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How concentrated disadvantage moderates the built environment and crime relationship 

on street segments in Los Angeles 

Abstract 

Criminological theories have posited that the built environment impacts where crime occurs, 

however measuring the built environment is difficult.  Furthermore, it is uncertain whether the 

built environment differentially impacts crime in high disadvantage neighborhoods. This study 

extracts features of the built environment from Google Street View images with a machine 

learning semantic segmentation strategy to create measures of fences, walls, buildings, and 

greenspace for over 66,000 street segments in Los Angeles.  Results indicate that the presence of 

more buildings on a segment was associated with higher crime rates, and had a particularly 

strong positive relationship with robbery and motor vehicle theft in low disadvantage 

neighborhoods.  Notably, fences and walls exhibited different relationships with crime.  Walls, 

which do not allow visibility, were strongly negatively related to crime, particularly for robbery 

and burglary in high disadvantage neighborhoods.  Fences, which allow visibility, were 

associated with fewer robberies and larcenies, but more burglaries and aggravated assaults.  

Fences only exhibited a negative relationship with violent crime when they were located in low 

disadvantage neighborhoods.  The results highlight the importance of accounting for the built 

environment and the surrounding level of disadvantage when exploring the micro-location of 

crime.   

 

Keywords:  Built Environment, Crime, Google Street View, Machine Learning, Semantic 

Segmentation  
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How concentrated disadvantage moderates the built environment and crime relationship 

on street segments in Los Angeles 

 

There is a long-standing interest in the location of crime across urban environments, and 

scholars have generally focused on both the social and physical dimensions of the environment.  

A challenge is that despite some difficulties of measuring social dynamics, measuring the 

physical environment is often more difficult than measuring the social dimensions of residents 

living in an area.  Whereas research has utilized strategies such as surveys of residents, field 

surveys, or using administrative data, these useful strategies nonetheless have limitations when 

measuring the built environment, including the types of features that can be measured or the size 

of the study area that is feasible.  As a consequence, the recent development of high-quality 

images of the built environment available on the web from sources such as Google Street View 

(GSV) since 2007 combined with advances in machine learning techniques to detect features in 

images have enabled measuring distinct features in larger study areas.  A recent study used such 

a strategy in the mid-sized city of Santa Ana, CA to explore how features of the built 

environment are related to street segments with more crime (Hipp et al. 2021).   

 We build on this recent research and study how the built environment in Los Angeles city 

is related to crime levels on street segments, with two broad goals.  First, this project allows us to 

assess the robustness of the findings of a previous study of the mid-sized city of Santa Ana (Hipp 

et al. 2021), and compare them to the findings of the very large city of Los Angeles.  A limitation 

of single-city studies is that there is uncertainty regarding the extent to which the results can 

generalize to other cities, and therefore assessing how the built environment is related to crime in 

a second city as we do here can provide important insights.  Furthermore, although earlier 
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techniques to measure the built environment through audits or surveys were constrained to small 

geographic scale studies, it is straightforward for a machine learning strategy using GSV to scale 

up to a very large city with over 66,000 street segments.   

 An even more important broad second goal of the present study is to assess whether the 

relationships between these built environment features and crime are robust across low and high 

disadvantage neighborhoods.  Recent scholarship has explored whether features of the 

environment impact crime differently in low versus high poverty neighborhoods.  This literature 

is based on the idea that the neighborhood context can impact the presence of offenders or 

guardians, and therefore this has consequences based on the local opportunities that the physical 

environment might create (Hipp 2016; Wilcox, Land, and Hunt 2003).  More broadly, this is an 

important question as it could provide insight on potential context-specific strategies for 

improving the built environment.  Given the diversity of neighborhoods throughout Los Angeles, 

it is particularly well-suited to this particular research question.   

The paper takes the following course.  In the next section we describe three key theories 

that describe how features of the built environment may impact the micro-location of crime, and 

describe four broad categories of features that we focus on, and how they may exhibit nonlinear 

relationships with certain types of crime. In that section, we consider how the effect of these built 

environment features may differ across low and high disadvantage neighborhoods.  Following 

that, we describe our data and our methodological approach for capturing and classifying GSV 

images.  We present the results of the models using our built environment measures to explain 

the level of crime in street segments of this city and assess nonlinearity.  We then test 

interactions of these measures with concentrated disadvantage, and then conclude with a 

discussion of the implications of the results.   
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Literature review 

Measuring the built environment 

Given the interest in how the built environment can impact the location of crime, recent 

scholarship has explored various ways to measure the built environment. One challenge is that 

many features of the built environment cannot be captured with administrative data.  Strategies 

using surveys of residents or field experts are costly and therefore limited in geographic scope, 

and therefore an alternative strategy utilizes virtual neighborhood audits with open-source street 

view imagery data such as Google Street View (GSV) data (Gong et al. 2018; He, Páez, and Liu 

2017; Odgers et al. 2012).  However, when using manual evaluation methods these studies have 

limited geographic scope, and therefore a recent advance is to utilize machine learning 

technologies to analyze GSV data using deep neural networks such as AlexNet and Inception-v3 

(Kang and Kang 2017; Zhang et al. 2019).  One study used the Google Vision API to classify 

various objects in the environment and assessed how this is related to crime diversity on street 

segments (Khorshidi et al. 2021).   

A recent study by Hipp and colleagues (Hipp et al. 2021) demonstrated the importance of 

capturing a range of detailed streetscape elements based on three key theories that explain why 

various physical features of the environment might impact where crime occurs: crime prevention 

through environmental design (CPTED), crime pattern theory, and routine activity theory.  The 

CPTED perspective explicitly focuses on how micro-level features of the built environment can 

either enhance or inhibit crime by impacting potential guardianship capability (Newman 1972).  

Some features of the environment can limit visibility, which reduces the ability of guardianship, 

whereas other features can create a sense of responsibility for an environment through boundary 
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creation, etc.  (Newman 1972).  In crime pattern theory, street patterns, street features, and the 

general layout of an environment are the “backcloth” that impacts the spatial patterns of potential 

offenders and targets (Brantingham and Brantingham 2008).  Locations that attract a number of 

people can serve as crime generators (Bernasco and Block 2011; Boessen and Hipp 2018) and 

those that disproportionately attract offenders serve as crime attractors (Kinney et al. 2008; 

Ratcliffe 2011).  In routine activity theory, it is the convergence in time and space of offenders, 

targets, and a lack of guardians that increases the likelihood of a crime occurring, and the 

physical environment can impact this in various ways, similar to the backcloth of crime pattern 

theory (Felson 2002).  Hipp and colleagues (2021) utilized these theories in their study that 

measured built environment features within four broad categories in the city of Santa Ana, CA: 

1) vibrancy, 2) auto-oriented, 3) defensible space created by fences and walls, 4) greenspace.  

We utilize the same four categories in the present study of Los Angeles—the second largest city 

in the U.S.—to explore whether their relationships with crime on street segments are similar in 

this city.   

For many of these features of the built environment there are possible nonlinear 

relationships with crime.  This is because these features are posited to impact the combination of 

targets, offenders, and guardians in an environment, which does not lead to straightforward linear 

hypotheses.  Indeed, Hipp and colleagues (2021) posited and found such nonlinear patterns in 

their study of the city of Santa Ana.  For example, an environment that is moderately vibrant 

based on buildings or humans would likely have more crime due to increased opportunities, but 

at some point a critical mass occurs and higher levels of vibrancy provide enough guardians to 

reduce crime levels (Browning et al. 2010).  Likewise, there can be saturation effects where 
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features such as fences or walls that provide protection at moderate levels may not be any more 

beneficial at very high concentrations.   

