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ARTICLE

Exome sequencing-driven discovery of coding polymorphisms
associated with common metabolic phenotypes
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Abstract
Aims/hypothesis Human complex metabolic traits are in part
regulated by genetic determinants. Here we applied exome
sequencing to identify novel associations of coding polymor-
phisms at minor allele frequencies (MAFs) >1%with common
metabolic phenotypes.

Methods The study comprised three stages. We performed
medium-depth (8×) whole exome sequencing in 1,000 cases
with type 2 diabetes, BMI >27.5 kg/m2 and hypertension
and in 1,000 controls (stage 1). We selected 16,192 poly-
morphisms nominally associated (p<0.05) with case–con-
trol status, from four selected annotation categories or from
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loci reported to associate with metabolic traits. These var-
iants were genotyped in 15,989 Danes to search for associ-
ation with 12 metabolic phenotypes (stage 2). In stage 3,
polymorphisms showing potential associations were geno-
typed in a further 63,896 Europeans.
Results Exome sequencing identified 70,182 polymor-
phisms with MAF >1%. In stage 2 we identified 51 potential
associations with one or more of eight metabolic phenotypes
covered by 45 unique polymorphisms. In meta-analyses of
stage 2 and stage 3 results, we demonstrated robust associa-
tions for coding polymorphisms in CD300LG (fasting HDL-
cholesterol: MAF 3.5%, p08.5×10−14), COBLL1 (type 2
diabetes: MAF 12.5%, OR 0.88, p01.2×10−11) and MACF1
(type 2 diabetes: MAF 23.4%, OR 1.10, p08.2×10−10).
Conclusions/interpretation We applied exome sequencing
as a basis for finding genetic determinants of metabolic
traits and show the existence of low-frequency and common
coding polymorphisms with impact on common metabolic
traits. Based on our study, coding polymorphisms with
MAF above 1% do not seem to have particularly high effect
sizes on the measured metabolic traits.

Keywords Exome sequencing . Genetic epidemiology .

Genetics . Lipids . Next-generation sequencing . Obesity .

Type 2 diabetes

Abbreviations
GWAS Genome-wide association study
LD Linkage disequilibrium
MAF Minor allele frequency
SNP Single-nucleotide polymorphism

Introduction

Over the last few years, genome-wide association studies
(GWAS) have led to substantial progress in mapping com-
mon genetic variation with impact on common phenotypes
including those of the metabolic syndrome [1–10]. This
advance has revealed hundreds of genetic determinants of
human complex phenotypes [1]. Despite this progress a
major part of the heritable contribution to variation in
most widespread metabolic traits remains unaccounted
for [11]. Thus, for type 2 diabetes and related metabolic
traits it has been estimated that 10–30% of the observed
heritability can be attributed to the hitherto identified
variants [2, 4, 8, 10].

DNA sequencing has emerged as a powerful technol-
ogy enabling detection of low-frequency and rare varia-
tion not captured by initial GWAS design and in future
studies the GWAS approach may be complemented by
imputation of single nucleotide polymorphisms (SNPs)
from whole-genome sequencing of a subset of individu-
als [12]. Sequencing of all genes in the genome (exome)
[13, 14] is an alternative approach relying on the
hypothesis that functional disease-associated variation
resides in the coding regions. Exome sequencing has
proven valuable in the search for mutations responsible
for Mendelian diseases [15, 16] and emerging reports
suggest the benefit of applying large-scale exome sequencing
to uncover variation associated with complex human traits
[17, 18].

Here we present the results of a first-generation medium-
pass (8×) exome sequencing approach in 2,000 Danish
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individuals (stage 1) with follow-up of 16,192 SNPs in
15,989 Danes (stage 2) and replication of 45 SNPs, dis-
covered in a joint analysis of stage 1 and 2, in up to
63,896 Europeans (stage 3) (Fig. 1). To achieve sufficient
statistical power a large number of the SNPs selected
from stage 1 were genotyped in the much larger sample
size in stage 2 making the statistical power comparable
to a study where all individuals from both stage 1 and 2
are genotyped for all SNPs [19]. Our objective was to
find novel associations of coding variants at minor
allele frequencies (MAFs) above 1% with metabolic
phenotypes.

Methods

Study populations Danish individuals investigated in stage 1
and 2 of the study were selected from five Danish centres
(electronic supplementary material [ESM] Table 1). Exome
sequencing in stage 1 (Fig. 1) was performed in 2,000 indi-
viduals. Of these, 1,000 were cases recruited based on the

