
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Bad Optimizations Make Good Learning

Permalink
https://escholarship.org/uc/item/6rb0q91t

Author
Chen, Ziqi

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rb0q91t
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Bad Optimizations Make Good Learning

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ziqi Chen

March 2012

The Thesis of Ziqi Chen
is approved:

————————————————–
Professor David P. Helmbold, Chair

————————————————–
Dr. Philip M. Long

————————————————–
Professor Manfred K. Warmuth

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright c© by

ZIQI CHEN

2012



Table of Contents

List of Figures iv

List of Tables v

Abstract vi

Acknowledgments vii

1 Introduction 1

2 Related Work 4

3 Method and Experiments 5

3.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Random-8 and the canyon effect . . . . . . . . . . . . . . . . 6

3.1.2 Fixed-4 source adding the classification-insensitivity effect . . 11

3.2 Natural data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Results 14

4.1 The canyon effect alone . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Adding the classification-insensitivity effect . . . . . . . . . . . . . . 19

4.3 Stability of SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Irrelevant Feature Evaluations . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Study using natural data: RCV1-V2 . . . . . . . . . . . . . . . . . . 24

5 Discussion 27

References 28

A Random-8 ASGD Result 30

B RCV1-V2 ASGD Result 33

iii



List of Figures

1 Canyon effect updating . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 2D w rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Fixed-4 source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Random-8 vary the dimensionality . . . . . . . . . . . . . . . . . . . 15

5 Random-8 vary the noise rate . . . . . . . . . . . . . . . . . . . . . . 16

6 Fixed-4 accuracies curves . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Accuracy fluctuation explanations . . . . . . . . . . . . . . . . . . . 22

8 RCV1-V2 data results . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 The cosine similarity for canyon effect verification . . . . . . . . . . . 26

10 Random-8 vary the dimensionality . . . . . . . . . . . . . . . . . . . 31

11 Random-8 vary the noise rate . . . . . . . . . . . . . . . . . . . . . . 32

12 ASGD vs SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



List of Tables

1 Fixed-4 Gaussian Means. . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Observations of Dips for c = 1000 . . . . . . . . . . . . . . . . . . . 17

v



Bad Optimizations Make Good Learning

Ziqi Chen

ABSTRACT

This thesis reports on experiments aimed at explaining why machine learning al-

gorithms using the greedy stochastic gradient descent (SGD) algorithm sometimes

generalize better than algorithms using other optimization techniques. We propose

two hypothesis, namely the “canyon effect” and the “classification insensitivity”,

and illustrate them with two data sources. On these data sources, SGD generalizes

more accurately than SVMperf , which performs more intensive optimization, over a

wide variety of choices of the regularization parameters. Finally, we report on some

similar, but predictably less dramatic, effects on natural data.
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1 Introduction

Many machine learning algorithms work by solving an optimization problem

[16, 8, 7, 17, 1, 15]. Typically, the function to be optimized has two parts, a loss func-

tion that penalizes training error, and a regularizer that penalizes complexity. One

very popular concrete example is the SVM objective function, which, for examples

(x1, y1), ..., (xm, ym) ∈ Rn × {−1, 1}, is

φ(w) = ||w||2 +C
m∑
t=1

�(yt(w · xt)),

where � is the hinge loss, defined by �(z) = max{1− z, 0}. Note that the smaller C

is, the more important ||w|| is to the objective. Therefore smaller C has the effect

of greater regularization.

It is generally acknowledged that, past a certain point, further optimization

of the objective function is often not rewarded with improvement in generalization

accuracy (see [1, 13]). In fact, many have found that very simple and greedy opti-

mization techniques, such as Stochastic Gradient Descent (SGD), provide excellent

generalization (see [6, 5, 2]). Early stopping of an SGD algorithm has been viewed

as an alternative to a penalty function as a means of regularization. However, SGD

generalizes relatively well even when compared with regularized methods [5, 14] (see

also Figure 8 of this thesis).

In this thesis we hypothesize that two effects help simple SGD achieve better

generalization than methods that more effectively minimize the objective function.

We present experiments on data from mixtures of Gaussians supporting these hy-

potheses.

We call the first effect the canyon effect (see Figure 1). This occurs when two

examples, (xs, ys) and (xt, yt), are nearly contradictory – often this is because both

examples are part of a cluster of related cases that is corrupted by label noise, so that

xs ≈ xt but ys = −yt. If example s is encountered first, and is classified incorrectly,

a stochastic gradient algorithm will update w in the direction of ysxs. This may

cause it to misclassify ytxt, leading to an update back in the direction ytxt. Since

1
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w + ys xs

w + ys xs

ys xs > 1

yt xt > 1

w

+yt xt

Figure 1: The projection of weight space onto the span of two nearly contradictory
examples (xs, ys) and (xt, yt). The shaded region corresponds to those weights that
achieve zero hinge loss on these two examples. Starting from some weight vector
w, and performing stochastic gradient descent on the hinge loss for one example,
followed by the other, results in nearly canceling updates. More efficient optimization
more rapidly adds length of w in the direction ysxs + ytxt.