Throughout the following section we also consider how concentrated disadvantage might 

moderate these effects.  Research attempting to integrate routine activity and social 

disorganization theories has posited that there may be interaction effects in which various 

measures capturing local opportunities for crime may differentially impact crime risk depending 

on the neighborhood environment (Stark 1987; Stucky and Ottensmann 2009; Wilcox, Land, and 

Hunt 2003).  One possibility is that if the surrounding neighborhood has lower levels of informal 

social control capability (Sampson and Groves 1989; Wickes et al. 2017), this will translate into 

lower guardianship at such locations.  This would imply that measures capturing opportunities 

will result in more crime if there is less local guardianship.  Alternatively, the presence of nearby 

potential offenders may interact with opportunity locations to yield more crime (Hipp 2016).  If 

more disadvantaged neighborhoods have more offenders, as posited in the initial specification of 

social disorganization theory (Shaw and McKay 1942), this would imply that crime opportunities 

in such neighborhoods would translate into more crime.  A countervailing possibility is a 

saturation effect in which disadvantaged neighborhoods already have high crime levels, and 

therefore further opportunities would not so strongly impact the location of crime (Hannon 

2002).   It is unclear which of these patterns we should expect, and in the next section we 

consider how each of these built environment features might operate differently in high versus 

low disadvantage environments.   

Key features of the built environment 

One important consequence of the built environment of an area is that it might either 

promote or dampen the vibrancy of the area.  Jane Jacobs (Jacobs 1961) posited that this 
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vibrancy can provide potential guardianship to make a location safer, as routine activity theory 

suggests.  Prior research has explored this idea, such as testing and finding a nonlinear 

relationship between business parcels and crime levels (Browning et al. 2010), or testing whether 

the number of businesses or employees in an area are related to the level of crime (Bernasco and 

Block 2011; Hipp, Wo, and Kim 2017), or using detailed land use data about the types of 

businesses present (Bowers 2014; Stucky and Ottensmann 2009).  However, these strategies do 

not provide fine grained information about the actual spatial layout of businesses.  Using GSV 

images allows us to distinguish between a downtown location in which the buildings front onto 

the street (allowing walkability) versus malls or strip malls in which large parking lots front the 

street and patrons typically arrive by vehicle.  We are also able to assess the extent to which 

humans are present in the environment. It is uncertain what impact a vibrant location will have 

on crime (Hipp and Kim 2019): whereas Jacobs (1961) posited that vibrant locations will have 

less crime given the greater presence of guardians, routine activity theory implies that such 

locations will also have more targets and offenders, which will create more crime opportunities 

and therefore more crime.   

It is not clear how the level of concentrated disadvantage in an area might moderate the 

relationship between vibrancy and crime.  On the one hand, if neighborhoods with concentrated 

disadvantage have more potential offenders nearby (Shaw and McKay 1942) then the vibrancy 

would imply more potential targets about and therefore result in a stronger positive relationship 

between vibrancy and crime, particularly crimes such as robbery and motor vehicle theft.  On the 

other hand, the presence of more people in a vibrant area could imply more potential guardians, 

which could have a negative effect on these crime types.  The implication would be that vibrancy 
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could have a stronger negative effect on crime in more disadvantaged neighborhoods.  We will 

assess these competing perspectives here.   

In contrast to vibrant environments, some characteristics imply an auto-oriented 

environment.  The explicit presence of vehicles in the environment is a direct measure of an 

auto-oriented environment whereas the presence of more pavement in images will often capture 

the impervious surface parking areas for parcels set back from the street.  These impervious 

surfaces arguably create a less inviting environment, resulting in fewer guardians lingering in the 

location (Jacobs 1961).  Given the evidence that more disadvantaged communities tend to have 

more pavement and less greenspace, this feature may be particularly important in more 

disadvantaged locations.  Furthermore, if there are more potential offenders in disadvantaged 

neighborhoods, then we would expect the positive relationship between an auto-oriented 

environment and crime to be particularly strong in more disadvantaged neighborhoods.   

An important feature of the built environment is the ability to enhance defensible space 

(Newman 1972), and fences and walls may be particularly important in this regard.  These 

barriers can make accessing a location more difficult.  Despite their potential importance, walls 

and fences are rarely included in models given the difficulty of measuring them.  An important 

distinction between fences and walls is their impact on the visibility of the environment, and how 

CPTED theory posits that this can enhance guardianship behavior.  Thus, fences typically still 

allow visibility—such as picket, chain link, or wrought iron fences—whereas walls block 

visibility.  Hipp and colleagues (2021) demonstrated that these two measures could have 

different impacts on crime in their study site.   

A further question is whether the impacts of walls and fences on crime are moderated by 

the level of concentrated disadvantage in the environment.  If there are more potential offenders 
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nearby in disadvantaged areas, as well as more crime in general, then the expected protective 

effect of walls and fences may be stronger in more disadvantaged neighborhoods.  In this view, 

the guardianship capability that these features provide would have less effect in low 

disadvantage environments in which there is less crime overall, but a more pronounced effect in 

high disadvantage environments.   

A final key feature of the built environment is greenspace, as urban studies scholars have 

shown evidence that the presence of vegetation in an area (such as trees and shrubbery) can make 

it more desirable, which may foster more neighborhood attachment (Lee et al. 2008), higher 

home values (Kestens, Thériault, and Rosiers 2004) and consequently more potential informal 

social control capability.  It may also encourage residents to walk more which can improve 

physical health in addition to creating more potential social interaction in the neighborhood and 

increasing potential guardians (Rogers et al. 2010; Sung and Lee 2015).  On the other hand, the 

CPTED literature posits that shrubbery near homes can increase crime opportunities to the extent 

that it provides cover for offenders (Patino et al. 2014).  Indeed, a prior study of the city of Santa 

Ana found an inverted-U shaped relationship in which the lowest levels of aggravated assault 

and motor vehicle theft occurred in environments with either very little, or very much, vegetation 

(Hipp et al. 2021).   

The presence of open green areas may also create a more desirable environment.  The 

presence of greenspace may encourage more outdoor activity: as a consequence, studies of parks 

argue that they can act as gathering places that can increase neighborhood cohesion and 

guardianship capability (Cohen, Inagami, and Finch 2008; Hipp et al. 2014).  Although this 

greenspace might increase neighborhood social interaction and cohesion, it could also bring 

about more potential conflict and crime opportunities.  Furthermore, a risk with open green areas 
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as a public gathering place is that the groups of people that gather there can vary.  These 

competing perspectives are seen in the literature in which some studies have found higher levels 

of crime in parks (Kim and Hipp 2017) but other studies find that this relationship depends on 

the characteristics of the park (Groff and McCord 2011; Kimpton, Corcoran, and Wickes 2017).  

Hipp and colleagues (2021) measured this greenspace more generally, and found that they tended 

to have more crime in the study city of Santa Ana.   