presence of type 2 diabetes, BMI >27.5 kg/m2 and hyperten-
sion (systolic/diastolic BP >140/90 mmHg or use of antihy-
pertensive medication) to represent common forms of type 2
diabetes and 1,000 were control individuals who all had fast-
ing plasma glucose <5.6 mmol/l, 2 h post-OGTT plasma
glucose <7.8 mmol/l, BMI <27.5 kg/m2 and BP <140/
90 mmHg (ESM Table 2). In stage 2, 16,192 SNPs were
analysed in all 15,989 Danish individuals recruited from five
Danish centres (ESM Table 1) in order to perform association
mapping of metabolic traits. The individuals in whom exome
sequencing was performed in stage 1 were, to obtain called
genotypes, among the 15,989 samples genotyped in stage 2.
Data from the five Danish centres were pooled in stage 2
analyses. In brief, type 2 diabetes association studies were
performed in 4,854 cases defined by WHO 1999 criteria [20]
and in 7,325 non-diabetic control individuals. Obesity was
studied in 5,488 obese cases (BMI ≥30 kg/m2) and 4,851 lean
controls (BMI <25 kg/m2) while hypertension was investigat-
ed in 7,299 cases (BP >140/90 mmHg or treated with antihy-
pertensive medication) and 3,290 controls (BP <140/
90 mmHg). In analysis of quantifiable metabolic traits, BMI
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and waist circumference were studied in all samples (n up to
14,819) with available phenotype data excluding individuals
treated with insulin. In studies of fasting plasma glucose
(n09,087) and fasting serum insulin (n08,419) all previ-
ously diagnosed and treated diabetes patients (n01,743)
were excluded while individuals treated with lipid-
lowering drugs (n0110) were excluded in analyses of
fasting lipid levels (n013,326). In studies of systolic and
diastolic BP all individuals treated with antihypertensive
medication (n0968) were excluded leaving 12,651 indi-
viduals for analyses. Clinical samples from six different
European countries were investigated in replication
studies of selected SNPs (stage 3) (ESM Table 3). All
participants in the study gave written informed consent.
The studies were conducted in accordance with the Dec-
laration of Helsinki II and were approved by the local
Ethical Committees.

Exon capture, Illumina sequencing and quality control of
exome sequencing outcome Exome capture by a Nimble-
Gen 2.1M HD array (target region 34.1 Mb, 21,810 genes)
and Illumina GAII sequencing were performed on DNA

from the 2,000 individuals by methods previously described
[14]. Samples were not randomised in the capture and
sequencing processes. The effective reads (ESM Table 4)
were aligned to the human reference genome (assembly
hg18, NCBI build 36.3) using SOAPaligner (http://soap.
genomics.org.cn/, accessed 01/03/2009). The average se-
quencing depth per sample was 11× and 96% of targeted
bases were covered by at least one read (ESM Fig. 1). All
uniquely mapped reads were used for further analyses. The
nucleotide mismatch rates were estimated from the propor-
tion of mismatches between all bases from uniquely aligned
reads. The mismatch rates ranged from 0.41% to 2.65% in
the 2,000 samples with a median of 1%. To investigate the
error distributions in the data, the average base quality (the
Q-score) of all sequencing reads was examined. When in-
creasing the Q-score threshold the average depth declined.
The Q20 threshold (1% error rate by quality score defini-
tion) was applied in all further analyses. Further quality
control was done by investigating the mismatch rates of
aligned bases with different quality scores and by examining
the distribution of per-base sequencing depth (ESM Fig. 2).
Due to the use of the Q20 threshold and multiple hits
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restrictions approximately 20% of the sequencing data was
discarded and the average depth per site declined from 11×
to 8× (8.2× in controls, 7.7× in cases, ESM Fig. 3).

The data quality for individual samples was evaluated
using called genotypes by comparing with previously
genotyped SNPs and by comparing phenotypic sex with
genetically determined sex estimated from the heterozy-
gosity of the SNPs on the X-chromosome. Following
bar-coding and sex comparison, 1,974 samples (986
cases and 988 controls) were available for SNP detec-
tion and association analyses.

SNP detection and allele frequency estimation in exome
sequencing data Two different approaches to obtain ge-
notype likelihoods were applied. SOAPsnp (http://
soap.genomics.org.cn/, accessed 01/03/2009) [21] was
used to generate genotype likelihoods, which were used to call
genotypes for quality control. For allele frequency estimation
and association analysis we estimated the type-specific error
rates directly from the putative polymorphic sites and used
these error rates combined with the base counts at each posi-
tion to obtain the genotype likelihoods [20]. As a first step in
the identification of SNPs for association testing the allele
frequencies of all putative polymorphic sites were estimated
using the allele frequency estimator by Li et al [14]. A high
error rate of 0.25% was assumed for all error types. Puta-
tive polymorphic sites were those with an allele fre-
quency above 0.25%. Then, the allele frequencies were

estimated using a maximum likelihood estimator [22],
which assumes that the sites are diallelic and takes the
uncertainty in the minor allele into account by summing
likelihoods over all possible three minor alleles. The
discovered SNPs were compared with HapMap data
for overlapping SNPs and showed high concordance
(ESM Fig. 4). Comparison of allele frequencies with SNPs
genotyped in stage 2 (see below) showed high correlation
(ESM Fig. 5).

Association analyses in stage 1 We identified 70,182 var-
iable sites with an allele frequency higher than 1% and
a total depth per site summed across all individuals
above 1,000× corresponding to 0.5× per individual
(Table 1, ESM Table 5). Before performing association
analysis on the sequencing data we chose to include
multiple stringent filters. This was done to remove
SNPs that either were likely to be errors or showed
bias that could be correlated with case–control status
(ESM Fig. 6). Filters based on the base quality scores
and based on biases observed in sequencing time were
applied. The case–control association analyses were per-
formed using a likelihood ratio test directly on the
observed reads taking the uncertainty of the reads into
account [22]. No covariates were included in the
analysis.

Although the filtering removed the bias from the
single SNP analysis, burden tests are much more
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sensitive to small biases because the bias accumulates
when analysing multiple variants. Therefore, no burden
tests were performed.

