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ABSTRACT OF THE DISSERTATION 

 

Transcriptional Regulators in Normal Human Brain Development and Autism 

 

by 

 

Neelroop Narendra Parikshak 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2015 

Professor Daniel H. Geschwind, Chair 

 

Autism spectrum disorder (ASD) is a group of etiologically and phenotypically 

heterogeneous neurodevelopmental disorders defined by deficits in social communications and 

mental flexibility. It is established that variation in hundreds of genetic loci contributes 

substantially to ASD risk. This has raised the question of whether these mutations, which are 

found across disparate genes, affect similar biological pathways, perturb brain development at a 

particular time point, or disrupt a specific brain system. Addressing this is critical to develop a 

molecular and neurobiological understanding of ASD. However, searching for such convergence 

is made challenging by the genetic complexity of ASD and the molecular, cellular, and circuit-

level complexity of the brain. 

 Here, I apply comprehensive profiling of RNA levels (the transcriptome) by RNA 

sequencing (RNA-seq) to characterize the role of genes in normal human brain development and 

ASD. My overarching hypothesis is that there exist molecular regulators of transcription which 
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are particularly susceptible to mutations in ASD, and that their regulatory targets are affected in 

ASD brain. My general approach is to organize the hundreds to thousands of disparate changes 

in transcript levels into more tractable and biologically meaningful gene sets or modules that are 

differentially expressed, co-expressed, or co-regulated. I then integrate these gene sets or 

modules with molecular and phenotypic information from whole genome studies and targeted 

experimental studies in order to systematically reveal new insights about ASD neurobiology and 

highlight specific genes and pathways worth investigating further. I first assess the role of ASD 

risk genes in normal brain development and then apply RNA-seq to measure transcriptomic 

changes in postmortem ASD brain to evaluate whether convergent neurobiological pathways are 

affected. 

I find robust evidence that developmentally co-expressed, co-regulated, and physically 

interacting genes are affected in ASD during normal brain development. Rare, highly deleterious 

variants predominantly exert their effect by disrupting major transcriptional and chromatin 

regulators in early fetal development, while less deleterious inherited variants affect late prenatal 

and early postnatal cellular and circuit maturation through alterations in synaptic function. 

Additionally, across most individuals with ASD, I find strongly shared changes in 

synaptic and neuronal genes at both a gene expression and transcript splicing level in cortex. 

Moreover, shared cortical changes are also seen in a genetically defined subtype of autism, 

duplication 15q syndrome (dup15q). In contrast, ASD-associated changes in cerebellum are 

weaker. Co-expression network analysis identifies specific cell types and circuits that are 

affected, and highlights specific transcriptional regulators likely to play a role in ASD pathology. 

Taken together, these results identify roles for transcriptional regulators in ASD and define the 

potential consequences of their dysregulation.  
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GLOSSARY 

	
  
Adjacency matrix – a pairwise matrix of node-node connectivity that quantifies all possible edge 

strengths in a network. Adjacency matrices can be combined across multiple types of data and 

may be mathematically transformed to improve network clustering and predictive power 

Autism Spectrum Disorder – abbreviated ASD, a collection of heterogeneous 

neurodevelopmental disorders that share a deficit in social communication and mental flexibility 

relative to the general population. ASD is frequently (>30%) comorbid with epilepsy and 

intellectual disability (low IQ). Additional comorbidities include gastrointestinal distress, 

sensory hypersensitivity, attention deficit hyperactivity disorder, and other neuropsychiatric 

conditions. 

Binary network – a network where edges are 1s and 0s, either by the nature of the edge 

measurement (e.g. physically interacting or not) or by thresholding an otherwise continuous 

measurement to assign 1 only if the values pass the cut-off 

Causal anchor – a network node that is not affected by variation in other nodes, and can therefore 

be used to orient edges and transform an undirected correlational network to a directed causal 

network. In gene networks, genotypes can be used as causal anchors to understand the direction 

of causation between other variables, such as gene expression or methylation levels. 

ChIP-seq – chromatin immunoprecipitation followed by high-throughput sequencing; allows 

elucidation of binding sites of a protein on DNA in a genome-wide manner 

CLIP-seq – cross-linking immunoprecipitation followed by high-throughput sequencing; allows 

elucidation of binding sites of a protein on RNA in a genome-wide manner 
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Differential gene expression analysis – abbreviated DGE, an approach commonly used in 

transcriptomic studies that serially compares thousands of genes between groups (e.g. disease 

and controls) to evaluate the mean difference and its significance for each gene independently. 

Differential splicing analysis – abbreviated DS, an approach where, instead of evaluating gene 

expression level differences, transcript splicing events are quantified and compared between 

conditions 

Edges – the relationships between nodes in a network delineating some measure of shared 

function (e.g. co-expression, computationally predicted binding sites, physical interaction)  

Eigengene – a module-level summary of expression, calculated by taking the first principal 

component of the expression levels of genes in the module. In co-expression networks, genes in 

a module are highly correlated by definition, leading this one vector to explain a high proportion 

of gene expression variation in the module 

Expression quantitative trait locus analysis – abbreviated eQTL, an association analysis of 

genome-wide SNPs on genome-wide expression levels in a population that identifies the causal 

effect of changes in genetic loci on gene expression 

Gene network - a graph consisting of genes as nodes connected by edges that reflect a measure 

of shared function between the connected genes 

Gene set enrichment – an analysis approach that assesses the statistical significance of the 

overlap between two gene sets, usually one set is an annotated reference and the other is a set of 

interest that is unannotated	
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Genetic architecture – the relationship between the allele frequency and effect size across all 

genetic loci contributing to a given trait 

High-throughput sequencing – also called “next generation” sequencing or “massively parallel 

high-throughput sequencing of short reads” this approach refers to fragmenting long sequences 

of nucleotides (DNA or RNA), clonally amplifying fragments in a manner that is tractable by 

imaging technology, and reading out the bases comprising each fragment in parallel. This yields 

millions to billions of short read sequences, which are either assembled into genomes or 

transcriptomes, or aligned to existing reference genomes or transcriptomes to understand 

molecular changes in a genome-wide manner. 

Hub –genes within a module that have high intramodular connectivity relative to other genes  

Module – a highly inter-connected subset of genes in a gene network, for example, genes in a 

transcriptomic network sharing highly similar patterns of gene expression. Modules are also 

known as clusters, cliques, or communities. 

Molecular systems or omic approach - systems biology methods that include high-throughput 

quantification, analysis, and interpretation of the genome, transcriptome, epigenome, proteome, 

and other ‘omens’ as well as the relationships between omic levels 

Mutual information – a nonlinear measure of dependence between two variables that may 

capture patterns linear measures, such as Pearson correlation, cannot accurately detect 

Negative symptoms – a mental state defined by a loss of normal emotional responses including a 

lack of motivation, an inability to experience pleasure, and reduced expression through speech 
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Nodes – the molecular entities that comprise a network, e.g. genes in a gene network 

Psychosis – a mental state defined by a loss of contact with reality characterized by 

exaggerations or distortions of normal perception 

RNA-seq – extraction of RNA followed by construction of cDNA libraries that undergo high-

throughput sequencing; allows elucidation of transcript levels in a genome-wide manner 

Seeded (prior-based) network – network analysis approach where edges are “grown” around 

selected genes of interest or “seed” genes. Network structure and modules are dependent on 

these initial genes of interest. 

Selective vulnerability – the relative susceptibility of brain regions, cell populations, or time 

points to genetic or environmental insults that can be leveraged to identify vulnerable and 

protective molecular pathways 

Signed network – a network where the sign is taken into consideration in addition to the 

magnitude of the correlation, e.g. high positive correlations are assigned high edge values, but 

high negative correlations are assigned low edge values 

Small N, large p – small sample sizes (N) but many features or parameters (p). This is the case in 

statistical and big data analysis when the number of features or predictors (p) is equal to or much 

larger than the number of samples (N), and requires special considerations to prevent overfitting 

statistical models. 
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Systems neuroscience – area of neuroscience that focuses on short- and long- range circuits. This 

area also applies many systems biology methods, but at a higher level of organization in the 

nervous system than the molecular systems approach 

Topological overlap – a transformation of edge relationships in a network that makes network 

edges reflect shared neighbourhoods between nodes instead of direct pairwise relationships 

Unseeded (genome-wide) network – network analysis approach where unbiased genome-wide 

data are clustered into modules and genes of interest are studied for their position in these 

modules. Network structure and modules are independent of genes of interest. 

Unsigned network – a network where any high magnitude association is assigned a high edge 

value (e.g. the absolute value of the correlation) 

Unsupervised analysis – a prior-free analysis approach that uses the intrinsic variation in data to 

define shared patterns (e.g. hierarchical clustering). This can identify novel clusters or groupings 

of data points. 

Weighted network – a network where the edges retain continuous values, with higher values 

reflecting an increased strength or probability of connectivity 
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CHAPTER 1: 

Molecular systems biology, 

transcriptomics, and neuroscience 
	
  
	
  

“The main thesis is that developmental reactions, as they occur in organisms submitted to 

natural selection, are in general canalized. That is to say, they are adjusted so as to bring about 

one definite end-result regardless of minor variations in conditions during the course of the 

reaction.” 

― Conrad H. Waddington (emphasis in italics is his), Canalization of Development and the 

Inheritance of Acquired Characters, Nature, 1942. 
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1.1: Introduction 

 The human brain is a remarkably complex organ; it comprises on the order of 100 billion 

neurons and an equivalent number of glia that communicate by approximately 1 trillion synapses 

(Azevedo et al., 2009). Moreover, these neurons and glia are not homogeneous, there are 

hundreds of cell types that vary in cellular morphology, synaptic connectivity, 

electrophysiological properties, and molecular make-up (Masland, 2004; Nelson et al., 2006; 

Stevens, 1998). The intricate process by which these cells organize into circuits is exemplified by 

the development of the neocortex, during which molecular programs encoded by the genome 

regulate the biological processes of cellular proliferation, differentiation, and migration to define 

cell fate and produce this computational organ (Angevine et al., 1970; Bystron et al., 2008; Greig 

et al., 2013). 

In humans, despite individual variability at genetic loci and in specific cell-cell 

connections, microcircuits, and even some long-range circuits (Meredith et al., 2011; Saenz et 

al., 2008), the brain is a largely similar structure with a highly consistent functional organization 

across most individuals. Additionally, despite the considerable genetic and phenotypic variation 

across humans, global behavioral and cognitive functioning throughout life follows a 

stereotypical pattern that can be called typical development and aging (Figure 1.1). 
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Figure 1.1 Diagram of normal and abnormal development and aging of the brain. Both brain development and 

aging exhibit a typical trajectory (black arrow) with normal variation (grey dotted lines) in phenotypes. Variability 

across individuals may manifest at a molecular, cellular, circuit-level, cognitive, or behavioural level. Genetic and 

environmental factors can alter this trajectory substantially, causing disorders and diseases that manifest as abnormal 

phenotypic trajectories (red for neurodevelopmental, blue for neurodegeneration). 

 

This minor variation but overall consistency is reminiscent of canalization, a theory of 

development in naturally selected organisms proposed by Conrad H. Waddington (Waddington, 

1942). Applied to the brain, the theory of canalization predicts robustness to minor genetic, 

environmental, or stochastic perturbations during normal development, allowing for a certain 

degree of variability but leading to the same broad phenotypic outcomes: typical human behavior 

and cognition. When a severe insult perturbs brain development, aberrant phenotypes that are 

seen as disorders or diseases manifest. Therefore, in order to understand abnormal human brain 

development from a molecular perspective, it is critical to understand the robust spatial and 

temporal patterns that are characteristic of typical development, and then understand how they 

might be affected by genetic or environmental insults during development. In this chapter, I 

review the utility of transcriptomics, co-expression networks, and other areas of high-throughput 

biology for understanding normal brain function and its perturbations. These approaches lay the 

foundation for the remainder of my work in later chapters. 
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1.2: Background 

The genome of an individual organism is largely similar across all of its cells (with the 

exception of somatic mosaicism (De, 2011; Poduri et al., 2013) though the following points 

apply just the same). Cellular diversity – the cell’s structure, function, and responses to stimuli – 

is manifested through diverse transcriptional and epigenetic programs that are initiated and 

maintained by transcription factors (TFs), chromatin regulators, and other regulatory molecules 

that alter methylation, chromatin marks, and chromatin folding over the lifespan of the cell. How 

a given gene is expressed at the RNA level is an important intermediate step in this genome to 

function relationship, and RNA transcript levels can serve as a valuable marker for 

understanding how genes and environment affect the molecular composition of a cell, tissue, and 

organism to result in phenotypes (Figure 1.2). 
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Figure 1.2 Diagram of measurable molecular levels and their distribution across the nature versus nurture 

spectrum. Each box delineates a category of what might be measured, with specific examples. Genetic factors are at 

the most extreme nature end while environmental factors at the most extreme nurture end. Arrows delineate the 

possible flow of information between these multiple levels of measurement. The transcriptome is an intermediate in 

this hierarchy, and can capture changes in the genome, epigenome, proteome, environment, and many phenotypes. 

 The measurement of gene expression levels has been an extremely valuable approach in 

multiple areas of biology and encompasses detection of individual transcripts using the Northern 

blot, resolution of the spatial distribution of transcripts with in situ hybridization (ISH), and more 

precise quantification of transcript levels with quantitative real-time PCR (qRT-PCR). Recently, 

the genomic era has produced unbiased, quantitative, and high-throughput approaches to 

simultaneously quantify hundreds to thousands of transcripts, together called the transcriptome, 
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with microarray technology (Geschwind and Gregg, 2002) and massively parallel high-

throughput sequencing technologies (Wang et al., 2009b). 

Multiple studies have demonstrated that protein-coding gene expression, transcript 

splicing, and non-coding RNA levels provide a global molecular phenotype that reflects the state 

of the cellular or tissue system being analysed (Carter et al., 2004; Guttman et al., 2009; Khalil et 

al., 2009; Wang et al., 2008). In human biology, investigations in cancer biology have been 

particularly successful in utilizing transcriptomics to understand differential gene expression 

between conditions, stratify heterogeneity in disease, and identify the consequence of genetic 

variation on gene expression (Li et al., 2013; Rhodes and Chinnaiyan, 2005; Vaske et al., 2010). 

This, along with several exciting studies in human brain over the past decade (Oldham et al., 

2008; Ramasamy et al., 2014; Rhinn et al., 2013; Rosen et al., 2011; Torkamani et al., 2010; 

Voineagu et al., 2011; Zhang et al., 2013), has suggested that similar methods, and high-

throughput molecular biology in general, are poised to revolutionize our understanding of the 

human brain (Geschwind and Konopka, 2009; Grant, 2003). 

However, application of transcriptomics in disease-relevant neuroscience research 

continues to lag behind other areas such such as immune and cancer biology. This relative 

immaturity can be attributed to several major challenges encountered in studying the brain: 1) 

complexity of molecular phenotypes due to cell-type and regional heterogeneity; 2) extensive 

temporal changes occurring throughout nervous system development and maturation; 3) a dearth 

of human tissue and model systems that have definitive human relevance (the “translational” and 

“evolutionary” problems) and 4) poor prior knowledge of appropriate phenotypes for disorders 

and diseases. 
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Though these hurdles are not unique to the brain, neuroscience has historically struggled 

with each of these points due to the extent they affect the ability to ask questions about brain 

function. Foundational aspects of each point are not agreed upon: the definition of a cell type in 

brain remains controversial, the relationships of human disease phenotypes to developmental 

trajectories are relatively unknown, the model systems in many neurobiological studies are often 

chosen as a matter of convenience and history, and most phenotypes are based on clinical and 

behavioral symptomatology rather than biological mechanism or etiology (Casey et al., 2013; 

Geschwind, 2008; Insel et al., 2010). However, these challenges have been steadily addressed 

and even leveraged to understand neurobiology by applying the appropriate study designs and 

analytical methods. 

 

1.2.a: Spatial and temporal heterogeneity in the brain 

In order to understand why spatial heterogeneity is a challenge and how this challenge 

can be addressed, it is important to recognize the immense cellular diversity of the human brain 

and its consequences. The staggering diversity of the cell type morphology in the nervous system 

was first appreciated over a century ago by Ramon y Cajal. Decades later, studies in the retina 

and brain connected morphologically distinct mammalian CNS cell types to molecular markers 

(Barnstable and Dräger, 1984; Hockfield and McKay, 1985). This regional and cellular 

heterogeneity poses distinct obstacles for transcriptomic studies in the CNS (Coppola and 

Geschwind, 2006; Mirnics and Pevsner, 2004), as isolation of individual circuits of cell types in 

brain requires knowledge of the poorly defined molecular identity of these components. The 

diversity of cell-types also complicates comparisons across macroscopic brain structures, which 

can have vastly different molecular architecture. However, such differences are necessary to 
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make in order to understand disorders of neural circuitry that lack a focal neuropathological 

locus in the brain, such as ASD.  

For neurodevelopmental disorders, the specific brain regions, cell types, or time points 

that are most affected are particularly poorly defined or unknown. In this context, whole tissue 

profiling still has a major role: even if changes in cell populations at a gross anatomical level 

drive molecular changes and obscure underlying mechanistic changes, these alterations can point 

to selective vulnerability and unidentified circuits. In contrast, most neurodegenerative diseases 

have known neuropathological and brain-imaging changes accompanied by the well-defined 

death of selective cellular populations and infiltration of inflammatory cells. Therefore, 

transcriptional changes in later neurodegeneration often reflect changes in cell type composition, 

strongly obscuring the key disease-initiating molecular pathway changes within cells(Mirnics 

and Pevsner, 2004).  

Understanding transcriptomic changes in the context of this spatial complexity in human 

CNS disorders, and the regional vulnerability that is a fundamental characteristic of 

neurodegenerative disorders necessitates a thorough knowledge of the molecules that distinguish 

different brain regions, circuits, and cells in normal brain development and aging. Extensive 

work by the Allen Brain Institute and others has mapped out the mouse, non-human primate, and 

primate spatial heterogeneity using genetically targeted cell sorting or microdissection coupled 

with transcriptomics (Srinivasan et al., 2012; Zhang et al., 2014), or large-scale in situ 

hybridization (ISH) (Lein et al., 2006; Thompson et al., 2014; Zeng et al., 2012), and other 

complementary methods (Sunkin et al., 2013). The utility of cell type specific gene expression 

for understanding neurodevelopmental and neurodegenerative disease is highlighted by several 
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recent publications (Dalal et al., 2013; Dougherty et al., 2013; Heiman et al., 2014; Xu et al., 

2014). 

These studies have provided a critical first pass at the major cell-type and 

neuroanatomical markers in brain, but the vast majority of cell-types and their markers have yet 

to be elucidated. For example, there is immense morphological and functional diversity in 

cortical GABAergic interneurons (DeFelipe et al., 2013) and more than 70 cell types in the 

mammalian retina, many of which are morphologically indistinguishable (Siegert et al., 2009). 

Even the current framework for understanding well-defined excitatory neuronal populations is 

coarse. In fact, each cortical layer is anticipated to have ~100 distinct cell types (Masland, 2004) 

with up to 1000 total cell types estimated in the cerebral cortex (Stevens, 1998). If the 

relationship between functional cell type and molecular identity from the retina generalize 

(Siegert et al., 2009), there are likely hundreds of cell-type specific molecular barcodes left to be 

defined for the human cortex. 

1.2.b: Challenges due to the unique cytoarchitecture and development of the brain 

The molecular architecture of the brain also changes throughout development and aging, 

delineating periods of cellular growth, migration, differentiation, and maintenance that are 

vulnerable to genetic and environmental insults (Andersen, 2003). Cell markers at one stage of 

development may not apply to another stage (Bystron et al., 2008; Molyneaux et al., 2007), and 

some major cell-type features, such as neurotransmitter phenotype, may require maintained 

expression of specific transcription factors (TFs) (Deneris and Hobert, 2014). Furthermore, 

comparison of the transcriptome across neurodevelopmental stages reveals striking changes in 

gene expression and alternative splicing of most genes in the human genome (Colantuoni et al., 

2011; Johnson et al., 2009; Kang et al., 2011), with a key inflection point at birth that is marked 
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by large-scale changes in gene expression and epigenetic programs (Colantuoni et al., 2011; 

Kang et al., 2011; Lister et al., 2013). 

Recent work suggests substantial transcriptomic differences during the development of 

three major populations of pyramidal neurons in mouse cortex, the callosal projection neurons, 

corticothalamic projection neurons, and subcerebral projection neurons (Molyneaux et al., 2015), 

highlighting the importance of resolving both spatial and temporal specificity. Importantly, this 

dynamic regulation is not restricted to prenatal and childhood periods. Relative to rodent or 

primate brains, the human brain exhibits prolonged development, with biological processes such 

as synaptic pruning and stabilization extending into the third decade of life (Changeux and 

Danchin, 1976; Geschwind and Rakic, 2013). 

Given the massive changes in gene expression that occur over development, network 

approaches (Hawrylycz et al., 2012; Kang et al., 2011; Miller et al., 2014; Oldham et al., 2008) 

play an increasingly important role in organizing transcriptomic data and relating genes and 

pathways to neuroanatomical regions and critical time points that are of particular importance to 

neurodevelopmental disorders. 

Additionally, the shift from microarrays to high-throughput sequencing has revealed the 

neurodevelopmental importance of noncoding and regulatory regions that express lncRNAs 

(Fogel et al., 2012; Konopka et al., 2009) or are modified at the chromatin level (Lessard et al., 

2007; Tuoc et al., 2013; Yamada et al., 2014). Additionally, until recent genome-wide 

experimental analysis of mammalian telencephalic enhancers (Attanasio et al., 2013), there was 

scant knowledge of the scope and architecture of the developmental regulatory networks 

underlying forebrain development (Pattabiraman et al., 2014; Visel et al., 2013). Many of these 

noncoding regulatory regions exhibit signatures of accelerated evolution (Pollard et al., 2006; 
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Prabhakar et al., 2006), providing a better framework is critical for understanding human or 

primate specific cortical specializations (Capra et al., 2013; Geschwind and Rakic, 2013) which 

are essential to understanding reveal the mechanistic drivers of human brain evolution. 

Neurons also undergo rapid state dependent changes at a faster time scale related to 

activity-dependent transcription and translation (Ebert and Greenberg, 2013) and neuronal 

activity can induce widespread expression of noncoding enhancer regions of the genome (Kim et 

al., 2010) as well as chromatin-level changes that are associated with the recruitment of activity-

dependent transcription factors (Malik et al., 2014). Further complexity is highlighted by the role 

of locally regulated translation of sub-cellular transcriptomes (Crino and Eberwine, 1996), which 

has been demonstrated to play a critical role in synaptic function and plasticity (Wang et al., 

2010). Deeper characterization of these events at a high spatiotemporal resolution will be 

necessary, and integrating them with transcriptional data, experimental perturbations, and genetic 

variation across individuals will help establish a mechanistic foundation for understanding their 

dysregulation in disease. 

1.2.c: An overview of transcriptional networks 

The architecture of gene expression networks was initially investigated in 

yeast(Langfelder and Horvath, 2008) and across species in an evolutionary context (Stuart, 

2003). Multiple metabolic and protein interaction network studies demonstrated that biological 

network architecture can be modeled by an approximate scale free topology, which was applied 

to characterize gene co-expression networks (Barabasi, 2009; Barabási and Oltvai, 2004; Zhang 

and Horvath, 2005). 

From a practical perspective, network based methods reduce the dimensionality of 

genome-wide RNA or protein expression patterns (Carter et al., 2013; Shirasaki et al., 2012), 
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using correlation, mutual information, or other metrics to organize thousands of genes 

corresponding to millions of relationships into a relatively small collection of modules (Allen et 

al., 2012; Margolin et al., 2006; Zhang and Horvath, 2005). Modules, also known as cliques or 

communities, correspond to groups of genes sharing expression patterns across the experimental 

observations. Modular organization reflects the higher-order structure of biological relationships, 

while local modular organization can identify network hubs within modules (Liu et al., 2011). 

These network hubs may be key drivers or representatives of the biological processes 

represented by individual modules (Horvath et al., 2006; Oldham et al., 2008; Voineagu et al., 

2011). 

In general, omic data can be modelled as a network in which molecules or genes are nodes 

and their functional relationships with each other are edges. Gene network analysis can be 

summarized in five basic steps: 

1) Node specification: 

a. Seeded (prior-based) – nodes are selected using prior knowledge, e.g. disease-

associated genes from genome-wide association studies 

b. Unseeded (genome-wide) – all usable measurements from the genome are 

included in an unsupervised analysis 

2) Edge specification: 

a. experimentally observed pairwise statistical relationships(Butte and Kohane, 

2000; Carter et al., 2004; Horvath, 2011) evaluating shared patterns of molecular 

levels across experiments: e.g. co-expression 

b. experimentally observed or literature-curated physical interactions: e.g. protein 

interactions from immunohistochemistry and Y2H experiments 
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c. computationally predicted relationships: e.g. transcription factor binding based on 

DNA motifs 

Notably, edges are susceptible to ascertainment biases (Hakes et al., 2008; Lee and 

Marcotte, 2009) and confounding factors that can induce spurious relationships 

(Leek et al., 2010). 

3) Modules are identified from an adjacency matrix to simplify biological relationships at a 

higher-order level. Assessing connectivity can identify hubs and enables comparison of 

changes between health and disease at the module level. 

4) Annotation of modules and gene connectivity by: 

a. Relating external measures of gene importance (such as cell-type specificity or 

GWAS signal) with module membership, intra-modular connectivity, or whole-

network connectivity of genes 

b. Associating module summary or hub gene measurements, such as eigengenes or 

average expression levels, to biological traits 

c. Assessing preservation or changes in network connectivity for specific genes or 

modules between health and disease 

d. Integrating data at the edge level or the module level across biological levels, such 

as different cell types or brain regions, or different regulatory levels, such as gene 

expression and ChIP signal 

e. Addressing the crucial issue of reproducibility by validating network observations 

in independent data or experiments (see Table 1.1 for examples) 

 

Table 1.1 – Different edge types in gene networks: practical and theoretical considerations. 
 Gene co-expression Protein-protein Motif enrichment 
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interaction for transcription 
factors 

Edge relationships 
(specific example) 

Statistical association 
(correlation, topological 
overlap) 

Physical binding 
(interacting or not 
interacting) 

Computational 
inference (motif 
binding scores) 

Main advantages Indirectly predicts co-
regulation, physical 
interactions, and cell-
type specificity, comes 
from tissue of interest 

Based on direct 
physical interactions, 
predicts protein 
complexes 

Identifies putative 
co-regulatory 
relationships 
without needing to 
perform new 
experiments 

Completeness of 
data across the 
genome 

Genes in most studies 
are similarly covered 
genome-wide 

Incomplete assessment 
for most interactions, 
biased toward most-
studied molecules 

Predictions 
restricted to 
availability and 
accuracy of motif 
information 

Tissue specificity Primary data often 
tissue specific 

Primary data rarely 
tissue specific 

Primary data not 
tissue-specific 

Sources of bias Technical artifacts 
(RNA quality), 
postmortem artifacts 
(cause of death), 
biological confounders 
(age, sex) 

Literature curated data 
contains biases toward 
more studied 
interactions, which 
tend to be non-
neuronal 

Available motif data 
may not reflect 
neuronal tissue 
motifs 

Examples of 
bioinformatic 
validation 

Preservation of co-
expression in 
independent data, 
enrichment of physical 
interactions in modules 

Enrichment of co-
expression from 
independent data 

Enrichment of 
predicted binding 
sites from 
independent ChIP-
seq data 

Examples of 
experimental 
validation 

Showing cell-type 
specificity of hubs by in 
situ hybridization, 
demonstrating 
regulatory potential of 
hubs by hub gene 
knockdown 

Co-
immunoprecipitation 
of proteins, disruption 
of protein complexes 
when hubs targeted 

Showing changes in 
transcription of 
targets on 
knockdown of 
regulator(s) 

 

The structure of inter- and intra-modular relationships for genes can be further connected 

to biological concepts. Depending on the experimental design, network or module hubs may 

represent key drivers of the underlying biological process being measured in the module, such as 

transcription factors that are actually driving co-expression. Alternatively, they may represent the 
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biological process itself, such as genes highly expressed in a particular cell type, such as markers 

for granule cells in the cerebellum or specific interneuron classes in cortex (Oldham et al., 2006; 

2008; Winden et al., 2009). 