As a consequence, in more disadvantaged neighborhoods with more gangs, parks and 

greenspace may serve as gathering spaces for gang members, which may lead to higher levels of 

crime nearby, particularly violent crime.  Nonetheless, it is worth noting that one study focusing 

on parks—rather than greenspace more generally—found that the positive relationship between 

concentrated disadvantage and aggravated assault disappeared in street segments with parks; 

instead, parks were associated with higher aggravated assault rates when they were located in 

low disadvantage neighborhoods (Boessen and Hipp 2018).  In the present study we focus on 

greenspace specifically, and not parks more generally, though we note that studies have 

consistently found that more disadvantaged neighborhoods have fewer trees, leading to less 

shade and more exposed environments (Garrison 2018; Li, Zhang, Li, Kuzovkina, et al. 2015).  

One possibility is that the relatively few disadvantaged locations with vegetation will appear to 

have more cohesiveness among residents—given presumed greater care towards the 

environment—and therefore experience less crime.  The implication would be a stronger 

negative effect for this feature in more disadvantaged neighborhoods.  We will explore in this 

study whether this is the case for greenspace more generally.   

 

Data and Methods 

Study area 
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The study site is the city of Los Angeles.  This is the second largest city in the U.S., and 

contains a range of built environment settings from the dense downtown to the suburban San 

Fernando Valley in the northwest portion and therefore provides an excellent study location.  We 

use street segments as the units of analysis, which contain both sides of a street between two 

street intersections, given that prior scholars have argued that they are an appropriate geographic 

unit for studying social processes (Taylor 1997; Weisburd, Groff, and Yang 2012).  We 

constructed a street segment-level dataset by combining crime data from the Los Angeles Police 

Department, socio-demographic statistics from the U.S. Census, and business establishment 

information from Reference USA Historical Business Dataset (Infogroup 2015).  To precisely 

measure the built environment at the segment level, we used images collected from GSV that 

were coded and aggregated to street segments as explained in detail below.   

Dependent variables: counts of crime events 

 Our dependent variables are counts of five serious crime types (aggravated assaults, 

robberies, burglaries, motor vehicle thefts, and larcenies) that occurred on a street segment 

during 2017-2019.  The crime data were provided by the police agency at the 100 block to avoid 

privacy disclosure.  Since we do not know the exact address, we used a multiple imputation 

strategy to assign crime incidents to street segments.  We do not know the last two digits of the 

address, so we needed to randomly assign values.  We used a specific random assignment and 

chose 11 possible values for the last two digits that spanned the range of possible values, but 

were split between even and odd numbers.  Thus, we created 11 duplicates for each crime 

observation and assigned them the following last two digits: 01, 09, 20, 29, 40, 50, 59, 70, 79, 

90, and 99.
1
  This provides us a range of possible addresses along the street, and we then 

                                                 
1
 For example, consider crime incidents labeled with the address of 4XX Main Street.  We would create 11 

addresses:  401 Main St.; 409 Main St.; 420 Main St.; 429 Main St.; 440 Main St.; 450 Main St.; 459 Main St.; 470 
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geocoded these in ArcGIS, with a geocoding match rate of 96.6%.  We assigned the geocoded 

address to the appropriate street segment and then computed the proportion of the 11 assigned 

addresses for an incident that are assigned to each segment: in 65% of cases all 11 points are 

assigned to a single street segment, and any crime incident on this 100 block is assigned to that 

specific segment.  In cases in which the points are assigned to more than one segment (typically 

two, but on rare occasions more) we assigned the crime to a particular segment based on the 

proportionate probability based on the proportion of 11 addresses assigned to the segment.  We 

aggregated the counts for the five serious crime types to street segments.   

Collecting GSV images 

 We used panoramic GSV images to measure the micro-level built environment 

characteristics in Los Angeles.  Although prior studies have used various intervals to collect 

images, we follow the suggestions from the results of Kim and colleagues (Kim et al. 2021) and 

used 20 meter intervals.  At each point we pulled the panoramic image using the GSV API; we 

did not have images for 13.4% of segments either because of limited access to some properties 

(e.g., gated communities) or because there were no images between 2017 and 2020.   Based on 

the GSV metadata API, 93.9% of the images were taken between 2017 and 2020, and therefore 

we limited our extraction to images from this time period.  As done in previous studies using 

GSV, we also avoided using images from points located near street intersections to make sure 

that the images used reflect the environment of a single segment.  After these exclusions, the 

                                                                                                                                                             
Main St.; 479 Main St.; 490 Main St.; and 499 Main St.  We then geocode each of these addresses and place them 

on the appropriate street segment.  Suppose that 7 are located on street segment A and 4 are located on street 

segment B.  Then the probability of a crime incident with the address of 4XX Main St. has a .636 probability of 

having occurred on segment A (7/11 = .636) and a .364 probability of having occurred on segment B (4/11 = .364).  

If 12 crimes actually occurred during the study period at 4XX Main St., we place each crime on either segment A or 

B based on these probabilities.   
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total number of images used in this study is 432,684 for 66,844 road segments (a length of 172 

meters on average), and an average of 6.47 GSV acquisition points per segment.  

 Prior research has pointed out some distortion in the upper and lower portions of GSV 

panoramic images (Tsai and Chang 2013; Yin et al. 2015). Accordingly, the central portion with 

less distortion provides more useful information, as this portion is more consistent with the 

pedestrian’s point of view (Xia, Yabuki, and Fukuda 2021; Yin and Wang 2016).  We therefore 

alleviated the distortion in images by excluding 100 pixels from each of the upper and lower 

parts of the panoramic image, leaving us with the 76% of the center of the image.   

Machine learning to analyze the images: semantic segmentation 

We analyzed the images using semantic segmentation, a technique that uses deep learning 

from computer vision to classify each pixel as an image component.  Rather than simply using a 

color band of an image to extract image elements (Li, Zhang, Li, Ricard, et al. 2015), we follow 

Lu’s (2018) proposed semantic segmentation strategy employing deep learning to classify the 

image components not only based on pixel color but also by taking into account the distribution 

and shapes of components.  Several segmentation models exist for street image analysis in the 

literature, including FCN8s (Long, Shelhamer, and Darrell 2015), SegNet (Badrinarayanan, 

Kendall, and Cipolla 2017), and PSPNet (Zhao et al. 2017); however, we employed the 

Deeplabv3+ model (Chen et al. 2018) given its solid performance in prior research with various 

datasets
2
.  It has been used in several studies for image processing (e.g., Du, Ning, and Yan 

2020; Liu et al. 2019; Wang and Vermeulen 2020).   

                                                 
2
  https://github.com/lexfridman/mit-deep-learning  

https://github.com/lexfridman/mit-deep-learning
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The Deeplabv3+ model was pre-trained with the ‘Cityscapes’ dataset (Cordts et al. 2016)
3
, 

and numerous studies have used the Cityscapes dataset for training deep learning models and 

applied these algorithms to various study areas (Du, Ning, and Yan 2020; Krylov, Kenny, and 

Dahyot 2018; Yang et al. 2019).  Based on the trained model, we used the following eleven 

elements of the built environment: buildings, humans, sidewalks, vehicles, pavement, fences, 

walls, terrain (e.g., grassy areas), vegetation (e.g., trees and shrubbery), objects (e.g. pole, traffic 

sign, traffic light), and sky.
4
  We calculated the percentage of each of these elements in each 

panoramic image.   