SNP selection for stage 2 SNPs were selected for genotyping
in stage 2 from the exome sequencing based on three criteria:
(1) SNPs nominally associated (p<0.05) with case–control
status in stage 1 were selected; (2) all SNPs annotated to one
of the four annotation categories (i.e. all variants annotated as
nonsense variants, non-synonymous variants, variants located
in splice sites or variants in untranslated regions) were priori-
tised regardless of association p value; (3) synonymous var-
iants in 192 loci previously associated with common
metabolic traits at genome-wide significance. After quality
control (see below), 16,192 SNPs were available for analyses.
Of these, 995 SNPs were selected based on the first criterion,
13,959 based on the second criterion while 686 fulfilled both

the first and the second criteria. Finally, 552 SNPs were
selected based on the third criterion (Fig. 1).

Stage 2 genotyping, quality control and association analyses
SNPs selected from stage 1 were genotyped in 16,988
samples in stage 2 by a custom-designed Illumina iSelect
array. Samples were randomised before genotyping. Quality
control of samples included removing closely related indi-
viduals, individuals with an extreme inbreeding coefficient,
individuals with a low call rate, individuals with a misla-
belled sex and individuals with a high discordance rate to
previously genotyped SNPs. The quality control criteria
were fulfilled by 15,989 individuals. Genotypes were
obtained for 18,744 SNPs. Of the SNPs discovered in stage
1, 5.1% were not polymorphic when genotyped in stage 2.
The SNPs were filtered based on their MAF (>0.5%), ge-
notype call rate (>95%), Hardy–Weinberg equilibrium (p>

Stage 1 – Discovery

Exome sequencing of 2,000 Danish individuals
(1,000 metabolic cases, 1,000 controls) 

Identification of 70,182 SNPs with MAF >1%

Stage 2 – Genotyping and Association

Illumina iSelect genotyping of 16,192 SNPs in 
15,989 Danish individuals and association 

analysis with twelve metabolic traits

Stage 3 – Replication 

Genotyping of 45 selected coding SNPs in up to
63,896 European individuals, association 

analysis and meta-analysis

1)   995 SNPs showing
nominal association in 
stage 1 case–control

study

2)   13,959 SNPs in four
annotation categories
(nonsense, missense, 

splice site, UTR)

686 SNPs fulfilling both 
criteria 1) and 2)

11 SNPs - type 2 diabetes
9 SNPs – obesity
3 SNPs – BMI 

1 SNP – waist circumference
7 SNPs – fasting glucose
8 SNPs – fasting insulin 

2 SNPs – fasting HDL–cholesterol  
1 SNP – fasting triacylglycerol

1 SNP - type 2 diabetes & fasting glucose & waist circumference
2 SNPs – obesity & BMI &  waist circumference

COBLL1 N939D associated with type 2 diabetes
MACF1 M2290V associated with type 2 diabetes

CD300LG R82C associated with fasting HDL–cholesterol

3)   552 SNPs in loci
reported to associate
with metabolic traits

Fig. 1 Overview of the study.
UTR, untranslated region
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10−7) or cross-hybridisation with the X-chromosome, with
16,192 SNPs passing all filters.

Two analyses were done on stage 2 data. First, an enrich-
ment analysis of SNPs selected from stage 1 based on nominal
association (n01,681) was performed estimating the over-
representation of low p values in analyses of type 2 diabetes,
obesity and hypertension in stage 2 data. Second, we per-
formed single SNP association analyses, including stage 2
genotyping data for all 15,989 stage 1 and stage 2 individuals,
with 12 variables and SNPs for replication in stage 3 were
selected based on these analyses. Three binary (type 2 diabetes,
obesity, hypertension) and nine quantitative traits (BMI, waist
circumference, systolic and diastolic BP, fasting levels of plas-
ma glucose and serum insulin, cholesterol, HDL-cholesterol
and triacylglycerol) were analysed. Association analysis of
each SNP was performed using linear or logistic regression
assuming an additive or log-additive model. Principal compo-
nent analysis was performed using the covariance matrix [23]
and the first principal component and sex were included in the
model as covariates. All quantitative traits were rank normal-
ised to a normal distribution before analysis. No inflations in
test statistics for the 12 traits were observed after correction by
genomic control (λGC 1.00–1.09, ESM Fig. 7).

SNP selection for stage 3 To follow up on the most promis-
ing associations from stage 2 association analyses we selected
top hits for 12 different metabolic traits. SNPs were selected
based on association for each trait (p<10−3 for type 2 diabetes,
obesity, BMI, waist circumference, fasting glucose, fasting

insulin and p<10−4 for all other traits). SNPs in linkage
disequilibrium (LD) (r2>0.2) with a known genome-wide
significant associated lead SNP for the given metabolic trait
were excluded. Phased data from the 1000 Genomes project
were used to estimate LD. For the lipid traits we additionally
defined a known associated locus as the region spanning
250 Kb up- and downstream of the known associated SNP.
All SNPs within these regions were excluded for follow-up.

Stage 3 genotyping Forty-five SNPs were selected for
stage 3 replication and were genotyped in up to 63,896
individuals from seven centres (ESM Table 3). The trait-
specific sample sizes are described in ESM Table 6.

Meta-analysis of stage 3 data and meta-analysis stage 2 and
stage 3 results First, association results from the seven
centres of stage 3 were combined by meta-analysis to obtain
an overall replication result. Second, the Danish discovery
data from stage 2 were meta-analysed with the seven replica-
tion centres to obtain an overall combined result. The effect
for each SNP was estimated by inclusion in a fixed-effects
meta-analysis using METAL [24]. For quantifiable traits an
overall z statistic relative to each reference allele was estimat-
ed based on p values and direction of effects adjusted for the
number of individuals in each sample. For dichotomous traits
the estimate was weighted according to the estimated SEs by
using the inverse corresponding SE.

