipeline26 using human genome assembly build
38 v23. Transcript counts for human protein-coding genes (n= 19,590) from the
samples comprising the training set were used as an input for building the MLC.
Samples were normalized using the trimmed mean of M-values using
calcNormFactors and logCPM functions from the edgeR R package that were
adapted in python v3.6.2153. Additionally, age, sex, GCS, and CSF white cell counts
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were included as a priori suspected co-variates. As the number of genes used as
input (19,590) was larger than the number of samples used to train the classifier, we
used feature selection (Univariate Feature Selection, scikit-learn v.0.21.3) to reduce
the dimensionality of the input vector and identify the smallest set of genes most
predictive of TBM and OND. Finally, five different ML methods (logistic
regression, random forest, SVM, elastic net, and XGBoost) were evaluated to
determine the best performing classifier. We chose to evaluate these MLC methods
because they are “interpretable”. In other words, the genes used for classification
are known so it is possible to extract decision rules. Final parameters for the MLC
were chosen using cross-validation (80/20 split) to avoid overfitting. The classifier
with the highest sensitivity (followed by AUC, and specificity) was chosen as the
final classifier.

Testing of a combined mNGS and host gene expression MLC. A test cohort of
patients with TBM and ONDs was created to assess the sensitivity and specificity of
the host gene expression MLC alone and the combined mNGS and host-based gene
expression MLC assay for diagnosing patients with or without TBM. UCSF
investigators were blinded to any sample or case details. The final combined assay
used both the mNGS (both DNA-seq and RNA-seq) and host MLC resulting in a
single test for the detection of TBM versus OND. If the MLC classified a case

differently than the pathogens detected by the mNGS assay (meeting preset mNGS
thresholds), then the mNGS results would overrule the MLC due to the pre-
sumption that direct detection of a pathogen was more specific than categorization
of disease based on a host response signature. Patients with TBM for whom there
was evidence of a CNS co-infection found on mNGS (other than HIV) were not
used in the final test set. The reference standard was a microbiological composite of
conventional CSF testing (e.g., CSF CrAg, fungal culture, Gram stain, bacterial
culture, Gene Xpert MTB/RIF Ultra, TB culture) and orthogonally confirmed
mNGS-identified pathogens (other than TB).

In silico evaluation of mNGS and a host gene expression MLC with shallow
depth sequencing for low resource settings. To assess whether similar results
were achievable at shallow depth sequencing to better enable mNGS diagnostics in
lower resource settings, we subsampled our test dataset at various sequencing
depths (i.e., 100,000 to 2 million reads) and analyzed the impact on the sensitivity
and specificity of the assay for pathogen identification and the accuracy of the host
gene expression MLC. First, all samples were aligned to the ERCC transcripts using
STAR (v2.5.3a) to filter out any remaining ERCC sequences that were not removed
through DASH. Next, files were each subsampled in triplicate using seqtk (v1.2-
r94) at the following sequencing depths: 100,000, 150,000, 200,000, 500,000,

Fig. 3 Study workflow. Four major components of the study: recruitment, library preparation, analysis, and creation of the combined assay. HIV human
immunodeficiency virus, CSF cerebrospinal fluid, NGS next-generation sequencing, mNGS metagenomic next-generation sequencing, USA United States of
America, RNA ribonucleic acid, DNA deoxyribonucleic acid, MLC machine learning classifier, TB Mycobacterium tuberculosis, OND other neurological
disorders, UCD uniform case definition.
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1,000,000, and 2,000,000 reads. Subsampled files were then aligned to the human
genome using STAR to obtain transcript counts, which were then run through
MLC1 classifier. Subsampled files were also uploaded to the CZID pipeline for
mNGS analysis.

Statistics. Final diagnostic accuracy of the combined assay (AUC, sensitivity, and
specificity) was based on comparing the results against a composite of clinical diagnostic
testing results and orthogonally confirmed mNGS-identified pathogens. The p-value for
the AUC was calculated in GraphPad Prism, using a two-tailed test for hypotheses and
assuming that the null hypothesis value for the AUC was 0.5. Baseline clinical char-
acteristics and demographic data were compared between cohorts via Mann-WhitneyU
for continuous variables and chi-square test for categorical variables.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Non-host sequence data that support the findings of this study have been deposited in
NCBI Sequence Read Archive with the primary accession codes PRJNA773920. All host
gene counts for samples have been deposited at https://github.com/UCSF-Wilson-Lab/
TBM_classifier and Zenodo54. Source data are provided with this paper.

Code availability
All code used in the generation of the machine learning classifier, and all gene counts
used in the development of the machine learning classifier have been deposited at https://
github.com/UCSF-Wilson-Lab/TBM_classifier and Zenodo54.
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