We present some example images in Figure 1 to demonstrate what the built environment 

looks like in cases with relatively high values on a particular element.  Figure 1a shows an 

example image in which vehicles parked along the curb results in a relatively high proportion of 

vehicles (in addition to images with many autos actually driving).  The pavement is also 

prevalent due to the street, but Figure 1b demonstrates that pavement captures impervious 

surfaces more generally, and therefore also captures large parking areas.  There is a high 

proportion of sky, which contrasts with Figure 1c in which the abundant trees result in a high 

proportion of vegetation along with a low proportion of sky.  Another way there can be a low 

proportion of sky occurs when there are many buildings, and Figure 1d shows an image with a 

number of high rises in the environment.  Figure 1e demonstrates that fences are features that 

one can see through, and also shows the pavement captured in a parking lot, whereas Figure 1f 

demonstrates that walls do not allow visibility through them.   

                                                 
3
Source: Cityscapes website, https://www.cityscapes-dataset.com/dataset-overview/#labeling-policy (accessed on 

Jan. 28, 2020) 
4
 Deeplab3+ extracts 19 elements in total.  Given that we anticipated very few trains in our images, we had 18 

elements.  We also collapsed elements that are similar conceptually: “person” and “rider” are collapsed into the 

category of humans; “car”, “truck”, “bus”, “motorcycle”, and “bicycle” are collapsed into vehicles; “poles”, “traffic 

signs”, and “traffic lights” are collapsed into objects.   

https://www.cityscapes-dataset.com/dataset-overview/#labeling-policy
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<<<Figure 1 about here>>> 

Control variables 

 We also accounted for several measures of the environment that prior research has shown 

are related to the spatial distribution of crime incidents.  The measures capturing socio-

demographic characteristics come from the U.S. Census in 2010 for variables in blocks, and the 

American Community Survey 5-year estimates (2008-12) for variables in block groups, and are 

constructed using an exponential decay centered on each street segment.
5
  This method better 

captures the neighborhood environment of a segment, as the segment itself is too small for socio-

demographic characteristics and using a larger Census geographic unit such as a block group or 

tract does not capture the environment explicitly surrounding a segment.  For block-level 

variables it is straightforward to create buffers based on an exponential decay around the 

segment (including the segment itself).  For variables only available at the block group- or tract-

level, we imputed them to blocks before applying this method with the buffer measures.  We 

utilized a synthetic ecological inference approach that enables us to impute the data based on 

other characteristics of the block, which is a more principled strategy than simple area-based 

imputation (Boessen and Hipp 2015).   

 We measured concentrated disadvantage through a principal factor analysis that 

combines the following variables into a factor score: percent at or below 125% of the poverty 

level, mean household income, percent with at least a bachelor’s degree, and percent single 

parent households.  Similarly, residential stability was measured by combining percent owners, 

percent living in the same house 5 years ago, and average length of residence. The racial/ethnic 

composition was measured as percent Black, percent Asian, and percent Latino, leaving  percent 

                                                 
5
 These data are in blocks, and the exponential decay is computed in a ½ mile buffer around a focal block.  There are 

adjacent blocks with these buffer values for a segment, and we compute the average value of the buffers (they are 

extremely highly correlated).   
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White and other race as the remaining category.  A measure of racial/ethnic heterogeneity was 

created as a Herfindahl index combining the racial/ethnic categories as a sum of squared 

proportions, and then subtracted from 1.  Additionally, the percent occupied units and the 

percent aged 16 to 29, as prior research suggests they might be associated with crime.
6
   

We created opportunity variables at the street segment level using business establishment 

data from the Reference USA Historical Business Dataset.  We geocoded the exact location of 

the business establishments and aggregated them to the street segment.  We created a measure of 

consumer-facing employees to capture both workers and possible patrons of retail and food 

establishments.
7
  We also computed the non-consumer employees (subtracting the consumer-

facing employees from total employees) (Hipp and Luo 2022).  We constructed a measure of 

logged population in the segment (after adding 1), by using Census population counts in blocks 

and apportioning them to street segments by employing the approach described in Kim (2018).  

We also constructed spatial lags of these variables with an inverse distance decay capped at 0.5 

miles around the segment without including the segment itself.  Finally, we created an indicator 

variable with a value of 1 if the segment was a residential block (at least 50% of the land area 

was residential units), and 0 otherwise.  This allows distinguishing between residential and non-

residential blocks in the analyses.   

Table 1 presents the descriptive statistics of the variables.  For our measures of vibrancy, 

buildings constitute 5% of these images, on average, sidewalks are 3% and humans are just 

0.1%.  For the auto-oriented measures, about 3% of the image is vehicles and 19% is pavement.  

Fences and walls are each about 1%, on average.  Regarding the measures of greenspace, 22% is 

                                                 
6
 An alternative measure would capture the percentage of males aged 16 to 29 given that they are more involved in 

offending.  However, such a measure is extremely similar to measuring the total population aged 16 to 29: we 

constructed tract-level measures of each and they were correlated .93.    
7
 These are workers for firms classified by the 2-digit NAICS codes of 44, 45, 71, and 72.   
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vegetation and 2% is terrain.  In Table 2 we present the correlations of the independent variables 

in our models.  We see that there are generally quite modest correlations among our GSV 

measures, as well as the variables in general.  Of interest, we see that there is a negative -.49 

correlation between concentrated disadvantage and vegetation, consistent with earlier research 

showing less vegetation in more impoverished neighborhoods.  There is a correlation of about .5 

between the two measures of employees in the surrounding area and the GSV measure of 

buildings, highlighting that this measure, while somewhat capturing businesses, is also capturing 

unique information about the built environment.   

<<<Tables 1 and 2 about here>>> 

Methods 

Our outcome crime count variables exhibited overdispersion and we therefore estimated 

negative binomial regression models.  The model is written as: 

 𝐸(𝑦) = 𝑒𝑥𝑝(𝛼 + 𝐵1𝑿 + 𝐵2𝑺 + 𝐵3𝑬 + 𝐵4𝑾𝑬 

+  ν) 

(2) 

where 𝑦 is the number of crime events for each crime type, 𝛼 is an intercept, 𝑿 represents the 

GSV built environment variables, 𝑺 contains the structural characteristic variables including 

socio-demographics, 𝑬 contains the employee-based opportunity variables, 𝑾𝑬 contains the 

spatially lagged opportunity variables, and ν is gamma distributed to capture overdispersion. We 

first estimated models with just our control variables.  We then added our GSV measures to the 

subsequent models, along with quadratic versions of them to capture nonlinearities (when 

statistically significant) and compared the pseudo R-squares as an approximate assessment of 

how much our GSV-based built environment variables help explain the location of crime 

incidents.  To account of the increased number of variables in the models with our GSV 
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variables, we also compared the Bayesian Information Criterion (BIC) values across the models.  

We then estimated models that also included interactions of concentrated disadvantage and our 

GSV variables to test for moderating effects.    

Results 

Table 3 presents the results of our negative binomial regression models showing how the 

covariates are associated with the crime counts at the segment level.  The pseudo R-squared 

values presented near the bottom of this table indicate that there is notable improvement in the 

explanatory power of the models with the inclusion of GSV variables.  Specifically, we find: a 

19% increase in the pseudo R-squared (from 0.129 to 0.154) for the aggravated assault model, an 

increase of 21% for the motor vehicle theft model, a 30 and 34% increase for the burglary and 

larceny models, respectively, and a 63% increase for the robbery model.  Likewise, the BIC 

values are all smaller in the models including our GSV measures, also indicating that these 

models are preferred to the initial models.   