In meta-analysis of all data, we applied a Bonferroni
correction for the number of SNPs and the number of traits
analysed (pcorrected00.05/(70,182×12)05.9×10

−8). This
correction is conservative as we did not take into account
SNP or trait correlations. The corrected threshold is close to
conventional genome-wide significance level (p05×10−8).

Gene expression analysis Gene expression levels of
CD300LG, COBLL1, MACF1, ACP1, ZFAND2B, GPSM1,
PRRC2A and GRB14 were quantified by TaqMan real-time
PCR (Applied Biosystems, Foster City, CA, USA) in a
human tissue mRNA panel including aorta, leucocytes, total
brain, hippocampus, hypothalamus, pituitary gland, colon,
total small intestine, jejunum, ileum, adipose tissue, kidney,
liver, pancreas, skeletal muscle and placenta (ClonTech
Laboratories, Mountain View, CA, USA).

Further information Additional description of methods
can be found in the ESM Methods & Results.

Results

Whole exome sequencing (stage 1) The workflow of the
project is shown in Fig. 1. In stage 1, 2,000 individuals
were exome sequenced to a median coverage per individual

Table 1 Sequencing of 1,974 Danish individuals identified 70,182
SNPs with MAF >1%

SNP annotation No. of identified SNPs

Nonsense 243

Non-synonymous 20,202

Splice site 301

3′ UTR/5′ UTR 2,756

Synonymous 20,251

Near gene 239

Intron 25,801

Intergenic 389

Total 70,182

The annotation of 70,182 SNPs was performed using the SeattleSNP
annotator (http://gvs.gs.washington.edu/SeattleSeqAnnotation/,
accessed 01/07/2009) and dbSNP (www.ncbi.nlm.nih.gov/projects/
SNP/, accessed 01/07/2009) annotation tools. A proportion of the
SNPs were annotated as located in introns or near genes. This is largely
due to the fact that sequencing reads sometimes overlap with other
parts of the genome in the proximity. SNPs annotated as nonsense,
non-synonymous, splice site, and 3′ UTR/5′ UTR were selected for
stage 2 genotyping

UTR, untranslated region
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of 91% of the target region. Hereof, 986 metabolic cases and
988 controls with an average depth of 8× fulfilled quality
filtering (ESM Fig. 2, ESM Table 4). In total, 70,182 low-
frequency and common variants with an estimated MAF
above 1% were identified (Table 1, ESM Table 5, ESM
Fig. 8). In the initial association analyses with case–control
status a general inflation of the test statistics was observed.
Application of a stringent set of SNP filtering criteria to
remove the bias and restriction of the association analysis to
the 48,035 SNPs that fulfilled all filtering criteria resulted in
a low inflation rate (λGC 1.05) (ESM Fig. 9). As expected no
strong associations were found but instead, as part of the
study design, a number of SNPs in the tail of the p value
distribution were selected for genotyping in stage 2.

Association with metabolic traits in Danish individuals (stage
2) To follow up on the outcome of exome sequencing-based
SNP discoveries and association analysis in a larger sample
set, 16,192 SNPs were analysed in 15,989 Danes. Of these
SNPs, 54% were not present on any of the most commonly
used GWAS arrays and 50% were not imputable from
GWAS data using HapMap as reference panel.

Initially we performed an enrichment analysis for the
SNPs nominally associated with case–control status in
exome sequencing data (p<0.05, n01,681). These analyses
showed an excess of low p values in stage 2 association
results for type 2 diabetes (ESM Figs 10, 11). The estimated
fraction of associated SNPs was 3.1%, corresponding to 52
expected true associations among the 1,681 SNPs, yet some
might be associated due to LD with the same causal variant.
No excess of low p values were found in analyses of obesity
and hypertension (ESM Figs 12, 13).

In further analyses of the 16,192 SNPs all 15,989 individ-
uals were included to increase statistical power and SNPs for
follow-up in stage 3 were prioritised from examinations of
three binary traits (type 2 diabetes, obesity and hypertension)
and nine quantifiable traits (BMI, waist circumference, sys-
tolic and diastolic BP, fasting levels of plasma glucose and
serum insulin, total cholesterol, HDL-cholesterol and triacyl-
glycerol). In analyses of the 12 metabolic phenotypes the
strongest novel associations were demonstrated between the
CD300LG R82C missense variant and fasting HDL-
cholesterol (β0−0.18, p07.2×10−8) and the COBLL1
rs7607980 variant and type 2 diabetes (OR 0.80, p07.2×
10−8). These were the only associations with p values below
10−6 while a number of potential associations with uncorrect-
ed p values below 10−4 were detected (Fig. 2, ESM Fig. 7).

SNPs showing potential novel association with one or more
of the 12 traits were selected for replication in stage 3. This
selection yielded 51 associations for eight traits covered by 45
unique SNPs (ESM Table 7). SNPs were selected from associ-
ation results of type 2 diabetes (11 SNPs), obesity (nine SNPs),
BMI (three SNPs), waist circumference (one SNP), fasting

glucose (seven SNPs), fasting insulin (eight SNPs), fasting
HDL-cholesterol (two SNPs) and fasting triacylglycerol (one
SNP). A SNP in ELOVL3 showed potential association with
both type 2 diabetes, fasting plasma glucose and waist circum-
ference while two SNPs in ACP1 and SLC27A4 were selected
from analyses of obesity, BMI and waist circumference (ESM
Table 8). We did not identify any SNPs from association results
of hypertension, systolic and diastolic BP and fasting total
cholesterol that fulfilled the selection criteria.

