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Abstract

Purpose of review—Luminal chemosensing is a term used to describe how small molecules in 

the gut lumen interact with the host through surface receptors or via transport into the submucosa. 

In this review, we have summarized recent advances of understanding luminal chemosensing in the 

gastroduodenal mucosa, with a particular emphasis on how chemosensing affects mucosal 

protective responses and the metabolic syndrome.

Recent findings—In the past decade, data have supported the hypothesis that gut luminal 

chemosensing not only is important for the local or remote regulation of gut function but also 

contributes to the systemic regulation of metabolism, energy balance and food intake. We have 

provided examples of how luminal nutrients such as long-chain fatty acids (LCFAs), endogenous 

compounds such as bile acids, bacterial metabolites such as short-chain fatty acids (SCFAs) and 

bacterial components such as lipopolysaccharide (LPS) activate cognate receptors expressed on 

key effector cells such as enteroendocrine cells and inflammatory cells in order to profoundly 

affect organ function through the initiation or suppression of inflammatory pathways, altering gut 

barrier function and nutrient uptake, altering gut motility and visceral pain pathways, and 

preventing mucosal injury.

Summary—These recent discoveries in this area have provided new possibilities for identifying 

novel molecular targets for the treatment of mucosal injury, metabolic disorders and abnormal 

visceral sensation. Understanding luminal chemosensory mechanisms may help to identify novel 

molecular targets for the treatment and prevention of mucosal injury, metabolic disorders and 

abnormal visceral sensation.
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INTRODUCTION

The duodenal mucosa is exposed to a mixture of semi-digested food, secreted acid and 

bacterial components and metabolites. As the most proximal intestinal segment, the 

duodenal mucosa has a unique chemosensory capacity that senses the luminal content, 

followed by the rapid release of bioactive mediators and hormones that have local and 

systemic effects [1]. The identification of luminal chemosensors in the gastrointestinal tract 

has emerged in the past decade in part from the de-orphanization and characterization of 

nutrient-sensing G protein coupled receptors (GPCRs) [1]. Gut luminal chemosensing is 

implicated not only in the local or remote regulation of gut function but also in the systemic 

regulation of metabolism, energy balance and food intake [1].

Gut physiological processes such as secretion, digestion, absorption and motility are affected 

by these luminal substances, in addition to central nervous control via vagal nerves initiated 

at the cephalic phase of food intake. The first discovery of gut hormone release in response 

to a luminal substance was secretin release in response to luminal hydrogen ion (H+) 

concentration [1]. To date, ~20 gut hormones, principally localized in enteroendocrine cells 

(EECs) or myenteric neurons in the gastrointestinal tract have been identified. Extensive 

studies have clarified the contributions of these gut hormones in the regulation of gut 

function via GPCR activation as well as via food intake control through vagal afferent 

signals. Nevertheless, the mechanism underlying food-evoked gut hormone release is not 

well understood.

In this review, we will summarize recent reports addressing luminal chemosensing in the 

gastroduodenal mucosa with a focus on mucosal protective responses and metabolic 

syndrome.

LONG-CHAIN FATTY ACID SENSING

Long-chain fatty acids (LCFAs) and monoacylglycerol (MAG) generated from fat 

(triglyceride) digestion by pancreatic lipase are detected by the LCFA receptors free fatty 

acid (FFA)1 (GPR40) and FFA4 (GPR120), and the MAG receptor GPR119. Luminal LCFA 

and MAG increase the release of proglucagon products from enteroendocrine L cells such as 

glucagon-like peptide (GLP)-1 and GLP-2, gastric inhibitory polypeptide/glucose-dependent 

insulinotropic peptide (GIP) from K cells and cholecystokinin (CCK) from I cells [2–4,5■], 

suggesting that the corresponding receptors are expressed on L cells, K cells and I cells, 

respectively. Furthermore, LCFA-FFA1 mediated Gq-coupled intracellular Ca2+ increase 

with the MAG-GPR119-mediated Gs-coupled intracellular cAMP increase, synergistically 

increase GLP-1 release [6■].