<<<Table 3 about here>>> 

 We find that two of our measures of vibrancy (buildings and humans) generally show 

positive relationships with the five types of crime examined in this study.  The presence of more 

humans in the environment is associated with higher crime levels, and buildings exhibit a 

slowing positive relationship with these crime types as seen in Figure 2, in which we plot the 

relationship pattern for the 5
th

–95
th

 percentile of the buildings measure.  For a street segment 

with no buildings, a one standard deviation increase results in 18-38% more crime, depending on 

the crime type, whereas a similar increase for a street segment that was at the mean in buildings 

results in 12-28% more crime due to the slowing positive relationship.  Our third measure of 
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vibrancy—sidewalks—are positively associated with robberies and larcenies, and have a slowing 

positive relationship with burglary.   

<<<Figure 2 about here>>> 

Regarding the auto-oriented measures, we find that there is generally a slowing positive 

relationship between the presence of vehicles and crime (similar to Figure 2).  A one standard 

deviation increase in vehicles from 0 to 2.5% is associated with 71% more motor vehicle thefts, 

whereas a similar increase from 2.5% to 5% is associated with 45% more motor vehicle thefts.  

Similar increases are associated with 28% and 20%, respectively, increases in burglaries.  

Pavement generally shows strong linear positive relationships with crime as a one standard 

deviation increase in pavement results in nearly double the robberies, and nearly 50% more of 

the other crime types.   

The two defensible space measures of fences and walls exhibit different effects.  The 

presence of walls has a consistent slowing negative relationship with all crime types (not shown).  

A one standard deviation increase in walls (0.7%) is associated with 30% fewer robberies and 

about 20% fewer crimes of the other types.  However, the presence of fences had mixed results 

across the different crime types: the negative relationships with robberies and larcenies were 

weaker than walls with approximate 10% decreases, and fences actually had a positive 

relationship with aggravated assaults and a very small positive one with burglaries.  Unlike 

walls, fences allow visibility, and the distinct effects of these two defensible space measures can 

be attributed to that difference.   

 The two greenspace measures also show differing patterns.  The presence of vegetation 

exhibited mixed results.  There was a positive relationship between vegetation and larcenies, and 

an inverted-U relationship with aggravated assaults.  On the other hand, vegetation showed a U-
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shaped relationship with burglaries and robberies (not shown).  Thus, whereas the highest 

number of aggravated assaults occurs on street segments with a moderate amount of vegetation 

(about 25%), these are the street segments with the fewest burglaries and robberies.  In contrast, 

terrain that captured open green space generally had a negative relationship with crime.  A one 

standard deviation increase in terrain is associated with 5% fewer motor vehicle thefts and 11% 

fewer aggravated assaults.  And there are slowing negative relationships between terrain and 

robberies and larcenies, and a U-shaped relationship with burglaries (not shown).  The presence 

of objects in the environment and crime generally exhibited either inverted-U or slowing positive 

relationships with the crime types (not shown).   

Moderating effects of concentrated disadvantage 

 For our final set of analyses, we tested whether the level of concentrated disadvantage in 

the area surrounding a street segment moderated the relationship between these built 

environment features and levels of crime (the interaction coefficients are presented in Table 4).  

The general pattern for vibrancy was a negative interaction between concentrated disadvantage 

in the neighborhood and the vibrancy measures.  For example, the presence of buildings has a 

stronger positive relationship with robbery and motor vehicle theft in low disadvantage 

neighborhoods, as seen in Figure 3.  In each of the figures in this section we plot the relationship 

between a measure and crime when concentrated disadvantage is set to a low value (one standard 

deviation below the mean), an average value (the mean) and a high value (one standard deviation 

above the mean).  On street segments with few buildings (the left side of the figures) there are 

more robberies (Figure 3a) and motor vehicle thefts (Figure 3b) in high disadvantage 

neighborhoods compared to low disadvantage ones.  However, when there are many buildings, 

the gap between such neighborhoods narrows (the right side of the graphs).  There was also a 
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stronger positive relationship between the presence of humans and both robbery and motor 

vehicle theft in low disadvantage neighborhoods (not shown).  Sidewalks had fewer interaction 

effects, although the positive relationship with burglary was stronger in low disadvantage 

neighborhoods.  There was only one exception to this general pattern: the positive relationship 

for buildings and burglaries is attenuated in low disadvantage neighborhoods (Figure 3c).   

<<<Table 4 about here>>> 

<<<Figure 3 about here>>> 

 There were weaker moderating effects for the auto-related measures.  The only 

significant interaction effects for pavement were quite modest when plotted.  Only the 

relationships between vehicles and the three property crimes were stronger in low disadvantage 

neighborhoods.  We plot this effect for burglaries in Figure 4a, and we see on the left side of the 

graph that with few vehicles, there are modestly more burglaries in high disadvantage 

neighborhoods compared to low disadvantage ones.  However, as the number of vehicles 

increases, burglaries are more frequent in low disadvantage neighborhoods (the right side of this 

figure).  At high levels of vehicles, there are about 30% more burglaries in a low disadvantage 

versus a high disadvantage neighborhood.  For motor vehicle thefts, the gap between high and 

low disadvantage neighborhoods narrows when there are more vehicles present (Figure 4b), and 

completely evaporates for larcenies (Figure 4c).   

<<<Figure 4 about here>>> 

 It is interesting to note that the moderating effects of concentrated disadvantage for the 

two defensible space measures of walls and fences operated differently.  On the one hand, fences 

have a stronger negative relationship with violent crimes in low disadvantage neighborhoods.  

Robbery is particularly strongly lower at locations with many fences and low concentrated 
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disadvantage, whereas in high disadvantage neighborhoods the presence of fences only results in 

modestly fewer robberies (Figure 5a).  In contrast, walls have a stronger negative relationship 

with crime in high disadvantage neighborhoods, and this effect is particularly strong for robbery 

and burglary.  On street segments with many walls there is little difference in the number of 

robberies depending on the level of disadvantage, whereas segments with few walls have 52% 

more robberies if they are in a high disadvantage rather than low disadvantage neighborhood 

(Figure 5c).  And for two street segments with a high presence of walls, we find that the burglary 

rates are the same regardless the level of disadvantage, which also highlights how walls may be 

more effective in these disadvantaged locations (Figure 5d).   

<<<Figure 5 about here>>> 

Finally, there is very little evidence that the level of concentrated disadvantage in the 

neighborhood moderates the relationship between greenspace and crime.  The control variables 

generally have the expected relationships with crime levels.  Among others, longer street 

segments and those with more population, consumer employees or non-consumer employees 

have higher crime levels.  Higher levels of vacant units in the surrounding area are associated 

with higher levels of crime.  In contrast, residential stability in nearby areas is found to be 

negatively associated with property crime.   

 

Conclusion  

This study built on recent research and demonstrated how extracting features of the built 

environment from GSV images with a machine learning technique is useful for exploring how 

these features are related to crime at the micro scale (Weisburd, Groff, and Yang 2012).  While 

one prior study used this strategy on a mid-sized city (Hipp et al. 2021), we used the technique 
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on the very large city of Los Angeles and found generally similar effects.  An advantage of 

semantic segmentation is extracting visible cityscape elements from the pedestrian perspective, 

and these are features that are typically difficult to measure.  Our results showed that these 

measures of fences, walls, buildings, greenspace, etc., considerably improve the fit of our 

models, highlighting their importance.  These measures particularly strongly improved the model 

performance explaining the locations of robberies, similar to an earlier study of a mid-sized city 

(Hipp et al. 2021).  An important contribution to the current study was then demonstrating how 

the level of concentrated disadvantage in the area surrounding these street segments moderates 

the relationship between these built environment measures and crime levels.   