A general advantage of co-expression network analysis in brain is that it has the ability to 

represent and integrate differing levels of molecular organization within the hierarchy of brain 

region, cell-type, organelle, and molecular pathways using transcriptional data alone (Geschwind 

and Konopka, 2009). Networks comparing similar brain regions or sub-regions can identify more 

specific cell sub-types, sub-cellular compartments, or specific biological processes (Bernard et 

al., 2012; Hawrylycz et al., 2012).  For example, co-expression modules can be compared 

between studies to assess whether they are preserved (Langfelder et al., 2011). Similarly, how a 

specific gene’s ranking in a module changes in health and disease can be evaluated (Choi et al., 

2005; Hudson et al., 2009; Langfelder et al., 2011). 

The major question assessed in both situations, which cannot be queried by single gene 

approaches and is only poorly assessed by standard differential expression methods, is whether 

there are changes at the level of gene modules between conditions. Alternatively, because 

modules correspond to elements of biological function, a gene of unknown function can be 

annotated based on its module membership, so called, “guilt by association” (Langfelder and 

Horvath, 2008; Oldham et al., 2008). Similarly, if genes within a particular module have been 

implicated in disease, it suggests that others within that module may also be disease associated at 

a higher probability than other brain genes. In this context, network analysis has also provided a 

framework for cross-species comparisons aimed at understanding the drivers of human brain 

evolution (Konopka et al., 2012b; Oldham et al., 2006), which is critical in light of a neutral 

model of transcriptome level evolution, which suggests that the majority of  gene expression 
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level differences between species are nonfunctional (Khaitovich et al., 2004). In another 

comparative context, expression data can be used to understand the degree to which model 

systems recapitulate the human brain. 

1.3: Gene networks in neurodevelopmental disorders 

Neurodevelopmental disorders are characterized by abnormal behavioural or cognitive 

phenotypes originating either in utero or during early postnatal life, and can be accompanied by 

clinical features outside of the nervous system. Various genetic approaches have been successful 

in identifying the causes of more than a thousand Mendelian, and fewer non-Mendelian, forms of 

neurodevelopmental disorders: prototypical examples are intellectual disability (ID) (de Ligt et 

al., 2012; Gilissen et al., 2014; Lubs et al., 2012; Matson and Shoemaker, 2009; Rauch et al., 

2012; Ropers, 2008; van Bokhoven, 2011), autism spectrum disorder (ASD) (Abrahams and 

Geschwind, 2008; De Rubeis et al., 2014; Geschwind, 2011; Iossifov et al., 2014; 2012; Jamain 

et al., 2003; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012), epilepsy(Epi4K 

Consortium et al., 2013; Poduri and Lowenstein, 2011), and schizophrenia (SCZ) (Fromer et al., 

2014; Purcell et al., 2014; Xu et al., 2011). The overlap and divergence in genetic architecture 

across these disorders is beyond the scope of this review (Cross-Disorder Group of the 

Psychiatric Genomics Consortium et al., 2013; Gratten et al., 2014; 2013). 

As more risk variants for these disorders are discovered, remarkable pleiotropy has 

emerged for some even high risk alleles (Zhu et al., 2014). A given rare, highly penetrant 

mutation can lead to ASD, SCZ, ID, or a learning disability in different individuals (Doherty and 

Owen, 2014; Hoischen et al., 2014; Zhu et al., 2014). This observation suggests that rather than 

causing a specific clinically defined disorder, many mutations act by disrupting normal 

development, which can have several outcomes. This hypothesis hearkens back to the idea of 
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developmental canalization discussed above (Waddington, 1942), whereby normal development 

buffers against various insults (such as genetic or environmental perturbations) to achieve a 

typical trajectory. From the canalization perspective, genetic variation or mutations that 

significantly increase susceptibility to disease do not necessarily have to invariably lead to the 

cognitive or behavioural phenotypes with which they are causally linked; instead, they disrupt 

specific developmental processes that can result in several aetiologically related, but functionally 

distinct phenotypes. Conversely, many distinct mutations in hundreds of different genes might 

converge on the same set of clinical phenotypes or disorders, as seems to be the case in ASD, 

SCZ, and ID (Abrahams and Geschwind, 2008; Cross-Disorder Group of the Psychiatric 

Genomics Consortium et al., 2013; Devlin and Scherer, 2012; Fromer et al., 2014; Iossifov et al., 

2014; Purcell et al., 2014). 

Thus, for these complex diseases, it is particularly important to evaluate individual genes 

in the context of genetic background and normal development, a task for which omic and 

network methods are particularly well suited. In the next sections, I focus on ASD and SCZ, 

which represent the complexity and molecular systems insights that have been gained in the area 

of neurodevelopmental disorders more generally. I provide examples of both genome-wide and 

seed-based approaches for understanding ASD and SCZ, and gene network studies that use co-

expression, protein networks, and integrated omic networks. 

1.3.a: Dysregulated networks in ASD and SCZ brain  

ASD is a phenotypically and aetiologically heterogeneous neurodevelopmental disorder 

defined by deficits in social communication and mental flexibility, with onset in the first few 

years of life (Geschwind, 2011). Transcriptional studies of ASD brain have been limited by the 

paucity of available tissue. Therefore, several transcriptional analyses of ASD postmortem brain 
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have included fewer than ten individuals and were underpowered to identify reproducible 

pathways with statistical rigor (Chow et al., 2012; Garbett et al., 2008; Ginsberg et al., 2012; 

Purcell et al., 2001). Nevertheless, some themes emerge across studies, mostly highlighting 

increased expression of immune-microglial genes and decreased expression of synaptic genes in 

the cerebral cortex. 

The first ASD study to identify reproducible, genome-wide findings evaluated frontal 

cortex, temporal cortex, and cerebellum in 19 ASD and 17 control individuals using gene 

expression microarrays (Voineagu et al., 2011). This study identified DGE changes in ASD 

shared by about 2/3 of cases. Pathway analysis suggested that increased expression of neural 

immune genes and decreased expression of synaptic and neuronal genes were consistent and 

global transcriptomic effects in ASD. Weighted correlation network analysis (WGCNA) (Zhang 

and Horvath, 2005) allowed the authors to identify coherent biological processes represented by 

18 co-expression modules, and the module eigengene, or first principal component of each 

module. The ability to quantitatively relate module eigengene expression to phenotypic or 

experimental variables, especially potential confounders, reduces the problem of multiple 

comparisons faced in high-dimensional omics data and highlights the advantages of using 

networks as an organizing framework. In this study, two modules, one upregulated and one 

downregulated, were associated with ASD, but not with confounding factors. Transcriptomics 

alone cannot distinguish whether such changes are causal or reactive, so the investigators 

assessed whether common variants associated with ASD (represented by genome-wide 

association study [GWAS] signals) and candidate ASD risk genes harbouring rare mutations 

were enriched in these two modules. This analysis provided evidence for a causal role of ASD-

associated variants in the downregulated neuronal signalling module. Interestingly, the module 
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upregulated in ASD was enriched for markers of microglia and astrocytes, suggesting that 

processes involving these cell types occur in response to alterations in synaptic function, perhaps 

to modify synaptic plasticity by neuron-glial interaction (Voineagu et al., 2011). These results 

overlap with some previous smaller studies (Garbett et al., 2008; Purcell et al., 2001) and the 

synaptic and microglial modules have been replicated using RNA-seq in larger independent 

cohorts(Gupta et al., 2014). 

SCZ is defined by prolonged or recurrent episodes of psychosis (characterized by 

hallucinations and delusions) as well as negative symptoms and deficits in cognitive 

function(van Os and Kapur, 2009). Although diagnosis is usually made in late adolescence or 

early adulthood, extensive evidence indicates a neurodevelopmental origin (Weinberger, 1987). 

Transcriptional studies of SCZ have benefitted from considerably larger sample sizes than those 

of ASD. However, patients with SCZ have greater comorbidity of smoking, alcohol, and 

substance abuse than those with ASD, which can confound postmortem studies. Overcoming 

potential confounders requires careful matching of patient and control individuals and 

accounting for potential covariate effects wherever possible, as has been done in many studies 

(Mirnics and Pevsner, 2004; Mirnics et al., 2000). Despite wide-ranging results, consistent 

findings across studies can be identified, including dysregulation of GABAergic signalling 

(Hashimoto et al., 2007); downregulation of oligodendrocyte- and myelination-related genes 

(Hakak et al., 2001), mitochondrial function or energy metabolism (Altar et al., 2005), and 

synaptic genes (Faludi and Mirnics, 2011); and upregulation of immune and inflammatory genes 

(Arion et al., 2007). 

One of the first studies to put SCZ transcriptomics into a genome-wide network 

framework used a modified WGCNA approach based on the pairwise mutual information 
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between genes(Torkamani et al., 2010). This study showed that, as in ASD, the overall 

transcriptomic structure in SCZ is intact, but a neural differentiation module associated with SCZ 

does not follow the normal trajectory of downregulation with age. Another study confirmed that 

a dysregulated neuronal differentiation module was consistently observed in multiple SCZ 

postmortem brain studies, and reported preliminary evidence that the same pathways are 

involved in bipolar disorder(Chen et al., 2012). Moreover, this latter study applied GWAS signal 

enrichment, as was done by Voineagu and colleagues(Voineagu et al., 2011), to confirm that 

common variants associated with SCZ and bipolar disorder were enriched in the neuronal 

differentiation module. This suggests that disorders sharing genetic architecture also share 

functional transcriptional alterations(Cross-Disorder Group of the Psychiatric Genomics 

Consortium et al., 2013). 

 

1.3.b: Mapping risk genes onto developmental networks 

A shortcoming of transcriptomic studies investigating postmortem brain samples is that 

tissue is usually obtained long after the disease-causing changes have occurred. Given that the 

human brain transcriptome has a consistent and reproducible structure(Hawrylycz et al., 2012; 

Oldham et al., 2008), one useful way to explore how mutations in risk genes perturb typical brain 

development is to map risk genes onto transcriptional networks that represent normal brain 

development (Figure 1c). The first study to do this identified co-expression modules using nearly 

1,000 adult brain regions and evaluated enrichment for ASD susceptibility genes(Ben-david and 

Shifman, 2012). The researchers characterized cell-type-specific and region-specific modules 

and found that modules enriched in ASD GWAS signal and candidate ASD risk genes were 

enriched in a neuronal module, and that this module is upregulated during fetal brain 
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development. Thus, genes associated with risk for ASD were demonstrated to affect neuronal 

development. 

The identification of genetic risk factors by whole-exome sequencing (WES) (Iossifov et 

al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012) and the availability of 

transcriptome data spanning multiple brain regions and developmental stages (Colantuoni et al., 

2011; Kang et al., 2011) have created new opportunities to map disease risk genes onto 

developmental transcriptional networks. The study descried in Chapter 2 used WGCNA to 

construct co-expression networks from 8 weeks post-conception to one year of age across 11 

cortical regions and assessed how both ASD and ID risk genes are involved in cortical 

development, cell types, and circuits (Parikshak et al., 2013). Robust co-expression modules that 

were reproducible in independent data were identified, and module eigengenes were shown to 

have trajectories reflecting timing of molecular processes during human cortical development. 

Five developmentally regulated co-expression modules were enriched for multiple ASD risk 

gene sets, but not ID or multiple control gene sets, highlighting specific biological processes 

disrupted by ASD risk genes. Two of the five modules identified were enriched for de novo 

mutations identified through WES, and contained genes involved in transcriptional and 

chromatin regulation relevant to neural development, such as the BAF complex (Ronan et al., 

2013). 

The other three modules were upregulated later in cortical development, representing 

various stages of synaptic development. These three “synaptic” modules were enriched in ASD 

candidate genes (Basu et al., 2009), genes downregulated in postmortem ASD cortex (Voineagu 

et al., 2011), and were preferentially affected by inherited genetic risk. Bioinformatic analyses 

further suggested that the chromatin regulatory modules and synaptic modules were co-regulated 
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at the transcriptional and translated levels. Finally, analysis of cortical laminae and cell types 

revealed that multiple modules were enriched for genes preferentially expressed in superficial 

layer glutamatergic neurons during, suggesting this cell type is preferentially affected genetic 

hits in ASD. 

A complementary study searched temporal windows spanning 8 weeks post-conception 

to 40 years postnatal age in four groupings of brain regions to identify co-expression networks 

enriched for ASD risk that were seeded around nine high-confidence risk genes identified by 

WES (Willsey et al., 2013). These investigators asked if, when, and where this subset of nine 

genes converges during brain development by constructing binary co-expression networks based 

on the top 20 correlations for each seed gene for various spatial and temporal combinations that 

resulted in 85 networks. Each network was evaluated for enrichment of 122 additional ASD risk 

genes supported by WES evidence, which identified three spatiotemporal combinations that 

passed stringent correction for multiple testing: frontal cortical regions during 10-19 weeks post-

conception and 16-24 weeks post-conception as well as thalamic and cerebellar regions from 

birth to 6 years of postnatal age. 

The researchers further identified a potential role for lower layer glutamatergic projection 

neurons by assessing co-expression to candidate markers of cortical layers and cell types. 

Interestingly, there was no pathway or PPI enrichment identified in these networks, probably due 

to the small size of the co-expression modules and the inclusion of both positive and negative 

correlations when computing co-expression relationships (unsigned networks), which is less 

sensitive to pathway and protein interaction detection (Ramani et al., 2008; Song et al., 2012). 

Importantly, both of these studies found that the greatest convergence for rare de novo 

ASD-associated mutations was during early fetal and midfetal development, with the major 
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enrichment for risk in cortical glutamatergic projection neurons. Thus, despite the fact that the 

same gene is rarely hit recurrently by rare de novo variants in ASD, this class of variation 

preferentially disrupts specific cell-types. Notably, the genome-wide study (Parikshak et al., 

2013), which assessed both ASD and ID genes, further suggested that disruption of the upper 

cortical layers (L2-4) results is related to ASD-like phenotypes, while disruption of the lower 

layers (L5-6) results in more severe consequences leading to ID. Other studies have also found 

that fetal cortical development and glutamatergic neurons are affected by mutations in ASD, 

making it likely that this is a robust finding warranting experimental testing (Miller et al., 2014; 

Stein et al., 2014; Steinberg and Webber, 2013).  

A developmental co-expression approach has also been used to identify risk convergence 

in SCZ. A seeded spatial and temporal search of co-expression between genes identified in a 

WES study identified fetal development of the prefrontal cortex as a point of convergence for de 

novo variation (Gulsuner et al., 2013). Furthermore, the investigators demonstrated enrichment 

for PPIs in this gene set and confirmed statistical significance by comparing against rare de novo 

variants found in unaffected individuals. However, this study did not extend the network to genes 

beyond the seed set, and it did not identify cellular, laminar, or regulatory relationships among 

these genes. As larger sets of risk genes are becoming available (De Rubeis et al., 2014; Fromer 

et al., 2014; Iossifov et al., 2012; Purcell et al., 2014), comparisons of how mutations in ASD, 

SCZ, ID, and other psychiatric disorders affect cells and circuits will become more 

comprehensive. 

 

1.3.c: The role of transcriptional and translational co-regulation 
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Another promising approach by which to identify disease-associated networks is to 

experimentally construct a seed-based network for a candidate regulatory molecule, as has been 

done using CLIP-seq with the Fragile X Mental Retardation Protein (FMRP) in brain (Darnell et 

al., 2011). FMRP is an RNA-binding protein critical to neuronal plasticity that is involved in 

translational repression at the synapse. Recent work has demonstrated that FMRP bound 

transcripts are enriched for genes dysregulated in ASD (Darnell et al., 2011) and ASD rare de 

novo variants (Iossifov et al., 2012). Co-expression network analysis connected these 

observations: FMRP targets that are involved in chromatin modification are affected by rare de 

novo variants in ASD and are downregulated in early development, whereas FMRP targets that 

are ASD risk genes involved in synaptic function increase in expression during early 

development (Parikshak et al., 2013). Steinberg and colleagues (Steinberg and Webber, 2013) 

rigorously investigated co-expression networks throughout development by seeding with FMRP 

targets, and showed FMRP-targeted developmental networks are also affected by ASD-

associated copy number variations (CNVs). Furthermore, WES studies of other 

neurodevelopmental disorders have found enrichment for FMRP targets in rare mutations in SCZ 

(Purcell et al., 2014), ID(Gilissen et al., 2014) and epilepsy(Epi4K Consortium et al., 2013). 

Given that many FMRP targets are evolutionarily conserved(Ronemus et al., 2014) and under 

purifying selection (Iossifov et al., 2012), FMRP-related activity-dependent regulation during 

fetal brain development might be particularly vulnerable to genetic perturbations, with rare 

mutations resulting in a disruption of developmental canalization.  

Another example of a seed-based approach with a disease-relevant molecular regulator 

involves the splicing factor RBFOX1 (also known as A2BP1). Postmortem co-expression 

networks in autism identified RBFOX1 as a hub in an ASD dysregulated synaptic module 
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(Voineagu et al., 2011). RNA-seq demonstrated that alterations in RBFOX1 expression were 

associated with changes in splicing at RBFOX1 regulated sites (Fogel et al., 2012; Voineagu et 

al., 2011), and further studies demonstrated that regulation of gene expression levels by 3’ UTR 

stabilization might also contribute to this module (Ray et al., 2013). A recent CLIP-seq study 

comprehensively mapped RBFOX1/2/3 binding sites and suggested that these splicing regulators 

share binding targets and are each dysregulated to some extent in ASD (Weyn-Vanhentenryck et 

al., 2014). Taken together, these findings suggest a pervasive role for altered transcriptional and 

splicing levels related to perturbations in RBFOX family in ASD. 

Finally, one recent study (Sugathan et al., 2014) highlights the use of ChIP-seq to better 

understand the regulatory targets of the chromatin regulator CHD8, which is to date the most 

frequently identified gene harbouring rare de novo variation in ASD (Iossifov et al., 2012; 

O'Roak et al., 2012; Talkowski et al., 2012). CHD8 mutations are accompanied by 

macrocephaly, ID, and gastrointestinal problems, potentially defining a genetically defined 

subtype of ASD (Bernier et al., 2014). Sugathan and colleagues (Sugathan et al., 2014) evaluated 

CHD8 binding and DGE on CHD8 knockdown in a genome-wide manner in neural progenitor 

cells (NPCs) to identify a downstream network of genes related to neuronal differentiation, 

consistent with CHD8 serving as a master regulator of neurogenesis during brain development. 

By further integration of the CHD8 network with gene co-expression data, the authors found 

evidence that CHD8 directly regulates early gene co-expression modules enriched for rare de 

novo mutations and genes found in the proliferating layers of fetal cortex, but only indirectly 

affects subsequent synaptic development (Parikshak et al., 2013). Given the emerging role of 

transcriptional and chromatin regulators identified by WES in ASD (Ben-David and Shifman, 
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2012; De Rubeis et al., 2014; Parikshak et al., 2013), integrative ChIP-seq and DGE studies of 

other risk genes with putative gene regulatory functions will be important. 

 

1.3.d: PPI networks define new interactions 

Genetic investigations in ASD have also used seed-based networks with literature-curated 

PPIs to identify convergence of ASD risk genes (Neale et al., 2012; O’Roak et al., 2012). The 

most thorough example of this approach was undertaken by O’Roak and colleagues (O’Roak et 

al., 2012), who identified a highly interconnected PPI sub-network among de novo rare variants 

hit genes in ASD. The authors performed a follow-up targeted sequencing study (O'Roak et al., 

2012) of this sub-network in a larger cohort, and found more new variants affecting these 

interconnected genes compared to chance. However, the potential lack of tissue specificity in 

these PPI networks and biases in literature-curated PPIs may have limited identification of novel 

pathways or circuits that are affected by these risk variants (Table 1.1). 

To evaluate more unbiased molecular interactions and define whether candidate disease 

genes interact at the protein level, Sakai and colleagues (Sakai et al., 2011) performed a Y2H 

screen of 35 syndromic or candidate ASD genes. This study was the first of its kind in 

neurodevelopmental disorders, and identified many specific novel interactions. Another Y2H 

study assessed a larger seed set corresponding to spliced isoforms of candidate genes that were 

found in whole-brain RNA-seq (Corominas et al., 2014), hypothesizing that isoform-level PPIs 

would discover tissue-specific PPI networks (Ellis et al., 2012). The resultant PPI network was 

modestly enriched for products of known ASD genes, proteins that were co-expressed, or 

proteins that were targeted by common molecular regulators. 
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These results further demonstrate convergence among known disease-relevant genes at a 

PPI level and also that evaluating tissue-specific isoforms can reveal more relevant PPI 

networks. Both of these studies involved state-of-the-art quality control and validation, and 

identified many novel interactions. However, even with knowledge of isoform-specific 

interactions, the tissue environment for interaction cannot be recapitulated with current PPI 

approaches at a large scale (Table 1.1). This is a motivation for beginning with tissue-specific 

transcriptional networks and then integrating PPI analyses to elucidate protein-level complexes 

or pathways occurring in the cell type or tissue of interest. 

 Recently, one study utilized global PPI interactions have been evaluated to identify 

modules enriched for ASD-associated genes (Li et al., 2014). This study identified a particularly 

interesting module related to synaptic function and weakly enriched for mutations in whole 

genomes from individuals with ASD. This module was identified as most highly expressed in 

oligodendrocytes, and enriched for gene expression in the corpus callosum. Here, gene 

expression data was essential to arriving at a neurobiological interpretation of the PPI module (Li 

et al., 2014). This highlights how tissue specific molecular data is essential to interpreting PPI 

analyses. Given the biases inherent to global PPIs discussed above and in Table 1, these findings 

warrant replication with new PPI data and investigation of why these relationships are detected at 

the PPI level, but not the co-expression level. 

 

1.3.e: Integrated networks reveal shared molecular phenotypes  

Multiple levels of omics data can contribute unique functional insights and increase 

power to detect molecular convergence. This has motivated the integration of genetic and 

functional evidence to support specific genes or pathways. Network-based analysis of genes 
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(NETBAG) (Gilman et al., 2011) integrates multiple forms of shared molecular phenotype 

evidence based on a framework demonstrated to be effective for predicting gene essentiality in 

yeast (Lee et al., 2008). 

NETBAG defines a network based on shared genetic phenotypes – genes highly 

connected in the network likely participate in the same phenotype. Edges in the network are 

primarily based on a weighting of contributions from direct and indirect PPIs and shared GO or 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999) term membership. The 

contribution of each data type to edges is weighted based on relationships among a known set of 

disease genes (Feldman et al., 2008). These different weights are combined to construct a 

phenotypic ‘background network’ on which gene lists of interest are assessed for non-random 

clustering using a permutation analysis. Pathway enrichment in resultant modules was performed 

by assessing GO term clustering in modules, which is expected given that clustering is partly 

driven by shared GO functions. When seeded with 75 disparate de novo CNV deletions spanning 

746 genes associated with ASD, NETBAG found a highly interconnected module related to 

synaptic function, whereas a similarly sized set of genes affected by inherited rare CNVs were 

sparsely connected and did not form a module (Levy et al., 2011). 

Furthermore, genes in CNVs from females contributed more to the module connectivity 

than those from males, suggesting that females are affected by more severe genetic hits in ASD, 

an observation that has been replicated in exome sequencing studies (Iossifov et al., 2014; 

Ronemus et al., 2014). A later study (Noh et al., 2013) that evaluated CNV duplications in 

addition to deletions also found an interconnected PPI network that was enriched for proteins 

involved in synaptic transmission, validating the observation that pathogenic CNVs affect similar 

gene networks (Gilman et al., 2011).  
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Subsequently, Gilman and colleagues (Gilman et al., 2012) extended this approach 

(dubbed NETBAG+) to simultaneously evaluate CNVs, SNVs, and common variants, to assess 

network convergence in schizophrenia. Two modules were identified, one related to axonal 

guidance, neuronal migration, and synaptic function, and another enriched for chromatin 

modifiers. The first module was highly connected in the phenotypic background network with 

candidate genes formerly associated with ASD and ID, and with the previously identified module 

that was defined by CNVs in ASD (Gilman et al., 2011). This module exhibited a pattern of 

developmental upregulation during fetal development, while the second module exhibited 

downregulation during fetal development. Despite the overlap between genes associated with 

ASD and SCZ, the authors provided evidence suggesting that the mutations in ASD increase 

neuronal spine or dendrite growth, while those in SCZ decrease it (Gilman et al., 2012).  

NETBAG+ has also been applied to SNV and CNV affected genes in ASD, identifying a 

weakly enriched module that was extensively characterized with gene expression data and 

phenotypic data from the genetic studies (Chang et al., 2015). This study validated the increase 

in ASD risk for gene network modules enriched for chromatin regulators and genes susceptible 

to haploinsufficiency as observed before (Parikshak et al., 2013) and found enrichment of 

cortical laminae and interneurons, extending the previously observed associations (Parikshak et 

al., 2013; Voineagu et al., 2011; Willsey et al., 2013) to corticosriatal projection neurons. It also 

affirmed that early developmental SNVs are more severe and result in intellectual disability (ID) 

in addition to ASD (Samocha et al., 2014). Thus, integrative network analysis can identify shared 

pathways among disorders even with networks not based on brain-specific data. However, 

deriving more refined insights clearly require a direct integration of neurobiological data, such as 

gene expression normal development, specific cell types, or disease tissue. 
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An exciting integrative approach is to simultaneously integrate PPIs, co-expression, and 

mutational burden in neurodevelopmental disorders, as has been done for cancer (Chang et al., 

2013; Hoadley et al., 2014). Recent work has constructed networks and identified modules based 

on seeding with mutation affected genes and known pathways and then constructing network 

modules around these initial seeds using genome-wide co-expression and PPI data (Hormozdiari 

et al., 2015). The degree to which modules grow is restricted by an objective function that 

optimizes the number of genes that are co-expressed and co-regulated in a module against the 

rate of mutations observed in controls in these genes. This identifies modules containing highly 

related genes that are enriched for highly pathogenic mutations. Interestingly, the authors found 

that these mutations were also found in epilepsy, SCZ, and ID, further supporting the idea that 

very severe mutations disrupt canalization in a manner less specific to a particular disease. 

1.4: Conclusions 

	
   In	
  this	
  chapter,	
  I	
  covered	
  the	
  utility	
  of	
  transcriptomics	
  and	
  other	
  high-­‐throughput	
  

molecular	
  systems	
  approaches	
  in	
  neuroscience.	
  Although	
  there	
  are	
  challenges	
  posed	
  by	
  the	
  

spatial	
  heterogeneity	
  and	
  the	
  temporal	
  dynamics	
  of	
  molecular	
  changes	
  in	
  the	
  nervous	
  

system,	
  novel	
  insights	
  can	
  still	
  be	
  gained	
  with	
  the	
  appropriate	
  study	
  design	
  and	
  analysis.	
  

Gene	
  network	
  analysis	
  is	
  a	
  particularly	
  promising	
  way	
  to	
  analyse	
  these	
  data,	
  as	
  it	
  can	
  

integrate	
  diverse	
  types	
  of	
  data	
  into	
  one	
  framework.	
  