Replication of selected associations in European samples
(stage 3) The 45 SNPs covering the 51 potential associations
discovered in stage 2 were genotyped in up to 63,896 Euro-
peans for replication in stage 3 (Fig. 1, ESM Table 6). Meta-
analysis of stage 3 replication data showed nominal replication
(p<0.05) for the same trait in a consistent direction for seven of
the 51 selected associations (ESM Table 9). In meta-analysis of
Danish stage 2 data and stage 3 replication data, three SNPs
were associated at p<5.9×10−8 (Table 2, ESM Figs 14, 15). A
low-frequency (MAF 3.5%) non-synonymous (R82C) poly-
morphism in CD300LG was associated with lower fasting
levels of serum HDL-cholesterol while two common (MAF
12.5% and 23.4%, respectively) non-synonymous polymor-
phisms in COBLL1 and MACF1 were associated with type 2
diabetes (Table 2). All three replicated SNPs in CD300LG,
COBLL1 and MACF1 were selected for stage 2 based on their
annotation (missense) and the COBLL1 variant was also select-
ed based on its stage 1 association p value. The effect of the
minor allele of CD300LG R82C on fasting HDL-cholesterol in
repeated analyses in replication cohorts without rank normal-
isation of HDL-cholesterol was 0.051–0.072 mmol/l. Further
in-silico replication data for COBLL1 and MACF1 were
obtained from existing GWAS meta-analysis data [2] (ESM
Table 10) while no previous association data exists for the
CD300LG variant. In additional analyses of other metabolic
traits, the CD300LG variant also associated (p<0.001) with
increased fasting serum triacylglycerol while the MACF1
rs2296172 variant also associated with decreased fasting
HDL-cholesterol (ESM Table 11). No secondary associations
were seen for theCOBLL1 rs7607980 variant. Analyses of gene
expression in a tissue panel showed thatCD300LG is expressed
in adipose tissue, skeletal muscle and placenta (ESM Fig. 16).
Data showed that COBLL1 is expressed in pancreatic islets and
kidney and to some degree in skeletal muscle, liver and adipose
tissue while MACF1 is expressed in more tissues including
pancreas and skeletal muscle.

Discussion

To discover novel associations between coding polymor-
phisms with a MAF above 1% and common metabolic traits
we sequenced the exomes of 1,974 Danes to a depth of 8×
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and subsequently performed a two-stage follow-up in
15,989 Danes and in a further 63,896 Europeans. We iden-
tified a low-frequency amino-acid polymorphism in
CD300LG associated with fasting HDL-cholesterol and
two common amino-acid polymorphisms in COBLL1 and
MACF1 associated with type 2 diabetes.

While the outcome of this comprehensive study may
seem modest it remains a first-line report of challenges
with large-scale next-generation sequencing studies of
complex traits. Strengths of the study include the thor-
ough replication in European samples, bringing high
confidence in the reported associations, yet notable
drawbacks are related to the early-stage exome capture
technology and sequencing with a relatively low depth;
together with bias in the sequencing data, in part com-
ing from lack of sample randomisation, leading to the
inability to assess the impact of rare variation alone or
as gene-based combinations.

The effect of CD300LG R82C on fasting HDL-cholesterol
was higher than all but one of the GWAS-identified HDL-
cholesterol-associated variants [10]. CD300LG is a type I
membrane glycoprotein that contains a single immunoglobu-
lin V-like domain [25, 26]. The protein has been proposed to
serve multiple functions, including endocytosis of various
immunoglobulins [25] and mediation of L-selectin-
dependent lymphocyte rolling [26], and has been shown to
bind a broad range of polar lipids [27]. In-silico prediction by
PolyPhen and SIFT indicated that the non-conservative R82C
substitution is damaging to protein function suggesting that
R82C could be the functional variant in this locus. Obviously,
functional studies are needed to provide further evidence of
the role of this variant.

The variants N939D in COBLL1 and M2290V in MACF1
were associated with type 2 diabetes, yet non-coding SNPs in
these loci have previously been associated with other meta-
bolic phenotypes [3, 6, 10, 28]. In the COBLL1 locus (ESM

Fig. 2 Manhattan plots of
16,192 SNPs for 12 metabolic
traits in up to 15,989 Danish
individuals (stage 2). For each of
the traits the −log10(p) was
plotted against the chromosome
position. SNPs that have been
established as known genome-
wide associated signals for each
trait are marked in orange. The
dotted line indicates Bonferroni
correction significance threshold
corrected for 16,192 SNPs and
12 traits. The association analy-
ses were performed with logistic
or linear regression adjusted for
first principal component and
sex. All p values were corrected
by genomic control
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Fig. 17) the intergenic rs10195252 is reported to associate
with fasting triacylglycerol [10] and waist-to-hip ratio in
women while the intergenic rs3923113 was reported to asso-
ciate with type 2 diabetes in a GWAS in individuals of South
Asian ancestry [3]. COBLL1 N939D found here is in partial
LD with these variants (HapMap release 27: r200.18 and r20
0.20, respectively) and conditional analysis showed that
COBLL1 N939D carries the effect on type 2 diabetes when
conditioning on rs10195252 or rs3923113. Two SNPs in the
region have been implicated in the regulation of fasting circu-
lating levels of triacylglycerol and HDL-cholesterol [10].
COBLL1 N939D is in high LD (HapMap release 27: r20
0.98) with the HDL-cholesterol-associated variant [10], and
we confirmed the association with HDL-cholesterol for this
locus. COBLL1 N939D is also in high LD (HapMap release
27: r200.97) with rs12328675 reported to associate with fast-
ing triacylglycerol; however, we observed no association with
fasting triacylglycerol levels. TheM2290V variant inMACF1
was shown to increase the risk of type 2 diabetes (Table 2) and
subsequent analyses of related metabolic phenotypes showed
that the same allele also decreased fasting serum HDL-
cholesterol levels. PABPC4 rs4660293, which is correlated
with MACF1 rs2296172 (HapMap CEU release 27: r20
0.64) has previously been reported to associate with HDL-
cholesterol [10]. The biological functions of the associated
variants inCOBLL1 andMACF1 are unknown; variants in the
COBLL1 locus may, however, influence expression of nearby
GRB14 to change insulin sensitivity [6, 29].