ysxs ≈ −ytxt, the effect of these two updates nearly cancel. If one of the examples

was corrupted with label noise, then ysxs + ytxt, the difference between xs and xt,

is likely to be an irrelevant direction. If an algorithm that more effectively optimizes

the SVM objective function is applied, its hypothesis could include a significant

amount of its weight vector in the ysxs + ytxt direction in order to “handle” both

of these examples. Even when the algorithm has a “budget” on (or pays for) the

length of its weight vector, it still may find it worthwhile to expend a significant

amount of its budget on this irrelevant direction. If SGD is run for many epochs,

it is also likely to put a lot of weight in this direction. However, if SGD is stopped

before running too long, the damage can be limited. Thus, SGD run for few epochs

will be relatively immune to this ping-pong effect compared to algorithms that more

accurately optimize the objective.

The canyon effect is strongest when C is relatively large, since large C places a

premium on classifying the training examples correctly. When C is small, the canyon

effect is greatly reduced, but SGD can still outperform more accurate optimizers.

2



When C is very small, the optimal solution will have very small weights. If

all examples have margin ys(w
∗ · xs) < 1 then, near the optimum w∗, the rewards

for increasing the margin of examples that already have a relatively large margin

are the same as those for improving the margin of examples that are currently

misclassified. A global optimizer may respond to these pressures by achieving a

relatively large margin on some examples at the expense of small negative margins

on others. Since it is easier to get large margin on large instances, this situation

usually occurs when the examples have different lengths. We call this second effect

the classification-insensitivity effect. SGD algorithms update their weight vector

every time they see a misclassified example, so they do not ignore these smaller

magnitude misclassified examples. Since SGD confers protection against the canyon

effect, using SGD reduces the need to use a small value of C, indirectly protecting

against the classification-insensitivity effect.

In this thesis, we perform experiments with data sources that give rise to the

canyon effect and the classification-insensitivity effect. We compare the generaliza-

tion error of an SGD algorithm against hypotheses produced by SVMperf , which

does a good job of optimizing φ. We designed our synthetic sources to have some of

the characteristics of web spam. Web spammers make money by placing advertise-

ments on low-quality pages that match keywords. These spammy pages are are often

generated automatically by a script, and are often closely related in many respects.

Training examples for identifying web spam may be obtained using human raters.

However, web spam does not have a precise, objective definition, and human raters

may vary in the effort that they expend to look for signs of spam. (for example they

may perform searches for scraped content only in some cases, or some may read

more or less of a page to see whether the language “feels natural”). Consequently,

training data for web spam will tend to have a lot of label noise. Our synthetic

sources are mixtures of spherically symmetrical Gaussians. Each Gaussian is meant

to roughly correspond to a spam campaign. The variance of the Gaussians is small

compared with their separation. Adding label noise gives rise to the canyon effect.

The classification-insensitivity effect can be created by placing the Gaussians so that

3



those far from the origin are best separated in one direction, but all of the Gaussians

can be separated using a different direction.

For this source and a moderately small number of training examples, five

rounds of SGD with C fixed at 105 generalizes significantly better than using SVMperfwith

a wide range of values of C. The fact that it improves on the generalization of

SVMperf for small C shows that this improvement is not just due to the fact that

SGD promotes short weight vectors. Specific aspects of the way that SGD performs

its optimization must be important.

The importance of this effect depends on how often something like it is seen

with natural data. We also give an example of similar behavior using the natural

RCV1-V2 dataset [11, 3]. As expected, the effect is smaller – after all, we con-

structed the artificial datasets to bring out these effects – but a similar comparative

performance is seen on the RCV1-V2 data. Furthermore, SGD with its default λ

(corresponding to C = 105) results in better generalization than SVMperfusing a

wide range of C-values after modest numbers of training examples.

2 Related Work

Earlier papers have explained the relative strength of SGD by comparing upper

bounds on accuracy obtained through SGD and second-order algorithms [5, 4, 14].

The idea is that adding new examples using a stochastic gradient algorithm yields

generalization dividends at a faster rate than more intensive processing of old ex-

amples. Thus one pass using stochastic gradient produces good hypotheses more

quickly. The classification-insensitivity effect was exploited in a theoretical analysis

of boosting by [12].

It is generally known that both SGD and averaged SGD (ASGD) will converge

to the theoretical value of the objective function.[18]. The accuracies reach the

peak and then will eventually decay. Experiment result in this thesis verify this

phenomenon.

4



3 Method and Experiments

All the experiments conducted in this thesis used version 2.0 of the implemen-

tation of SGD by [3]. For a more intensive optimization method, we used version

3.0 of SVMperf [10]. SVMperf is a descendant of SVMlight[9] that is optimized for the

linear kernel.

For running time comparisons of RCV1-V2(Reuters Corpus Volume 1-2) dataset,

which was also used for empirical study in our experiment, a detailed table shows

SVMperfran in 66 seconds whereas SVM-Light needed 23642 seconds[2].

Although SGD and SVMperfare optimizing two different objective functions in

the actual implementation, we fixed λ as default value 10−5 such that for prototypes’

demonstration, the SGD will beat whatever SVMperfC’s variations.