In	
  Chapter	
  2,	
  I	
  use	
  gene	
  expression	
  analysis	
  to	
  organize	
  the	
  molecular	
  changes	
  that	
  

occur	
  during	
  cortical	
  development.	
  I	
  then	
  map	
  genes	
  implicated	
  by	
  multiple	
  methodologies	
  

as	
  associated	
  with	
  autism	
  onto	
  these	
  networks,	
  and	
  identify	
  co-­‐expression	
  modules	
  that	
  

are	
  enriched	
  for	
  autism	
  risk	
  genes.	
  The	
  power	
  of	
  network	
  analysis	
  in	
  revealing	
  biological	
  

changes	
  becomes	
  apparent	
  in	
  the	
  functional	
  characterization	
  of	
  these	
  modules.	
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In	
  Chapter	
  3,	
  I	
  investigate	
  the	
  value	
  of	
  this	
  developmental	
  transcriptomic	
  network	
  in	
  

predicting	
  where	
  new	
  mutations	
  in	
  ASD	
  will	
  be	
  identified.	
  These	
  results	
  suggest	
  that	
  co-­‐

expression	
  networks	
  are	
  a	
  powerful	
  approach	
  for	
  identifying	
  the	
  biological	
  processes	
  

affected	
  in	
  brain	
  development	
  by	
  mutations	
  in	
  autism.	
  	
  

In Chapter 4, I utilize differential gene expression analysis, differential splicing analysis, 

and gene co-expression networks to understand the molecular changes that occur in brains from 

autism spectrum disorder. I compare these changes across brain regions and between idiopathic 

ASD and a genetic subtype of ASD, and demonstrate that robust, reproducible changes occur in 

ASD brain. 

Although my work utilizes the principles and approaches covered in this chapter, it does 

not focus very heavily on rigorously optimizing methodology. Much work remains to be done on 

that frontier, so throughout my work I have attempted to choose the best available methods when 

possible, but relied on heuristics that yield reproducible results otherwise.  
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CHAPTER 2: 

Integrative functional genomic analyses 

implicate specific molecular pathways and 

circuits in autism 
	
  
	
  

“At	
  the	
  same	
  time,	
  it	
  is	
  clear	
  that	
  canalization	
  is	
  not	
  a	
  necessary	
  characteristic	
  of	
  all	
  organic	
  

development,	
  since	
  it	
  breaks	
  down	
  in	
  mutants,	
  which	
  may	
  be	
  extremely	
  variable...”	
  	
  

― Conrad	
  H.	
  Waddington,	
  Canalization	
  of	
  Development	
  and	
  the	
  Inheritance	
  of	
  Acquired	
  

Characters,	
  Nature,	
  1942	
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2.1: Abstract 

Genetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility 

genes, raising two critical questions: 1) do these genetic loci converge on specific biological 

processes, and 2) where does the phenotypic specificity of ASD arise, given its genetic overlap 

with intellectual disability (ID)? To address this, I mapped ASD and ID risk genes onto co-

expression networks representing developmental trajectories and transcriptional profiles 

representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that 

implicate distinct biological functions during human cortical development, including early 

transcriptional regulation and synaptic development. Bioinformatic analyses suggest translational 

regulation by FMRP and transcriptional co-regulation by common transcription factors connect 

these processes. At a circuit level, ASD genes are enriched in superficial cortical layers and 

glutamatergic projection neurons. Furthermore, I show that the patterns of ASD and ID risk 

genes are distinct, providing a novel biological framework for investigating the pathophysiology 

of ASD. 

 

These findings are summarized in Figure 2.1. 
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Figure 2.1 Graphical abstract summarizing findings in Chapter 2. Genes implicated in ASD across multiple 

sources were mapped to molecular networks. These modules identified from the network reflecting cortical 

development represent shared molecular functions and are co-regulated during cortical development. Two modules 

related to early fetal brain development and transcriptional regulation are enriched for protein disrupting and 

missense rare de novo variants linked to ASD, and three modules related to later fetal development and synaptic 

function are implicated by gene expression changes in ASD brain and inherited variants. These modules involved 

genes that are highly expressed in layers 2 and 3 of the adult cortex, suggesting that ASD risk genes converge on 

circuits that are related to inter- and intra- hemispheric connectivity, and that these are cellular circuit-level 

pathways coherently disrupted in ASD. Finally, genes implicated in intellectual disability (ID) are not enriched in 

these modules. 
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2.2: Introduction 

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder, in 

which hundreds of genes have been implicated (Berg and Geschwind, 2012; Geschwind and 

Levitt, 2007). Analysis of copy number variation (CNV) and exome sequencing (Iossifov et al., 

2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012) have identified rare de novo 

variants (RDNVs) that alter dozens of protein coding genes in ASD, none of which account for 

more than 1% of ASD cases (Devlin and Scherer, 2012). This, and the fact that a significant 

fraction (40-60%) of ASD is explained by common variation (Klei et al., 2012), points to a 

heterogeneous genetic architecture.  

These findings raise several issues. Based on the background human mutation rate 

(MacArthur et al., 2012), most genes affected by only one observed RDNV to date are likely 

false positives that do not increase risk for ASD (Gratten et al., 2013). It is therefore essential to 

develop approaches that prioritize singleton variants, especially missense mutations. 

Furthermore, given the heterogeneity of ASD, it would valuable to identify common pathways, 

cell-types, or circuits disrupted within ASD itself. Recent studies combining gene expression, 

protein-protein interactions (PPIs), and other systematic gene annotation resources suggest some 

molecular convergence in subsets of ASD risk genes (Ben-David and Shifman, 2012; Gilman et 

al., 2011; Sakai et al., 2011; Voineagu et al., 2011). Yet, it remains unclear how the large number 

of genes implicated through different methods may converge to affect human brain development, 

which is critical to a mechanistic understanding of ASD (Berg and Geschwind, 2012). 

Additionally, ASD has considerable overlap with ID at the genetic level, so identifying 

molecular pathways and circuits that confer the phenotypic specificity of ASD would be of 

considerable utility (Geschwind, 2011; Matson and Shoemaker, 2009). 
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Here, I take a stepwise approach to determine if genes implicated in ASD affect 

convergent pathways during in vivo human neural development, and whether they are enriched in 

specific cells or circuits (Figure 2.2A). First, I constructed transcriptional networks representing 

genome-wide functional relationships during fetal and early postnatal brain development and 

mapped genes from multiple ASD and ID resources to these networks. I then assessed shared 

neurobiological function among these genes, including co-regulatory relationships and 

enrichment in layer-specific patterns from micro-dissected human fetal and adult primate cortical 

laminae. I used validation in independent in vivo and in vitro expression data and additional 

functional evidence (shared annotated pathways and PPIs) to confirm shared function among 

genes, and I replicated the enrichment analyses in independent data to ensure robustness. This 

integration of an unsupervised network analysis with large gene sets from multiple resources 

permits rigorous interrogation of biological convergence and specificity in ASD that takes its 

heterogeneity into consideration and enables comparison of ASD with ID. 
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Figure 2.2 Methodological Overview and Coexpression Network Analysis. (A) Flowchart of the overall 

approach. (B) Network analysis dendrogram showing modules based on the coexpression topological overlap of 

genes throughout development. Color bars below give information on module membership, gene biotype, cortical 

region specificity, age trajectory, and robustness of module assignment. (C) Module characterization, including GO 

enrichment and trajectory throughout development. The fit line represents locally weighted scatterplot smoothing 

(See Appendix A1 for more details). GO enrichments are adjusted for multiple comparisons (FDR < 0.05), and 

reported Z scores represent relative enrichment in the module compared to all cortex-expressed genes, with the red 

line at Z = 2. See also Table A1.1 and Figure A1.1. 
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2.3: Results 

2.3.a: Genome-wide co-expression networks reflect biological processes essential to human 

neocortical development 

I reasoned that transcriptomic data from human neocortex would inform understanding of 

ASD pathophysiology, as the cerebral cortex has been consistently implicated in ASD 

pathophysiology by multiple modalities (Amaral et al., 2008; Ecker, 2012; Geschwind, 2011; 

Rubenstein, 2010; Voineagu et al., 2011). I focused on gene expression from cortical 

development spanning post-conception week (PCW) 8 to 12 months after birth, as this time 

period reflects many critical molecular processes that orchestrate brain circuit formation that 

could be disrupted by genetic hits in ASD (Andersen, 2003; Courchesne et al., 2011). 

I constructed networks of gene relationships agnostic to ASD candidate genes based on 

BrainSpan whole-genome transcriptomic data collected by RNA-seq (www.brainspan.org). I 

applied signed, weighted gene co-expression network analysis (WGCNA, see section 2.5, 

Materials and Methods; (Zhang and Horvath, 2005) and identified 17 co-expression modules 

(labeled numerically, e.g. M8, and by color, e.g. magenta, see Table A1.1B for module details). 

These modules represent genes that share highly similar expression patterns during cortical 

development (Figure 2.2B), and additional analyses show that these modules identify highly 

significant shared expression patterns that are replicated in independent data from both in vivo 

and in vitro human neural development (Figures A1.1A-C, see section 2.5, Materials and 

Methods). 

First, I investigated each module’s developmental trajectory by calculating the module 

eigengene (ME, the first principal component of the module) and assessed shared function 

among genes within the module by enrichment for Gene Ontology (GO) annotation terms. 
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Representative examples for up and down-regulated modules are shown in Figure 2.2C. Module 

eigengenes for M13, M16, and M17 increase during early cortical development and are each 

enriched for the GO term synaptic transmission (Figure 2.2C). M16 is upregulated the earliest, 

starting at PCW 10 and its hubs (most inter-connected genes based on correlation to the ME, 

kME) include genes coding for the structural synaptic proteins SV2A and NRXN1. M16 GO 

terms include cation transporter activity, homophillic cell adhesion, and nervous system 

development, consistent with early development of synaptic ultrastructure. M17 represents a 

later phase of synaptic maturation, as it is upregulated after PCW 13 and its hubs include 

CAMK2B and CACNA1C, which are important for calcium-dependent regulation of synaptic 

activity. M13 increases last, after PCW 16, and its hubs include the NMDA and GABA receptor 

subunits GRIN2A and GABRA1, while GO terms include substrate-specific channel activity and 

regulation of neuronal synaptic plasticity. These three modules have closely aligned, yet distinct 

developmental trajectories that likely reflect sequential phases of synaptic development, 

maturation, and function, all of which are essential to the development of the cerebral cortex. 

In contrast, M2 and M3 have anti-correlated trajectories to M13, M16, and M17 (r = -

0.46 to -0.96, Table A1.1B), and are enriched in GO terms associated with DNA binding and 

transcriptional regulation (Figure 2.2C). Expression in M3 is initially upregulated and then 

decreases after PCW 12, suggesting its functions may be most important prior to M2, which is 

upregulated after PCW 10 and peaks later (PCW 12 to PCW 22). Given the GO enrichment and 

anti-correlation to the synaptic module MEs, genes in these modules may be critical to 

orchestrating processes such as progenitor proliferation and cell fate specification via initial 

repression followed by de-repression of neuronal genes (Srinivasan et al., 2012). Furthermore, 

many of the genes found in M2 and M3 are part of well-studied chromatin remodeling 
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complexes, most notably the BAF complex (ARID1A and SMARCA4 in M2; ARID1B, 

SMARCB1, SMARCC1, SMARCC2, SMARCD1, ARID2, DPF2, BCL11A, BCL11B, and ACTL6A 

in M3), that have recently been linked to neural differentiation and neurodevelopmental 

disorders (Ronan et al., 2013; Yoo et al., 2009). 

Since, positive correlations among genes also reflect pair-wise interactions between 

proteins (Ramani et al., 2008), enrichment for protein-protein interactions within modules 

provides an independent line of validation for shared function in these modules at the protein 

level. I combined all known PPIs from InWeb (Rossin et al., 2011) and BioGRID (Stark, 2006) 

into one network, comprising 251,881 interactions between 18,384 proteins, and observed that 

12/17 of all co-expression modules, including all the modules in Figure 2.2C are enriched for 

PPI after stringent multiple testing correction (p < 0.003, Table A1.1B). Overall, 10/17 co-

expression modules are preserved in independent gene expression data sets, enriched for GO 

terms, and enriched for PPI, while 2/17 are enriched for two of these three criteria. These results 

demonstrate the utility of a systems biology approach: instead of analyzing lists of thousands of 

genes regulated during development, I focused on this set of 12 reproducible and biologically 

meaningful modules sharing distinct expression patterns and biological functions. 

2.3.b: Genes implicated in ASD are highly co-expressed during human cortical development 

I next asked whether genes associated with risk for ASD converge on common biological 

processes. I compiled a set of 155 ASD genetic risk candidates from the Simons Foundation 

Autism Research Initiative (SFARI) AutDB database (Basu et al., 2009), which I refer to as 

SFARI ASD. The SFARI ASD list is a manually curated set of candidate genes implicated by 

common variant association, candidate gene studies, genes within ASD-associated CNV, and, to 

a lesser extent, syndromic forms of ASD (see section 2.5, Materials and Methods). I mapped this 
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gene set to the protein coding genes in the developmental co-expression network and observed 

that SFARI ASD genes are most over-represented in M16 (p = 0.0024, odds-ratio (OR) = 2.9, 

95% confidence interval = [1.4-5.5], false discovery rate (FDR) < 0.05), and less so in M13 and 

M17 (Figure 2.3A). 

I also examined a set of ASD genes previously shown to be dysregulated in postmortem 

ASD temporal and frontal cortex (asdM12; Voineagu et al., 2011), which represents a shared 

molecular pathology in ASD brain identified in an unbiased, genome-wide manner. The asdM12 

gene set was strongly enriched in the same three modules as SFARI ASD genes, M13, M16 and 

M17 (asdM12-M13, p = 3.0x10-15, OR 3.6 [2.7-4.8]; asdM12-M16, p = 3.5x10-15, OR 3.9 [2.8-

5.3]; asdM12-M17, p = 1.0x10-7, OR 2.5 [1.8-3.4]; each at FDR < 0.05). A remarkable 42% of 

asdM12 and 25% of the SFARI ASD sets are found in one of these three modules. This analysis, 

which uses gene sets identified based on different methods (only 15 genes overlap between 

SFARI ASD and asdM12), converges onto three modules involved in prenatal and early 

postnatal synaptic development. 
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Figure 2.3 Enrichment of SFARI ASD, asdM12, and ID Genes in Developmental Networks. (A) Module-level 

enrichment for gene sets from a curated set of ASD risk genes (SFARI ASD), a curated set of ID genes (“ID all”), 

and an unbiased set of ASD risk genes (asdM12). Overlapping (ASD/ID overlap) and nonoverlapping sets (“ASD 

only” and “ID only”) are also shown. All enrichment values for overrepresented lists with p < 0.05, OR > 1 are 
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shown to demonstrate enrichment trends (∗p < 0.05 and ∗∗FDR < 0.05). Heatmap colors for p values reflect 

enrichment trends; p values for gene sets with OR < 1 can be seen in Table A1.2B. (B–D) These panels show 

network plots for M13, M16, and M17, respectively. Most hub genes overlapping with SFARI ASD and asdM12 

enrichment are not the same, showing that enrichment of these two sets is not driven by a narrow shared subset of 

genes. Network plots comprise the top 200 connected genes (based on kME, a measure of intramodular 

connectivity) and their top 1,000 connections in the subnetwork. By definition, all edges in the network reflect 

positive correlations. Genes with membership in SFARI ASD, asdM12, or the “ID all” list are labeled and plotted 

according to multidimensional scaling of gene expression correlations, which graph genes with similar expression 

patterns closer to each other. See also Table A1.2. 

 

I next hypothesized that mapping ID genes to this network would enable me to assess 

whether ASD susceptibility genes show any specificity in their developmental expression 

patterns. I compiled an extensive set of high confidence genes implicated in monogenic forms of 

ID from multiple publications (Inlow, 2004; Lubs et al., 2012; Ropers, 2008; van Bokhoven, 

2011), referred to as “ID all” (see section 2.5, Materials and Methods). Remarkably, this set of 

364 genes expressed in human neocortex is not enriched in any of the 12 co-expression modules. 

Importantly, this lack of enrichment is at a relaxed threshold that reduces the risk of false 

negatives (uncorrected p > 0.05). Removing the small set of 37 genes (<10%) that overlap 

between ASD and ID to establish exclusive sets (“ASD only”, “ID only”) further confirms that 

ASD genes exhibit enrichment, while ID genes do not (Figure 2.3A, Table A1.2B). Thus, it is 

genes connected with the ASD phenotype that are enriched in 3 specific transcriptional modules 

related to synaptic function during development, but not those that have been related solely to 

ID. 
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2.3.c: ASD-associated protein disrupting rare de novo variants are highly enriched in two co-

expression modules in early fetal development 

Additional evidence implicating specific genes in ASD comes from whole-exome 

sequencing in families (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et 

al., 2012), which has identified many rare protein disrupting variants (nonsense, splice-site, 

frameshift) over-represented in individuals with ASD compared to their unaffected siblings (OR 

> 2). This evidence is largely distinct from the evidence implicating genes in SFARI ASD and 

asdM12, as it is from purely non-inherited, rare variation discovered in an unbiased, genome-

wide manner. I therefore asked whether RDNV-affected genes found in ASD probands shared 

biological function. I also tested silent RDNVs since they should not exhibit a similar pattern of 

functional enrichment, providing a key control for gene size, GC content, and other features 

affecting mutability (Michaelson et al., 2012). 

I first tested for enrichment using RDNVs from three studies sharing similar coverage 

criteria and variant calling methodology (Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 

2012), representing 622 ASD probands and 222 unaffected siblings. Strikingly, genes expressed 

during development and affected by protein disrupting RDNVs in probands (60 genes, Table 

A1.2A, Discovery Set) are significantly enriched in two modules, M2 and M3, which exhibit 

highly similar developmental trajectories and functional enrichment, indicative of remarkable 

biological specificity. Eight genes harboring protein disrupting RDNVs are enriched in M2 (p = 

0.006, OR = 3.2 [1.3-6.8]; FDR < 0.05) and 10 are enriched in M3 (p = 0.0011, OR = 3.6 [1.6-

7.2]; FDR < 0.05). A trend for enrichment is observed for M16 as well, but this does not pass the 

FDR threshold. For comparison, genes affected by RDNVs in unaffected siblings or affected by 

silent mutations are not enriched in any modules (Table A1.2B, p > 0.05). Since missense 
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RDNVs are only weakly over-represented in ASD (Sanders et al., 2012), I reasoned that overlap 

with network modules might prioritize specific subsets of this RDNV class. I find that a subset of 

missense RDNV affected genes is over-represented in the same pathways as the more deleterious 

protein disrupting RDNVs (M2 and M3, Table A1.2B). Taken together, out of 385 protein 

disrupting or missense RDNV affected genes expressed in brain, 34 are found in M2 (p = 2.9 x 

10-4, OR = 2.1 [1.4-3.0], FDR < 0.05) and 41 in M3 (p = 2.3 x 10-5, OR = 2.2 [1.5-3.1], FDR < 

0.05). There is no enrichment for this combined set in any other modules. Furthermore, the 

combined set of protein disrupting and missense RDNVs from unaffected siblings was not found 

enriched any modules (p > 0.05).  
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Figure 2.4 Enrichment of Genes Affected by RDNVs in Developmental Networks. (A) Module-level enrichment 

for multiple categories of RDNV in ASD affected probands and unaffected siblings combined across four studies. 

M2 and M3 are strongly enriched for protein disrupting and missense RDNV-affected genes in probands. 

Enrichment for genes affected by silent RDNVs in probands and RDNV gene sets affected in siblings represent 
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control gene sets and do not show enrichment. All enrichment values for overrepresented lists with p < 0.05, OR > 1 

are shown to demonstrate enrichment trends (∗p < 0.05, ∗∗validated in replication set). Heatmap colors for p values 

reflect enrichment trends; p values for gene sets with OR < 1 can be seen in Table A1.2B. 

(B and C) (B) and (C) show network plots for M2 and M3, with all genes plotted and all genes carrying RDNVs 

displayed. Network plots show all genes in the module with protein disrupting or missense RDNV-affected genes 

highlighted. For visualization, genes with high intramodular connectivity (kME > 0.75) are labeled in black, and the 

rest are labeled in gray. By definition, all edges in the network reflect positive correlations. The top 1,000 

connections are shown, and genes are plotted according to the multidimensional scaling of coexpression as 

in Figure 2.3. See also Figures A1.2 and A1.3 and Table A1.2. 

 

I further validated the observed RDNV enrichment pattern in M2 and M3 in an 

independent set of patients from a study with more stringent RDNV calling criteria (Iossifov et 

al., 2012). In this additional set of 343 ASD probands and unaffected siblings, I found that the 

patterns of RDNV enrichment replicated, with the set of protein disrupting and missense RDNVs 

from ASD probands enriched specifically in M2 and M3 (p < 0.05), and RDNVs from siblings 

and silent RDNVS not enriched in any set (Table A1.2B, Replication Set). Combining across all 

studies, I find that out of 598 protein disrupting or missense RDNV affected genes expressed in 

brain, 52 are in M2 (p = 9.6 x 10-6, OR = 2.0 [1.5-2.8]) and 61 are in M3 (p = 8.5 x 10-7, OR = 

2.1 [1.6-2.8]). Importantly, the enrichment pattern across modules is not only replicated in the 

independent set, but is stronger in the combined set, is robust to perturbations in module 

composition (Figure A1.3A), and is not driven by variants from any one study (Table A1.2C-D). 

I show the enrichment pattern of this combined set across 965 ASD probands and 565 unaffected 

siblings in Figure 2.4A and use this combined set for the remainder of this analyses. 

I next asked whether M2 and M3 prioritized functional subsets of genes with RDNVs. I 

confirmed that RDNV-affected genes in M2 and M3 are significantly enriched for interactions at 

a protein level (Figure A1.2A-D), and highlight genes that are both PPI hubs and co-expression 

hubs in Figure 2.4B-C. Furthermore, M2 and M3 genes harboring RDNVs are also more dosage 
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sensitive, as evidenced by the significant increase in the probability of haploinsufficiency (P(HI), 

see section 2.5, Materials and Methods) among genes affected by these mutation classes (Huang 

et al., 2010; Luo et al., 2012). This is consistent with the heterozygous state of variants observed 

in ASD probands. Overall, a remarkable proportion, 113/598 (19%) of genes affected by known 

RDNVs are co-expressed in two modules reflecting similar temporal trends of high expression in 

cortex during the neurodevelopmental period of early neuronal fate determination, migration, 

and cortical lamination. Of note, as with M13, M16, and M17, which were enriched for asdM12 

and SFARI ASD, ID genes showed no enrichment in M2 or M3 (p > 0.05). 

I also observed that the SFARI ASD genes and asdM12 genes, which are enriched for 

inherited common variants in ASD (small average effect size), affect the synaptic modules, M13, 

M16, and M17. In contrast, the non-inherited (larger average effect size) RDNVs preferentially 

affect the early transcriptional regulation modules (see section 2.5, Materials and Methods). I 

emphasize that this is not absolute, as M16 includes some genes harboring RDNVs (e.g. in 

SCN2A, SHANK2, NRXN1; Figure 2.3A). To formally assess common variant enrichment using 

independent data, I compared ASD GWA signals across these modules (see section 2.5, 

Materials and Methods). Genes in M13 and M16 were more strongly affected by common 

variation in at least one of two ASD GWA studies (Anney et al., 2012; Wang et al., 2009) than 

M2 or M3 (Figure A1.3E). This is consistent with susceptibility of distinct biological processes 

for different mutational classes, and that in general more severe biological consequences would 

result from early transcriptional dysregulation during neuronal proliferation and differentiation, 

compared with later disruption of synaptic development and neuronal function. 
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2.3.d: ASD gene enriched modules are linked by translational and transcriptional regulation 

Upregulated and downregulated modules are highly anti-correlated throughout 

development, so I hypothesized that common molecular regulatory relationships could 

potentially link genes within these modules. I first used a set of FMRP-RNA interactors from a 

cross-linking and immunoprecipitation (CLIP) experiment (Darnell et al., 2011), since Iossifov et 

al. (2012) had previously shown that RDNVs identified in their exome sequencing study were 

enriched in this class of genes. Remarkably FMRP targets are specifically enriched in modules 

that also contain ASD-related genes M2, M16, and M17 (FMRP-M2 p = 1.6x10-13, OR = 3.0 

[2.3-3.9]; FMRP-M16 p = 2.4x10-29, OR = 5.7 [4.3-7.6]; FMRP-M17 p = 9.3x10-10, OR = 2.4 

[1.8-3.1]; all at FDR < 0.05; Figure 2.5A). This provides a strong, independent line of evidence 

that translational regulation by FMRP not only affects genes harboring RDNVs, but links 

different molecular pathways that are co-expressed during early fetal cortical development and 

susceptible to diverse classes of ASD genetic mutation. 

I next tested whether ASD associated modules are also linked at the transcriptional level 

(see section 2.5, Materials and Methods). I found 17 TFs that are predicted to link at least one 

upregulated and one downregulated module based on binding site enrichment (Figure 2.5B, 

Table A1.3A-B). Many of these TFs are expressed during fetal development (Table A1.1A), 

have been previously implicated in relevant neuronal functions, and have DNA binding targets 

have been experimentally characterized (Table A1. 3B). For example, MEF2A and MEF2C, both 

members of a TF family regulating synaptic plasticity and glutamatergic synapse number (Ebert 

and Greenberg, 2013), are enriched for binding targets in M2 and M17, which are anti-correlated 

across development (Figure 2.5C-D). SATB1, which is required for the development of cortical 

interneurons (Close et al., 2012), ELF1, which is involved in axonal guidance, and FOXO1 
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which regulates neuronal polarity (la Torre-Ubieta and Bonni, 2011) also link these two modules 

(Figure 2.5E-F). To provide further evidence that these are experimentally plausible binding 

sites, I overlaid these bioinformatic predictions with chromatin immunoprecipitation (ChIP) data 

where available, supporting many of these predicted interactions, including 39% of MEF2A, 

23% of MEF2C and 87% of ELF1 binding sites (Figure 2.5C, 2.5D, 2.5G; see section 2.5, 

Materials and Methods). These results implicate existing and novel TFs as putative co-regulators 

of ASD-associated gene networks during neocortical development. 
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Figure 2.5 Translational and Transcriptional Coregulation Connect Developmentally Distinct ASD-Affected 

Modules. (A) Coexpression-based network plot of FMRP interactions with genes in M2, M16, and M17 that are 

either affected by RDNVs or are in an ASD candidate list. Genes are plotted as in Figures 2.3 and 2.4 but now 

across modules, with FMRP placed at the center. (B) Summary of TF binding site (TFBS) enrichment in modules 
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for TFs that have evidence for function in a neurodevelopmental context and link anticorrelated modules. Dashed 

lines indicate enrichment in the module for predicted binding sites. (C–G) MEF2A, MEF2C, SATB1, FOXO1, and 

ELF1 are all enriched for their binding motifs in the upstream regions of ASD gene-enriched modules following 

anticorrelated developmental patterns. Network plots highlight genes with a predicted binding site (light dashed 

arrow) for the TF (placed at the center) contributing to this enrichment that are also affected by RDNVs or in an 

ASD candidate list. Arrows representing a TFBS found in a ChIP experiment are marked in dark blue. 

For network plots, the top 1,000 positive connections between genes are plotted, and node size is proportional to 

connectivity within the genes’ assigned module; therefore, larger nodes are more central hubs. The outer color of 

each node reflects its module membership, and coexpression edges in the network reflect positive correlations. See 

also Tables A1.2 and A1.3. 