As the fat enters duodenum, I cells in the intestine secrete CCK, often referred to as the 

archetypal gut hormone, a key intestinal peptide secreted by small intestinal EECs in 

response to ingested nutrients [7]. Digested luminal fats, LCFA and MAG are absorbed by 

enterocytes, mainly in the jejunum, via active and passive pathways. LCFA is partially 

absorbed via cluster-of-differentiation (CD) 36 mediated pathway [8]. A recent study shows 

that sulphated CCK-8 and GLP-2 increase LCFA uptake as N-oleoylethanolamide (OEA) 
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via CCK1 receptor activation and upregulation of CD36 in primary cultures of mouse 

duodenocytes. [9]. Although genetic deletion of CD36 or fatty acid transport protein (FATP) 

isoforms has no effect on fat absorption [10,11], CD36 and FATP are important for LCFA 

transport in vitro [8,12], suggesting that these active transport molecules constitute a high-

affinity, low capacity transport system. LCFA and MAG are re-esterified by diglyceride 

acyltransferase 1 (DGAT1) to triglyceride (triglyceride resynthesis), forming nascent 

chylomicrons after subsequent combination with apolipoprotein B-48. Chylomicrons are 

released by exocytosis from enterocytes into the central lacteals and villous lymphatic 

capillaries, draining into the mesenteric lymph ducts, followed by the thoracic duct into 

systemic circulation [13].

Interestingly, in a recent study that evaluated the expression of the fat sensors FFAR1, 

FFAR4, GPR119 and the LCFA sensor/transporter, CD36, in the human duodenum, GPR119 

was identified to be an early transcriptional responder to duodenal lipid in lean humans, 

although this response appeared reduced in individuals with high polyunsaturated fatty acid 

(PUFA) intake [14]. These observations may have implications for downstream regulation of 

gut hormone secretion and appetite.

SHORT-CHAIN FATTY ACID SENSING

Short-chain fatty acids (SCFAs) are volatile fatty acids, including C2 (acetate), C3 

(propionate), and C4 (butyrate), synthesized by the fermentation of dietary fibre and present 

in the lumen of the foregut in low concentrations compared with their principal location in 

the cecum and the proximal colon.

FFA2 and 3 are nutrient GPCRs with specific affinity for SCFAs [15]. In the rat duodenal 

mucosa, FFA2 is expressed in enterochromaffin cells containing 5-hydroxytryptamine (5-

HT), whereas FFA3 is colocalized with glucagon-like peptide (GLP)-1 in L cells [16]. 

Duodenal loop perfusion revealed that luminal perfusion of a synthetic high-affinity 

selective FFA2 agonist increases the release of 5-HT from enterochromaffin cells and 

stimulates duodenal HCO3
− secretion via activation of 5-HT4 and muscarinic receptors [16]. 

A synthetic selective FFA3 agonist increases GLP-2 release from L cells, which activates 

GLP-2 receptors, increasing HCO3
− secretion via the secondary release of vasoactive 

intestinal peptide (VIP) and nitric oxide [17■■,18]. The endogenous ligands acetate and 

propionate also stimulate HCO3
− secretion via GLP-2 receptor activation, enhanced by the 

addition of a dipeptidyl peptidase 4 (DPP4) inhibitor, likely due to the prolongation of the 

serum t1/2 of the DPP4 substrate GLP-2 [16].

GLP-2 release via FFA3 activation supports the therapeutic efficacy of synthetic FFA3 

ligands on experimental nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. 

Oral administration of a synthetic selective FFA3 agonist prevented the formation of 

NSAID-induced small intestinal ulcers associated with GLP-2 release [17■■]. As FFA3 is 

also functionally expressed on myenteric neurons, intraperitoneal or serosal treatment of a 

synthetic selective FFA3 agonist inhibited colonic motility and cholinergic ion secretion 

[19■■,20] but had no effect on NSAID-induced enteropathy [17■■]. These studies suggest 
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that orally delivered FFA3 ligands may be a novel therapeutic for the prevention of NSAID-

induced enteropathy.