SVMperfoptimizes the following objective function:

φ(w) =
1

2
||w||2 + C

m

m∑
t=1

�(yt(w · xt)),

where � is the hinge loss, max{0, 1 − yt(w · xt)}.
SGD optimizes the related criterion

φ′(w) =
λ

2
||w||2 + 1

m

m∑
t=1

�(yt(w · xt))

which, after rescaling, is equivalent to

1

2
||w||2 + 1

λ

1

m

m∑
t=1

�(yt(w · xt)),

i.e., the same objective function as SVMperf , with C = 1
λ . For most of our ex-

periments, we use the default value λ = 10−5, though some later experiments will

explore the impact of varying λ in SGD as well as C in SVMperf . Based on the

results of [2], we use the default number 5 of passes over the data for SGD.

In the SGD program, hinge loss penalty can be available if specify the type

of loss functions during code compilations. The SVMperf , by default, will use hinge

loss for optimization.

5



3.1 Synthetic Data Generation

We experimented with data generated i.i.d., where each example (x, y) ∈ Rn×
{−1, 1} was generated from one of the following two sources. (We experimented with

various values of n.)

3.1.1 Random-8 and the canyon effect

The Random-8 source was designed to promote the canyon effect while includ-

ing some of the characteristics of web spam. Data from this source was generated

from a uniform mixture of eight spherically symmetrical Gaussians. Since the mean

of each Gaussian was randomly chosen, we call this source the random-8 source.

This source was simple enough that, rather than estimating test error using test

data, we could calculate it analytically.

The parameters of the eight Gaussians were chosen randomly. Each of the

eight centers μj was chosen uniformly at random from [−1, 1]n, and each covariance

matrix Cj was σ2
j I, for a σj chosen uniformly at random from (0, 0.1]. The typical

label associated with each Gaussian, yGj was also chosen uniformly at random from

{−1, 1}.
Each example (x, y) was generated by first choosing one of the eight Gaussians

(from the uniform distribution), and generating a feature vector x from the chosen

Gaussian. The label y starts as the typical label for the chosen Gaussian, but is then

flipped with noise probability η, e.g. η = 10%.

When the dimensionality n is large enough, the positive and negative centers

are likely to be linearly separable. Furthermore, the σj values are small, so the error

rates of good hypotheses usually approach the noise rate η.

The process for generating the parameters of the canyon effect source is sum-

marized in Algorithm 1, and the training set generation is summarized in Algo-

rithm 2.

Both SGD and SVMperf learn a hypothesis weight vector w. Instead of using

test data, we can analytically calculate the generalization error of a linear threshold

hypothesis for the Random-8 source. (The analytical expression could play a role in

6



Algorithm 1 Random-8 Gaussian generation

1: Input: Number of group N ; Dimension n; Max variance radius r = 0.1
2: for j = 1 to N do
3: generate μj ← �0
4: for k = 1 to n do
5: update μjk ← rand ∈ [−1, 1]
6: end for
7: generate σj ← rand ∈ (0, r]
8: if rand < 1/2 then
9: yGj = +1

10: else
11: yGj = −1
12: end if
13: end for

Algorithm 2 Random-8 Training data generation

1: Input: Number of training set T ;Dimension n; Noise level η
2: for i = 1 to T do
3: j ← integer rand ∈ [1, N ]
4: set �xi ← Gj ∼ (μj , σ

2
j I)

5: if rand < η then
6: yi ← −yGj

7: else
8: yi ← yGj

9: end if
10: end for

a future theoretical analysis of this source.)

The probability of a half-space with respect to spherical Gaussian is easy to

compute analytically. By translating the center to the origin, projecting onto the

direction of the normal vector, and exploiting the fact that the result of such a

projection is a one-dimensional Gaussian.

Consider an arbitrary spherical Gaussian G with mean μ together with co-

variance matrix σ2I, and an arbitrary half-space w · x+ b ≤ 0. WLOG assume that

μ is in the half-space (if not, take one minus the probability below). Let d ≥ 0

be the distance between μ and the half-space boundary, and z be the point on the

boundary closest to μ. Now translate the space by −μ to center the Gaussian, and

then rotate the space so that the translated z gets mapped to (d, 0, 0, . . . , 0). Note

that the original half-space has been transformed to the halfspace x1 ≤ d. Now the

probability that a point x drawn from G is in the original half-space is equal to the

7



probability that a point x drawn from the transformed Gaussian has a first coordi-

nate at most d. Since spherical Gaussians are preserved under marginals, translation

and rotation, the probability that the transformed Gaussian generates a point with

first coordinate at most d is
∫ d
−∞N (x | 0, σ2)dx = Φ(d/σ).

Once we have the probabilities of the positive and negative prediction regions

under each of the Gaussians, a straightforward calculation using the mixture weights

and noise probability gives the generalization error rate of the half-space hypothesis.

The detailed derivations are in the Analytical Error Probability section:

Analytical Error Probability: From the setup above, we know the proba-

bility density of the multi Gaussian distribution, particularly for xi generated from

Gj , will be: f(xi) = f(x1, x2, ..., xn) =

1

(2π)n/2 |Cj|1/2
exp

{
−1

2
(x− μj)

′Cj
−1(x− μj)

}
.