 

2.3.e: ASD-associated genes exhibit laminar and cellular enrichment 

 Deficits in cortical patterning and layering have been observed in ASD (Voineagu et al., 

2011), I therefore tested whether ASD-affected genes are enriched in the developing laminae of 

fetal cortex and the terminally differentiated laminae of adult cortex (see section 2.5, Materials 

and Methods). I compared multiple ASD gene lists with the ID gene sets for enrichment in 

laminae of the developing and adult cortex, and found a sharp contrast in laminar enrichment 

between ASD and ID genes (Figure 2.6A-B). Additionally, in adult, asdM12 exhibits strongly 

significant enrichment in L3 (Z > 2.7, FDR < 0.01), while other ASD lists follow a similar trend 

of superficial layer enrichment (Z > 2, p < 0.05). In contrast, the “ID all” and “ID only” gene sets 

follow a trend of lower layer enrichment (Figure 2.6B), an across-layer pattern that is 

significantly different from all of the ASD lists (Figure 2.6C-D, see section 2.5, Materials and 

Methods). 

I also observed a similar trend in superficial layer enrichment for the modules that are 

enriched in asdM12 genes (M13, M16, and M17; Figure 2.6F). M13 and M16 also exhibit 

weaker enrichment in L5 and L6. Module-level analysis in fetal brain also highlighted a 

difference between the RDNV enriched modules, M2 and M3. Although both M2 and M3 are 
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most highly expressed in early human fetal development (prior to PCW 17), M2 reaches its peak 

later and is enriched in the cortical plate (CPi/CPo), whereas M3 peaks earlier, consistent with its 

enrichment in the germinal zone (VZ, SZi, SZo; Figure 2.6E). In adult, this distinction is no 

longer present (Figure 2.6F), with both M2 and M3 showing enrichment in superficial layers 

(L2, L4). I also asked whether any of these gene sets or modules were enriched for cell-type 

specific markers paralleling the observed laminar enrichment. I observed enrichment in this set 

of well-curated upper layer glutamatergic neuron markers among asdM12, M2, and M3 genes 

(Figure A1.4C-D), which agrees with the L2-4 enrichment of asdM12 and ASD risk gene 

modules. 
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Figure 2.6 Enrichment for Laminar Differential Expression of Gene Sets and Associated Developmental 

Coexpression Modules in Fetal Human and Adult Primate Cortex. (A) In fetal cortex, ASD sets (SFARI, 

asdM12, and RDNV affected) are enriched for differential expression in laminae containing postmitotic neurons, 

whereas genes implicated in ID are weakly enriched in germinal layers. A high Z score for a gene set in a layer 

corresponds to differential expression across the gene set in that layer. (B) In adult cortex, asdM12 sets show strong 

enrichment in layer 3, whereas ID genes are weakly enriched in layer 5. (C and D) Summing the Z score across 
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layers in (A) and (B) and comparing to randomly permuted sets of genes of similar size demonstrates that, in both 

fetal and adult cortex, the laminar distribution of multiple ASD implicated gene sets is significantly distinct from 

that of genes implicated only in ID. (E) SFARI/asdM12-associated developmental coexpression modules M13, M16, 

and M17 follow enrichment trends similar to the SFARI/asdM12 gene set in fetal brain. However, the modules 

strongly associated with the RDNV affected genes, M2 and M3, show distinct enrichment patterns. 

(F) ASD-associated modules are predominantly enriched in superficial layers 2–4 of adult cortex. Additionally, M16 

shows weak enrichment in L5. In contrast to fetal cortex, M2 and M3 are in enriched in the same laminae in adult, 

suggesting that they serve distinct functions during cortical development that contribute to superficial cortical layers 

2–4. Dashed lines in bar plots indicate Z = 2.7 (equivalent to FDR = 0.01); error bars indicate 95% bootstrapped CIs. 

Laminae: marginal zone (MZ), outer/inner cortical plate (CPo/CPi), subplate (SP), intermediate zone (IZ), 

outer/inner subventricular zone (SZo/SZi), ventricular zone (VZ), and adult cortical layers 2–6 (L2–6). See 

also Figure A1.4. 

 

Figure 2.7A highlights adult layer-level expression patterns of several strong ASD 

candidate genes with enriched expression in superficial layers (e.g. SHANK2, CNTNAP2) and 

shows that many genes recurrently affected by protein disrupting RDNVs in the 965 ASD 

probands and an additional set of patients assessed by targeted sequencing (O'Roak et al., 2012) 

also show superficial layer enrichment (e.g. SCN2A, POGZ, Figure 2.7B). I use these mature 

laminae for cell-marker enrichment analyses because laminar expression patterns are more 

clearly delineated relative to PCW 15-21 (Figure 2.6A and 2.65E, Figures A1.4A-B). 

Furthermore, neuronal migration in humans persists into the third trimester, and upper layer 

neuronal identity is not finalized until after PCW 28 (Bystron et al., 2008). Out of the 6 genes 

with recurrent RDNVs in probands in which I can detect layer preference, 5 are predominantly 

expressed in superficial layers in adult. Some of the genes in Figure 2.7 also show expression in 

a lower layer (NLGN1, SCN2A, ITPR1, MLL3), though superficial layer enrichment is stronger 

(larger differential expression t-value in Table A1.1A). 
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Figure 2.7 Laminar Patterns for Genes Implicated in ASD. (A) SFARI candidate genes for ASD. (B) Genes with 

recurrent RDNV evidence across studies. Genes not displayed include TBR1 (lower layer enriched), CHD8 (no layer 

enrichment detected), CUL3 (no layer enrichment detected), and KATNAL2 (not detected in these data). (C) Genes 

with high connectivity in M13, M16, and M17. (D) RDNV genes with high connectivity in M2 and M3. 
aindicates membership in SFARI ASD, b indicates membership in asdM12, c indicates the gene is affected by a 

RDNV, and the asterisk indicates recurrent RDNVs. Color bar values represent scaled expression (SDs from the 

mean-centered expression value across layers). All genes shown have t > 2 for enrichment in an upper layer (L2, L3, 

or L4) over background and t < 2 for lower layers (L5 or L6). Regions: dorsolateral prefrontal (DLPFC), 

orbitofrontal (OFC), anterior central gyrus (ACG), primary motor (M1), primary somatosensory (S1), primary 

auditory (A1), higher-order visual area TE (TE), higher-order visual area MT/5 (MT), secondary visual cortex (V2), 

and primary visual cortex (V1).  
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2.4: Discussion 

These analyses offer a genome-wide neurobiological context to begin to unify the 

genetics of ASD, providing robust evidence of both molecular pathway and circuit-level 

convergence (Figure 2.8A-B). Integration of ASD genes with developmental co-expression 

networks and laminar expression data connects multiple ASD risk enriched modules to 

glutamatergic neurons in upper cortical layers (L2-L4), tying ASD risk genes to specific brain 

circuitry (Figure 2.8C). The observation of convergent biology in ASD stands in striking contrast 

with ID, which does not show the same level of developmental or anatomical specificity. 

Laminar enrichment in the “ASD/ID overlap” genes show a similar pattern as the “ASD only” 

genes (in L2, Figure 2.6B). Therefore disruption in ID genes that also cause ASD likely affects 

superficial layers compared to disruption in genes causing ID only; these analyses lead to the 

prediction that specific disruption of cortical-cortical connectivity, for example by targeting 

upper layer glutamatergic neurons which predominantly comprise inter- and intra-hemispheric 

projections, is more likely to affect core ASD phenotypes such as social behavior, rather than 

general intellectual ability alone.  
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Figure 2.8 Summary of Findings and Model for Effects of ASD Implicated Gene Sets. (A) ASD risk genes from 

multiple sources were enriched in five coexpression modules throughout development—M2, M3, M13, M16, and 

M17. (B) Early transcriptional regulators in M2/M3 are enriched for RDNVs, whereas the later expressed synaptic 

genes are associated with previously studied ASD genes (biological process time periods adopted from Andersen, 

2003). (C) ASD genes are most consistently associated with laminae containing postmitotic neurons during early 

fetal development (broadly in IZ, SP, CPo/CPi, and MZ) and superficial layers in adult (L2–L4). Multiple modules 

are also strongly associated with markers of upper-layer glutamatergic neurons in adult cortex, suggesting many 

ASD genes preferentially affect these cell types. (B) and (C) also summarize that ID genes are largely distinct from 

ASD genes in both developmental trajectory and neocortical layer enrichment. See also Table A1.4. Both (A) and 

(B) correspond to the same timescale as marked by the axis on the plot in (A). I summarize the strongly enriched 

findings but note that weaker enrichment for other patterns exists that may be important for subsets of ASD. 
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Individual genes can be prioritized for biological validation using a combination of network position, bioinformatic 

scores, and the biological context highlighted here, as shown in Table A1.4. 

 

This analysis further links specific molecules and pathways to the cortical-cortical intra- 

and inter-hemispheric disconnection that has been hypothesized as a shared circuit-level deficit 

unifying diverse ASD etiologies (Belmonte, 2004; Geschwind and Levitt, 2007). An illustrative 

example is the disruption of ARID1B, a BAF complex member that harbors a RDNV and is a hub 

of M3. Severe mutations in ARID1B cause corpus callosum abnormalities, ID, and ASD 

(Halgren et al., 2011; Santen et al., 2012). Another BAF complex member, SMARCC2, 

implicated by RDNVs in probands, controls cortical thickness by repressing the pool of 

intermediate progenitors, which preferentially contribute to forming cortical layers 2-4 (Tuoc et 

al., 2013), providing another molecular link to inter- and intra-hemispheric connectivity. These 

analyses make the first systematic connection between genes disrupted in ASD and this circuit-

level disruption. As additional genes in the early fetal co-expression modules are found to harbor 

recurrent RDNVs, cortical-cortical connectivity will be a valuable phenotype to assess in both 

animal models and human patients. 

Translational regulation by FMRP during fetal cortical development and transcriptional 

co-regulation of ASD candidate genes provides another level of convergent biology in ASD, and 

a rich starting point for further experimental investigation. Notable also are TFs that are 

predicted to drive the transcriptional co-regulation of molecular and circuit-level processes, 

including MEF2A, MEF2C, and SATB1, which have binding site enrichment in M2 and M17. 

This is intriguing in light of decreased PVALB expression in ASD brain (Voineagu et al., 2011), 

the hypothesized convergent mechanism of a shift in the excitation-inhibition balance in ASD 

(Rubenstein and Merzenich, 2003), and the observation that SATB1 plays a key role in regulating 
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cortical PVALB+ and SST+ interneuron development (Close et al., 2012; Denaxa et al., 2012). I 

speculate that M2 and M17 reflect processes involved in the migration and differentiation of 

inhibitory and excitatory cell populations whose balanced co-regulation may be essential to 

proper cortical development. These analyses underscore the notion that understanding the 

structure of the transcriptional and chromatin regulatory networks underlying cortical 

development and their relationship to translational control will better inform the genetic risk 

architecture of ASD. 

In addition to demonstrating biological convergence, network analysis further allowed me to 

stratify the full set of 684 RDNV-affected genes to a narrower list of 113 genes (Table A1.1A) 

that I hypothesize are more likely to confer increased ASD risk based on their enrichment in M2 

and M3, and an elevated probability of conferring a phenotype when haploinsufficient. 

Furthermore, I demonstrate that the observed enrichment is specific by comparison to silent 

RDNVs and unaffected siblings’ RDNVs.  As an example of how to prioritize these candidates 

further based on the functional relationships summarized in Figure 2.8, I constructed a list of 

candidates using Table S1A, filtering by expression during development, membership in M2 or 

M3, high predicted haploinsufficiency (P(HI) > 0.5), protein disrupting or missense mutation in 

probands, and either a layer preference (t > 2 for a particular layer) or a cell-type preference (r > 

0.2 for a cell-type) in Table S4. This yields a set of 24 candidates with a hypothesized layer- or 

cell-type phenotype for investigation. Among these, TBR1 is known to harbor recurrent 

mutations, while CHD3 is a member of the same gene family as CHD8, a gene with the strong 

recurrent de novo mutation evidence (O'Roak et al., 2012). Additionally, SMARCC1 and 

SMARCC2 are members of the BAF complex, which is of particular interest since it is 

statistically associated with ASD: 6/28 BAF complex genes are affected by RDNVs (p = 1.5x10-
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3, OR = 5.7 [1.9-14.5]). Other RDNV-affected molecular families, including the CCR4-NOT 

complex members (CNOT family) and chromodomain helicase DNA binding proteins (CHD), 

are also seen in M2 and M3 and have been linked to the regulation of neuronal proliferation and 

differentiation (Feng et al., 2013; Potts et al., 2011; Ronan et al., 2013; Zheng et al., 2012). 

In parallel work, Willsey et al. 2013, find convergence on fetal cortical developmental 

networks in frontal lobe by seeding with a subset of high confidence ASD genes identified by 

exome sequencing. Despite the different analytical approaches, there is remarkable overlap 

between the developmental processes implicated by the gene networks identified in our studies. 

Although I see the strongest cell-type and layer enrichment in adult L2-4, I also see a signal in 

CPi during fetal development and a weaker signal in L5-6 of adult, consistent with a subset of 

genes affecting lower-layer glutamatergic neurons. Together, our studies highlight the 

importance of understanding the spatial and temporal context of specific genes for future 

mechanistic investigation. 

 I also acknowledge several issues that challenged my approach. Many of the genes I 

identified as putatively involved in ASD do not have complete PPI data, P(HI) scores, TF 

binding site information, or are not well studied in brain. This is one reason why I rely most 

heavily on RNA-seq based transcriptome data, as it comprehensively represents relationships 

present in the developing human brain in an unbiased manner. I did not assess enrichment of 

genetic hits in other brain regions across development, as sample size and cell-type heterogeneity 

make it difficult to interpret co-expression across cytoarchitecturally diverse brain regions such 

as cerebellum and amygdala, which may also be involved in ASD (Amaral et al., 2008). I also 

focused on single gene disruption in ASD and did not include CNVs affecting multiple genes to 

improve signal to noise. Additionally, current genetic approaches favor de novo mutation 
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detection; as different classes of mutations (e.g. inherited rare coding or non-coding regulatory 

variants) are identified, I speculate that heritable variants will affect genes in the modules related 

to synaptic development and function, rather than earlier transcriptional regulation. Likewise, It 

will also be useful to investigate rare, inherited recessive ASD risk variants (Lim et al., 2013; Yu 

et al., 2013) when sufficient data are available, so as to compare with other forms of genetic 

variation. 

The conclusions summarized in Figure 2.8 pass a stringent multiple comparisons cut-off; 

weaker enrichment patterns may become more salient with higher resolution tiling of gene 

expression during development and increased sample sizes in sequencing studies. To facilitate 

future studies I have shared the code used in this analysis 

(http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/developingcortex/) and 

provided a graphical interface for exploring specific genes within the network context 

(http://geschwindlab.neurology.ucla.edu/sites/all/files/networkplot/ParikshakDevelopmentalCort

exNetwork.html). I have shown how an integrative approach, which is not driven by any small 

set of samples, candidate genes, or candidate hypotheses, can place heterogeneous genetic 

etiologies into a unifying structure. These analyses provide a working framework for mechanistic 

investigation and hypothesis testing, which points to interactions between genes in specific cell 

types and circuits, as well as the general biological processes in which these genes are 

implicated. 
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2.5: Materials and Methods 

Developmental expression data: BrainSpan developmental RNA-seq data (obtained from 

www.brainspan.org) summarized to Gencode v10 (Harrow et al., 2006) gene-level reads per 

kilobase million mapped reads (RPKM) values were used (see Extended Methods in Appendix 

A1 for data preprocessing, see Table A1.1D for sample details). Only neocortical regions were 

used in this analysis and only genes with a normalized RPKM value of 1 in at least one region at 

one time point for 80% of the available samples were considered expressed. 

 

Weighted gene co-expression network analysis: I used the R package WGCNA (Langfelder et 

al., 2008) to construct co-expression networks, as previously done (Voineagu et al., 2011) and 

described in detail in Appendix A1. The modules were characterized using GO Elite to control 

the network-wide false discovery rate, with all enriched pathways comprising at least 10 genes at 

Z > 2 and FDR < 0.01 (Zambon et al., 2012). All network plots were constructed using the 

igraph package in R (Csárdi and Nepusz, 2006). 

 

Protein-protein interaction enrichment analysis: Protein-protein interactions were compiled 

from two resources, InWeb (Liu et al., 2011) and BioGRID (Stark, 2006). A union of the two 

networks was taken, and a degree-matched permutation analysis was applied in order to control 

for biological and methodological biases in PPI data (see Appendix A1 for details). 

 

Gene Sets: The SFARI ASD set was compiled using the online SFARI gene database, AutDB 

(https://gene.sfari.org/autdb/, accessed 8/20/2012). I used the Gene Score to restrict the set to 

those categorized as S (Syndromic) and evidence levels 1-4 (high confidence - minimal 



	
   64 

evidence). This resulted in 155 total genes. I obtained asdM12 (432 genes) and adsM16 (377 

genes) from a gene expression study that profiled expression changes in ASD cortex and applied 

WGCNA identify modules of dysregulated genes ASD (Voineagu et al., 2011). I curated ID 

genes from four reviews cataloging all known genes causing ID (Inlow, 2004; Lubs et al., 2012; 

Ropers, 2008; van Bokhoven, 2011) and supplemental table 6 from Neale et al., 2012, resulting 

in 471 genes. All candidate gene sets are available in Table A1.9A. I obtained RDNVs from four 

publications (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012), 

which in total identify 122 protein-disrupting, 528 missense, and 210 silent RDNV hit genes in 

affected individuals and 40 protein-disrupting, 307 missense, and 122 silent RDNV affected hit 

in unaffected siblings. 

 

Gene set over-representation analysis: All enrichments of gene sets were performed using a two-

sided Fisher exact test with 95% confidence calculated according to the R function fisher.test. To 

declare a set as enriched, I required at least 10 genes to overlap and an OR of 1.5. For strong 

enrichment, I further required the enrichment to pass a Benjamini-Hochberg FDR < 0.01 

(Benjamini and Hochberg, 1995).The background set for protein coding genes is defined by the 

biotype annotation “protein_coding” in GENCODE. Genes were overlapped according to the 

HUGO symbol, and all conversions among identifiers were performed using the R package 

biomaRt (see Appendix A1 for details). 

 

Transcription factor binding site enrichment: For each TF in TRANSFAC (Portales-Casamar et 

al., 2010), I assessed enrichment as follows: 1) putative motifs bound by the TF were obtained 

from the databases. 2) 1000bp upstream sequences of the top 200 genes by kM were scanned to 
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calculate motif enrichment; and iii) enrichment above background was calculated compared to 3 

background datasets to ensure robustness: 1000 bp sequences upstream of all human genes, 

human CpG islands, and the sequence of human chromosome 20. Only TFs with p < 0.05 across 

all backgrounds are considered enriched (see Appendix A1 for details). 

 

Layer-­‐specific	
  and	
  cell-­‐type	
  marker	
  enrichment:	
  I utilized human fetal neocortical laminar gene 

expression datasets from BRAINSPAN, two for each of the earlier and later fetal periods and 

primate neocortical laminar gene expression data from. A Laminar Enrichment Z-score, which is 

a z statistic quantifying the skew of differential expression t-values of a given gene set in a layer 

against background was calculated for each gene set in each cortical layer. This normalized 

distribution of individual gene t-values is expected to follow the same distribution as the 

background set (Z = 0) if the genes in the set exhibit no layer specificity. To quantify cell-marker 

relationships, I the same method, with the t-value replaced by the correlation of each gene to the 

first principal component of a set of known cell marker genes (Table A1.6 lists cell-type marker 

genes, see Extended Experimental Procedures for details). Comparisons between each ASD 

agene set and ID gene set were performed by 1) computing the difference in enrichment score 

between the two sets for each layer, 2) summing this difference across all layers, and 3) 

comparing this to the distribution of summed differences in layers of 10,000 randomly drawn 

pairs of sets matched in gene set size.	
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CHAPTER 3:  

Comparison of gene network approaches in 

autism genetics 
 

"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay." 

― Sherlock Holmes, Sir Arthur Conan Doyle, The Adventure of the Copper Beeches 

 

“All models are wrong, but some are useful.” 

―	
  George E. P. Box 
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3.1. Introduction 

 In Chapter 2, I described work, which was published in 2013 (Parikshak et al., 2013) that 

uses gene co-expression networks to understand the neurobiological pathways, cells, and circuits 

affected by ASD risk genes. This work shows that developmentally co-expressed modules 

enriched for cell markers of upper cortical layers and excitatory glutamatergic neurons are 

affected by ASD risk genes from multiple sources, enriched for physical interactions, and 

enriched for co-regulatory relationships. Since publishing this work, additional genetic data 

implicating genes in ASD (De Rubeis et al., 2014; Iossifov et al., 2014) as well as higher 

resolution cellular transcriptomes have become available and been used for identifying more 

detailed cellular enrichments in disease(Doyle et al., 2008; Molyneaux et al., 2015; Xu et al., 

2014; Zhang et al., 2014). I reasoned these data could allow me to assess the robustness of the 

statements made about the convergent biology of ASD in Chapter 2, as well as enable a formal 

evaluation of the predictive value of the modules implicated in ASD and the affected cell types 

and circuits. 

Additionally, I used genome-wide co-expression network analysis to identify the modules 

in Chapter 2 (unseeded, unsupervised, see Chapter 1 [section 1.3] for more on different types of 

gene networks that have been applied to ASD). Multiple studies have since attempted to identify 

gene networks related to ASD risk using seeded co-expression networks (Willsey et al., 2013), 

seeded co-expression and protein interaction networks (Hormozdiari et al., 2015), unseeded 

protein interaction networks (Li et al., 2014), and seeded integrated molecular phenotype 

networks (Chang et al., 2015) all of which are discussed in Chapter 1. A common yet somewhat 

implicit assumption in the literature is that PPI networks are the best way to understand how risk 

mutations might converge on similar biological processes (Krumm et al., 2014; Neale et al., 
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2012; O'Roak et al., 2012). However this may not be the case for neuropsychiatric disease, where 

the developmental processes affected may involve specific cellular populations disrupted at 

specific times and given that currently available PPIs do not reflect any neurobiological 

specificity. It is therefore important to understand the relative strengths and weaknesses of these 

approaches, and compare them against each other to understand their relative predictive power 

for ASD risk affected genes and pathways and guide future gene network studies in 

neurodevelopmental disorders such as ASD. 

In this chapter, I first describe criteria that will be used for evaluating recently available 

mutation and cell type data and apply them to the previously identified co-expression modules 

from Chapter 2. I then compare different gene network methods to evaluate how robustly they 

identify mutated genes in ASD, and whether they identify a level of biological specificity that is 

of value beyond the approach used in Chapter 2. 

3.2. Background 

3.2.a. Overview of gene networks in ASD and criteria for evaluation 

Gene networks are constructed by connecting genes through shared functional 

relationships (see Chapter 1 for details). However, there are a plethora of valid methods by 

which one can relate genes to each other, and combinations of these methods may be used to 

identify greater biological specificity (Mitra et al., 2013). Additionally, detecting cliques or 

modules in these networks is usually guided by heuristics, as it is difficult to truly optimize all 

possible parameters. Even where this is done using precise objective functions that maximize 

some desirable properties of genes in a module (e.g. connectivity between genes, pathogenic 

mutations in the module) and minimize undesirable properties (e.g. connectivity to genes outside 

the module or in other modules, pathogenic mutations found in control samples) in the module, 
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(Gilman et al., 2011; Hormozdiari et al., 2015; Langfelder et al., 2008; Segal et al., 2003), the 

inclusion or exclusion of parameters to optimize in the objective function is subjective. 

Two guiding principles that can be used in constructing relevant and biologically valid 

networks are their predictive value, as quantified by their ability to make the same conclusions 

on new data sources, and their biological usefulness, as quantified by their enrichment in 

previously identified biological processes.  

3.2.b. Overview of analyses in this chapter 

 Here, I assess the predictive value and biological usefulness of the five ASD associated 

modules from Chapter 2: M2, M3, M13, M16, and M17 (Parikshak et al., 2013), detected by 

genome-wide co-expression followed by gene set enrichment analyses. To clearly differentiate 

these modules from others that are discussed, I refer to them as devM2, devM3, devM13, 

devM16, devM17. 

I first address the predictive value of these modules for identifying biological processes 

affected by rare de novo mutations (RDNVs) in ASD. The mutation enrichment results described 

in Chapter 2 were initially identified in a discovery cohort, validated in a replication cohort, and 

shown to pass multiple corrections and be even stronger when combining across 965 ASD 

exomes (Chapter 2, Figure 2.4). Now, mutations have been reported from over 1,700 new 

individuals using a uniform de novo variant calling pipeline which reduces inconsistencies in the 

initial studies (Iossifov et al., 2014). If the implicated modules have predictive value, they ought 

to show a similar signature of risk gene enrichment with these new data. Therefore, I perform 

enrichment analysis with the previously used gene sets (Figure 2.4) and contrast them to 

enrichment analysis using only newly implicated genes in each mutational category. This 

constitutes a bona fide replication effort. Additionally, I apply a modified enrichment approach 
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using logistic regression and covariates to control for gene length, which is described and 

justified in A2 Additional Methods for Chapter 3.  

 I then use the same enrichment approach to re-assess fetal human cortex (Miller et al., 

2014) and adult primate cortex (Bernard et al., 2012) laminar enrichments, and compare these 

with cell-type enrichments derived from RNA profiling of more homogenous cellular 

populations in mouse. The first dataset, reported by Zhang and colleagues (Zhang et al., 2014), 

applied RNA-seq to fluorescent activated cell sorted (FACS) neurons, astrocytes, 

oligodendrocytes, and microglia from mouse. The second dataset, reported by Doyle and 

colleagues (Doyle et al., 2008), utilized bacTRAP technology (Gong et al., 2003) to molecularly 

tag ribosomes from specific cell-types in mouse, purify RNA bound to those ribosomes from that 

specific cell type, and evaluate these cell-type specific transcriptomes using microarray. This 

study profiled multiple populations of neurons and glia from the cortex. To evaluate enrichments 

for lamina and cell types, I utilized a modification of the enrichment analysis used in Chapter 2 

combined with the logistic regression framework used for mutational analysis (see A2 Additional 

methods for Chapter 3). I also use a third dataset, which assess the development of three 

subpopulations of cortical projection neurons from mid-fetal to early postnatal development in 

mouse (Molyneaux et al., 2015). Due to a lack of sufficient data from each time point or a whole 

brain background from the same experiments, I assess module relationships with these 

transcriptomes using a modified approach (see A2 Additional methods for Chapter 3). 

3.2.c. Overview of additional gene network studies utilized for comparison 

 Finally, I compare modules (also referred to as clusters, cliques, or communities 

depending on the study) from different methods with each other to evaluate how well each 
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method predicts future ASD genes, and to understand how they might implicate similar or 

distinct gene sets in ASD. The modules and methods used to define them follow: 

- devM2/3/13/16/17 (Parikshak et al., 2013): network constructed by genome-wide signed 

weighted co-expression network analysis (Zhang and Horvath, 2005) of neocortical 

regions from BrainSpan (Sunkin et al., 2013), followed by clustering using the 

topological overlap to identify modules. Modules devM2 and devM3 were implicated as 

related to ASD using RDNVs if RDNV-affected genes from a discovery set 

encompassing three WES studies (Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 

2012) were enriched and if this enrichment was confirmed by RDNV-affected genes from 

an independent study (Iossifov et al., 2012). Modules devM13, devM16, and devM17 

modules were implicated with ASD gene sets from co-expression in ASD brain 

(Voineagu et al., 2011), candidate lists (Basu et al., 2009), and GWAS (Anney et al., 

2012; Wang et al., 2009a). Finally, circuits and cell types were implicated by assessing 

biases in the distribution of adult (Bernard et al., 2012) or fetal (Miller et al., 2014) 

laminar specific differential gene expression or cell-type marker correlations in each 

module. 