In the present sequencing-based study initiated in early
2008 we applied exome sequencing to a depth of 8× in
1,974 individuals to discover variants associated with met-
abolic traits. This and other reports [17, 18] constitute the
first indications that exome sequencing is a useful tool in
complex traits genetics. Yet, for studying low-frequency and
common variation not captured by the standard GWAS
design the most cost-effective design for the near future
may be to impute variants in standard SNP chip genotyped
samples based on whole-genome sequence reference panels
such as data from the 1000 Genomes Project [30]. In this
context, studies based on SNP chip genotyping and impu-
tation based on a local genome-wide sequencing reference
set have lately been published [12]. Interestingly, a recently
published report suggested that extremely low-pass whole-
genome sequencing (0.1–0.5×) and imputation from 1000
Genomes Project reference panel is more cost-efficient than
array genotyping for the study of variants with MAF above
1% [31]. While these approaches may work for low-
frequency and common variation, the study of rare variation
(MAF <0.5–1%) necessitates resequencing to capture the
spectrum of variation. As highlighted by restraints in the
present study, issues of sequencing depth, sample size and
unbiased data generation are of foremost importance. Deep
unbiased exome sequencing will also allow for burden test

analyses of the combined impact on phenotype of mul-
tiple rare and low-frequency variants in a given locus or
in other functional units such as a biologically relevant
pathway [32].

In conclusion, we performedmedium-depth exome sequenc-
ing in 2,000 individuals with follow-up in up to 76,071 Euro-
peans and discovered three amino-acid polymorphisms with a
frequency above 1% associated with specific metabolic pheno-
types. Therefore, low-frequency and common coding polymor-
phisms with impact on metabolic traits do exist but they do not
seem to be widespread. This study serves as an indication of the
utility of exome sequencing in complex metabolic traits.

Acknowledgements The authors thank M. Boehnke (University of
Michigan, Ann Arbor, Michigan, USA) for valuable comments on the
manuscript. The authors wish to thank staff at Novo Nordisk Founda-
tion Center for Basic Metabolic Research, University of Copenhagen,
Denmark: A. Forman, T. Lorentzen, B. Andreasen and G. J. Klavsen
for technical assistance and A. L. Nielsen, G. Lademann and M. M. H.
Kristensen for management assistance.

Funding This project was funded by the Lundbeck Foundation and
produced by The Lundbeck Foundation Centre for Applied Medical
Genomics in Personalised Disease Prediction, Prevention and Care
(LuCamp, www.lucamp.org). The Novo Nordisk Foundation Center
for Basic Metabolic Research is an independent Research Center at the
University of Copenhagen partially funded by an unrestricted donation
from the Novo Nordisk Foundation (www.metabol.ku.dk). Further
funding came from the Danish Council for Independent Research
(Medical Sciences).

The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-
Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen. The steering com-
mittee comprises the former two and Charlotta Pisinger. The study
was financially supported by research grants from the Danish
Research Council, the Danish Centre for Health Technology As-
sessment, Novo Nordisk Inc., Research Foundation of Copenha-
gen County, Ministry of Internal Affairs and Health, the Danish
Heart Foundation, the Danish Pharmaceutical Association, the
Augustinus Foundation, the Ib Henriksen Foundation, the Becket
Foundation, and the Danish Diabetes Association.

The Health2006 was initiated by Allan Linneberg (PI) and Torben
Jørgensen (co-PI). The study was financially supported by grants from the
Velux Foundation, The Danish Medical Research Council, Danish Agency
for Science, Technology and Innovation, The Aase and Ejner Danielsens
Foundation, ALK-Abelló, (Hørsholm, Denmark) and Research Centre for
Prevention and Health (the Capital Region of Denmark).

In Finland this work has been supported by the following grants to
M. Laakso: Academy of Finland, the Finnish Diabetes Research Foun-
dation, the Finnish Cardiovascular Research Foundation, and EVO
grant from the Kuopio University Hospital (5263).