Now assuming the cluster Gj is pure without noise examples, which indicates

η = 0, the expected probability of having wrong predictions on Gj with learned

w, is identical to wrong predictions of a rotated hypothesis w′ which could be

orthogonal to any base direction in the Rn, around the mean μj of Gj . Without loss

of generality, we assume the right side of the w get wrong prediction, and rotation

will stop when the norm of w′ is aligned to x1 direction. The interception of w′

on axis x1 is d, whose distance to μj equals to the distance from w to μj . For

opposite correct/wrong prediction scenario, the derivations only need changing the

8



lower limit and upper limit of the integral. That means:

̂errorη=0
j = P (wrong side|w, Gj)

= P (wrong side|w′, Gj ,with the same distance d)

=

∫ +∞

−∞
...

∫ +∞

−∞

∫ +∞

d+μj1︸ ︷︷ ︸
n layers

f(x1, x2, ..., xn)dx1dx2...dxn

=

∫ +∞

d+μj1

(..

∫ +∞

−∞
(

∫ +∞

−∞
f(x1, x2, ..., xn)dxn)dxn−1..)dx1

=

∫ +∞

d+μj1

(...

∫ +∞

−∞
f(x1, x2, ..., xn−1) · 1 · dxn−1...)dx1

= ...

=

∫ +∞

d+μj1

f(x1) ·1 · 1... · 1︸ ︷︷ ︸
n−1

dx1

=

∫ +∞

d+μj1

f(x1)dx1

=

∫ +∞

d+μj1

1√
2πσj

e
− (x1−μj1)

2

2σ2
j dx1

=

∫ +∞

d

1√
2πσj

e
− u2

2σ2
j du

= 1− P (x|x � d,X∼(0, σ2
j ))

= 1− Φ0,σj (d)

where d =
w·µj+b

‖w‖2 is the distance from Gaussian center μj to the hyperplane

w or rotated w′. Note b is the threshold from the dual form of the objective function

that would be also learned by both SVMperfand SGD.

L(w, b,α) =
1

2
||w||2 −

l∑
i=1

αi[yi(w · xi + b)− 1],

where αi � 0 are the Lagrangian multipliers for constrains.

Figure 2 shows the rotation of the w and d based on a single 2D Gaussian

group computation.

9



The derivation above shows that the estimated error on each Gj for each leaned

hypothesis w can be simplified to a calculation of one dimensional PDF(Probability

Density Function) Φ0,σj (d) due to the fact that the initial settings for symmetrically

spherical Gaussian would simplify the covariance matrix such that the integral will

be beneficial from this simple diagonal matrix. The final estimated error need to

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

X1

X
2

pdf(obj,[x,y])

 

 

xi ∈ Gj

Gj contour
w learned
w′ rotated

d

Figure 2: A 2D demo for one Gj with mean as μj : rotating w centering around μj

to w′, which is orthogonal to x1, will have the same value of the expected error for
learned hypothesis on Gj .

adjusted based on the noise level (with probability η, examples will have the negated

label assignment). The wrong side in pure case would actually have portion 1 − η

predict wrong whereas the correct side of the pure case would have η portion actually

10



predict wrong. From Bayes’ formula, the final error is:

êrrorj = P (wrong side|w, Gj) · (1− η) + P (right side|w, Gj) · η

= ̂errorη=0
j · (1− η) + (1− ̂errorη=0

j ) · η

= (1− Φ0,σj(d)) · (1− η) + Φ0,σj(d) · η

The total error for all Gj (N = 8 for experiment) would be:

êrror =
1

N

N∑
j=1

êrrorj (1)

Since the one dimensional Gaussian calculation is very fast and there are existing

codes to do that, the running time of the test error estimation is dramatically reduced

during the experiments. There is even no need to generated the test data set, which

speed up the experiments by reducing big block data writing operations to the hard

drives. Concretely, the correctness of derivations can be verified by comparing the

calculated estimated errors versus a large test set generated. The difference between

theoretical calculation and estimate test error using 30000 test data was always less

than 0.2%, in terms of accuracies, for any data generation experiments that we tried.

When the data is generated using the random-8 source, SGD beats SVMperfwith

large C (see Section 4.1). However, there is no clear difference between SGD and

SVMperfwith small C. This leaves open the possibility that SGD’s advantage is due

to its small weight vector, i.e. that it effectively performs regularization akin to a

small-C SVM algorithm.

3.1.2 Fixed-4 source adding the classification-insensitivity effect

Now we describe the fixed-4 source which retains the canyon effect while pro-

moting the classification-insensitivity effect. In other words, it encourages the small-

C optimization to focus on large magnitude examples while essentially ignoring in-

correct examples close to the origin. The fixed-4 source is a mixture of 4 Gaussians,

located as in Figure 3. The two blue (+) Gaussians generate mostly positive exam-

11
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+

+

−

−

Figure 3: Fixed-4 source: a mixture of 4 Gaussians. The Gaussians located further
from the origin have more weight in the mixture and are more diffuse. Linear
separators tend to have small margin on all examples (dashed line), but the green
hypothesis obtains large margin on most of the points at the cost of prediction errors.

ples while the red (−) Gaussians generate mostly negative examples.