- P3-5 PFC-MFC, P4-6: PFC-MFC, P8-10 MD-CBC (Willsey et al., 2013): modules 

defined by a network constructed from seeded binary unsigned (|r|  >= 0.7) co-expression 

modules using different spatial and temporal combinations of brain samples (Kang et al., 

2011). P = Period, which reflects developmental periods delineated in previous work 

(Kang et al., 2011). PFC, MFC, MD, and CBC reflect abbreviations for spatial regions, 

with PFC being prefrontal cortex, MFC being medial frontal cortex, MD being 

mediodorsal thalamus, and CBC being cerebellar cortex. The authors of this study 
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identified 9 high-confidence ASD genes at FDR < 0.5 using four WES studies (Iossifov 

et al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012), their own data 

(Willsey et al., 2013), and CNVs with breakpoints in protein coding genes (Talkowski et 

al., 2012). The authors used the high-confidence genes as seeds, and expanded modules 

using multiple combinations of spatial and temporal co-expression, implicating modules 

with enrichment for remaining ASD protein disrupting RDNVs as implicated in ASD. 

This identified three modules, which were then evaluated for neuronal gene enrichment 

and co-expression in fetal layers. The authors found high co-expression of genes in the 

inner cortical plate during fetal development, and interpreted this as enrichment for lower 

layer glutamatergic neurons. Furthermore, modules were found to be enriched for genes 

implicated by an alternative mutation enrichment approach, but this was not an 

independent validation. 

- MAGI: ASD - ID M1, MAGI ASD + ID M1/2/3 (Hormozdiari et al., 2015): networks 

constructed by integrating unsigned binary (|r|  >= 0.6) co-expression from BrainSpan 

(Sunkin et al., 2013), and PPI from the Human Protein Reference Database, HPRD, 

(Keshava Prasad et al., 2009) and the Search Tool for the Retrieval of Interacting 

Genes/Proteins, STRING, (Franceschini et al., 2012). The authors seeded modules with 

pathways identified using genes mutated in ASD and ID (ASD + ID) or ASD only (ASD 

- ID), and identified modules that optimized intramodular connectivity and pathogenic 

mutation burden in cases while minimizing pathogenic mutation burden in controls. They 

demonstrated these modules were more specific for pathways compared to previous 

work, though this is somewhat tautological as their modules were seeded on pathways. 

They also demonstrated that their modules contained a large differential in the burden of 
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pathogenic mutations in cases compared to controls, something not seen in any previous 

method. However, no reproducibility analyses were conducted. 

- ppiM2/13 (Li et al., 2014): a genome-wide PPI network was constructed using BioGRID 

(Stark, 2006), and modules were defined using the topological overlap using a 

supposedly parameter-free algorithm (Blondel et al., 2008) for clustering (in reality no 

clustering approach is really parameter free). They identified two modules, but focused 

on one that was the most enriched for known ASD genes, ppiM13 (Basu et al., 2009) 

rather than an interesting one that contained transcriptional regulators such as CHD8 and 

FOXP2, ppiM2. They identified ppiM13 as enriched for oligodendrocytes markers and 

gene expression in the corpus callosum, and implicated inter-hemispheric connectivity. 

They also found weak enrichment for mutations from ASD whole genomes. No 

robustness or reproducibility criteria were evaluated. 

- NETBAG+ ASD (Chang et al., 2015): this approach constructs a background network of 

molecules participating in shared function by integrating edges from shared function in 

the KEGG and GO database, direct and indirect PPIs from many databases, and multiple 

other data sources, and is discussed in more detail in Chapter 1, and described in the 

original paper (Gilman et al., 2011). Modules are seeded with CNVs or SNVs detected in 

disease, and the algorithm uses a greedy search in the background network to identify 

modules of shared function. The authors applied NETBAG+ to rare de novo SNVs 

(referred to here as RDNVs, though technically they also use CNVs which are “rare de 

novo variants”) from three WES studies (Iossifov et al., 2012; O’Roak et al., 2012; 

Sanders et al., 2012), and rare de novo CNVs from one study (Levy et al., 2011). One 

module was weakly enriched for ASD mutations, and the remainder of the study analyzed 
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this module, sub-modules from this module, and various other gene sets to demonstrate 

biases toward time points and cell-types in gene expression, as well as a separation of low 

IQ and high IQ ASD cases using further criteria. However, no reproducibility criteria 

were evaluated, and the primary module identified by NETBAG+ was not used in the 

majority of the study to inform biologically conclusions. 

To compare modules from different studies with each other, I first evaluated each module 

described above for reproducibility of a genetic signal with RDNV data, then compared the 

modules with each other to understand differences and similarities between modules, and finally 

evaluated modules to with laminar and cell type specific gene sets to understand their biological 

informativeness. Genes in modules were based on what was reported in the respective studies’ 

supplemental materials. 

3.3. Results 

3.3.a. Genes affected by novel mutations are in previously identified co-expression modules 

 First, I re-evaluated enrichment for RDNV affected genes in modules using a logistic 

regression model. This model utilizes binary mutation status in each gene (mutation found in that 

category or not) as the outcome, and binary module membership (in module or not) and gene 

length (based on the exome capture size for each gene as reported in Iossifov et al., 2014) as 

predictors. This analysis is equivalent to controlling for gene length by a stratified permutation 

analysis, and the effect size associated with the module membership can be transformed into an 

odds-ratio (see A2 Additional Methods for Chapter 3). Controlling for gene length is important 

as the rate of any type of de novo SNV across genes is highly correlated to gene length 

(Michaelson et al., 2012; Samocha et al., 2014). Notably, this model yields similar enrichment 
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results as reported from gene-length adjusted permutation analyses when comparing between 

rare variant implicated gene sets (Iossifov et al., 2014). 

 

Figure 3.1 Heatmap of gene set enrichment for ASD rare de novo mutations comparing enrichment in ASD-

associated modules from Parikshak et al., 2013. Tested gene sets include RDNV affected genes used in Parikshak 

et al., 2013 from four WES studies (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 

2012), new genes implicated by de novo mutation since 2013 (Iossifov et al., 2014), and stratification of mutations. 

The heatmap dislpays log2 fold enrichment for genes implicated by RDNV. All odds-ratios with p < 0.05 are 

reported, and those passing an FDR adjusted p value < 0.05 for the comparisons are delineated with an *. Three 

broad categories have been tested: “Genes used in Parikshak et al., 2013” reflects the same analysis shown in 

Chapter 2, “Only new genes from Iossifov et al., 2014” reflects genes that were newly implicated from sequencing 

~1600 additional ASD containing simplex families, and “Gene sets and stratifications from Iossifov et al., 2014” 

reflects all genes currently identified from families in the Simons Simplex cohort by WES, stratifying by sex and 

splitting males by IQ as done in Iossifov et al., 2014. Finally, TADA q < 0.5 contains genes implicated at an FDR < 

0.5 by the Transmission and De novo Association method (He et al., 2013) as applied to the Simons Simplex cohort 

and 1000 case and control samples (De Rubeis et al., 2014). The abbreviation LGD (likely gene disrupting) 

corresponds to the term “protein disrupting” used in Chapter 2. 
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Figure 3.1 shows that the enrichment signal for RDNV affected genes in ASD generalizes 

with new data in devM2/3. This suggests that these modules, and conclusions about their 

relationship to ASD, were not overfit to the initial data, and that devM2/3 are likely to be 

enriched for RDNVs in any new study. Notably, devM2 is still enriched for protein disrupting 

(also called likely gene disrupting, LGD) mutations (OR = 2.4, p = 4x10-6, FDR < 0.05), with 

weaker enrichment for missense mutations and the combined set. devM3 shows more consistent 

enrichment for missense mutation affected genes (OR = 1.6, p = 6x10-5, FDR < 0.05). There is 

some weaker enrichment for missense mutation affected genes found in siblings, too, suggesting 

that the enrichment for missense RDNVs is not as clearly associated with ASD as that for protein 

disrupting RDNVs. This is consistent with the observation in the total Simons cohort that protein 

disrupting RDNVs are found about twice as frequently in cases compared to controls while the 

rate of missense mutations is only marginally different between ASD and controls (OR ~ 2, p = 

2x10-5, for protein disrupting RDNVs; OR ~ 1.1, p = 0.01, for missense RDNVs as computed by 

Iossifov et al., 2014). Interestingly, other studies have not seen an enrichment for missense 

RDNVs from ASD in gene networks or biological pathways. These analyses clearly identify a 

missense RDNV affected module, highlighting how partitioning the genome by co-expression 

modules can identify a stronger genetic signal than genome-wide enrichment analysis alone. 

Additionally, it is notable that devM16 shows enrichment only for synonymous mutations 

after correcting for gene length, likely due to the fact that it contains very long synaptic genes 

where enrichment is driven by increases in all categories of RDNVs. In Chapter 2, I did not 

focus on devM16 as it was inconsistently enriched (notably this was without gene length 

correction). It is important to note that devM16 contains several individual genes implicated in 
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ID, ASD, SCZ, and epilepsy (e.g. SCN2A, NRXN1), but these analyses demonstrate that the 

module as a whole does not exhibit enrichment for RDNVs above chance. 

I also assessed the gene sets and stratifications assessed in Iossifov et al., 2014. The 

authors defined the following functional gene sets: genes whose proteins compose the 

postsynaptic density proteome (Bayés et al., 2010), genes in the GO term chromatin 

modification, genes highly expressed and correlated to each other during fetal brain development 

(embryonically expressed, defined from BrainSpan (Sunkin et al., 2013)), genes resulting in 

lethal phenotypes in mouse (essential genes), and genes involved in Mendelian disease (Iossifov 

et al., 2014). Enrichment of these gene sets in modules re-affirms the GO term enrichments seen 

in Chapter 2 (Figure 2.2), as well as the fact that devM3, which contains more early expressed 

genes, also reflects earlier biology compared to devM2, as it is more enriched for essential genes 

and more strongly enriched for embryonically expressed genes. 

Combining the mutation data across over 2700 ASD affected individuals, the overall 

trend for enrichment in protein disrupting RDNVs in devM2 is re-affirmed, as is the enrichment 

for missense RDNVs in devM3. Looking across all known mutations and stratifying by sex and 

IQ, it is clear that females and male with IQ < 90 are most strongly affected in devM2 and 

devM3. It has become apparent from several studies now (Iossifov et al., 2014; Robinson et al., 

2014; Ronemus et al., 2014; Samocha et al., 2014) that protein disrupting RDNVs are associated 

not with ASD alone, but with ASD comorbid with lower IQ. In the Simons cohort, females have 

lower IQ than males (average IQ in the cohort of about 75 vs 85, respectively) (Ronemus et al., 

2014) and are fewer in number due to potential ascertainment biases, so they are not stratified in 

this comparison. 
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The main observation from these stratifications is that genes found mutated by protein 

disrupting RDNVs in males with IQ > 90 are not enriched in devM2 and M3. In contrast, 

missense mutations in devM3 are enriched across stratifications, but as noted previously, they 

are also weakly enriched in genes with RDNVs found from unaffected siblings. Taken together, 

this suggests that weaker protein altering missense mutations in the very early expressed genes 

from devM3 are likely contributing to ASD in a different manner, perhaps by different 

mechanisms, than more severe loss-of-function mutations in devM2. Finally, high confidence 

mutations implicated by TADA, which reflects genes with genome-wide evidence across over 

3,500 individuals with ASD including both de novo and inherited variants, are clearly enriched in 

both devM2 and devM3, demonstrating that these modules are robustly enriched for high-

confidence genes implicated by both de novo and inherited rare variants in ASD. 

3.3.b. Extended analysis of cell-type specificity in ASD-associated developmental co-expression 

modules  

 I next evaluated enrichment of cell-type specific gene sets using the same logistic 

regression analysis as used for RNDV-affected genes. I defined cell-type specific gene lists 

based on differential expression within each individual dataset, using genes differentially 

expressed at an FDR-adjusted p value < 0.05 for each comparison, and then evaluated how 

binary module membership predicts cell-type specificity. These results, shown in Figure 3.2, 

demonstrate that many co-expression modules are highly specific for cortical laminae or cell 

types – they exhibit strong enrichment for functionally similar categories of laminae or cell 

types, and strong depletion of genes from other laminae other cell types. However, most modules 

do not reflect just one cortical lamina or cell type.  
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Figure 3.2 Heatmap of gene set enrichment for cell-type specific gene lists with ASD-associated modules from 

Parikshak et al., 2013. Heatmap displaying log2 fold enrichment for cell type lists. All odds-ratios with p < 0.05 are 

reported, and those passing an FDR adjusted p value < 0.05 for the comparisons are delineated with an *. Four 

categories have been tested: 

- Adult laminae, from non-human primate brain where each layer was dissected via laser capture 

microdissection (LCM): RNA was extracted, and microarrays were run (Bernard et al., 2012) 

- Fetal laminae, from human prenatal brains evaluated by a similar LCM paradigm followed by microarray 

as used for adult primates (Miller et al., 2014) 

- Transcriptomes from major cell types in mouse cortex, sorted by FACS, followed by RNA extraction and 

RNA-seq (Zhang et al., 2014) 

- Transcriptomes from RNA bound to ribosomes in specific cell types in mouse and then profiled by 

microarray (Doyle et al., 2008). 

Two caveats must be considered when interpreting this heatmap: the bacTRAP lists reflect purer cell populations 

than the FACS lists, but thes are still mixed cellular populations (marker-level characterization of the cell types are 

listed where applicable) and some mouse cell types might not accurately reflect of human cellular populations, 

particularly when considering laminar specificity (Zeng et al., 2012). Laminar abbreviations are as described in 

Figure 2.6. Laminae: marginal zone (MZ), outer/inner cortical plate (CPo/CPi), subplate (SP), intermediate zone 

(IZ), outer/inner subventricular zone (SZo/SZi), ventricular zone (VZ), and adult cortical layers 2–6 (L2–6). 
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The laminar enrichments in Figure 3.2 used the same datasets from Chapter 2, Figure 2.5-

6, but with a stricter statistical threshold and different enrichment approach that are easier to 

interpret from a biological perspective. The Z score for enrichment in Chapter 2 measures the 

skew in a distribution, and do not offer an easily interpretable effect size (such as a fold change 

or odds ratio). Such a method, which forces a ranking of all genes, can give equal weight to very 

low or high expressed genes in adult cortical layers that can result in over-emphasis of weak and 

biologically non-significant biases. The modified enrichment approach used here agrees with 

findings from Chapter 2 for devM13, 16, and 17, showing that they are enriched for genes 

specific to upper layers of adult cortex (L2-3). However, there is also enrichment for these 

modules in the lower cortical layers, consistent with the general observation that ASD genes 

affect both upper and lower cortical layers. 

Additionally, in fetal cortex, devM2, 16, and 17 are predominantly enriched in both the 

inner and outer cortical plate (CPo and CPi), while the earlier devM3 shows enrichment in the 

germinal zone regions (SVo, SVi, VZ), again consistent with the previous method of enrichment 

(Figure 2.6). Interestingly, one difference in these results is that devM13 is enriched mostly for 

the intermediate zone (IZ), which contains cells migrating to the cortical plate. 

Additionally, in Chapter 2, cell-type enrichments relied on correlations to cell-type 

marker profiles summarized by their first principal component in the data. Potential 

shortcomings of this approach include the fact that correlations to markers might not reflect true 

cell type specificity and that many cellular subpopulations are identifiable only with a 

combination of cell-type markers. I therefore re-evaluated cell type specificity with expression 

profiles from cell-type specific transcriptomes in mouse. Figure 3.2 shows that, across major cell 

types in the mouse cortex, devM2, 16, and 17 (the same modules enriched for CPo and CPi) 
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show strong enrichment for neuron specific gene expression. Both devM2 and 3 also show 

enrichment for broad astrocyte markers, however, this is likely a reflection of early neural 

progenitors and radial glial cells, which can also show expression of these markers(Lui et al., 

2014; Stein et al., 2014). 

Enrichment analysis for the bacTRAP cell transcriptomes, which reflect more 

homogeneous (but certainly not pure) cellular populations than those profiled via FACS by 

Zhang et al (Zhang et al., 2014), are only marginally more informative for cell type specificity. 

First, it is clear from these data that devM2, 16, and 17 are generally enriched for both excitatory 

and inhibitory neurons. This is consistent with what was found in Figure 2.6, only now the 

interneuron enrichment is stronger. Overall, this analysis supports putative involvement of both 

upper and lower layer excitatory neurons, as well as Pvalb+, Calb1+, and Cck+ interneurons 

which are found across layers in both mouse and human (Zeng et al., 2012). 

Another finding from this analysis is that modules are not enriched for genes found 

exclusively in cholinergic (Chat+) projection neurons, mature oligodendrocytes (Cmtm5+ or 

Olig2+), oligodendrocytes progenitors (Olig2+), and astrocytes (Aldh1L1+). Interestingly, 

devM3 is enriched for genes found in Olig2+ cells, which is also a marker for radial glia and 

further supports the idea that devM3 may reflect a mix of radial glial cells and neural 

progenitors. Finally, devM13, which was enriched for genes expressed in IZ, is mostly similar to 

devM16 and 17 in cell type enrichment. However, it shows a distinct patterns of enrichment for 

Gaba+, Calb2+, Calb1- cells, which may be related to the primate-specific migration of 

SZo/SZi/VZ derived interneurons (in mouse, interneurons migrate exclusively from the 

ganglionic eminence (GE), in humans, both from the GE and the GZ), which are known to be 

CALB2+ (Zeng et al., 2012). 
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A major shortcoming of these cell-type specific data is that they do not profile a 

population of purely upper layer neurons in mouse. Recently, a modified cell specific 

transcriptomic approach has allowed the profiling of specific excitatory pyramidal cell 

populations in mouse cortex (Molyneaux et al., 2015). The general approach entails the fixation 

of whole brain tissue, combinatorial labeling of cell types, FACS, and then RNA-seq. Current 

application of this strategy has profiled cellular transcriptomes from corticothalamic (mostly 

layers 5-6), subcerebral (mostly layers 5-6), and callosal projection neurons (mostly layers 2-3). I 

therefore sought to evaluate these data for enrichment analysis, but found the data unsuitable for 

the type of comparisons shown in Figure 3.2 due to the fact that four time points were 

considered, only two samples per cellular population were profiled for each time point, and no 

global background (e.g. whole tissue) was profiled. I therefore asked a simpler question: how do 

the trajectories of the top hub genes in ASD-associated developmental modules change in these 

cellular subpopulations over mouse development? 

 

 
Figure 3.3 Boxplot of different excitatory neuron subtype developmental trajectories using ASD-associated 

modules from Parikshak et al., 2013. Boxplot displaying gene expression trajectories from embryonic day (E) 15, 
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E16, E18, and postnatal day (P) 1 in mouse for three categories of excitatory pyramidal cells profiled by Molyneaux 

et al., 2015 by a modified FACS approach. Genes with kME > 0.9 in the ASD-associated from Chapter 2 are plotted 

for each time point in each cell type. 
 

 Figure 3.3 illustrates temporal trajectories from embryonic (E) days 15, 16, and 18 as 

well as postnatal (P) day 1 across the three neuronal populations for each module. In general, the 

trajectories are remarkably similar, suggesting that the hub genes in ASD-associated modules are 

dynamically changing in each of these cell types during brain development, at least in mouse. 

Thus it is clear that, as far as excitatory projection neurons are concerned, ASD-associated 

modules do not identify genes with dramatically different transcriptomic signatures across these 

cell types. 

Taken together, the enrichment analyses in Figure 2.6 and Figure 3.2 suggests that the 

earliest affected ASD risk enriched module, devM3, reflects genes that are mostly highly 

expressed in the germinal zone (VZ, SZi, SZo), which contains proliferating neuronal 

progenitors and radial glia. The next earliest ASD risk enriched module, devM2, reflects 

maturing neurons in the inner and outer cortical plate (CPi/CPo). Both of these earlier modules 

show enrichment in L4 when using distribution-based enrichment methods (Figure 2.6), but this 

is not as well supported by stricter enrichment criteria. Additionally, cell-type specific 

transcriptomes affirm that these modules contain genes that are important for the maturation of 

multiple excitatory and inhibitory neurons in the cortex, potentially highlighting some neuronal 

subpopulations and excluding others, to the extent that mouse cell types can reflect human cell 

types (Figure 3.3). 

The later expressed modules, devM16 and dev17, clearly reflect more mature neurons 

and are not enriched for genes involved in other cellular processes. They also reflect a mix of 

interneurons, but predominantly reflect glutamatergic projection neurons as found in Figure 2.6, 
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and affirmed in Figure 3.2 and Figure 3.3. Finally, devM13 remains ambiguous despite these 

efforts at more detailed characterization. It exhibits enrichment for multiple adult layers, the 

intermediate zone (IZ) in fetal brain, and potentially CALB2+ interneurons. 

These analyses saturate the level of temporal, laminar, and cell type specificity likely to 

be found with the current developmental co-expression modules and currently available 

transcriptomic data. It is thought that integrating additional information might enable gene 

networks to reveal novel biological insights that may be missed by evaluating just one level of 

biology. Although the most unbiased and genome-wide data is currently available at the 

transcriptomic level in brain (Chapter 1), multiple gene network studies have been performed 

claiming to identify distinct, novel, and biologically more specific modules affected in ASD. 

 

3.3.c. Comparison of multiple gene network approaches in the context of ASD 

 I next sought to evaluate whether different approaches to gene network construction 

followed by ASD module identification might define more specific or biologically more 

informative modules compared to the approach used in Chapter 2. I evaluated multiple studies 

that range in network methods, using different combinations of the genome-wide or the seeded 

approach; either one or more of co-expression, protein interaction, or other information to guide 

module construction; and use neuronal and/or non-neuronal data. I first assessed the relative 

reproducibility of modules implicated by different methods for predicting RDNV-affected 

modules, then assessed whether different seeded or more integrative methods discover highly 

distinct modules, and finally asked whether the different methods implicate specific laminae or 

cell types better than the approach used in Chapter 2.  
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Figure 3.4 Heatmap of gene set enrichment for reproducibility of ASD risk mutations in ASD-associated gene 

network modules from multiple approaches. Gene sets used for testing reproducibility are the same as those in 

Figure 3.1. Tested gene sets include RDNV affected genes from Parikshak et al., 2013 and new genes implicated by 

de novo mutation since 2013 (Iossifov et al., 2012). The heatmap displays log2 fold enrichment for RDNV 

implicated genes in modules from genome-wide co-expression networks (Parikshak et al., 2013), seeded co-

expression(Willsey et al., 2013), seeded co-expression and protein interaction networks using an objective function 

for module detection that minimizes the contribution of genes with pathogenic mutations in controls (Hormozdiari et 

al., 2015), genome-wide protein interaction networks (Li et al., 2014), and a highly integrative method that compiles 

known pathway annotations (GO, KEGG) and protein interactions (Chang et al., 2015). All odds-ratios with p < 

0.05 are reported, and those passing an FDR adjusted p value < 0.05 for the comparisons are delineated with an *. 

Two RDNV affected gene categories have been tested: “Genes used in Parikshak et al., 2013” reflects the same gene 

sets used in Chapter 2, “Only new genes from Iossifov et al., 2014” reflects genes that were newly implicated from 

sequencing ~1600 additional ASD containing simplex families. Importantly, for each mutation category, any genes 

overlapping from previous findings with have been removed from the “Only new genes” sets, allowing bona fide 

assessment of reproducibility. A well-replicated and generalizable module should exhibit similar enrichment for 

protein disrupting (LGD), missense, or combined sets in probands, lack of enrichment in synonymous mutations, 

and weak or no enrichment for mutations in siblings for both the initial and the replication set. 
 

Figure 3.4 shows module enrichments across different methods, including the module 

enrichments for the genome-wide co-expression approach utilized in Chapter 2 (Parikshak et al., 

2013). The methods showing some level of reproducibility are the genome-wide co-expression 
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method (as seen in Figure 3.2), the unseeded PPI method (though this also shows enrichment for 

synonymous mutations), and the integrative pathway and PPI approach, NETBAG+ (Chang et 

al., 2015). Notably, all methods experience a dramatic drop in the enrichment odds for protein 

disrupting (LGD) RDNVs found in ASD probands, except the genome-wide co-expression 

approach. This suggests that every method, particularly the seeded methods that used initial 

RDNV affected gene sets for module definition, overfit to initial findings to the extent that their 

modules fail to generalize to genes affected by new mutations. Additionally, it is notable that the 

robustness of devM2 and devM3, which show excellent reproducibility, was assessed carefully 

by module preservation, bootstrapping, and replication in the original work, demonstrating the 

value of using good statistical and data analysis practices when defining gene networks. 
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Figure 3.5 Heatmap of gene set enrichment between ASD-associated modules from multiple gene network 

methods. Modules used in Figure 3.4 are evaluated for gene set enrichment with each other here to highlight 

similarities or differences between methods. All odds-ratios with p < 0.05 are reported, and those passing an FDR 

adjusted p value < 0.05 for the comparisons are delineated with an *. Module-module overlaps between modules 

from the same method are encompassed in boxes, and the diagonal is reflects infinite overlap since modules are 

compared against themselves. The values on the off-diagonals are not symmetric due to slight differences in logistic 

regression that arise from switching variables from outcomes to predictors and vice versa. 

 

Although some of the network methods do not generalize well, it is possible they hold 

value in discovering novel biological processes related to the specific study in which they are 

applied. To evaluate whether these different network approaches identify distinct modules 

specific to a particular study, I evaluated overlaps among their resultant modules. Importantly, 

although this is not an ideal systematic comparison of gene network methods, the modules 

evaluated here have all been implicated in ASD and are constructed by methods that cover a 
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diverse range of criteria for network nodes (seeded vs genome-wide), different edge information 

(co-expression, protein interaction, annotated pathways, or combinations of these), and different 

module definition approaches (hierarchical clustering, greedy search, pre-set module sizes, or 

combinations of these). Figure 3.5 shows module-module overlaps. Several themes emerge: 

- modules defined by genome-wide, unsupervised approaches are more distinct from each 

other, as these methods define modules by partitioning all genes from the genome into 

non-overlapping sets 

- modules identified by seeded approaches tend to be highly overlapping, likely due to the 

use of overlapping seed gene sets, suggesting they identify more redundant pathways. 

- Modules identified by seeded approaches are generally smaller than those identified by 

genome-wide methods, and it is claimed that they identify unique or more specific 

biological processes due to the prior information provided by the seeds (Gilman et al., 

2011; Hormozdiari et al., 2015; Willsey et al., 2013). However, every module identified 

by a seeded approach also overlaps a module from the unseeded approach, suggesting 

they are not distinct or specific to the extent that unseeded methods fail to capture the 

same genes without seeding on known biology or known genes. 

- The NETBAG+ approach has extremely high overlap with modules from the MAGI 

approach (OR = 27 – 71). This is likely because they are seeded on similar genes and use 

similar protein interaction databases. This demonstrates that, despite employing rather 

different methods and databases, the utilization of seeded gene networks with known 

protein interactions as edges results in very similar modules. Part of this is that the seeds 

are similar in the two approaches, but the other factor is the likely bias across databases 
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for PPI edges between frequently studied or more easily studied proteins in PPI databases 

(Hakes et al., 2008). 

- The unseeded PPI approach (ppiM2, ppiM13) shows very high overlap with MAGI 

(“MAGI: ASD + ID M1” – ppiM2, OR = 12, other overlaps very high) and NETBAG+ 

(“NETBAG + ASD” - ppiM13, OR = 10), further suggesting that using protein 

interactions results in highly similar modules. 

- The developmental modules from genome-wide co-expression from Chapter 2 overlap 

most highly with MAGI modules, then with supervised co-expression modules (Willsey 

et al., 2013), and finally show weaker overlap with modules from the methods that do not 

use data with neurobiological context (genome-wide PPI and NETBAG+). 