In the UK the Collection of the UK type 2 diabetes cases was
supported by Diabetes UK, BDA Research and the UK Medical
Research Council (Biomedical Collections Strategic Grant
G0000649). The UK Type 2 Diabetes Genetics Consortium collection
was supported by the Wellcome Trust (Biomedical Collections Grant
GR072960). We acknowledge use of DNA from The UK Blood
Services collection of Common Controls (UKBS-CC collection),
funded by the Wellcome Trust grant 076113/C/04/Z and by NIHR
programme grant to NHSBT (RP-PG-0310-1002). The collection was
established as part of the Wellcome Trust Case Control Consortium
(WTCCC). For the 1958 Birth Cohort, venous blood collection was
funded by the Medical Research Council grant G0000934 (awarded

308 Diabetologia (2013) 56:298–310

http://www.lucamp.org
http://www.metabol.ku.dk


under the Health of the Public initiative), peripheral blood lymphocyte
preparation by Juvenile Diabetes Research Foundation/Wellcome Trust
and the cell-line production, DNA extraction and processing by the
Wellcome Trust grant 06854/Z/02/Z. The genotyping was supported by
the Wellcome Trust (083270) and EU (ENGAGE: HEALTH-F4-2007-
201413). A. P.Morris is aWellcome Trust Senior Fellow (081682/Z/06/Z)
and M. McCarthy receives funding from the Oxford NIHR Biomedical
Research Centre. We acknowledge the contribution of M. Sampson.

In the Netherlands the work in this study was financially supported by
the Dutch Diabetes Research Foundation grant 2006.00.060 and Bio-
banking and Biomolecular Research Infrastructure the Netherlands
(BBMRI-NL).

The D.E.S.I.R. cohort was supported by co-operative contracts be-
tween Inserm, CNAMTS, Novartis, Lilly and sanofi-aventis, by Inserm
(Réseaux en Santé Publique, Interactions entre les determinants de la
santé, Cohortes Santé TGIR 2008), by the Association Diabète Risque
Vasculaire, the Fédération Française de Cardiologie, La Fondation de
France, ALFEDIAM,ONIVINS, Société Francophone duDiabète; Ardix
Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Lilly, Merck
Santé, Novo Nordisk, Pierre Fabre, Roche, sanofi-aventis, Topcon.

Work in Sweden was supported by grants from the Swedish Re-
search Foundation (Dnr-349-2006-6589, 2009-1039, 521-2010-3490)
and Knut & Alice Wallenberg Foundation.

Work in Finland was supported by grants from the Sigrid Juselius
Foundation, Folkhälsan Research Foundation and the Finnish Medical
Society.

The Gene-Lifestyle interactions And Complex traits Involved in
Elevated Disease Risk (GLACIER) study is nested within the Northern
Swedish Health and Disease Study cohort and the Västerbotten Inter-
vention Programme (VIP). The research programme was approved by
the Ethical Review Board in Umeå, Sweden. We are indebted to the
study participants who dedicated their time and samples to these
studies. We also thank the VIP and Umeå Medical Biobank staff for
biomedical data collection and preparation. We specifically thank Å.
Ågren (Umeå Medical Biobank) for data organisation, and K.
Enqvist and T. Johansson (Västerbottens County Council) for
expert technical assistance with DNA preparation. The GLACIER
Study was funded by project grants from Novo Nordisk (P. W.
Franks [PWF]), the Swedish Heart-Lung Foundation (PWF), the
Swedish Diabetes Association (to PWF), Påhlssons Foundation
(PWF), the Swedish Research Council (PWF), Umeå University
Career Development Award (PWF) and The Heart Foundation of
Northern Sweden (PWF).

Duality of interest The authors declare that there is no duality of
interest associated with this manuscript.

Author contributions All authors substantially contributed to con-
ception and design, acquisition of data, or analysis and interpretation of
data used in the study.

OP, A. Albrechtsen, NG, YL, TS, JH, TH, JW and RN conceived,
coordinated and executed the present study.
NG, TS, JH, M. Lajer, AAN, PR, LT, CC, IB, TL, DRW, AL,
T. Jørgensen, TH and OP recruited and phenotyped study participants
enrolled in exome sequencing (stage 1) and large-scale follow-up
genotyping (stage 2).

SC, GC, JMD, ASFD, MD, TF, TMF, GH, ATH, GAH, JK, OL, M.
Marre, ADM., GN, PN, CNAP, FR, OR, TT, EV, TVV, MW, LY, PWF,
BB, PF, MIM, M. Laakso and LG recruited and phenotyped study
participants used in replication study (stage 3).

A. Albrechtsen, YL, TS, GT, T. Jiang, SYK, TK, RW,HJ, HZ, XJ, HL,
XL, TM, XM, BM,MT, BW, HW, FX, CY, XZ, JZ, QZ, HZ, YZ, JW, RN
and OP performed exome sequencing and the related data analysis.

A. Albrechtsen, NG, TS, GT, HC, Q. Li, CN, LS, KB, YC, YG, KH,
SH, XJ, JMJ, WL, Q. Liao, XL, MPM, YW, HW, XZ, QZ, WZ, HZ, JW,
RN and OP performed stage 2 genotyping and statistical analyses.

A. Albrechtsen, NG, TS, APM, CL, SC, A. Stančáková, AJB, CJG,
GH, NWR, FR, NR, OR, PES, MS, NVL, TVV, LMT, PWF, PF, M.
Laakso and OP performed stage 3 genotyping and statistical analyses
and meta-analyses.

JM, RRM, TWS, and MAV performed biological studies.
The overall analysis group consisted of A. Albrechtsen, NG, TS, SYK,
TK, Q. Li, LS, YC, YG, QL and RN.

A. Albrechtsen, NG, TS, TH and OP wrote the initial manuscript
and all authors contributed substantially to data interpretation and
paper review and approved the final manuscript.