It is notable that, similar to a prior study on the mid-sized city of Santa Ana, the 

environmental measures attempting to capture vibrancy were actually associated with higher 

levels of crime.  The measure of buildings in the environment is meant to capture those close to 

the street that can influence the behavior of individuals in the environment, as are often found in 

walkable downtown locations.  Whereas this measure of buildings was generally insignificantly 

related to crime levels in the city of Santa Ana, it was actually associated with more crime in our 

study area of Los Angeles.  We highlight that we controlled for the number of consumer-facing 

or non-consumer business employees in the segment, so our building measure is capturing the 

built environment specifically.  Our measure of people in the environment captures areas with 

more people walking about, which we presumed would capture vibrancy, but it may simply be 

an indicator of more crime opportunities rather than the presence of more potential guardians.  

This is consistent with prior research finding that a larger ambient population is associated with 

more crime on street segments (Hipp et al. 2019; Malleson and Andresen 2015).  Furthermore, 

our measures of buildings and people in the environment had particularly strong positive 
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relationships with robbery and motor vehicle theft in low disadvantage neighborhoods, which 

may be consistent with a saturation pattern in which the presence of more opportunities in the 

environment does not increase crime any further in high disadvantage neighborhoods, and 

instead is most salient in low disadvantage locations that otherwise had lower crime levels.   

We found that street segments with more of our auto-oriented measures tended to have 

more crime.  Consistent with a study of the city of Santa Ana (Hipp et al. 2021), the presence of 

more vehicles or more pavement in the environment were associated with more crime, and our 

presumption is that these measures—particularly in combination—are often capturing parking 

lots fronting the street.  Such environments are less walkable, and thus are expected to have 

fewer guardians.  Our results were consistent with this expectation, and were even stronger in 

low disadvantage neighborhoods for burglaries and larcenies.  This is also in line with the idea of 

a saturation effect in high disadvantage neighborhoods in which such increased opportunities 

simply do not further increase crime.   

Another notable finding is that fences and walls had different relationships with crime, 

and these patterns even differed across high and low disadvantage neighborhoods.  Consistent 

with an earlier study of Santa Ana, walls exhibit a much stronger negative relationship with 

crime than do fences.  This pattern was very pronounced in our study and highlights that this 

appears to be a robust pattern.  This is notable as one might presume based on the insights of 

CPTED that walls would not be as beneficial as fences since they also obstruct views, which 

would allow potential offenders to be out of sight of potential guardians.  However, this clearly 

was not the case in our study site, so more careful thought is needed about how walls serve a 

beneficial purpose.  It may be that the height of the barrier is what is particularly important, 

although we were not able to assess this here.  Furthermore, walls were particularly beneficial for 
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preventing robbery and burglary in high disadvantage neighborhoods.  For burglaries, if high 

disadvantage neighborhoods have less informal social control, as found in earlier studies (Hipp 

and Wickes 2017; Peterson and Krivo 2009; Sampson and Groves 1989), walls may be 

particularly beneficial as the reduced visibility is not impacting much potential guardianship.  

Fences had a much weaker negative relationship with crime—only exhibiting negative 

relationships with robberies and larcenies—and actually were associated with more burglaries 

and aggravated assaults.  Fences simply were not as effective as walls at reducing crime.  

Furthermore, a distinction is that fences only exhibited a negative relationship with violent crime 

when they were located in low disadvantage neighborhoods.  If fences operate as more symbolic 

boundaries to create a sense of ownership of a space and increase potential guardianship, this 

may be most effective in neighborhoods that already have more potential informal social control.  

This further highlights the distinction with walls, which were particularly beneficial in high 

disadvantage neighborhoods.   

It is interesting to note that the results for greenspace measures were considerably 

different from research in the mid-sized city of Santa Ana.  Whereas in that study terrain 

generally exhibited a positive relationship with crime, in our study of Los Angeles terrain 

generally exhibited a negative relationship with crime.  Only for burglary was there a U-shaped 

relationship, indicating that there are more burglaries in locations with the highest concentration 

of terrain.  For vegetation, we detected the expected positive relationship between this measure 

and burglaries, as CPTED would expect that such shrubbery can serve as camouflage for 

offenders near a unit.  Likewise, vegetation had a U-shaped relationship with robberies, which 

could also indicate that high levels of such vegetation can serve to minimize guardianship 

capability.  One similarity with a study of Santa Ana was the robust inverted U-shaped 
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relationship with aggravated assaults, indicating that a moderate amount of vegetation is 

particularly crime enhancing for aggravated assaults.  We do not have a hypothesis for why this 

would occur, but the robustness of this finding across two different study sites suggests that it is 

something that needs more theoretical consideration.   

Some limitations of this study deserve mention.  First, although we had some 

expectations for the direction of the relationships between certain features and some types of 

crime, other feature results were not hypothesized and highlight the novelty of the strategy.  

Second, we did not measure mechanisms, and therefore we do not know why exactly we 

observed particular relationships.  Third, although GSV is a powerful tool, a limitation is that we 

have no control over the time of day or the season that images were taken.  This is arguably most 

impactful for the ephemeral measures of humans or vehicles.  As well, there are temporal issues 

given that some images are from 2019 and 2020 and the crime data is for 2017-19; however, the 

built environment arguably changes very little so we do not believe this introduces much bias.   

In conclusion, this study has built on recent research demonstrating the usefulness of 

measuring the built environment with elements extracted from GSV images using a machine 

learning technique.  The results showed that the built environment has important consequences 

for crime levels of street segments in the large city of Los Angeles, in several instances showing 

similar results to an earlier study of a mid-sized city (Hipp et. al. 2021).  Nonetheless, some 

results pose a challenge for theories such as CPTED, as walls consistently had a much stronger 

negative relationship with crime compared to fences (which allow more visibility).  Furthermore, 

there were important differences in how some of these built environment measures operated 

across low and high disadvantage neighborhoods, as we generally found stronger effects in low 

disadvantage neighborhoods.  These results highlight the importance of future research and 
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policy dialogue taking more seriously the social context in which such built environment features 

exist.   
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Tables and Figures 

      

Mean S.D.