Taken together, these results demonstrate that all methods show some overlap, 

though this ought to be interpreted cautiously for the seeded methods as the overlap is 

inflated by the use of common seed genes. Notably, methods using PPIs tend to overlap 

very highly with each other, and this is likely due to the fact that the same studies go into 

the literature curated PPIs compiled by BioGRID (Stark, 2006), STRING (Franceschini 

et al., 2012), and HPRD (Prasad et al., 2009) due to biases in curating the literature 

(Hakes et al., 2008; Hart et al., 2006). Finally, taking the results from Figure 3.4 into 

consideration, the genome-wide co-expression method seems ideal since it is 

generalizable to new mutations and overlaps considerably with all modules defined by 

other methods. It is, however desirable to get to more specific modules, and I discuss this 

issue later (see section 3.4 Conclusions). 
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Figure 3.6 Heatmap of gene set enrichment between ASD-associated modules from multiple methods and 

laminar and cell-type specific gene sets. Modules used in Figure 3.4 are evaluated against laminar and cell-type 

specific gene sets described in Figure 3.2. All odds-ratios with p < 0.05 are reported, and those passing an FDR 

adjusted p value < 0.05 for the comparisons are delineated with an *. Laminae: marginal zone (MZ), outer/inner 

cortical plate (CPo/CPi), subplate (SP), intermediate zone (IZ), outer/inner subventricular zone (SZo/SZi), 

ventricular zone (VZ), and adult cortical layers 2–6 (L2–6). 

 

As mentioned previously, methods found by the seeded approaches find small modules 

(10- 200 genes) while those from genome-wide methods find modules of variable sizes (10-3000 

genes), with the most interesting modules being the somewhat larger modules (modules in 

Parikshak et al., 2013 are generally > 400 protein coding genes in size, while those found by Li 

et al., 2014 were over 1400 genes (ppiM2) and 120 genes (ppiM13), though they focused on the 

latter). It is often claimed that these smaller modules define more specific biological processes, 
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and are more biologically relevant in some manner or another, but this claim has not been tested 

in a systematic manner with neurobiologically relevant gene sets. It is already clear that many of 

these smaller modules lack predictive value (Figure 3.4) but it is possible they identify 

enrichment in specific laminae or cell types. To assess whether this is the case, I evaluated the 

laminar and cellular enrichments shown in Figure 3.2 for modules from different methods. 

Figure 3.6 demonstrates that the genome-wide co-expression method shows the most enrichment 

and depletion across the board. Although this is partly due to the larger module sizes, it 

demonstrates that each module reflects different levels of laminar and cell-type enrichment 

despite using non-overlapping modules (Figure 3.5). 

The other network methods that also use co-expression (seeded co-expression from 

Willsey et al., 2013, and co-expression + PPI in MAGI) also demonstrate strong fetal laminar 

and cell specific gene enrichment, but none identifies a pattern of enrichment that isn’t already 

seen by a module from genome-wide co-expression. This suggests that seeding co-expression 

modules does not yield greater neurobiological specificity for identifying ASD-associated 

biological processes. 

Methods that do not include any neurobiological information (the PPI method from Li et 

al., 2014, and NETBAG+) identify mostly weaker enrichment patterns, and these patterns are 

more difficult to interpret from a neurobiological perspective. For example ppiM2 is enriched for 

L2, SZ, VZ, astrocytes, endothelia, and oligodendrocytes supporting weak enrichment for very 

different cellular populations that are not associated with each other in a clearly connected 

neuroanatomical or developmental manner. ppiM13 shows a more clear enrichment trend in L2, 

L6, CPi, IZ, and mixed neuron types. This is more consistent than ppiM2, however, it is difficult 

to know what this might mean without further dividing this module using neurobiological 
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information, for example gene expression. Interestingly Li et al., 2014 functionally implicated 

this module based on where it was most highly expressed in brain, and arrived at the conclusion 

that it is related to cells in the corpus callosum, a neuroanatomical region that is not assessed 

here. 

The same issue of ambiguous interpretability applies to the NETBAG+ module, where 

the authors identify many different functionally disparate cellular populations as being weakly 

associated with the modules’ function (Chang et al., 2015). The NETBAG+ study relies heavily 

on neurobiological data to sub-stratify and characterize modules, suggesting that methods using 

non-neuronal information alone do not identify neurobiologically interpretable modules. Clearly, 

neurobiological context is necessary to interpret these potentially counterintuitive enrichments, 

and it therefore future work should include neurobiological data in module construction, rather 

than only in module evaluation. 

3.4. Discussion 

 In this chapter, further analyses of the modules from Chapter 2 (Parikshak et al., 2013) and 

alternative gene network approaches (Chang et al., 2015; Hormozdiari et al., 2015; Li et al., 2014; 

Willsey et al., 2013) reveal important technical and biological insights that suggest a better way 

forward with gene network approaches to understand the disruption of normal 

neurodevelopmental pathways. 

 First, it is clear that the modules identified in chapter 2 with a genome-wide co-

expression gene network approach have predictive value for identifying where future mutations 

in ASD will be found. This evaluation focused on whether there was predictive value for genes 

affected by RDNVs, and ignored common variation, which will likely play a greater role in 

explaining ASD risk (Gaugler et al., 2014; Klei et al., 2012; Stein et al., 2013). This was largely due 
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to the lack of an ideal genome-wide association study (GWAS) dataset for testing and 

replication, as even the total set of GWAS data available in ASD is currently underpowered 

(Anney et al., 2012; Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 2013; Wang et 

al., 2009a). As results from larger GWAS of ASD become available, it will be important to assess 

whether M13, 16, or 17 are predictive for the biological processes affected by common variation, 

as suggested by initial analyses in Figure A1.3. 

 Next, these analyses suggest that the current modules, which are relatively large gene 

sets, cannot offer many new neurobiological insights based on enrichments with existing laminar 

and cell-type specific gene sets. One possible reason for this is that the set of biological pathways 

affected by RDNV in ASD is actually very large, and these networks capture potentially affected 

genes and genes that may never have observed mutations, as discussed below. However, this is 

unlikely, and further specificity likely exists and it will be valuable to identify more specific 

modules. 

Toward this end, I evaluated modules constructed by different gene network methods, 

covering a wide range of approaches described in Chapter 1. Enrichment analysis revealed that 

divergent approaches yield similar results, but signed genome-wide co-expression is the least 

biased based on the fact that it replicates mutation enrichment at approximately the same 

enrichment strength using new data. Additionally, although modules from genome-wide co-

expression are quite large, they yield as much neurobiological information as methods 

identifying smaller modules based on similar (if not superior) enrichment results for laminae and 

cell types. This approach could be improved considerably by including increasing the temporal 

resolution (more time points), spatial resolution (cell-type specific data), or transcriptome 

resolution (isoform-level measurements). 
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 Taking the results from this cross-method analysis as a whole highlights a major 

biological insight. It is clear that RDNV affected genes in ASD do not coalesce into ASD-

specific modules. If they did, seeded approaches would potentially have high predictive value. 

Instead, RDNVs disrupt endogenous biological processes that occur during brain development, 

reflecting a disruption of canalization (Suliman et al., 2014; Waddington, 1942). To identify more 

specific modules, it will be important to evaluate genome-wide networks derived from 

neurobiological data. Not every gene in these early biological processes, which include 

transcriptional regulation and chromatin modification, will be observed as mutated with an 

observable high-impact effect. Many mutations might by lethal and cause spontaneous abortion 

while others may not yield a phenotype because the gene is compensated for in some manner, 

either by another gene serving a similar biological function, or by compensation for 

haploinsufficiency by the opposite allele. 

The seeded approach, followed by extending the modules to include additional nodes that 

may not be affected by mutation but increase intramodular connectivity, may be effective once a 

large fraction of ASD mutations are identified with truly high confidence. However, taking all 

WES data with both de novo and inherited rare variant contributions into consideration, just over 

100 genes are implicated in ASD at an FDR < 0.5, suggesting only 50 out of nearly 1000 genes 

are currently identified (De Rubeis et al., 2014; He et al., 2013). This lack of appropriate prior 

evidence is likely another reason the seeded approaches fail to generalize. 

Finally, based on the distinct biological processes implicated by devM2 and devM3, I 

predict that disruption of genes that peak at different points of development yields different 

outcomes. To evaluate this properly, a very high temporal resolution transcriptomic atlas will be 

necessary – likely 20-30 individuals per every few days of development, allowing whole-genome 
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co-expression networks to be constructed for each time point. Current datasets lack this temporal 

resolution as only 1-3 individuals are available for each time point, and most time points are 

weeks apart from each other. The best temporal sampling in currently available data is at mid-

fetal time points (Willsey et al., 2013), so it is possible that the discovery of mid-fetal development 

as a first time point of convergence is a product of the available data, and interpreting these 

findings as evidence of “specificity” is likely incorrect. Additionally, the appropriate data may 

never be available to evaluate the effect of mutations during the third trimester of fetal 

development, so it may be necessary to evaluate these in nonhuman primates (Bernard et al., 2012; 

Sunkin et al., 2013) or in vitro, once viable comparisons between time points can be established 

(Stein et al., 2014). 

Finally, to gain additional biological insights about the affected cell-types, it will be 

necessary to have temporal trajectories in individual cell types, or a lineage tree of cortical cell 

types. Molyneaux et al., 2015 demonstrate how this could be done using mouse, and claim a 

similar approach could work in human (Molyneaux et al., 2015). Given that currently available 

PPIs do not contain any cell-type specific information, a promising avenue is to use cell-type 

specific transcriptomes and epigenomes to elucidate the important regulatory networks during 

cell-fate determination in the cortex, as has been done for the development of blood cells (Lara-

Astiaso et al., 2014). Such a method, which would likely track cells from neural progenitor status 

to differentiated neuronal subtypes and profile transcriptomes, histone marks, and open 

chromatin for homogeneous populations defined by combinations of cellular markers, could 

identify the important regulatory changes at each lineage branch point and identify which steps 

of cortical development might specifically be affected in ASD by different mutational processes. 
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3.5 Materials and methods 

Please see A2 Additional Methods and Figures for Chapter 3 for all methodological information.  
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CHAPTER 4: 

Dysregulation of the transcriptome in 

autism spectrum disorder 
 
“All	
  happy	
  families	
  are	
  alike;	
  each	
  unhappy	
  family	
  is	
  unhappy	
  in	
  its	
  own	
  way.”	
  	
  

― Leo	
  Tolstoy, Anna	
  Karenina	
  

 

“A set is a Many that allows itself to be thought of as One.” 

― Georg	
  Cantor	
  as	
  quoted	
  by	
  Rudy	
  Rucker,	
  Infinity	
  and	
  the	
  Mind	
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4.1. Abstract 

Autism spectrum disorder is a genetically complex neuropsychiatric disorder with 

immense locus heterogeneity. Despite this, a shared gene expression signature has been 

previously identified in the frontal and temporal cortex of postmortem brains from autistic 

individuals compared to neurotypical individuals (Voineagu et al., 2011). Here, I replicate this 

gene expression signature using RNA sequencing and demonstrate that it generalizes to 

independent brain samples. Using differential gene expression, differential splicing, and co-

expression network analyses, I also find a shared transcriptomic signature in the noncoding 

transcriptome and in transcript splicing. Furthermore, I show that transcriptomic changes in 

duplication 15q syndrome, a genetically defined cause of ASD, strongly recapitulate those 

observed in idiopathic ASD. Finally, I utilize co-expression network analysis to explore the role 

of transcriptional regulators and chromatin modifiers in ASD. 
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4.2. Introduction 

Autism spectrum disorder (ASD) is a heterogeneous collection of neurodevelopmental 

disorders that share deficits in social communication and mental flexibility (Geschwind, 2011). 

A key objective in understanding ASD, and indeed the brain at large, is to link genetic and 

environmental etiologies to phenotypes. Genome-scale association studies have provided insight 

into the genetic architecture of ASD by associating diagnoses with whole-genome genotyping 

(Anney et al., 2012; Gaugler et al., 2014; Wang et al., 2009a; Weiss et al., 2009), assessment of 

copy number variation (CNV) (Levy et al., 2011; Pinto et al., 2014; 2010; Sanders et al., 2011), 

whole exome sequencing (WES) (De Rubeis et al., 2014; Iossifov et al., 2012; 2014; Lim et al., 

2013; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012; Yu et al., 2013), and, more 

recently, whole genome sequencing (WGS) (Jiang et al., 2013; Yuen et al., 2015). These studies 

have demonstrated that no single category of genetic variation – be it single nucleotide or copy 

number, common or rare, inherited or de novo – can fully explain the genetic underpinnings of 

autism, and that hundreds of genetic loci will be involved in ASD risk (Gaugler et al., 2014; He 

et al., 2013; Stein et al., 2013). 

Despite the genetic heterogeneity, significant progress has been made in understanding 

the functional genomic architecture of ASD. Our lab previously identified a shared molecular 

signature in postmortem frontal cortex (FC, Brodmann area [BA] 9) and temporal cortex (TC, 

BA41/42/22) from individuals with ASD  (19 ASD and 17 controls [CTL]) by differential gene 

expression (DGE) analysis and co-expression network analysis with gene expression microarrays 

(Voineagu et al., 2011). This study identified a downregulated module of synaptic genes 

(adsM12) enriched for neuronal markers, and an upregulated group of genes involved in 

inflammation enriched for astrocyte and microglial markers (asdM16) (Voineagu et al., 2011). 
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Moreover, asdM12 was enriched in genome-wide association (GWA) signals from an ASD 

GWA study, suggesting that common variants associated with ASD may causally contribute to 

the changes seen in asdM12. Additionally, analyses of gene expression during cortical 

development in vivo and in vitro implicated asdM12 and inherited variants in late prenatal and 

postnatal synaptic development, while protein disrupting rare de novo variants (RDNVs) were 

enriched in co-expression modules related to early transcriptional and chromatin regulation 

(Parikshak et al., 2013; Stein et al., 2014). Together, these studies show that there exists a shared 

gene expression signature in ASD, and suggest that at least some the changes observed in adult 

brain are the product of genetic variation disrupting cortical development. 

However, all studies in ASD brain to date are small, and replication of the shared 

signature in ASD brain is warranted. Furthermore, gene expression in postmortem ASD brain 

has relied on microarrays or poly(A) tail selection (polyA+) followed by RNA sequencing 

(RNA-seq) on degraded RNA, restricting transcriptomic analysis to mostly protein coding genes, 

and biasing gene expression to the 3’ end of transcripts. This has resulted in limited coverage of 

the transcriptome and prohibits accurate detection of long noncoding RNAs (lncRNAs) and 

transcript splicing. 

Additionally, one promising avenue for understanding biological mechanisms and 

evaluating therapies is to focus on genetically defined subtypes of autism, which may show 

distinct and more homogeneous phenotypes as has been demonstrated by clinical phenotyping of 

patients harboring de novo mutations in the SWI/SNF (BAF) complex (Helsmoortel et al., 2014) 

and CHD8 (Bernier et al., 2014). However, it is unclear whether genetic subtypes of autism will 

have very distinct gene expression signatures, or whether they will share a transcriptomic 

signature with idiopathic ASD. 
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Here I evaluate transcriptomes from a large sample set of ASD and control brain samples 

from FC, TC, and cerebellum in 81 individuals (46 ASD, 35 CTL, 205 samples) and replicate 

and refine the shared gene expression signature in ASD. I use ribosomal RNA depleted library 

preparation followed by RNA-seq (Figure A3.1A), which reduces sequencing coverage bias 

across transcripts, even in postmortem brain samples (Figure A3.1B-E). This allows more 

accurate evaluation of long noncoding RNA (lncRNA) expression and transcript splicing. 

Additionally, by analyzing samples from 8 individuals with duplication 15q syndrome (dup15q) 

who were diagnosed with ASD, I show that a genetic subtype of ASD largely shares the 

transcriptomic abnormalities seen idiopathic ASD. Finally, I construct a co-expression network 

that reveals how diverse ASD-associated perturbations in the transcriptome can result in a shared 

downstream signature in ASD cortex. 

 

4.3. Results 

4.3.a. Replication of differential gene expression in autism cortex 

Given the extreme heterogeneity of ASD, I first aimed to assess whether DGE between 

ASD and CTL cortex (FC and TC, referred to broadly as CTX) could be reproduced with 

samples from new ASD and CTL individuals, independent of those previously evaluated by 

microarray (Voineagu et al., 2011) (see Appendix A3.1 for more details). I analyzed 58 

previously published microarray gene expression profiles from FC and TC for DGE between 16 

ASD and 17 CTL individuals using a mixed linear regression framework (see Extended 

Experimental procedures), and compared these results with a similar analysis in 56 independent 

gene expression profiles from RNA-seq in 15 ASD and 17 CTL new, covariate-matched 

individuals. 
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Figure 4.1 Differential gene expression in ASD and attenuation of cortical patterning between cortical regions 

in ASD. A) Replication of effect sizes from ASD vs CTL differences in CTX using new brain samples in this study, 

highlighting genes found to be at p < 0.05 with the microarray profiles. The R2 values reflect the concordance of 

effect sizes for the highlighted set (red) and the remaining genes in the background (grey).   B) Average linkage 

hierarchical clustering of samples using correlation-based distance from the top 100 up- and down- regulated genes 

in ASD CTX from the DGE set (FDR < 0.05). C) Top GO term enrichment for biological processes and molecular 

function (* if FDR adjusted p < 0.05). D) Differences between the “Matched ASD” set and “Young ASD” set 

compared to controls (N = 123 samples total) using PC1 of the DGE set, pairwise Wilcoxon rank-sum test p values 

are given above the boxplots. Young age (< 10 years) samples were held out from the DGE analysis to match 

covariates. E) Similar to D), but evaluating weaker DGE changes in CB at p < 0.01 and comparing across similar 

sample categorizations RNA-seq. F) Heatmap of genes with attenuated cortical patterning (FDR < 0.05 in CTL, 

FDR > 0.05 in ASD). G) GO term enrichment for the set of genes with attenuated cortical patterning in ASD. H-I) 

The transcriptional regulator SOX5 exhibits attenuated cortical patterning, as does a noncoding transcript antisense 

to the gene WDFY3. Pairs of expression values from the brains of the same individuals are connected to illustrate 

expression patterns between FC and TC. See also Figure A3.1 and Figure A3.2. 

 

I find strong agreement in the DGE signal in cortex (Figure 1A) suggesting a highly 

reproducible signature of DGE exists in ASD CTX. Genes with p < 0.05 for ASD vs CTL in the 

microarray analysis had highly concordant ASD vs CTL effect sizes compared with the 

independent RNA-seq set (Pearson’s R2 = 0.60), and agreement was much greater than that 

between the changes above this significance threshold (p >= 0.05, R2 = 0.13). Overall, out of 

7339 genes overlapping in the two analyses, 522 genes overlap in DGE between the two sets 

(OR = 2.4, p = 4x10-39), with all but 6 genes changing in the same direction. As expected, the 

odds-ratio and statistical significance of this overlap increases with more stringent thresholds, 

and similar concordance in DGE signature is seen when comparing RNA-seq in samples from 
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the microarray study to these independent samples (p < 0.05: R2 = 0.58, p >= 0.05: R2 = 0.22, 

411/16399 overlap: OR = 1.8, p = 2.6x10-20, Figure A3.1F). 

I performed a similar analysis of reproducibility of the DGE signature in cerebellum 

(CB). In the microarray study (Voineagu et al., 2011), no significant DGE signature for the ASD 

vs CTL comparison in CB was found. Comparing the previously evaluated and new samples as 

above, I analyzed 10 ASD and 11 CTL CB samples from the microarray study and 15 ASD and 

16 CTL new CB samples in this study. I find no clearly reproducible signature (p < 0.05: R2 = 

0.033; p >= 0.05: R2 = 0.001) and the overlap is not statistically significant (14/7320 overlap: OR 

= 0.58, p = 0.04). However, utilizing RNA-seq, I found greater concordance in the DGE signal 

(p < 0.05: R2  = 0.29, p >= 0.05: R2 = 0.13, 82/15970 overlap: OR = 1.5, p = 0.002, Figure 

A3.1G). This supports the observation that, although there may be a DGE signature in CB, it is 

considerably weaker than what is seen in CTX. Taken together, these results demonstrate that 

there exists a highly reproducible DGE signal in ASD vs CTL cortex, and a weaker signal in CB. 

4.3.b. Dysregulated synaptic function and inflammation in the ASD cortex 

 Next, I combined the samples above to analyze the full covariate matched set (“Matched 

ASD”) in CTX (26 ASD and 33 CTL individuals, N = 106 samples, Figure A3.1H), leaving 

younger ASD samples (age < 10, “Young ASD”) and all dup15q samples for other analyses. 

After filtering out genes where expression might have been due to pre-mRNA signal from other 

genes (e.g. for genes contained largely in introns of other genes, Extended Experimental 

Procedures), 16403 genes remained for the cortical analysis (13688 protein coding, 2715 

lncRNAs). Using the linear mixed regression framework on log2(FPKM) gene expression 

quantifications, I identified 1156 genes as differentially expressed in ASD brain, with 582 

increased and 574 decreased in ASD compared to CTL at an FDR adjusted p < 0.05. 
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Importantly, DGE analyses changing assumptions about modeling the effect of sequencing 

covariates and the statistical distribution of RNA-seq data (Figure A3.2A-C, Table A3.2A). A 

heatmap and clustering dendrogram of the top 100 increased and top 100 decreased genes reveals 

that the majority of ASD samples cluster together, and that factors such as age, sex, and RNA 

quality are not responsible for this signature (Figure 4.1B). 

Of the genes downregulated at FDR < 0.05, the most downregulated gene was PVALB 

(0.53 fold decrease, FDR < 0.05). PVALB is a marker for an interneuron subpopulation and 

codes for a protein that binds to calcium. Interestingly, SST, whose protein product also binds 

calcium but serves as a marker for a different population of interneurons, is also among the top 

downregulated genes (0.61 fold, FDR < 0.05). Additional genes of interest at FDR < 0.05 among 

the top downregulated include NEUROD6, which is involved in neuronal differentiation (0.60 

fold), several ion channels (SLC38A5, 0.53-fold decrease; SLC5A11, 0.64-fold decrease), and 

KDM5D, a lysine demethylase (0.66-fold decrease). This highlights a diverse set of biological 

processes downregulated in ASD cortex. The top upregulated gene, HSPA6 (2.6 fold increase, 

FDR < 0.05) is involved in the cellular stress response, as are other top upregulated genes such 

as HSPB1 (2.1 fold, FDR < 0.05) and GADD45G (1.78 fold, FDR < 0.05). Additionally, the 

microglial marker CD93 (1.88 fold, FDR < 0.05) and multiple members of the complement 

cascade implicated in microglial-neuronal interactions (C4A, 1.94-fold; C1QB, 1.65-fold, FDR < 

0.05) are upregulated in ASD. 

In order to gain a systematic understanding of biological pathways and cell types 

underlying the DGE signature in CTX, I evaluated gene ontology (GO) term enrichment of the 

gene sets increased and decreased in expression in ASD vs CTL (Appendix A3.1). Top enriched 

biological function and molecular function pathways are shown in Figure 4.1C. Genes decreased 
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in ASD are involved in synaptic and neuronal function (synapse, postsynaptic membrane, 

synaptic transmission, gated channel activity, regulation of ion transport, ion channel complex) 

and mitochondrial function, while upregulated genes are enriched for inter- and intra- cellular 

signaling (response to stimulus, positive regulation of intracellular protein kinase cascade, 

activation of MAPK activity) and inflammatory pathways (immune system process, regulation of 

cytokine production).  

Additionally, upregulated genes were enriched for the GO terms “regeneration” and 

“cellular developmental process.” In order to better understand the role of genes in these 

pathways, I evaluated cell-type specific expression changes more systematically. I assessed 

enrichment for genes expressed with high specificity in neurons, astrocytes, myelinating 

oligodendrocytes, and microglia (Appendix A3.1) and found significant enrichment in the 

upregulated DGE set for astrocytes and microglia genes, and significant enrichment of neuron 

and oligodendrocytes specific genes in the downregulated DGE set (Figure A3.2D). This 

suggests that, in ASD CTX, there is a downregulation of neuronal signaling and upregulation of 

astrocyte and microglia signaling. However, similar changes could also be seen due to alterations 

in cell type proportions. However, major markers of neurons are not significantly altered in ASD 

vs CTL (neurons: RBFOX3, p = 0.078; RELN, p = 0.30; MAP2, p = 0.1; glia: GFAP, p = 0.19; 

S100B, p = 0.71), demonstrating that global shifts in cellular populations are unlikely to drive 

this DGE signature. 

I next sought to evaluate whether the DGE signature identified in the “Matched ASD” set 

generalizes to the “Young ASD” set. I utilized the DGE set to cluster the younger ASD samples 

(age < 10, which were held out to match the initial DGE analysis), and found that these samples, 

which were not included in defining the DGE set, cluster similarly suggesting this DGE set is 
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generalizable to new samples (Figure A3.2E). To more formally evaluate the robustness of the 

DGE signal, I evaluated whether the young ASD samples shared the same signature identified in 

the matched cohort. I used principal components analysis (PCA) on the DGE set across 123 total 

samples and found that the 1st principal component (PC) explained 39% of the variance, is 

significantly different between the matched ASD samples and controls (p=1.5x10-7) and between 

the young ASD samples and controls (p = 2.8x10-5), but is not significantly different between the 

matched ASD samples and the younger samples (p=0.82, Figure 4.1D). 

4.3.c. Gene expression changes in ASD cerebellum are weaker than those seen in CTX 

Next, I used a similar DGE analysis as above for CB samples (22 ASD, 26 CTL). 

Although this analysis doubled the sample size from previous investigations (Ginsberg et al., 

2013; Voineagu et al., 2011), no gene expression changes passed multiple comparisons at FDR < 

0.05 (the most significant were at FDR ~  0.30) (Table A.3.2B). Given that the CTX and CB 

dramatically differ in the cells composting the whole tissue, it is possible that similar underlying 

biological processes change in CB, but only in a weak manner or only in a minority of cells. This 

would manifest as a weaker, but similar DGE signature as that seen in CTX. 

I therefore asked whether some of the most downregulated transcripts from CTX were 

also changed in CB, and found that PVALB was downregulated, but at a lower fold change (0.58 

fold, p = 0.007) and SST did not pass criteria to be called as sufficiently expressed in CB. Other 

top downregulated genes from CTX were downregulated in CB, but at a lower magnitude and at 

with greater variability (NEUROD6, 0.67 fold, p = 0.09; SLC38A5, 0.73 fold, p = 0.02; 

SLC5A11, 0.64 fold, p = 0.08; KDM5D, 0.66 fold, p = 0.04). Comparing top upregulated gene in 

CTX, changes in CB were much weaker and suggested reduced inflammation in CB (HSPA6, 

1.83 fold, p = 0.23; HSP1B was not detected; GADD45G, 1.22 fold, p = 0.21; CD93, 1.10 fold, p 
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= 0.66; C4A, 1.20 fold, p = 0.46; C1QB, 1.22 fold, p = 0.32). These findings reveal that 

upregulated ASD genes from CTX show a very weak upregulation signature in CB.  In 

conclusion, for both down- and up- regulated genes in ASD, nearly all changes in CB are of 

lower magnitude and greater variability. 

Given these weaker changes in CB, I asked whether the CTX DGE signature could be 

detected in CB more systematically by using the same analysis used for assessing replication in 

Figure 4.1A. This revealed that many of the genes changed in ASD CTX were, on average, also 

altered in ASD CB (genes DGE in CTX at p < 0.05: R2 = 0.47 with CB; genes DGE in CTX at p 

>= 0.05: R2 = 0.10 in CB; 673/15239 overlap, OR = 2.3, p = 7.4x10-48). Moreover, the slope of 

the best-fit line among the points in the CTX DGE set between CTX and CB is 1.46. This 

demonstrates that, on average, DGE in the CTX is of about ~1.5x greater magnitude than that in 

CB (Figure A3.2G). This supports the idea that some of the same pathways are affected in both 

regions, but to a different extent. 