The fixed-4 source has two kinds of examples; small magnitude examples from

the Gaussians at (±ε, 0), and relatively large magnitude examples from the Gaussians

at (+1,+1) or (−1,−1). For a weight vector of a given size, the margins on the

“large magnitude” examples will tend to be bigger than the margins on the “small

magnitude” examples.

The centers of the clouds are positioned so that they are linearly separable

(dashed line). However, if the far clouds are classified correctly by a large margin,

then most examples from the close clouds will be misclassified (green line). Since

SGD (with a large C) tends not to make updates on correctly classified examples,

it is less likely to over-emphasize the large-magnitude examples, and thus obtain

better hypotheses.

To preserve the canyon effect, we continue to keep the variances of the Gaus-

sians small and flip a fraction η = 5% of the labels to generate similar examples with

contradictory labels.

The fixed-4 source in higher dimensions splits the n dimensions between k

12



Table 1: Fixed-4 Gaussian Means.

G′
j yG′

j
Weight σ′

j μ′
j (ε = 0.1)

G′
1 +1 40% 0.1 �1 : (1, 1, ..., 1︸ ︷︷ ︸

n

)

G′
2 +1 10% 0.032 (−ε, ..,−ε,︸ ︷︷ ︸

k

0, ..., 0︸ ︷︷ ︸
n−k

)

G′
3 -1 10% 0.032 (ε, .., ε,︸ ︷︷ ︸

k

0, ..., 0︸ ︷︷ ︸
n−k

)

G′
4 -1 40% 0.1 −�1 : (−1,−1, ...,−1︸ ︷︷ ︸

n

)

Algorithm 3 Training data generation - fixed-4 source

1: As algorithm 2 . . .
2: j ← rand integer j ∈ [1, N ] with prob. of wtj
3: As algorithm 2 . . .

“key” dimensions where the means of the nearby Gaussians are non-zero and the n−k
“non-key” dimensions where these means are zero. (Note that calling these “key”

dimensions is somewhat subjective as the k “key” dimensions have contradictory

signs in the Gaussians with the same typical labels.) Table 1 shows the typical

label, mixture weight, standard deviation, and mean for each Gaussian G′
j in the

fixed-4 source. The mixture coefficients weight the “large magnitude” Gaussians

more heavily, so instead of picking a Gaussian from a uniform distribution when

generating examples, we now use a weighted mixture. The selected Gaussian’s

typical label is flipped with probability η = 0.05.

Once the learned w is obtained, the generalization error for this source is easily

computed along similar lines as the Random-8 source. For data generated from

this source, SGD with the default λ = 10−5 generalized better than SVMperfwith

both small and large C values, especially when the number k of key dimensions is

small (See Section 4.2).

3.2 Natural data

The original RCV1-V2 data set [11] consists of 23149 training documents and

781265 testing documents with 47152 features. We processed the data using soft-
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ware provided for that purpose from the SGD package [3]. Inside the package, there

is a program to unzip and shuffle the original data, and then format to a database

that can be read by both SVMperfand SGD package. The default data set genera-

tion swaps between the original training and testing set in order to do the running

time measurements in [2]. However, we switch back to the larger test set to more

accurately estimate the generalization error rate.

4 Results

For various sources and algorithms, we plot the generalization error as exam-

ples are added to the training set. Because the most significant differences between

algorithms are seen over the first few thousand examples, we concentrate our graphs

on this part of the curve.

4.1 The canyon effect alone

The results from the Random-8 source are shown in Figure 4 and Figure 5.

They show that, over a variety of dimensions n and noise rates η, when the

number of examples is only moderately large, the SGD hypothesis is much more

accurate than the SVM hypothesis trained with large values of C (C > 30).

When C is small enough (C < 30), the accuracy of the SVM hypothesis

quickly (in terms of number of training examples) overlaps the accuracy of the SGD

hypothesis. Again, this holds for a variety of noise rates and numbers of variables.

The Bayes-optimal accuracy is around 90%, reflecting the η = 0.1 noise rate.

Before conducting the experiments, we expected the canyon effect to result in

an advantage of SGD over large-C SVMperf .

An intriguing phenomenon is the early dip in accuracy of large-C SVMperfas

more training examples are added. Figures 4(a), 4(b) and 4(c) show that the number

of examples to reach the bottom of the dip increases with the dimensionality for

large-C SVMperf .