In contrast, oral treatment with a selective FFA2 agonist, which increases 5-HT release from 

enterochromaffin cells, dose-dependently induced duodenal mucosal injury when 

coadministered with ulcerogenic doses of NSAIDs, a novel observation as NSAIDs usually 

do not injure the duodenum in rat models [21■■]. Duodenal mucosal injury is induced by 

gastric acid and 5-HT3 receptor activation, accompanied by increased 5-HT release into the 

portal vein and impaired acid-induced hyperemia via 5-HT3 receptor activation [21■■]. As 

protective mucosal blood flow, mucus secretion and HCO3
− secretion are reduced by 

injurious doses of NSAIDs, these results suggest that ulcerogenic doses of NSAIDs with 

concomitant FFA2 activation are accompanied by excessive release of 5-HT that remarkably 

reduces duodenal mucosal protective mechanisms followed by duodenal mucosal injury, 

supported by the observation that intra-aortic administration of 5-HT increases duodenal 

blood flow at low doses, but decreases blood flow at high doses [21■■].

Irritable bowel syndrome (IBS) is an idiopathic condition characterized by altered bowel 

habits and abdominal pain. As IBS symptoms respond to 5-HT3 antagonists, nonabsorbable 

antibiotics that reduce small-intestinal bacterial overgrowth (SIBO) and a diet depleted of 

fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FOD-MAP)s, 

we have hypothesized that excess fermentation of foregut FODMAPs by SIBO generates 

high foregut SCFA concentrations, overactivating FFA2 receptors expressed on 

enterochromaffin cells, releasing 5-HT with consequent gut dysmotility and abdominal pain 

[21■■].

INTESTINAL ALKALINE PHOSPHATASE: SURFACE pH REGULATION AND 

LIPOPOLYSACCHARIDE DETOXIFICATION

Intestinal alkaline phosphatase (IAP) is a glycosylphosphatidylinositol (GPI)-anchored 

ectoenzyme highly expressed in the brush border membrane of duodenal epithelial cells 

[22]. As the optimal pH of IAP is 8–9 and IAP activity is closely correlated to the secretory 

rate of HCO3
− [22], IAP may act as a surface pH sensor in the duodenum, maintaining 

extracellular pH homeostasis through a process we have termed ‘ectopurinergic signaling’. 

At neutral luminal pH, extracellular ATP nonlytically released from the epithelial cells is 

rapidly degraded to adenosine (ADO), which is further degraded to inosine by ADO 

deaminase. Once the surface pH is lowered by gastric acid, surface ATP concentrations 

increase due to the decreased degradation or the increased release of ATP, as IAP activity is 

reduced at acidic pH. Increased surface ATP concentrations activate purinergic P2Y 

receptors expressed on the apical membrane of epithelial cells, increasing the rate of HCO3
− 

secretion. Increased surface [HCO3
−] increases the surface pH, increasing IAP activity, 

which degrades surface ATP, terminating ATP-P2Y signalling. Luminal ADO additionally 

increases HCO3
− secretion via adenosine A2B receptors [23]. These studies suggest that IAP 

acts as a pH sensor to modify surface ATP concentrations, as part of a negative feedback 

loop. The mechanism of ATP-P2Y receptor signalling is implicated in other HCO3
− 

secreting epithelia such as bile ducts, oviduct and bone [24].
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Lipopolysaccharide (LPS) is an endotoxin present in the outer coat of Gram-negative 

bacteria implicated in acute and chronic inflammation. Recent studies also demonstrate 

another important function of IAP in LPS detoxification, as IAP dephosphorylates the lipid 

A moiety of LPS [25], preventing activation of its cognate pro-inflammatory receptor Toll-

like receptor 4 (TLR4) [26]. As exposure of the intestinal mucosa to LPS induces IAP gene 

expression, IAP activity is associated with decreased bowel inflammation. Decreased IAP 

expression is associated with increased LPS toxicity in zebrafish and intestinally derived 

Caco-2 cells [26–28]. Furthermore, IAP deficiency is associated with inflammation due to 

increased LPS toxicity in the human intestine [29] and in the intestines of vertebrate models 

in which IAP levels are decreased [28]. In vivo, however, the localization of IAP and LPS is 

mismatched, as IAP is expressed predominantly in the upper small intestine, duodenum and 

jejunum, whereas LPS is at highest concentrations in the ileum and colon due to the 

colonization of Gram-negative bacteria, the source of LPS [27]. One possible mechanism is 

that IAP cleaved from brush border membrane by phosphatidylinositol-specific 

phospholipase C (PI-PLC) is released into the lumen and reaches to ileum and colon, 

wherein it detoxifies LPS.