Dependent variables

Aggravated assaults 0.85 2.49

Robberies 0.24 1.17

Burglaries 0.61 1.59

Motor vehicle thefts 0.57 1.54

Larcenies 2.30 9.79

Street view characteristics

Percent buildings 5.4 5.2

Percent humans 0.1 0.1

Percent sidewalks 3.1 1.4

Percent vehicles 3.4 2.4

Percent pavement 19.0 3.8

Percent fences 1.2 1.3

Percent walls 0.5 0.7

Percent vegetation 21.8 13.3

Percent terrain 2.1 1.9

Percent objects 0.7 0.5

Percent sky 42.7 0.0

Demographic variables: 1/2 mile exponential decay

Percent Asian 10.5 9.1

Percent Black 8.5 13.5

Percent Latino 41.9 28.0

Racial/ethnic heterogeneity 0.5 0.2

Concentrated disadvantage -1.7 11.9

Percent vacant units 6.2 3.2

Residential stability 0.0 0.9

Percent aged 16 to 29 22.2 6.8

Segment variables

Segment length (logged) 5.0 0.6

Population (logged) 4.7 1.4

Residential segment 0.68 0.47

Number of non-consumer employees 18.2 132.8

Number of consumer-facing employees 2.7 38.9

Surrounding 1/2 mile inverse distance decay

Population (logged) 8.7 0.8

Number of non-consumer employees (in 1000s) 9.2 21.6

Number of consumer-facing employees (in 1000s) 2.7 4.6

N = 66,844 street segments in Los Angeles

Table 1.  Summary statistics of variables used in analyses
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Vehicles

2 Pavement -0.19

3 Vegetation -0.24 -0.37

4 Terrain -0.26 -0.19 0.19

5 Buildings 0.28 -0.04 -0.34 -0.29

6 Humans 0.19 0.07 -0.24 -0.21 0.28

7 Sidewalks -0.21 -0.12 -0.15 -0.08 0.09 0.03

8 Objects 0.14 0.26 -0.48 -0.32 0.18 0.28 0.09

9 Fences 0.11 -0.22 -0.19 -0.23 0.05 0.07 0.12 0.19

10 Walls -0.03 -0.17 0.02 -0.11 0.00 -0.02 0.07 0.02 0.17

Segment variables

11 Non-consumer employees 0.04 0.09 -0.07 -0.08 0.17 0.08 0.00 0.07 -0.03 -0.02

12 Consumer-facing employees 0.03 0.05 -0.05 -0.05 0.06 0.05 0.00 0.05 -0.01 -0.02 0.11

13 Length of segment (logged) 0.03 -0.06 0.09 0.07 -0.09 -0.03 -0.04 -0.15 0.01 -0.08 0.10 0.05

14 Population (logged) 0.00 -0.18 0.15 0.04 -0.13 -0.13 -0.03 -0.20 0.00 -0.03 -0.11 -0.04 0.06

Exponential decay

15 Percent Asian -0.06 0.07 0.01 0.04 0.11 -0.02 0.08 -0.06 -0.16 -0.02 0.06 0.01 0.00 -0.01

16 Percent Black 0.08 0.03 -0.23 0.08 0.09 0.13 -0.05 0.13 0.09 -0.08 -0.01 0.00 0.01 -0.06 -0.29

17 Percent Latino 0.27 0.10 -0.39 -0.18 0.02 0.13 0.02 0.32 0.38 0.06 -0.02 0.00 -0.04 0.04 -0.23 0.03

18 Racial/ethnic heterogeneity -0.06 0.07 -0.04 0.15 0.06 -0.02 0.05 -0.07 -0.18 -0.05 0.04 0.02 0.00 -0.05 0.56 0.09 -0.32

19 Concentrated disadvantage 0.30 0.15 -0.49 -0.15 0.15 0.21 0.04 0.37 0.36 0.01 0.01 0.01 -0.04 -0.02 -0.11 0.32 0.80 0.02

20 Percent vacant units 0.18 -0.02 -0.10 -0.20 0.34 0.21 -0.07 0.16 0.10 0.00 0.09 0.04 -0.02 -0.16 -0.06 0.16 -0.03 0.01 0.10

21 Residential stability -0.36 -0.06 0.31 0.27 -0.40 -0.25 0.03 -0.33 -0.19 0.02 -0.09 -0.04 0.03 0.09 -0.10 -0.09 -0.30 -0.16 -0.56 -0.46

22 Percent aged 16 to 29 0.25 0.12 -0.32 -0.14 0.20 0.15 0.02 0.24 0.20 -0.02 0.04 0.02 -0.03 -0.02 0.10 0.09 0.46 0.12 0.59 0.15 -0.57

Surrounding 1/2 mile

23 Population (logged) 0.31 -0.01 -0.28 -0.09 0.23 0.13 0.02 0.19 0.17 -0.04 0.00 0.00 -0.08 0.24 0.04 0.17 0.44 0.06 0.55 0.05 -0.53 0.48

24 Non-consumer employees 0.15 0.09 -0.13 -0.14 0.45 0.23 0.03 0.09 -0.03 -0.04 0.25 0.06 0.00 -0.16 0.25 0.00 -0.07 0.15 0.07 0.30 -0.33 0.24 0.15

25 Consumer-facing employees 0.20 0.06 -0.16 -0.18 0.52 0.31 0.02 0.15 -0.02 -0.05 0.19 0.11 -0.02 -0.18 0.17 0.03 -0.08 0.14 0.09 0.37 -0.42 0.21 0.20 0.69

N = 66,844 street segments in Los Angeles

Table 2. Correlations of independent variables in models
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Street view characteristics

Buildings 0.0735 ** 0.0386 ** 0.0582 ** 0.0472 ** 0.0761 **

(18.22) (6.19) (14.91) (11.95) (25.45)

Buildings squared -0.0014 ** -0.0009 ** -0.0014 ** -0.0009 ** -0.0018 **

-(12.81) -(5.56) -(12.64) -(8.13) -(22.40)

Humans 1.354 ** 2.222 ** 0.527 ** -0.063  1.125 **

(12.11) (15.05) (6.09) -(1.00) (15.90)

Humans squared -0.397 ** -0.499 ** -0.078 ** -0.186 **

-(6.14) -(7.66) -(4.20) -(13.38)

Sidewalks -0.0998 ** 0.0262 * 0.0462 ** -0.0439 * 0.0305 **

-(4.92) (2.12) (6.85) -(2.22) (5.82)

Sidewalks squared 0.0142 ** 0.0058 *

(5.43) (2.23)

Vehicles 0.1141 ** 0.1154 ** 0.1089 ** 0.2490 ** 0.1267 **

(19.16) (8.43) (12.00) (21.36) (21.46)

Vehicles squared -0.0010 ** -0.0025 ** -0.0046 ** -0.0135 ** -0.0038 **

-(6.10) -(3.08) -(6.20) -(12.53) -(9.58)

Pavement 0.1584 ** 0.2699 ** 0.1364 ** 0.1480 ** 0.1252 **

(11.34) (10.43) (10.61) (11.34) (12.60)

Pavement squared -0.0019 ** -0.0035 ** -0.0017 ** -0.0019 ** -0.0011 **

-(5.95) -(6.44) -(5.94) -(6.54) -(4.76)

Table 3. Negative binomial regression models predicting crime in street segments using built environment GSV measures

Aggravated 

assault Robbery Burglary

Motor 

vehicle 

theft Larceny
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Fences 0.0805 ** -0.1273 ** 0.0079 ** -0.0016  -0.1187 **

(5.34) -(5.44) (3.45) -(0.21) -(10.73)

Fences squared -0.0077 ** 0.0125 ** 0.0097 **

-(3.32) (3.58) (5.79)

Walls -0.3175 ** -0.5271 ** -0.3396 ** -0.2834 ** -0.3532 **

-(14.72) -(13.80) -(16.43) -(13.76) -(22.19)

Walls squared 0.0202 ** 0.0392 ** 0.0218 ** 0.0159 ** 0.0205 **

(5.95) (7.18) (6.37) (4.65) (7.37)

Vegetation 0.0091 ** -0.0146 ** -0.0060 ** 0.0006  0.0007  

(3.63) -(3.64) -(2.68) (0.67) (0.37)