I next evaluated whether the weaker changes in ASD CB were enriched for particular 

biological processes or were generalizable to new samples. On a DGE set at an unadjusted p < 

0.01 comprising 357 genes, GO enrichment identified some evidence of pathways agreeing with 

those found in CTX but none were significantly enriched (data not shown). PCA on this DGE set 

across all CB samples revealed that the first PC explains 34% of the variance and distinguishes 

ASD from CTL in both the initially evaluated set and younger samples which were held out 

(Figure 4.1E). Furthermore, as with CTX, PC1 was not strongly related to measured covariates 

(Figure A3.2H). This shows that weak changes in CB can distinguish ASD from CTL, and this is 

generalizable to independent samples. 
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Taken together, comparison of CTX to CB suggests that similar underlying molecular 

changes may affect these cytoarchitecturally distinct brain regions, but the CTX exhibits 

selective vulnerability in ASD. However, given the relative cellular homogeneity of the CB 

(which is mostly comprised of granule cells) compared to CTX, the weaker gene expression 

changes in CB suggest that this region is less susceptible to changes in ASD. This could be due 

to the unique cell types in CB relative to CTX, or due to some other aspect of the molecular 

milieu of the CB that renders it resilient to the changes seen in CTX. 

4.3.d. Attenuation of cortical patterning in ASD 

The human brain exhibits regional specialization for behavioral and cognitive tasks, 

which is driven by patterning of gene expression that is related to developmental differentiation, 

neuronal signaling, and cortical cytoarchitecture (Hoch et al., 2009; Johnson et al., 2009; Kang et 

al., 2011; Khaitovich, 2004). Previous work with microarrays demonstrated that patterning 

between the frontal and temporal cortex was attenuated in ASD cortex (Voineagu et al., 2011). I 

evaluated DGE between FC and TC in this study with a paired Wilcoxon rank-sum test using the 

technical variable corrected (Appendix A3.1) expression profiles of 16 ASD and 16 CTL 

individuals who were matched for age and sex. 

I find a similar loss of patterning as previously observed, with 551 genes at FDR < 0.05 

between FC and TC in controls, but only 51 in ASD (Figure 4.1F). I refer to the set of 523 genes 

with this patterning in CTL but not ASD as the “Attenuated Cortical Patterning” set.  This 

attenuation of patterning is also evident from the global distribution of differences between FC 

and TC in ASD and CTL (Figures A3.2I-J). GO term enrichment analysis on the genes with 

attenuated cortical patterning revealed enrichment for metabolic processes, G protein coupled 

signaling, Wnt receptor signaling, calcium binding, and additional developmental and 
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differentiation related functions (Figure 4.1G). Additionally, the attenuated cortical patterning set 

was enriched for genes specific to neurons (OR = 1.6, p = 5.4x10-4) and astrocytes (OR = 1.4, p 

= 6.9x10-3), but not markers of oligodendrocytes or microglia (Zhang et al., 2014). This suggests 

that genes in neurons and astrocytes are primarily losing cortical region differences in ASD, and 

microglia and oligodendrocyte genes are affected similarly across the cortical regions. 

Genes in the “Attenuated Cortical Patterning” set includes multiple molecules known to 

be involved in cell-cell communication and cortical patterning PCDH10, PCDH17, and CDH12. 

MET, which is among the most cortically patterned genes (Hawrylycz et al., 2012), is also seen 

as having diminished regional differences. Interestingly, PDGFD, which was recently shown to 

be necessary for human but not mouse cortical development, is also in this set (Lui et al., 2014). 

I next evaluated whether the attenuation of patterning between cortical regions was due to 

increased variability in gene expression or a severe, global loss of cortical patterning. I used 

Bartlett’s test for differences in variance between gene expression levels in ASD vs CTL, and 

found that there is a difference in variance for thousands of genes in ASD compared to CTL 

(Figure A3.2K, Table A3.2A). Alterations in variance between conditions can be due to many 

technical or biological factors, and this study is not optimally designed to understand differences 

in variance between ASD and CTL. However, it is clear that the genes exhibiting attenuated 

cortical patterning are not more likely to exhibit greater variance in ASD vs CTL than other 

genes (Kolmogorov-Smirnov test, two-tailed p = 0.11; 139/523 genes with p < 0.05 on Bartlett’s 

test). 

Next, to assess the extent of the loss of DGE in ASD compared to CTL FC and TC, and 

ensure the attenuation of patterning is not due to poor dissection quality or tissue degradation in 

ASD postmortem brains, I used an independent set of gene expression data to classify cortical 
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regions. I trained a cross-validated Lasso regression model (Tibshirani et al., 2004) to 

differentiate frontal cortex and temporal cortex using BrainSpan gene expression data (Sunkin et 

al., 2013). This identified 14 genes that robustly differentiate FC and TC in BrainSpan and 

consistently differentiate FC and TC in both the CTL (AUC = 0.97, Figures A3.2L-M) and ASD 

samples (AUC = 0.96, Figures A3.2N-O). This suggests that the loss of cortical patterning in 

ASD is not so severe that cortical regions are indistinguishable, and demonstrates that dissections 

of brain regions and the brain samples themselves are of sufficiently high quality to separate 

cortical regionalization. Together, these results confirm an attenuation of cortical patterning 

between FC and TC in ASD, and identify that this alteration is not due to global differences in 

ASD and CTL samples. 

 Given that there is not a loss of global cortical patterning, I next sought to evaluate 

whether molecular pathways regulated by specific transcriptional regulators might be altered 

between regions. I used transcription factor binding site (TFBS) enrichment analysis (see 

Appendix A1.1) to evaluate whether common transcriptional regulators may bind upstream of 

the 523 genes in the attenuated cortical patterning set, and found that SP1, SP2, EGR2, KLF5, 

SOX5, and ARID3A may potentially bind to mediate cortical patterning. To prioritize a TF for 

future experiments, I evaluated whether any of the genes for these TFs were in the attenuated 

cortical patterning gene set. Out of these factors, only SOX5, which has been implicated in 

coritcofugal projection neuron development in mouse (Kwan et al., 2008; Lai et al., 2008), 

shows a difference between ASD and CTL between cortical regions (Figure 4.1H). This suggests 

its attenuation in patterning may be upstream of the loss of patterning in its targets. Further 

validation and analyses will be necessary to understand the role of SOX5 in cortical patterning in 

ASD. 
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4.3.e. Dysregulated lncRNAs in ASD 

Multiple lncRNAs were found dysregulated between ASD and CTL (33 lincRNA, 19 

antisense transcripts, and 10 processed transcripts at FDR < 0.05) and found to have reduced 

patterning in FC compared to TC in ASD (20 lincRNA, 6 antisense transcripts, 8 processed 

transcripts in the Attenuated Cortical Patterning set). Most of these lncRNAs are 

developmentally regulated (Jaffe et al., 2015) and contain chromatin states indicative of 

transcription start sites (TSSs) at their 5’ end in brain (http://www.roadmapepigenomics.org/). 

For example, SNHG11 (0.88 fold, FDR < 0.05) and PART1 (0.75 fold, FDR < 0.05) are a 

processed transcript and lincRNA, respectively, that are downregulated in ASD cortex. SNHG11 

is highly specific to neurons (Zhang et al., 2014), most upregulated during infancy and childhood 

(Jaffe et al., 2015), and chromatin marks are indicative of a TSS at its 5’ end. PART1 shows no 

pairwise alignments in mouse, though is detected in primates suggesting its sequence is primate 

specific. It is highly developmentally regulated (Jaffe et al., 2015), with consistent increase in 

expression from fetal to teenage development, followed by plateauing in expression throughout, 

and its 5’ end contains a TSS chromatin state, and it shares this bidirectional promoter with 

PDE4D. Finally, several lncRNAs show a loss of cortical patterning. For example, WDFY3-AS2, 

a transcript antisense to an ASD-implicated gene involved in cortical neurogenesis (Iossifov et 

al., 2014), exhibits attenuated patterning in ASD cortex (Figure 4.1I).  

I plan to evaluate these lncRNA changes more systematically, particularly with a focus 

on the primate-specific sequences which could be interesting from the perspective of brain 

development (Geschwind and Rakic, 2013). It is important to note that sequence evolution and 

lack of alignment in a species is not sufficient to declare a lncRNA as species-specific as the 

sequence can change substantially but transcription and function may be unaffected. The current 
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best practice is to show that syntenic regions are intact in mouse, but there is a lack of expression 

where the lincRNA ought to be expressed (Chodroff et al., 2010). 

4.3.f. Alteration of alternative splicing in ASD 

Previous work has shown that dysregulated splicing plays a role in ASD (Irimia et al., 

2014; Voineagu et al., 2011; Weyn-Vanhentenryck et al., 2014). However, these studies have 

largely focused on subsets of samples showing extreme gene expression changes in RBFOX1 

(Voineagu et al., 2011; Weyn-Vanhentenryck et al., 2014) or in other selected subsets of patients 

with ASD (Irimia et al., 2014). Furthermore, previous splicing analyses in ASD pooled samples 

together to obtain sufficient depth for splicing event detection, which averages out inter-

individual variation. I therefore performed a differential splicing (DS) analysis to assess whether 

a shared splicing pattern exists in ASD using the same mixed multiple regression framework and 

experimental design used in DGE, with percent spliced in (PSI) values at events of sufficient 

depth. 

I evaluated 34025 splicing events in CTX and 32954 in CB (Table A3.3), encompassing 

skipped exons (SE), alternative 5’ splice sites (A5SS), alternative 3’ splice site (A3SS), and 

mutually exclusive exons (MXE) using the MATS pipeline for PSI calculation (Shen et al., 

2012) (see Appendix A3.1 for event criteria). I found no events passing correction for multiple 

comparisons at FDR < 0.05 (or FDR < 0.1 or 0.2, which are more common thresholds for DS 

analysis) in CTX or CBL, and therefore explored more relaxed thresholds for significance. At p 

< 0.01 in CTX, which corresponds to a FDR < 0.45, 639 events are different between ASD and 

CTL. At p < 0.01 in CBL, I identified 411 events, but the most significant of these are at FDR > 

0.50 suggesting a much weaker splicing signature in CBL and that CTX has a generally stronger 

signature of DS. Highly concordant results were found with an alternative splice junction 
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mapping and quantification approach (Figure A3.3A). Additionally, there was no detectable 

global overlap between CBL and CTX above chance at p < 0.01 (OR = 1.1, p = 0.59) or p < 0.05 

(OR = 1.1, p = 0.21). I therefore focused the DS analysis on cortical samples. 
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Figure 4.2 Differential splicing in ASD and the role of splicing regulators. A) Average linkage hierarchical 

clustering of samples using correlation-based distance with all DS events in ASD CTX at p < 0.01. B) GO term 

enrichment analysis of DS genes at p < 0.01. C) PC1 of the DS set shows clear differences between the “Matched 

ASD” set CTL, and generalizes to differences between “Young ASD” and CTL. D) Hierarchical clustering of 

samples with the DS set (excluding nominally DGE genes containing splicing events) with splicing factors plotted 

below. Instances where the splicing factor is 1 standard deviation below the mean across samples (Z < -1) are 

highlighted. E-F) Correlations between RBFOX1 and NOVA1 with genes split by targets of the respective splicing 

factors compared to background across all samples. 

 

The most significantly altered splicing event was the inclusion of an exon in ASTN2 

(ΔPSI = 0.058 [5.8%], p = 7.8x10-6), a gene implicated by CNVs in ASD and other 

developmental disorders(Lionel et al., 2014). Several genes involved in synaptic function 

harbored evidence for multiple exons being alternatively spliced in ASD (ANK2, NRXN1, 

NRCAM, multiple events at p < 0.01). These patterns of events may be indicative of the presence 

of alternative isoforms in ASD, though the effect sizes are generally small (|ΔPSI|<0.10) 

suggesting this occurs only to a mild degree or in a small fraction of the cells. Notably, at a 

genome-wide level, SE events contributed the most to the DGE signature (Figure A3.3B). 

Splicing changes may be observed as an artifact when substantial DGE changes occur 

between conditions. I confirmed that the DS signature was not driven by DGE of the genes in 

which splicing events occurred (Figure A3.3C) by removing 228 events in genes with even 

nominal (p < 0.05) DGE in ASD vs CTL. The remaining events still identified a strong 

difference between ASD and CTLs for PC1 of the DS events (p = 1.3x10-12, Wilcoxon rank-sum 

test, Figure A3.3D). These findings establish that there exists a strong DS signature in ASD CTX 

that is independent of DGE, but that detection of individual high-confidence events at stricter 

statistical thresholds will likely require larger sample sizes in ASD. Clustering the 639 events at 
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p < 0.01 in CTX demonstrates that ASD samples cluster together (Figure 4.2A), and PC1 of the 

DS set was associated with ASD status but no other covariates or measured variables (Figure 

A3.3E). 

Next, to evaluate the functional implications of these DS changes in ASD, I utilized GO 

term enrichment analysis using the genes harboring DS events. This identified biological and 

molecular processes related to neuronal function (secretion, neuron projection morphogenesis, 

calcium ion binding) as well as the synapse and related cellular compartments (Figure 4.2B). 

Additionally, the DS set shows enrichment for genes found in neurons (OR = 2.0, p = 0.0062), 

but no other cell types (Figure A3.3F). It is possible that longer genes, which contain more 

exons, also contain more detected splicing events. This could bias pathway and cell type 

enrichment to more neuronal and synaptic genes, which are, on average, longer than other genes 

in the genome. However, the correlation between the number of detected events in genes and 

gene length is minimal (R2 = 0.004), and the correlation is even smaller for events at p < 0.01 (R2 

= 0.00012) demonstrating that longer genes are not more likely to contain DS events. 

 Finally, I evaluated whether these DS events generalize to younger ASD samples. 

Clustering analysis suggested this is the case (Figure A3.3G), and comparison of PC1 from the 

DS set confirmed this (Figure 4.2C). Taken together, there is a robust splicing signature in CTX 

that differentiates ASD from CTL, this signature is distinct from the DGE signature, and it is 

mostly related to changes in synaptic and neuronal function. There is a notable absence of 

splicing changes in genes found specifically in inflammatory pathways or astrocyte, 

oligodendrocytes, or microglia, suggesting that changes in transcript structure is exclusive to 

neurons. 

4.3.g. Multiple splicing factors contribute to the shared splicing signature in ASD 
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Previous work has shown that splicing factors such as those from the RBFOX family (Fogel 

et al., 2012; Irimia et al., 2014; Voineagu et al., 2011; Weyn-Vanhentenryck et al., 2014) and 

SRRM4 may play a role in ASD. I hypothesized that the shared splicing signature in ASD might 

be a product of perturbations in specific splicing factors. I evaluated whether specific neuronal 

splicing factors are consistently perturbed in individuals with ASD. Figure 4.2D demonstrates 

that there is not one simple pattern of splicing dysregulation in ASD, and that different 

combinations are altered in different individuals. 

Notably, RBFOX1-3 all show one standard deviation (Z < -1) drop from the mean more 

frequently in ASD than CTL, and not necessarily in the same individuals. SRRM4, NOVA1, 

MBNL1, MBNL2, and PTBP2 also exhibit this pattern, and several show evidence for DGE at 

FDR < 0.05 across ASD individuals (Table A3.2A). Notably, most splicing factors are decreased 

in ASD with the exception of PTBP1, which is increased. PTBP1 is most commonly studied for 

its effect on splicing in the context of neuronal development, but is predominantly expressed in 

in microglia in adult brain (Zhang et al., 2014). Moreover, none of the splicing factors found in 

the DGE set from CTX show evidence of DGE in CB (those with FDR < 0.05 in CTX have p > 

0.5 in CB). This suggests that splicing changes in ASD may be a product of regionally specific 

changes in these factors. 

To evaluate whether some of these splicing factors might regulate the DS changes observed 

in CTX, I performed DS analysis as above with the 10 samples showing the greatest 

downregulation of RBFOX1 and NOVA1, and compared their splicing event profiles to all CTL 

samples (Figures A3H, J). This identified many changes at FDR < 0.1 and |ΔPSI| > 0.10 which 

were highly correlated to weaker changes in the full sample set (Figures A3I, K), suggesting that 

subsets of individuals with perturbations in specific splicing factors can identify more 
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homogenous splicing alterations in ASD that are representative of the global alterations seen in 

ASD. Moreover, the events found at FDR < 0.1 and |ΔPSI| > 0.10 in the RBFOX1 analysis 

overlap highly with known Rbfox1 targets from cross-linking immunoprecipitation (CLIP) 

experiments in mouse(Weyn-Vanhentenryck et al., 2014) (OR = 6.0, p = 3.9x10-40; out of 755 

events, 106 overlap 535 orthologous events). A high overlap is also seen comparing events from 

the NOVA1 analysis to Nova1 targets from CLIP data in mouse (Zhang et al., 2010) (OR = 8.7, p 

= 4.6x10-38; out of 1002 events, 77 overlap 228 orthologous events). Moreover, events predicted 

to be regulated by RBFOX1 and NOVA1 show a greater correlation to RBFOX1 and NOVA1 

gene expression levels across all samples (Figures 2E-F). A similar concordance between 

splicing factor and putative regulatory sites has been observed for SRRM4, which regulates 

microexon events (Irimia et al., 2014). 

Together, these analyses show that specific splicing factors in CTX are likely to underlie the 

changes seen in CTX. The shared splicing signature in ASD CTX may at least be partly 

mediated by primary alterations in different splicing factors driving overlapping splicing 

alterations. Several claims about this putative splicing level convergence need to be evaluated 

more rigorously. First, additional data is available for splicing factors other than NOVA1 and 

RBFOX1 that can be utilized to buttress the claims made. Second, a similar analysis as shown in 

Figures 2D-F can be performed in CB to evaluate the regional specificity and the CTX-

specificity claims made here. Finally, DS events from stratified analyses using RBFOX1, 

NOVA1, and other factors need to be formally overlapped to identify the core set of splicing 

events that are regulated by these factors. 

4.3.h. Duplication 15q syndrome exhibits widespread and stronger gene expression changes that 

recapitulate those in idiopathic ASD 
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Next, I sought to examine transcriptomic alterations in 8 individuals (6 FC, 8 TC, 3 CB, 

see Table A3.1) with duplication 15q syndrome (dup15q), a genetically defined cause of autism 

defined by a maternally inherited duplication of chromosome 15q11-13. Duplications along the 5 

known breakpoints (BPs) were re-evaluated in 7/8 individuals via genotyping (Appendix A3, 

Table A3.4) and obtained for the remaining individual from a previous report {Scoles:2011jw}. 

For most individuals there were 4 copies of the region from breakpoints 1-4, and 3 between 

breakpoints 4-5. Thus, as expected, most genes in the 15q11.1-13.2 region have higher 

expression in dup15q CTX compared to CTL (Figure 3.3A). Changes in the dup15q region in 

CB are similar, though potentially weaker (Figure A3.4A, but this should be interpreted with 

caution with N = 3). Notably, although there is general overexpression in dup15q in this region, 

SRNPN and SNURF were downregulated as were additional genes flanking region near BP5 

SCG5 and FMN1. Additionally, no changes in idiopathic ASD were significant and in the same 

direction as the changes in dup15q in CTX or CB. 
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Figure 4.3 Differential gene expression and differential splicing in duplication 15q syndrome. A) DGE changes 

across the 15q11-13.2 region for ASD and dup15q compared to CTL, error bars are +/- 95% confidence intervals for 
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the effect sizes. B) Average linkage hierarchical clustering and heatmap of DGE top 100 up- and down- regulated 

changes in dup15q. C) GO term enrichment for 2875 genes DGE in dup15q at FDR < 0.05. D) Comparison of effect 

sizes in dup15q vs CTL and ASD vs CTL, with changes in dup15q at FDR < 0.05 highlighted. E) GO term 

enrichment with 330 genes with DS events in dup15q vs CTL. F) Comparison of DS changes in dup15q vs CTL and 

ASD vs CTL, highlighting 402 events at FDR < 0.2 in dup15q.  

 

Moreover, with only these 8 dup15q individuals evaluated, there is a clear dup15q vs 

CTL signal in CTX with 2875 genes differential at FDR < 0.05 (1506 upregulated, 1369 

downregulated). Clustering using the top 100 upregulated and bottom 100 downregulated 

transcripts, this DGE signal separates all dup15q samples from CTL (Figure 4.3A) demonstrating 

that dup15q changes are far more homogeneous than those seen in idiopathic ASD. Comparison 

with CB (Figures A3.4B-C) did not identify as strong agreement of changes as found in 

idiopathic ASD, though this may be due to the low sample size in CB for dup15q. GO term 

enrichment with the dup15q vs CTL in CTX DGE set implicated pathways and cell types similar 

to the idiopathic ASD analysis, but with greater enrichment (Figure 4.3C, Figure A3.4D). 

Notably, major neuronal cell type markers change considerably more in dup15q, suggesting there 

may be consistent cell loss (neurons: RBFOX3, p = 2.2x10-4; RELN, p = 4.1x10-3; MAP2, p = 

0.012; glia: GFAP, p = 0.42; S100B, p = 0.17), potentially related to previously reported 

microcephaly in some of these individuals {Wegiel:2012vm}. Additionally, many dup15q 

individuals shared sudden unexpected death in epilepsy or had seizures as a reported cause of 

death, so we evaluated the relationship between all measured covariates (including whether the 

individual had seizures) but found only a weak association between PC1 of the DGE set and any 

seizure status, and minimal associations to other factors other than diagnosis (Figure A3.4E).  
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Next, I asked whether dup15q, which appears to reflect a more homogeneous DGE 

signature compared to CTL, shares gene expression patterns with idiopathic ASD. Remarkably, 

using the dup15q vs CTL CTX DGE set (at FDR < 0.05), there is substantial overlap (FDR < 

0.05: R2 = 0.79, FDR > 0.05 R2 = 0.41, suggesting substantial sharing of the signature above this 

threshold). Moreover, the slope of the best-fit line through these changes is 2.0, demonstrating 

that, on average, the changes in dup15q CTX are twice the magnitude of those in ASD CTX. 

Overlapping the 1156 genes DGE in ASD vs CTL CTX at FDR < 0.05 with the 2875 genes DGE 

in dup15q vs CTL CTX at FDR < 0.05 confirms this remarkable overlap, with 700 genes in 

common (OR = 9.2, p = 8.8x10-259; 325 downregulated, 375 upregulated).  Taken together, these 

findings demonstrate that dup15q syndrome exhibits DGE in CTX that is remarkably similar to 

ASD, demonstrating that a genetically defined subtype of dup15q has a convergent DGE 

signature with idiopathic ASD. 

Next, I sought to evaluate DS changes in dup15q vs CTL in CTX. There is only one DS 

change at p < 0.01 in the dup15q region (Figure A3.4F), consistent with the idea that duplication 

in this region simply duplicates all isoforms of the genes resulting in no alteration of transcript 

structure. Global DS analysis in dup15q compared to CTL revealed a stronger signature that that 

seen in CTX, with 402 events at FDR < 0.2 that clearly discriminate dup15q samples from CTL 

(Figure A3.4G). Given the widespread changes in gene expression in dup15q, this signature 

could be driven by gene expression alterations, but eliminating all genes DGE at p < 0.05 from 

the DS set retains a strong signature that separates dup15q from CTL (Figure A3.4H-I). 

Additionally, as with the DGE signature, PC1 of this DS set shows weak association with seizure 

status, but is otherwise largely associated with dup15q status (Figure A3.4J). 
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GO term enrichment analysis clearly implicates cytoskeletal components and genes 

involves in changes in cellular morphogenesis. Cell-type enrichment of genes harboring the DS 

events shows enrichment for genes found in neurons (OR = 2.6, p = 2.6x10-4), but not other cell 

types suggesting these pathways are acting largely in neurons. Comparing this DS set with the 

changes seen in idiopathic ASD vs CTL, there is clear overlap (FDR < 0.2: R2 = 0.66, FDR > 

0.2: R2 = 0.007) suggesting that DS changes in dup15q syndrome recapitulate those of idiopathic 

ASD. Finally, the slope of the best fit line through the DS events in dup15q CTX compared to 

those in ASD CTX is 2.5, suggesting that the splicing changes in dup15q are greater than those 

in ASD, on average. Taking the dup15q and ASD DS analyses together, it is clear that our study 

had sufficient power and sequencing depth to detect DS, but the heterogeneity of DS in 

idiopathic ASD is a major obstacle to identifying large and consistent changes at the PSI level. It 

will be important to assess the status of neuronal splicing factors in dup15q brain and assess the 

splicing factor – target relationship as assessed above. 

These results strongly support the idea that the weaker DGE and DS signature seen in 

idiopathic ASD is due to biological changes (as opposed to technical factors such as brain 

quality), and support the idea that a causal genetic alteration can lead to the transcriptomic 

changes in idiopathic ASD. Moreover, they demonstrate that dup15q may serve as a viable 

model for better understanding additional molecular alterations in ASD, as the changes in 

dup15q brain are far more homogeneous and of greater magnitude than those seen in idiopathic 

ASD. 

4.3.i. Co-expression network analysis reveals novel ASD modules 

DGE analyses rely on prior knowledge of the ASD and CTL status of individuals to 

identify significant gene sets, and ignore the molecular context in which each gene functions. I 
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therefore utilized weighted gene co-expression network analysis (WGCNA), which identifies 

modules of shared biological function in an unsupervised manner and then allows assignment of 

module-level relationships to diagnosis and other measured factors. I utilized a modified version 

of signed weighted whole-genome WGCNA, which ensures robustness given heterogeneous 

samples (see Appendix A3.1). This was applied to 137 cortical samples (combining the 

“Matched ASD”, the “Young ASD”, dup15q, and all control samples). This resulted in 16 

robustly identified modules (Figure A3.5A). 
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Figure 4.4 Co-expression network analysis across all ASD and CTL samples in CTX. A) Enrichment for gene 

sets related to DGE between FC and TC, between ASD and CTL in CTX, and between dup15q and CTL in CTX. 
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*FDR < 0.05 for this Heatmap. See also the module-trait enrichments in Figure A3.5B. B-C) Module and GO term 

enrichment plots for two modules of interest. The top 25 hub genes are displayed. *FDR < 0.05 for GO term 

analysis across all 16 modules. D) Module enrichment for gene sets previously implicated in ASD, including curated 

genes (ASD SFARI, ID curated), ASD modules from Voineagu et al., 2011 (asdM12 and asdM16), genes implicated 

by protein disrupting rare variants in SCZ, ASD, and control sets (genes affected by protein disrupting in siblings 

and synonymous mutations in ASD), and genes implicated by GWAS p < 0.001 in the PGC cohort. All enrichments 

shown here are adjusted for gene length. E) TF binding site enrichment assessing predicted TF binding (Arbiza et 

al., 2013) in open chromatin regions in frontal cortex (from the Roadmap Epigenetics Mapping Consortium, 

http://www.roadmapepigenomics.org/). TFs are assigned to genes using DNaseI hypersensitivity based open 

chromatin correlations to the promoter of genes (Thurman et al., 2012). The heatmap is clustered on both the x- and 

y-axis to group similar TF-module pairs, and boxes identify pairings corresponding to potential clusters. 