The depths and locations (in terms of number of training examples) of this

valley for C = 1000 are given in Table 2.
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(a) n = 100, η = 0.1
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(c) n = 400, η = 0.1

Figure 4: Random-8 accuracies as a function of the training set size for SVMperfwith
a variety of C values and SGD - vary the dimensionality. Note: The curves for small
C (i.e. C � 1) are covered by the curve for SGD.
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(a) n = 200, η = 0.03
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(b) n = 200, η = 0.05
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(c) n = 200, η = 0.15

Figure 5: Random-8 accuracies as a function of the training set size for SVMperfwith
a variety of C values and SGD - vary the noise rate. Note: The curves for small C
(i.e. C � 1) are covered by the curve for SGD.
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Table 2: Observations of Dips for c = 1000

(a) Random-8 source with η = 0.1

dimension #worst best worst best− worst

n = 100 250 90% 77.8% 12.2%
n = 200 500 90% 76.3% 13.7%
n = 400 1000 90% 75% 15%

(b) Random-8 source in dimension n = 200

noise rate #worst best worst best− worst

η = 3% 1000 97% 90.1% 6.9%
η = 5% 700 95% 85.3% 9.7%
η = 10% 500 90% 76.3% 13.7%
η = 15% 500 85% 67.6% 17.4%

Figures 5(a), 5(b) and 5(c) show that the dip bottom occurs after fewer ex-

amples as the noise level increases. As might be expected, for a fixed dimensionality

(i.e. n = 200) the more noise the greater the gap between the dip bottom and the

Bayes optimal accuracy.

The number of examples at the dip bottom appears to be decreasing as the

noise-rate increases, though the bottom is at the same place for η = 10% and

η = 15%. For SVMperfwith large C, the amount of decrease in the accuracy also

appears to be increasing with η, but perhaps starting to asymptote around 14-15%.

The reason for large C SVMperfclassifiers to perform badly is that the large

penalty weighting on the loss function �(yt(w ·xt)) will severely affect the w for each

examples coming into the training set. At the early stage of the training, because

the noisy data point has the equal opportunity as the normal data to be chosen

in the training set, the large C learners will attempt to accommodate them most

to reduce the loss. At this stage, a couple of more examples came in training set

could result in radically changing the direction and length of vector w such that

reducing even one loss classification will make φ smaller. Until to the worst valley

point, the bad noisy data dominate the updating of hypothesis w. As the number

of training examples increase to very large, there would be no more linear separable

solution for any learned hypothesis, no matter how the C is, the w has to make lots

of wrong classifications anyway since the VC dimensionality for Rn with hyperplane
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is only n + 1, which is 
 the number in the training set. In this situation, w

will globally balance the total loss on all data points. Consequently, Bayes-optimal

prediction rate is acquired. On the contrast, small C is almost totally ignoring

which ever noisy data point it sees. It would focus on global data in the view to

minimize the objective function. Once new noisy data come in, instead of twisting

in the hyperspace a lot as large C does, these learners will just change a little bit to

accommodate those points. The SGD has large penalty in the sense of optimizing

the objective function, but it is not a so nice optimizer as SVMperf . Although bad

approximating to the QP programing solution make it mathematically worse towards

the analytical form of the objective function, the SGD would not really updating

w too much after encountering a canyon pair such that it will not better approach

φmin mathematically.

As a result, here is a potential explanation of these dips. When there are

relatively few noisy examples, it is less likely that pairs of very similar examples

with opposite labels will be seen. When there are very many examples, then the

effects of irrelevant directions on w will cancel each other out. The fact that this

takes longer for larger values of n is consistent with the intuition that more directions

need to be canceled in that case.

When dimensionality n of the data increases, the large-C SVM algorithm

needs more training examples to reach the valley performance, because the VC

dimension n+1 get larger such that more training data are needed to make w in the

situation that cannot compromise those noisy points anyway. As a result, the valley

point increase as the n get larger. Similarly, when noise level are getting larger, the

balanced situation, in which even large C learners should have a global consideration

since no way to reduce loss on bad noisy points, would come earlier because there

are so much noise to quickly make w no way to linearly separate those points, where

the worst performance occurs. To quantify the form of the shifted valley points and

the depth of the valley, which is best − worst accuracies, more theoretical analysis

work needs to be done. Nevertheless, the first prototype gave us strong hints that

noise in the clouds would help bad optimization beat good optimizers with large
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penalty on loss function.

In fact, most of the curves in Figure 4 and Figure 5 indicate a relationship

between the dimensionality, the expected number of the noisy examples, and the

number of examples at the dip bottom when C = 1000. In particular, the dip

bottom tends to occur when the expected number of noisy examples is about n/4,

one-quarter of the example dimensionality.

4.2 Adding the classification-insensitivity effect

The Fixed-4 source exhibits the canyon effect by having tight clouds of ex-

amples with label noise. In addition, it also exhibits the classification-insensitivity

effect, which causes trouble for algorithms that aggressively set C to a low value.

Figure 6 shows the results of these experiments. The behavior of the large-C SVM

algorithm is qualitatively similar to the Random-8 results, including the dip in ac-

curacy. The dips follow the same trends as in the Random-8 source: larger values

of n make the valley point occur with more examples for a fixed noise level.

The result shows the valley point of large C learners still around 250 training

examples for n = 100, η = 10%, which is pretty consistent with Figure 4(a) and

Table 2 (a).

However, the small C learners also fail to do well. When C is small enough, the

optimization essentially maximizes the total margin and “gives up” on the smaller

clusters near the origin. The benefit of reducing the loss on the close points is too

small relative to the benefit of increasing the margin on the larger clouds. As shown

in Figure 3, there is a hyperplane that obtains large margin on most of the points,

but has a significant number of classification errors. For example, the uniform vector

(�/
√
n, . . . , �/

√
n) achieves margins like �

√
n on points from the larger clusters while

losing only about −ε�k/√n margin on the points in the smaller clusters.