Vegetation squared -0.0002 ** 0.0003 ** 0.0001 ** 0.0000  

-(3.53) (3.53) (3.77) (1.16)

Terrain -0.0630 ** -0.1600 ** -0.0413 ** -0.0264 ** -0.0784 **

-(5.03) -(7.83) -(3.64) -(4.41) -(8.69)

Terrain squared 0.0124 ** 0.0069 ** 0.0076 **

(4.77) (4.95) (6.72)

Objects 0.2644 ** 0.7514 ** 0.2024 ** 0.3840 ** 0.2336 **

(6.00) (11.17) (10.79) (8.79) (15.89)

Objects squared -0.0389 * -0.0817 ** -0.0958 ** -0.0667 **

-(2.46) -(3.81) -(6.57) -(4.13)

Segment variables

Length of segment (logged) 1.204 ** 1.152 ** 1.196 ** 1.188 ** 1.192 **

(82.40) (46.86) (86.26) (86.81) (110.04)

Population (logged) in segment 0.2829 ** 0.1383 ** 0.0887 ** 0.1602 ** 0.1551 **

(41.88) (13.94) (14.28) (26.18) (32.56)
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Residential segment -0.1285 ** -0.5469 ** -0.2345 ** -0.0992 ** -0.2308 **

-(6.51) -(16.92) -(12.12) -(5.36) -(15.02)

Number of non-consumer employees 0.0003 ** 0.0001 † 0.0003 ** 0.0002 ** 0.0005 **

(5.56) (1.75) (5.16) (4.36) (7.97)

Number of consumer-facing employees 0.0007 ** 0.0058 ** 0.0012 ** 0.0015 ** 0.0058 **

(3.73) (11.97) (5.35) (7.90) (19.09)

Demographic variables: exponential decay

Percent Asian -0.0081 ** -0.0063 ** -0.0017 † 0.0011  -0.0045 **

-(7.21) -(3.65) -(1.66) (1.10) -(5.34)

Percent Black 0.0133 ** 0.0140 ** 0.0048 ** 0.0099 ** 0.0015 **

(16.69) (10.45) (6.60) (13.11) (2.62)

Percent Latino 0.0063 ** -0.0014  -0.0076 ** 0.0111 ** -0.0024 **

(7.96) -(1.00) -(11.22) (15.17) -(4.44)

Racial/ethnic heterogeneity 0.3551 ** 0.2657 * -0.0968  0.4486 ** 0.5147 **

(4.90) (2.23) -(1.41) (6.68) (9.53)

Concentrated disadvantage 0.0301 ** 0.0272 ** 0.0002  0.0092 ** 0.0119 **

(13.08) (6.78) (0.11) (4.46) (8.04)

Percent vacant units 0.0267 ** 0.0416 ** 0.0212 ** 0.0220 ** 0.0074 **

(8.15) (8.16) (7.26) (7.56) (2.91)

Residential stability -0.0829 ** 0.0327  -0.0359 * -0.1394 ** -0.1658 **

-(4.77) (1.08) -(2.27) -(8.72) -(13.66)

Percent aged 16 to 29 -0.0038 * 0.0041 † -0.0026 † -0.0048 ** 0.0018  

-(2.32) (1.72) -(1.80) -(3.06) (1.56)
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Surrounding 1/2 mile

Number of non-consumer employees -0.0012 * -0.0016 * -0.0022 ** -0.0022 ** -0.0012 **

-(2.45) -(2.43) -(4.61) -(4.40) -(3.42)

Number of consumer-facing employees 0.0182 ** 0.0152 ** 0.0111 ** 0.0052 * 0.0308 **

(7.51) (4.24) (4.85) (2.30) (15.70)

Population (logged) 0.1566 ** 0.4843 ** 0.2559 ** 0.0577 ** -0.0097  

(10.49) (17.31) (17.35) (4.32) -(1.18)

Intercept -13.21 ** -17.64 ** -11.56 ** -11.96 ** -9.15 **

-(51.07) -(36.35) -(48.85) -(50.21) -(53.75)

Pseudo R-square 0.155 0.188 0.100 0.145 0.126

Pseudo R-square (without GSV variables) 0.134 0.141 0.083 0.124 0.101

Percent increase in pseudo R-square 15.7% 33.3% 20.5% 16.9% 24.8%

BIC 126,818 55,983 123,703 112,420 215,693

BIC (without GSV variables) 129,678 58,949 125,845 115,099 221,593

** p < .01(two-tail test), * p < .05 (two-tail test), † p < .10 (two-tail test).  T-values in parentheses.  N=66,844 street 

segments.
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Interaction variables between GSV measure and concentrated disadvantage

Percent vehicles -0.001 * -0.0008  -0.0025 ** -0.0034 ** -0.0021 **

-2.04 -0.91 -6.05 -7.36 -6.62

Percent pavement -0.001 ** -0.0002  -0.0002  -0.0008 * 0.0005 *

-2.83 -0.38 -0.73 -2.52 2.07

Percent vegetation -0.0002 * -0.0002  0.0001 † -0.0002 † 0  

-2.26 -0.88 1.75 -1.87 0.43

Percent terrain 0.0004  -0.0013  -0.001 * -0.0013 * -0.0011 **

0.68 -1.19 -2.24 -2.32 -3.06

Percent buildings -0.0008 ** -0.001 ** 0.0008 ** -0.0012 ** -0.0007 **

-3.9 -3.06 4.3 -6.42 -5.33

Percent humans -0.0193 * -0.0363 ** -0.0129  -0.0247 ** -0.0175 **

-2.25 -2.8 -1.64 -2.88 -2.67

Percent sidewalks 0.0003  0.0017  -0.0025 ** -0.0011  -0.0004  

0.37 1.38 -4.47 -1.62 -0.94

Percent objects -0.0149 ** -0.0119 ** 0.0019  -0.0088 ** -0.0069 **

-7.26 -3.88 1.09 -4.51 -4.97

Percent fences 0.0023 * 0.0073 ** 0.0004  -0.0004  0.0001  

2.36 4.08 0.48 -0.44 0.18

Percent walls -0.0043 ** -0.0077 ** -0.0038 ** 0.0002  -0.0044 **

-2.85 -2.76 -3.09 0.14 -4.53

Note: Main effects of the GSV measures and concentrated disadvantage are suppressed, as are the control 

variables

Table 4. Negative binomial regression models predicting crime in street segments, including interactions 

between built environment GSV measures and concentrated disadvantage

Aggravated 

assault Robbery Burglary

Motor 

vehicle 

theft Larceny
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Figure 1. Examples of categorization of GSV images 

 

 

 
(a) (b) (c) (d) (e) (f) 

Sky 55.24 Sky 47.00 Vegetation 46.94 Building 54.27 Sky 39.88 Vegetation 41.42 

Pavement 13.28 Pavement 30.42 Sky 21.19 Pavement 19.30 Pavement 22.95 Wall 29.11 

Vegetation 12.72 Vegetation 21.13 Pavement 14.18 Sky 15.40 Fence 20.91 Sky 14.82 

Vehicle 9.00 Terrain 0.49 Sidewalk 5.65 Vehicle 7.11 Building 9.69 Road 8.61 
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Building 2.52 Vehicle 0.38 Terrain 3.76 Sidewalk 2.32 Sidewalk 3.29 Vehicle 4.55 
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Figure 2. Relationship of buildings with crime 
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