Gram-negative bacteria are present in oral flora. LPS often abundantly contaminates many 

foodstuffs [30], LPS is resistant to gastric acid and rodents are coprophagic, suggesting that 

foregut LPS exposure may occur. Excessive LPS exposure to the upper small intestine that 

exceeds the capacity of IAP-mediated detoxification may be transported through the 

mucosa, activating TLR4 expressed on epithelial cells and inflammatory cells, implicated in 

the pathogenesis of metabolic endotoxemia and inflammation (See ‘LPS transport’ below). 

Interestingly, oral administration of bovine IAP improves the metabolic syndrome induced 

by a high-fat diet [31], impairs the development of experimental colitis [32] and reduces 

alcoholic hepatosteatosis [33■], suggesting that IAP detoxification reduces the pro-

inflammatory effects of LPS.

BILE ACID RECEPTOR TAKEDA G-PROTEIN-COUPLED RECEPTOR 5

In addition to lipids, bile acids also affect gut hormone release. Bile acids are the natural 

ligands for the GPCR, G protein-coupled bile acid receptor 1 (GBAR1, also known as 

Takeda GPCR 5 (TGR5) and the nuclear farnesoid X receptor (FXR), which are key 

regulators of energy and glucose homeostasis [34]. Activation of TGR5 by bile acids 

increases intracellular cyclic adenosine monophosphate (cAMP) levels, with subsequent 

suppression of cytokine production in macrophages [35]. Increased cAMP induced by 

forskolin and isobutylmethlyxanthine (IBMX) increases the release of GLP-1 from L cells 

[36], but the major link between luminal bile acids and GLP-1 release is probably mediated 

by TGR5 located on the L cell basolateral membrane [37]. The action of bile acids on 

GLP-1 secretion is principally mediated by TGR5 located on the basolateral L-cell 

membrane, suggesting that gut hormone release may be in response to absorbed receptor 

ligands [37]. Although TGR5 agonists increase GLP-1 release from the endocrine cell line 

STC-1 and the ileum of TGR5 transgenic mice [38,39], a TGR5 agonist alone has a little 

effect in vivo on GLP-1 release [39]. Nevertheless, DPP4 inhibition enhances serum GLP-1 

concentrations in the presence of luminal TGR5 agonists and glucose, abolished in TGR5 

knockout mice [39]. These results suggest that the bile acid induced TGR5 activation is a 
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positive enhancer of glucose-induced GLP-1 release. TGR5 activation also decreases the 

production of pro-inflammatory cytokines in response to LPS via inverse modulation of the 

nuclear factor (NF)-κB signalling pathway [40].

TGR5 has also been implicated in duodenal mucosal protection through the increased rate of 

duodenal HCO3
− secretion in response to luminal TGR5 ligands via the GLP-2 pathway 

[41]. Enhanced GLP-2 release in the presence of bile acids via TGR5 may be implicated in 

the adaptive mucosal repair that occurs after postprandial villous loss during food digestion. 

Furthermore, as GLP-2 has potent intestinotrophic and barrier-strengthening effects [42], 

TGR5 ligands may have beneficial effects on multiple diseases attributed to intestinal 

atrophy and increased intestinal permeability.

LUMINAL VERSUS BASOLATERAL NUTRIENT SENSING

Luminal nutrients are sensed by the cognate nutrient GPCRs expressed on EECs [43], 

generally believed to localize to the apical surface of enterocytes. Yet, the membrane 

localization of nutrient GPCRs has not yet been fully identified by immunohistochemistry. It 

is possible, however, that nutrients absorbed by adjacent epithelial cells are sensed by 

basolaterally expressed nutrient GPCRs expressed on EECs. Recent studies support this 

possibility: chylomicron synthesis and secretion are required for lipid-induced release of 

GIP and GLP-1 in vivo, consistent with lipid absorption followed by basolateral FFA 

receptor activation [44]; a vascularly but not luminally perfused FFA1 agonist increased 

GLP-1 release in the ex vivo small intestine [45]; chylomicrons increase GLP-1 release from 

GLUTag cells via lipoprotein lipase and FFA1-dependent pathways, but not a GPR119-

independent pathway [46■]. These studies suggest that LCFAs are sensed by basolateral 

FFA1 after LCFA absorption followed by chylomicron release, rather than by luminal LCFA 

sensing by apical FFA1. L cell density is greater in the hindgut (ileum and colon) than in the 

foregut (duodenum and jejunum). GPR119-dependent GLP-1 release is greater from colonic 

L cells than from upper intestinal L cells; lipid-induced GLP-1 release is abolished in L cell-

specific GPR119 knockout mice [5■], suggesting that lipid-induced GPR119-dependent 

GLP-1 release principally originates from colonic L cells, which are not exposed to lipid in 

the lumen, but are possibly exposed to lipid at the vascular side after absorption. 