When k, the number of key (non-zero) dimensions in the means of the small

clouds increases, SGD gets worse and eventually may become worse than the large-

C SVM. As k increases, the angle between the centers of G′
1 and G′

2 (also with

the angle between the centers of G′
3 and G′

4) becomes more obtuse. (This can be
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(b) n = 100, k = 1
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(c) n = 100, k = 10
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(d) n = 100, k = 50
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(e) n = 100, k = 90
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(f) n = 100, k = 99

Figure 6: Fixed-4 accuracies as a function of training set size for SVMperfwith a
variety of C-values and SGD. (a) and (b) show that, when k = 1, SGD is generally
more accurate. Figure (a) and (c)- (f) show fluctuating accuracy for SVMperfwhen
C = 0.1. (e) and (f) show the advantage of SGD is less clear for larger values of k,
where the classification-insensitivity effect is weaker.
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verified by computing the cosines of those angles using the dot products between

the centers.) This makes SGD converge more slowly, for a similar reason that it is

protected against the canyon effect. At the same time, the Gaussians that are close

to the origin are becoming less so, weakening the classification-insensitivity effect.

The k parameter impacts the maximum margin. Smaller k values allow the data to

be separated with a larger margin while k values approaching n (the dimensionality

of the instances) lead to very small margins. When k ≈ n, SVMperfwith super

large C can find the resulting very small gap and separate the clusters while SGD

has trouble finding this gap and performs more like the low-C SVM. In the case

k = 1, where the classification-insensitivity effect is strongest, the advantage of SGD

is clear.

Explanation of Fluctuations: The SVMs with small-C have very unstable

accuracies on the Fixed-4 source. When C = 0.1 in particular, we see the accuracy

often oscillating between two values as we add more examples. To explain this

phenomenon, we examined the simple 3D case of Figure 6(a). We took all hypothesis

learned during the oscillations by small C SVMs and calculated the angles between

them. Surprisingly, they were all almost parallel. We then found two nearby points

where the accuracies on the C = 0.1 curve jumped by a large amount and plotted

the two planes corresponding to their hypotheses (see Figure 7). This plot reveals

that the accuracies oscillate because the hypotheses shift across the smaller clusters.

Some hypotheses get one of the two smaller clusters wrong, while others get both

wrong.

Define the most frequently appearing higher accuracies’ group for small C

learners, e.g. C = 0.1, is wup and the flip side, wdown represents the group of

the most frequently observed lower accuracies. For most w from different groups,

cos(
wup

i ·wdown
j

‖wup
i ‖2·‖wdown

j ‖
2

) ≈ 1

Figure 7 is from the C = 0.1 curve in the 3D space of Figure 6(a). The

hyperplanes in Figure 7 represent two consecutive hypotheses, from 160 and 180

training examples respectively. The learner switched from the purple (accuracy 79%)

to the green (accuracy 86%) hypothesis. The 20 newly added training points came
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mostly from the upper (blue) cluster G′
1, causing the margin-optimizing hyperplane

to be pushed down towards the lower (red) cluster. In this case, the push happened

to shift the hyperplane across most of the smaller red cluster, and increased the

accuracy by 7% (with the label noise, shifting across an entire small cluster changes

the accuracy by 9%).

This is effect can be calculated from the distribution since Accws1 = 40% ×
2 × (1 − η) + 10% × 2 × η = 0.76 + 0.01 = 77% and Accws2 = (40% × 2 + 10%) ×
(1− η) + 10%× η = 0.855 + 0.005 = 86%. Most of the switched accuracies for small

C learners for 3D in Figure 6 are all back and forth between the range of [wdown
i ,

wup
i ]. One more added point in the furthest two clouds could make small C learners

totally come across the small clouds region completely due to the large margin they

would gain.

It is also observed that the value of wdown
i and wup

i for C = 0.1 in Figure 6(c)

and Figure 6(d) are increased. Due to the fact that it is not observable in 3D, there is

no plot for the learned wdown
i and wup

i . For the observed n = 100 dimensionality and

C = 0.1, the value of cosine similarity are still close to 1 but the angle between them

are relatively bigger comparing with C = 0.01 scenario. For example, in Figure 6(c),

the value of cosine similarity for fluctuated consecutive hypothesis (e.g. w360 with

86.00% accuracy vs w380 with 94.96%) is w360·w380
‖w360‖2·‖w380‖2 = 0.9897 indicating 8.22

degree while for C = 0.01 is only 1.72 degree. Better explanations leave open for

future investigation on this phenomenon.

4.3 Stability of SGD

In our many run experiments for each setup above, we did see SGD occasionally

perform badly due to the “unlucky” shuffled sequence for training set, which contains

the noise data point at the end of the sequence resulting fatal updating on the

already-good hypothesis. It is also a general issue for online algorithm when dealing

with the last training example who is noise point. To avoid this, ASGD was used to

achieve the similar performance as SGD but with better stability. Another way is

to average, or to use median accuracies, from many runs with different shuffling for
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each training step.