OP, GA, A. Astrup, LB, KK, TWS, TL, DRW, AL, T. Jørgensen,
TH, JW and RN are founders of the Lundbeck Foundation Centre for
Applied Medical Genomics in Personalised Disease Prediction,
Prevention and Care and designed the experimental protocols of the
consortium.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of
insights into the genetics of common disease. J Clin Invest
118:1590–1605

2. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2
diabetes susceptibility loci identified through large-scale associa-
tion analysis. Nat Genet 42:579–589

3. Kooner JS, Saleheen D, Sim X et al (2011) Genome-wide
association study in individuals of South Asian ancestry iden-
tifies six new type 2 diabetes susceptibility loci. Nat Genet
43:984–989

4. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic
loci implicated in fasting glucose homeostasis and their impact on
type 2 diabetes risk. Nat Genet 42:105–116

5. Grarup N, Sparsø T, Hansen T (2010) Physiologic characterization
of type 2 diabetes-related loci. Curr Diab Rep 10:485–497

6. Heid IM, Jackson AU, Randall JC et al (2010) Meta-analysis
identifies 13 new loci associated with waist-hip ratio and reveals
sexual dimorphism in the genetic basis of fat distribution. Nat
Genet 42:949–960

7. Speliotes EK, Willer CJ, Berndt SI et al (2010) Association anal-
yses of 249,796 individuals reveal 18 new loci associated with
body mass index. Nat Genet 42:937–948

8. The International Consortium for Blood Pressure Genome-Wide
Association Studies (2011) Genetic variants in novel pathways
influence blood pressure and cardiovascular disease risk. Nature
478:103–109

9. Wain LV, Verwoert GC, O'Reilly PF et al (2011) Genome-wide
association study identifies six new loci influencing pulse pressure
and mean arterial pressure. Nat Genet 43:1005–1011

10. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological,
clinical and population relevance of 95 loci for blood lipids. Nature
466:707–713

11. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing
heritability of complex diseases. Nature 461:747–753

12. Holm H, Gudbjartsson DF, Sulem P et al (2011) A rare variant in
MYH6 is associated with high risk of sick sinus syndrome. Nat
Genet 43:316–320

13. Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of
human genomic loci by microarray hybridization. Nat Methods
4:903–905

Diabetologia (2013) 56:298–310 309



14. Li Y, Vinckenbosch N, Tian G et al (2010) Resequencing of 200
human exomes identifies an excess of low-frequency non-
synonymous coding variants. Nat Genet 42:969–972

15. Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequenc-
ing identifies the cause of a mendelian disorder. Nat Genet
42:30–35

16. Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture
and massively parallel sequencing of 12 human exomes. Nature
461:272–276

17. Sanders SJ, Murtha MT, Gupta AR et al (2012) De novo mutations
revealed by whole-exome sequencing are strongly associated with
autism. Nature 485:237–241

18. O'Roak BJ, Deriziotis P, Lee C et al (2011) Exome sequencing in
sporadic autism spectrum disorders identifies severe de novo muta-
tions. Nat Genet 43:585–589

19. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis
is more efficient than replication-based analysis for two-stage
genome-wide association studies. Nat Genet 38:209–213

20. WorldHealth Organization StudyGroup (1999)Definition, diagnosis
and classification of diabetes mellitus and its complications. Part 1:
diagnosis and classification of diabetes mellitus. Tech. Rep. Ser.
WHO/NCD/NCS/99, 2nd edn. World Health Organization, Geneva

21. Li R, Li Y, Fang X et al (2009) SNP detection for massively parallel
whole-genome resequencing. Genome Res 19:1124–1132

22. Kim SY, Lohmueller KE, Albrechtsen A et al (2011) Estimation of
allele frequency and association mapping using next-generation
sequencing data. BMC Bioinforma 12:231

23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA,
Reich D (2006) Principal components analysis corrects for stratifica-
tion in genome-wide association studies. Nat Genet 38:904–909

24. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient
meta-analysis of genomewide association scans. Bioinformatics
26:2190–2191

25. Takatsu H, Hase K, Ohmae M et al (2006) CD300 antigen like
family member G: a novel Ig receptor like protein exclusively
expressed on capillary endothelium. Biochem Biophys Res Com-
mun 348:183–191

26. Umemoto E, Tanaka T, Kanda H et al (2006) Nepmucin, a novel
HEV sialomucin, mediates L-selectin-dependent lymphocyte roll-
ing and promotes lymphocyte adhesion under flow. J Exp Med
203:1603–1614

27. Cannon JP, O'Driscoll M, Litman GW (2012) Specific lipid rec-
ognition is a general feature of CD300 and TREM molecules.
Immunogenetics 64:39–47

28. Dehghan A, Je D, Barbalic M et al (2011) Meta-analysis of
genome-wide association studies in >80 000 subjects identifies
multiple loci for C-reactive protein levels/clinical perspective.
Circulation 123:731–738

29. Cooney GJ, Lyons RJ, Crew AJ et al (2004) Improved glucose
homeostasis and enhanced insulin signalling in Grb14-deficient
mice. EMBO J 23:582–593

30. 1000 Genomes Project Consortium, Durbin RM, Abecasis GR et al
(2010) A map of human genome variation from population-scale
sequencing. Nature 467:1061–1073

31. Pasaniuc B, Rohland N, McLaren PJ et al (2012) Extremely low-
coverage sequencing and imputation increases power for genome-
wide association studies. Nat Genet 44:631–635

32. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical
analysis strategies for association studies involving rare variants.
Nat Rev Genet 11:773–785

310 Diabetologia (2013) 56:298–310


	Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References