Alternatively, a vagal cholinergic reflex originating from the upper intestine to lower 

intestinal L cells may release GLP-1 during fat absorption [47].

The bile acid GPCR TGR5 is also functionally located on the basolateral membrane of L 

cells [37] as mentioned above. The TGR5 agonist taurodeoxycholate (TDCA) increases 

GLP-1 release from intestinal tissues when applied basolaterally or vascularly more than 

when applied luminally. Furthermore, the apical sodium-coupled bile acid transporter 

(ASBT) inhibitor abolishes luminal TDCA-induced GLP-1 release, suggesting that the 

absorbed bile acids stimulate the basolateral TGR5 on L cells prior to releasing GLP-1. 

These data suggest that the membrane localization of nutrient GPCRs may affect the 

therapeutic strategy used to target luminal or basolateral GPCRs by nonabsorbable or 

absorbable agonists or antagonists.
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LIPOPOLYSACCHARIDE TRANSPORT

Circulating LPS increases the permeability of the gut mucosal barrier, increasing LPS 

translocation into the circulation, augmenting endotoxemia with consequent systemic 

inflammation [48]. Increased serum LPS concentrations are associated with the metabolic 

syndrome, termed metabolic endotoxemia [49]. LPS aggravates low-grade inflammation 

[48], high-fat meals acutely increase circulating LPS levels in human healthy volunteers [50] 

and LPS appears in chylomicron remnants in mice [51], suggesting that luminal LPS 

physiologically crosses the gut barrier during fat absorption. Our recent studies demonstrate 

that luminal LPS is transported during fat absorption via lipid raft and CD36-mediated 

transcellular transport mechanisms, as studied in Ussing chambered jejunum in vitro and 

intestinal perfusion with cannulation of portal vein and lymph duct in vivo [52]. Exogenous 

GLP-2 also reduces LPS transport into the portal vein, suggesting that GLP-2 treatment may 

be a novel therapy for metabolic endotoxemia [52]. We have also observed that acute 

administration of GLP-2 reduces LPS-related increased intestinal permeability by a 

mechanism unlikely to be related to the known hypertrophic and hyperproliferative effects of 

chronic GLP-2 administration [53]. Therefore, exogenous GLP-2 treatment may be of value 

in the prevention of systemic inflammation associated with endotoxemia due to a ‘leaky gut’ 

[53].

CONCLUSION

Luminal chemosensors expressed on the epithelial cells populating the upper gastrointestinal 

tract communicate sensory information to effector systems involved in secretion, digestion, 

absorption, and motility as well as enhancing mucosal defense mechanisms through defined 

signalling mechanisms. Recent discoveries in this area have provided new possibilities for 

identifying novel molecular targets for the treatment of mucosal injury, metabolic disorders, 

and abnormal visceral sensation. Continued investigation of gut chemosensory mechanisms 

has the potential to inform the development of novel therapeutics for the treatments of 

diseases ranging from IBS and NSAID enteropathy to the metabolic syndrome.
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KEY POINTS

• Receptors expressed on enteroendocrine cells sense the luminal environment, 

releasing hormones and other bioactive substances.

• Bacterial metabolites such as short chain fatty acids are sensed by their 

cognate GPCR FFA2 and FFA3.

• Bile acids and bile acid metabolites are sensed by the GPCR TGR5, which 

when expressed on enteroendocrine L cells, releases the insulinotropic 

hormone GLP-1.

• Bacterially derived LPS is transported through the intestinal mucosa by 

transcellular and paracellular pathways.

• Study of intestinal chemosensory mechanisms will provide key data regarding 

the mechanism by which the gut microbiota interacts with the host.
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