4.4 Irrelevant Feature Evaluations

We also considered the two sources modified with an additional n irrelevant

features (making 2n features total). We run part of experiments above with irrele-

vant features. There are no observed significant effects on the algorithm’s learning

curves.

4.5 Study using natural data: RCV1-V2

For the RCV1-V2, we added examples to the training data one at a time, in

random order, and plotted the test set error. The results show that SGD algorithm

can get better generalization than SVM with any C for up to 2000 training examples.

Figure 8(a) shows apple to apple comparisons for both large penalty learners and

8(b) for small ones. We set λ to 1/C so that the two algorithms, SVMperfand SVM-

SGD packages are using the same objective function. In both cases SGD beats the

more effective optimizer SVMperf .

Figure 8(c) shows the performance of all learners we used on synthetic sources.

The default λ = 10−5 for SGD has consistently better generalization than the SVM

hypotheses.

In Figure 8(a), the difference between SGD and SVMperf is large at 400 ex-

amples. We did two things to verify that the canyon effect is involved in this dif-

ference. First, we found the closest pairs xs,xt of points whose respective labels

ys = 1, yt = −1 were different (within these 400 examples). We then scatter-plotted

the cosine similarities between the values of xs − xt for these examples and the

w vectors (after the 400 examples) produced by the SVM and SGD algorithms in

Figure 9(a). This shows that the SVM algorithm has much more “canyon activity”.

Second, we continued to run SGD on these first 400 examples for 50,000 epochs.

The accuracy of SGD decayed from 83.81% to 79.76%, very close to the 79.17%

accuracy of SVMperf(see Figure 8(d)). The Figure 9(b) concretely shows that as

large amount of number of epochs runs for SGD, the learned hypothesis will no
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Figure 8: (a), (b) and (c) shows accuracy comparison based on one shuffle. (d)
shows SGD’s accuracy decay over many epochs on the initial 400 examples from (a).
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Figure 9: The cosine similarity for different hypothesis with top 20 closest but
differently labeled canyon-pairs.
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longer immune to canyon effect.

We think that the canyon and classification insensitivity effects give SGD its

advantage on the RCV1-V2 data, but we cannot rule out the possibility of other

undiscovered effects also benefiting SGD.

5 Discussion

In this thesis, we have begun to explore the possibility that SGD algorithms

generalize well in part because they are less sensitive to noise. Put another way,

while they do not do a good job of optimizing the stated objective function, they

effectively optimize a different function, which accords less importance to groups of

examples that nearly contradict one another.

While we have concentrated on the SVM objective in this thesis, much of the

discussion also applies for related approaches, especially regularized logistic regres-

sion, where the hinge-loss �(z) is replaced with the logistic loss log(1 + e−z).

The SGD software [3] used in this work includes code for “Averaged Stochas-

tic Gradient Descent” (ASGD) which outputs the average of all the weight vectors

encountered during the SGD training process, instead of the last one. Roughly, the

advantages of SGD should also hold for ASGD, for more-or-less the same reasons.

We did the same suite of experiments using ASGD instead of SGD, with qualita-

tively similar results (but with the additional stability of ASGD in evidence). Some

comparison results are provided in the appendix.

Our comparison with low-C optimization confirms the hypothesis that the

advantage of SGD is not simply due to its early stopping limiting the length of the

weight vector. In particular, we propose two effects causing margin optimization to

result in poor generalization. The canyon effect encourages large-C optimizations to

focus on nearly contradictory examples. In contrast, the classification-insensitivity

effect causes low-C optimizations to give up on classifying examples close to the

origin in order to obtain good margins on examples further away. SGD is relatively

immune to both effects, and our experiments with mixtures of Gaussians provide

concrete evidence that a few epochs of SGD can outperform SVMs regardless of the
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choice of soft-margin penalty C.

We also showed that on natural data SGD can outperform SVM applied with

a variety of values of C. Further examination of this natural data could confirm the

extent to which it has characteristics in common with our synthetic datasets, such

as tight clusters with conflicting labels.

These experiments raise a number of theoretical questions. For example, can

it be shown analytically that for some source and training set size, the accuracy of

SGD is higher than that of SVMs, for any setting of the regularization parameter?

If so, how big can the difference in accuracies be? Can we characterize when SGD

generalizes better, or at least provide sufficient conditions?
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(a) n = 100, η = 0.1
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(c) n = 400, η = 0.1

Figure 10: Random-8 accuracies as a function of the training set size for
SVMperfwith a variety of C values and ASGD - vary the dimensionality. Note:
The curves for small C (i.e. C � 1) are covered by the curve for ASGD.
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(a) n = 200, η = 0.03
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(b) n = 200, η = 0.05
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(c) n = 200, η = 0.15

Figure 11: Random-8 accuracies as a function of the training set size for
SVMperfwith a variety of C values and ASGD - vary the noise rate. Note: The
curves for small C (i.e. C � 1) are covered by the curve for ASGD.
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Figure 12: Results from RCV1-V2 data. ASGD vs SGD curves.
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