 

 In order to identify modules associated with ASD or dup15q, I first systematically tested 

enrichment for the “Attenuated Cortical Patterning” set, the up- and down-regulated DGE in 

ASD vs CTL CTX sets, and the up- and down-regulated DGE in dup15q vs CTL CTX sets. At a 

FDR < 0.05, this identified 3 modules associated with ASD (M1/10/17) and one with dup15q 

(M11, which is more weakly enriched for the ASD set). Many more modules were upregulated 

in ASD and dup15q, with 5 in both ASD and dup15q (M4/5/6/9/12) and one specific to dup15q 

(M13). Notably, the modules with highest enrichment with DGE sets are concordant with the 

module eigengene (ME)-trait associations associated with ASD (the model accounts for 

biological and technical covariates) (Figure A3.5B). Weaker enrichments are observed that are 

missed by ME-trait enrichment, likely because the enrichment is driven by a smaller subset of 

genes that are not captured by the ME. Cell-type (Figure A3.5C) and GO term enrichments in 

modules identified that most modules downregulated in ASD were enriched for neuronal genes, 

while modules upregulated in ASD were either enriched for markers of microglia or astrocytes. 
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 For example, M1 (Figure A3.4D) is downregulated in ASD and dup15q, is enriched for 

genes specific to neurons, and contains GO terms related to calcium signaling, synaptic 

transmission, and ion channel activity. Hubs of M1 include CNTNAP1, SV2A, and SYT1, which 

are markers of neurons and synapses. Intriguingly, M12 is a module that is enriched for the 

attenuated cortical patterning set and upregulated genes in ASD and dup15q, but does not show a 

change in ASD in the ME-trait comparison. M12 is enriched for neuron-specific genes, and 

pathways related to cortical patterning and brain development (Wnt signaling, anatomical 

structure development, cell migration). This suggests that the attenuation of cortical patterning 

might occur due to alterations in the normal functioning of this module. 

 Upregulated modules in ASD show less concordance with both the enrichment analysis 

and the ME-trait analysis. The module most strongly enriched for upregulated genes in ASD and 

dup15q, M5, is also upregulated in both conditions and highly enriched for microglial markers. 

This module contains GO terms related to inflammation and cytokine signaling (Figure A3.4E). 

Interestingly, both gene set enrichment and ME-trait association for upregulated genes support 

M13 in dup15q, but not ASD supports one module. This module contains many genes related to 

translation and transcription, warranting further investigation into why it is altered to a greater 

extent in dup15q compared to idiopathic ASD. 

 Gene set enrichment analysis (Figure 4.4D) with known ASD genes confirmed that the 

downregulated ASD modules were all enriched for asdM12, the downregulated co-expression 

module from Voineagu et al., 2011. Additionally, M4/5/9 were enriched for asdM16, the 

upregulated co-expression module. The larger sample set in this study not only stratifies these 

modules into more specific biological processes but also further identifies novel models related 

to cortical patterning and dup15q syndrome. 
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Interestingly, M2 is highly enriched for curated ASD and ID genes and protein disrupting 

RDNVs in SCZ and ASD. M2 is not associated with any particular cell type, but is enriched for 

the GO terms polymerase II promoter, chromatin binding, and establishment of RNA 

localization. Remarkably, it also contains an unusually large fraction of lncRNAs (15% of the 

genes in M2 are classified as lncRNAs, while other modules are 1-5% lncRNA). However, this 

module is not altered in ASD and is not enriched for any ASD-associated set from at the 

transcriptomic level. M2 contains genes more highly expressed during brain development, so 

perturbations in it may not be evident in adult. 

Finally, no module was strongly enriched for genes near common variants associated 

with ASD using GWA statistics (genes with p < 0.001 for the best SNP within 20kB). However, 

several steps are necessary to optimize this analysis, including assessment of additional GWA 

datasets and evaluation of better SNP assignment methods to genes. Taken together, co-

expression network analysis re-affirms many observations from previous analyses, including the 

pathways involved in attenuated cortical patterning and the shared effects between dup15q and 

ASD compared to CTL. However, the module specific to dup15q warrants further investigation, 

as do general developmental trajectories that are associated with these co-expressed modules. 

Investigating earlier expression patterns might enable further stratification of modules to more 

developmentally relevant pathways. It will also be of value to attempt to assign splicing changes 

into these modules by correlating PSI levels with the eigengenes, and evaluate splicing factor co-

expression with putatively regulated events. 

4.3.j. Transcriptional regulators and ASD-associated changes 

 Co-expression among genes may indicate that they are co-regulated. To assess whether 

this is the case, transcription factor (TF) and chromatin regulator (CR) binding site enrichment 
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can be evaluated in putatively co-regulated sets. I obtained regions of the genome with high-

confidence binding sites from previously published work (Arbiza et al., 2013), and assigned 

them to genes by combining open chromatin states in FC (from the Roadmap Epigenomics 

Mapping Consortium, http://www.roadmapepigenomics.org/) with cross-tissue DNaseI 

hypersensitivity sites (Thurman et al., 2012). The latter correlates DNaseI signal across over 100 

cell types, allowing distal regions of the genome to be correlated to genes by high correlation (r > 

0.7) to DNaseI signal in the promoter of genes. In this manner, each TF was assigned genes that 

it was likely to regulate in brain. 

I then utilized Fisher’s exact test to assess enrichment across all modules for all TFs 

(Figure 4.4E). For each TF, this identified a putative enrichment signature across all modules, 

allowing the grouping of similarly enriched modules (Figure 4.4E, y-axis) and TFs that share 

similar patterns of enrichment across modules (Figure 4.4E, x-axis). Several clear “blocks” of 

enrichment stand out, related to modules sharing similar TF binding patterns. M5, M6, and M9 

all share common TFs and are all upregulated in ASD. These TFs include ones known to be 

involved in inflammation or inflammatory signaling cascades (IRF1, C-JUN), consistent with 

these modules’ enrichment for these pathways and upregulation in ASD. 

Interestingly, M2, which was enriched for ASD related mutations but not altered in ASD, 

and M17, which is not enriched for genetic signatures but is enriched for neuronal markers and 

downregulated in ASD, share a large set of TFs that might co-regulate them. These include 

ELF1, which was previously found enriched between developmental co-expression modules 

(Parikshak et al., 2013), CHD2 which is implicated in ASD (Iossifov et al., 2014), and SP1/2 

which are involved in activity dependent signaling. 
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These analyses of transcriptional regulation convergence are preliminary, and require 

additional investigation. First, whether these TFs are differentially expressed or the hubs of 

particular modules will help inform their biological relevance to ASD. Second, understand their 

developmental trajectories will help identify if they share common functions during brain 

development. Third, utilizing additional binding data or experimental knockdowns will help 

ensure these are likely to be real regulatory relationships. Despite these shortcomings, this 

analysis begins to identify an approach toward identifying co-regulation in a novel way that 

accounts for cortex-specific TF binding by integrating the appropriate epigenetic data. 

4.4. Discussion 

Despite challenges posed by the heterogeneity of ASD, these results confirm clearly 

shared alterations at the DGE, DS, and co-expression level in ASD brain. Our lab had previously 

demonstrated that there is a shared DGE signature in ASD CTX at the DGE and co-expression 

level, and this study confirms that this is the case in independent samples. Moreover, it extends 

this finding by adding transcript splicing and long noncoding RNA to the picture. Finally, it 

confirms that this signature is unlikely to be due to confounding factors by rigorous evaluation of 

covariates at every level, and, more importantly, by comparison to a genetically defined subtype 

of ASD, dup15q syndrome. 

 The results presented here are more along the lines of an extensive analysis of this large 

amount of data, and many efforts were made to choose the best analytical methods and statistical 

models to account for potential technical biases and confounders. Despite this, one potential 

limitation is that these data are from unstranded RNA-seq, and therefore miss many antisense 

and lincRNA transcripts. Furthermore, I have not attempted to perform novel splice junction 

detection or transcriptome assembly, so putative events or transcripts may be missed. Finally, our 
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average read depth (~20M fragments per sample, Figure A3.1A) is on the lower end for lncRNA 

and DS event detection, which often require deep sequencing of protein coding regions (100M 

fragments). However, the depth we use is clearly sufficient to detect ASD associated changes 

across analyses, including DS analyses. This is supported by the fact that we obtain concordant 

results with more homogeneous biological changes (dup15q shows stronger effects, for DS and 

lncRNA changes). Sequencing deeper in future work, or pooling some of the existing samples 

together, could help identify novel events that might be missed otherwise. However, washing out 

biological variation and exacerbating potential technical biases is a potential shortcoming of the 

latter approach. 

Finally, the following analyses are still in progress for this study at the time of writing this 

work: 

- evaluation of primate-specific lincRNAs using RNA-seq in mouse and macaque 

- deeper evaluation of splicing factors with differential splicing data from mouse 

experiments knocking down splicing factors such as SRRM4, RBFOX1, NOVA1, etc. 

- better evaluation of transcription factor enrichment, including evaluating changes 

combining binding information and TF knockdown experiments, and TF developmental 

trajectories 

- More rigorous evaluation of the relationship between co-expression modules and GWA 

findings by properly assigning genes to transcripts after linkage disequilibrium pruning 

- integration of these transcriptomic changes with epigenetic changes (this may not go into 

the final version of this work, but be published in collaboration with others) 

4.5. Materials and methods 

	
  
Please see A3 Additional Methods and Figures for Chapter 4 for all methodological information.  
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CHAPTER 5: 

Conclusions and future directions 
 

“But I don’t want to go among mad people," Alice remarked. 

"Oh, you can’t help that," said the Cat: "we’re all mad here. I’m mad. You’re mad." 

"How do you know I’m mad?" said Alice. 

"You must be," said the Cat, "or you wouldn’t have come here.”  

― Lewis Carroll, Alice in Wonderland 
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5.1: Toward high-resolution gene regulatory networks in brain development and autism 

 The work I present here identifies convergent biological pathways affected by genetic 

risk factors in ASD during brain development as well as pathways altered in brains of individuals 

who have an ASD diagnosis. However, this work is limited in that it cannot identify causal 

pathways or precise mechanisms. Here I discuss the major factors underlying these difficulties, 

and highlight potential solutions. Notably, these are all factors are related to the broader 

difficulties of omics methods in brain, as discussed in Chapter 1. 

5.1.a. Heterogeneity in ASD and lack of brain tissue 

Despite my finding concordance in ASD-associated signals at the transcriptomic level, 

understanding deeper molecular mechanisms is still hindered by the heterogeneity of ASD. For 

example, it would be valuable to understand if individuals might be sub-stratified based on 

combinations of splicing factor dysregulation and the consequence splicing changes. Toward this 

end, it would be valuable to understand whether these individuals share common mutations in 

particular splicing factors, or in a splicing factor network. However, this would require sample 

sizes at least a magnitude greater  (but likely more – it is difficult to know without more data). 

One possible way around this issue is to collect more genetically defined subtypes of 

ASD. Brain samples are available for individuals with Fragile X syndrome and other rare 

monogenic forms of ASD, which could add considerably to the current transcriptomic analyses. 

Another approach to obtain genetically similar patients might be to take a large set of genotyped 

control brain samples (e.g. 1000 brain samples from  various brain banks) and stratify them 

based on polygenic risk scores for ASD using a combination of common variants (Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013; Euesden et al., 2014). Once 

large and well-powered ASD GWAS are available, this could be used to identify a top and 
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bottom 10% of the cohort (e.g. comprising 100 individuals each) that are highly discordant in 

their risk for ASD (e.g. the top 10% might be 10x as likely to get ASD). Contrasting these 

groups could identify transcriptomic signatures related to ASD risk, but not confounded by 

downstream pathology such as microglial inflammation. 

Finally, given the large number of informative molecular assays, there is not enough 

biological material from a postmortem brain to perform all desirable analyses. Toward this end, 

biological assays requiring smaller amounts of input material without sacrificing assay resolution 

are necessary. For example, currently available low-input RNA-seq kits rely on poly(A) tail 

selection and are very sensitive to RNA degradation, and are therefore not ideal for postmortem 

brain transcriptomics. 

5.1.b. Whole tissue profiling of postmortem disease tissue remains a challenge 

 Another major challenge in this work is the biological interpretation of transcriptomic 

results from whole brain tissue. It is difficult to truly know whether the genome-wide 

transcriptomic signature is influenced by changes in neuronal subpopulations or by changes in 

signaling in those neuronal subpopulations without the appropriate detailed experiments. And 

even then, these experiments would be limited to looking at one or a few marker genes or 

proteins at a time, and this fundamentally loses the value of the genome-wide approach. 

To address this issue, some groups have used neuronal nuclei selection (Cheung et al., 

2010), and additional groups are pursuing this as an approach to sequencing more homogeneous 

transcriptomes and epigenomes. However, there is considerable heterogeneity within the NeuN+ 

population itself, and this will not resolve the issue of understanding accurate splicing alterations 

as these changes occur largely outside the nucleus. Additionally, transcriptomes from nuclei lose 

cytosolic and synaptic transcripts that contain isoform-level information, which clearly 
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contribute a unique transcriptomic signature. Single cell transcriptomics is promising (Pollen et 

al., 2014), but this method is in its infancy and is mostly applied to fresh tissue. Developing this 

method further for frozen tissue and moving it beyond shallow depth sequencing and marker 

detection will be necessary to fully utilize postmortem brain samples from disease. 

5.1.c. Current approaches cannot infer causality  

Ultimately, the major limitation to many areas of postmortem and disease brain profiling 

come down to the lack of causality in profiling experiments. Several approaches can be 

leveraged to obtain causal insights. First, high-resolution temporal profiling of representative 

samples may allow the inference of causal trajectories, but shifts in cellular populations may 

hinder this (Jaffe et al., 2015), so this ought to be done after purifying cell populations in some 

manner. 

Constructing appropriate in vitro samples from humans is also a promising approach 

(Dolmetsch et al., 2011), but the relevance of induced pluripotent stem cell models to human 

brain development and disease is still poor (Stein et al., 2014). Although these in vitro models 

may be valuable for therapeutic testing or directed experimental assays, they are unlikely to 

appropriately recapitulate disease due to the lack of in vivo cellular circuitry. Organoid models 

may change this with time (Lancaster et al., 2013), but currently no convincing proof of principle 

exists for a complex neurodevelopmental disease to be reliably modeled at a circuit level in vitro. 

 Finally, a systems genetics approach (Civelek and Lusis, 2013), which leverages genetic 

changes in the population (and is at some level very similar to the idea of profiling individuals 

with high vs low polygenic risk scores discussed above) and relates them to molecular alterations 

might be of value. However, these methods, which are discussed below, should be interpreted 

with caution in brain, as they are also susceptible to changes in cell type proportions. 
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5.2: Integrating the genome and transcriptome for causality 

As discussed above, even after accounting for cell loss and postmortem effects, a causal 

role cannot be assumed for transcriptional changes identified in postmortem tissue without 

evidence from causal perturbations. The most ambitious and exciting goal in systems biology is 

to elucidate the functional genetic architecture of diseases by systematically identifying causal 

effects using genome-wide variation to disambiguate primary and secondary changes that occur 

in disease. Two recent studies show that this goal is possible(Rhinn et al., 2013; Zhang et al., 

2013) in Alzheimer’s disease (AD) by using genetic variation as a filter or causal anchor to 

define genetically driven network-level changes in AD and provide experimental validation for 

the network predictions.  

Rhinn and colleagues(Rhinn et al., 2013) leveraged the differential susceptibility for AD 

conferred by alleles of the APOE gene; the APOE4 allele is a major genetic risk factor for AD, 

accounting for almost 30% of the genetic variance(Guerreiro et al., 2012). The researchers used 

existing transcriptomic and genetic variation data in AD derived from an eQTL study(Webster et 

al., 2009)to compare DGE genes between individuals homozygous for APOE3 (low-risk allele) 

with and without AD, and DGE between unaffected individuals with and without one APOE4 

allele (high-risk allele). The expression signature in APOE4 carriers was similar to that of 

patients with AD(Rhinn et al., 2013), suggesting that unaffected APOE4 carriers show a 

prodromal molecular AD-like transcriptomic state before major pathological alterations manifest. 

The authors applied DCA to compare the transcriptome-wide correlation of each gene in the 

unaffected APOE4 group versus the affected APOE3 group(Rhinn et al., 2013) and filtered the 

changes to a list of candidate genes predicted to cause transcriptomic dysregulation in AD. This 

approach is similar to assessing co-expression connectivity within a module, but at a genome-
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wide network scale. Experimental validation in a neuroblastoma cell line and in human neurons 

from induced pluripotent stem cells confirmed that selective pharmacologic inhibition of one of 

the top candidates, SV2A, decreased pathological beta amyloid accumulation. The authors further 

related their findings back to patients by demonstrating that an interaction between two single 

nucleotide polymorphisms in top candidate genes (SNPs; in FYN and RNF219) decrease the age 

of onset in AD in APOE4 non-carriers using GWAS data. Furthermore, they showed that the 

RNF219 SNP modulates beta amyloid levels through assessing positron emission tomography 

scans from patients using publicly available data from the Alzheimer’s Disease Neuroimaging 

Initiative(Mueller et al., 2005). This approach relates genotype to phenotype to discover novel 

mechanisms and demonstrates how genotype, transcriptomic and phenotypic data may be 

integrated across studies using publicly available data. 

An even more generalizable strategy using an eQTL network approach was undertaken 

by Zhang and colleagues(Zhang et al., 2013), who applied WGCNA on hundreds of postmortem 

brain samples from individuals with AD, other neurodegenerative disease, and controls. The 

team used transcriptomic networks to show that multiple transcriptional modules were 

remodelled in AD. Gain of connectivity was observed in immune and neurogenesis pathways, 

whereas loss of connectivity was predominant in pathways related to GABA signalling and 

myelination. eQTL analysis identified over 11,000 SNP-gene associations that were enriched in 

several modules. These eQTL associations provide a causal anchor since the gene expression 

changes are caused by genetic variation, and not vice versa. The researchers then applied 

Bayesian network analysis to evaluate putative causality in network structure on an AD-related 

microglial module, implicating TYROBP as a regulatory hub. The regulatory role of TYROBP 

was validated by overexpressing two forms of the gene in mouse and subsequently performing 
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RNA-seq. Remarkably, the magnitude of DGE of genes in the Tyrobp-overexpressing mice was 

related to the distance of the gene from TYROBP in the human causal network, with closer genes 

showing the greatest changes in expression(Zhang et al., 2013). This suggests that the network 

structure is predictive of effects of hub genes on other genes in the network, similar to previous 

studies using WGCNA(Winden et al., 2009).  

These two studies demonstrate the power of integrating genomics with transcriptomics 

and correlational networks using large sample sizes (>100 cases and controls in each), and 

establishing causality by evaluating genotype-phenotype and eQTL associations. Future studies 

that combine the mechanistic rigor and resourceful study design of Rhinn and colleagues(Rhinn 

et al., 2013) with the eQTL methodology and causal network approach of Zhang and 

colleagues(Zhang et al., 2010)  will advance the capacity of network studies to leverage causal 

genetic effects in CNS disorders. 

In the context of neurodevelopmental diseases, a systems genetics approach over early 

developmental time periods in individuals with disease might be extremely valuable, though this 

would require hundreds to thousands of fetal brain samples evaluated for eQTL. Alternatively, 

using a polygenic risk score, one might stratify individuals as done by Rhinn et al. to see whether 

the prodromal effects of incipient disease might be detected. This could be particularly 

informative at prenatal time points, as it would identify the aggregate effect of ASD-associated 

common variant risk on the prenatal transcriptome. 

5.3: Conclusions and future directions 

In this work, I have discussed how transcriptomic and other omic approaches can 

discover new biology in ASD in an unbiased, powerful, and reproducible manner. Combining 
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resources across individual studies permits novel and aggregate analyses that identify genes, 

pathways, or other relationships that cannot be detected at the level of individual studies.  

Currently, much of neuroscience research is still focused on candidate genes and 

candidate hypotheses, so sceptics may question the value of measuring entire systems as done 

throughout this work. However, complexity cannot be ignored; measuring genome-wide changes 

in conjunction with studying individual genes and pathways will be essential to address the true 

underlying mechanisms of neurodevelopmental disorders. In the future, I hope to perform well-

designed and reproducible transcriptomic (and other omic) studies in brain that simultaneously 

evaluate hypotheses in an unbiased manner and generate new hypotheses. The results of such 

high-quality genome-wide studies will be essential to develop and test hypotheses that look 

beyond where current knowledge ends. 
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APPENDIX 
 

“We conclude that the human appendix contains a robust and varied microbiota distinct from the 

microbiotas in other niches within the human microbiome. The microbial composition of the 

human appendix is subject to extreme variability and comprises a diversity of biota that may play 

an important, as-yet-unknown role in human health.” 

― Guinane et al., 2013 supporting the idea that the appendix may not be useless and justifying 

that its contents are expected to be variable across the three following appendices (Guinane et al., 

2013). 
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A1. Additional Methods and Figures for Chapter 2 

A1.1. Extended Methods 

Developmental expression data: BrainSpan developmental RNA-seq data (publicly available via 

www.brainspan.org) summarized to Gencode v10 (Harrow et al., 2006) gene-level reads per 

kilobase million mapped reads (RPKM) values were used (Table A1.1C for sample details, 

BrainSpan website for data collection methods). I used the RNA-seq level data instead of 

microarray data as it better reflects the dynamic range of transcripts across development, 

particularly low-expressed transcription factors. Furthermore, networks based on RNA-seq have 

the advantage of including relevant intermediary non-coding transcripts in the co-expression 

relationships and will allow for future studies to investigate non-coding regions for putative 

function by mapping relevant mutations to these networks. 

Count-level RNA-seq data from 52,376 transcripts across 528 samples was normalized 

for GC content (Hansen et al., 2012) followed by batch effect (Johnson et al., 2006) and outlier 

removal. Only the neocortical regions were used in this analysis – dorsolateral prefrontal cortex 

(DFC), ventrolateral prefrontal cortex (VFC), medial prefrontal cortex (MFC), orbitofrontal 

cortex (OFC), primary motor cortex (M1C), primary somatosensory cortex (S1C), primary 

association cortex (A1C), inferior parietal cortex (IPC), superior temporal cortex (STC), inferior 

temporal cortex (ITC), and primary visual cortex (V1C). 

Genes were defined as expressed if they were present at an RPKM of 1 in 80% of the 

samples from at least one neocortical region at one major temporal epoch (based on the 

BrainSpan periods), resulting in 22,084 coding and non-coding transcripts. Of these, 15,591 

(representing 15,585 unique gene symbols) were protein coding as annotated by Gencode v10 
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(which corresponds to Ensembl 65), a similar number to those observed in a microarray analysis 

of a subset of these brain samples (Kang et al., 2011). 

The samples were split into development (PCW 8 to 3 years of age) and later maturation 

(after 3 years of age to 40 years of age). RNA integrity number (RIN, a surrogate marker for 

RNA quality) was highly correlated (r = -0.33, p = 1.3x10-6) to age during early development, so 

I filtered for RIN >=9, this left 146 samples for the developmental time points and reduced the 

RIN effect (r = -0.10, p = 0.24). This resulted in the 146 high-quality samples ranging from PCW 

8 to 1 year of age that were used to construct the developmental network. Time points prior to 

PCW 10 and between 1 year of age and 8 years of age were not used as the anatomy of earlier 

regions is less well defined for the former, and samples did not pass the RIN threshold for the 

latter. Finally, expression values were log-transformed (log2[RPKM+1]). The processed data 

used for network analysis are available with the supplemental code. 

 

Weighted Gene Co-expression Network Analysis: All analyses were carried out in R (version 

2.15.1) on a 64-bit Linux system equipped with a 2xIntel Xeon X5690 with Westmere 3.47Ghz 

processors and 96GB RAM. All network plots were constructed using the igraph package in R 

(Csárdi and Nepusz, 2006). 

Briefly, correlations were estimated in a robust manner using the biweight midcorrelation 

(Langfelder and Horvath, 2012). Next a signed weighted correlation network was used to 

identify co-expression modules comprised of positively correlated genes with high topological 

overlap (Zhang and Horvath, 2005).  Modules were defined as branches of a hierarchical cluster 

tree using the hybrid dynamic tree cut method (Langfelder et al., 2008). For each module, the 

expression patterns were summarized by the module eigengene (ME), defined as the right 



	
   144 

singular vector of the standardized expression patterns. Pairs of modules with high module 

eigengene correlations (r > 0.85) were merged. This maintains a level of decorrelation among 

MEs (Table A1.1B). MEs for modules are plotted in Figures 2.2 and A1.1, with trajectories 

visualized using the scatter.smooth function in R with a second order polynomial fit to the points 

(otherwise default parameters were used) after grouping by age as shown on the axes. 

In more detail, the biweight midcorrelation, which is more robust to outliers compared to 

Pearson correlation, was implemented as defined in the default settings of the bicor function in 

the WGCNA package. A weighted signed network was computed based on a fit to scale-free 

topology, and a thresholding power of 26 was chosen (as it was the smallest threshold that 

resulted in a scale-free R2 fit of 0.8), and the pair-wise topological overlap (TO) between genes 

was calculated (Zhang and Horvath, 2005). These transformations effectively monotonically 

transform pair-wise correlation values from [-1,1] to TO co-expression values from [0,1], where 

values close to 1 represent highly shared neighborhoods of co-expression. The TO captures 

relationships among neighborhoods of genes, and is therefore more robust than pairwise 

correlation alone for clustering genes by similarity. In fact, the TO approach has been shown to 

be as effective as mutual information in defining modules for large-scale gene networks (Allen et 

al., 2012). 

This TO dendrogram was used to define modules using the cutreeHybrid function in 

WGCNA (Langfelder et al., 2008), with a minimum module size set to 200 genes and the 

deepSplit parameter set to 2. The connectivity of every gene in every module (assessed by 

correlation to the ME, kME) is available in Table A1.1A. I tested additional parameters and 

found that the modules I focus on were robustly identified under variations of these parameters. 
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Further network characterization – permutation, resampling, and preservation analyses: Further 

characterization of the co-expression network and modules was carried out by asking 1) which 

modules represented co-expression above chance, 2) whether modules were robustly defined in 

the current set of samples, 3) whether modules reproduced in independent data. I first compared 

the summed correlation of genes in each module with 10,000 randomly drawn gene sets 

representing modules of the same size, and found that every module exhibited co-expression 

above chance (all modules, p < 1x10-4). 

Next, I asked whether module structure was highly sensitive to removing samples 

involved in the initial calculation of the network. I reconstructed networks 100 times with the 

same parameters but by randomly resampling from the initial sample set. Modules were found to 

be reproducible with perturbations to the initial individual subject, regional, and temporal 

structure, and the fraction of times each gene was assigned to the same module is reported in 

Table A1.1A. To validate co-expression in independent data, I asked whether modules 

represented co-expressed sets of genes that could be found in other datasets. Module preservation 

analysis was used to calculate the Zsummary statistic for each module. This measure combines 

module separability, module density, and intramodular connectivity metrics to give a composite 

statistic where Z > 2 suggests moderate preservation and Z > 10 suggests high preservation 

(Langfelder et al., 2011). The preservation analysis was performed in three epochs from an 

independent dataset of prefrontal cortex microarray spanning development (Colantuoni et al., 

2011). M13, M16, and M17 are well-preserved at all time points, while M2 and M3 are highly 

preserved only at the earliest time point (Figure A1.1B). The preferential preservation of M2 and 

M3 during early development was also observed in the BrainSpan adult data (Table A1.1B). This 

analysis demonstrated that these findings are highly reproducible. Modules that were enriched 
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for ASD risk genes are set off in bolded italics, and M2, M3, M13, M16, and M17 are all –

log10(p-values) < -40 in the independent data from early development, indicating that these 

modules are highly reproducible in human fetal cortex. 

I also assessed preservation in normal human neural progenitor (NHNP) development 

(Konopka et al., 2012). Plots of MEs and the average normalized expression in modules enriched 

for ASD risk genes show that NHNPs show a similar temporal trend as early in vivo 

development  (PCW 8-20). Comparing Figure 2.2C to Figure A1.1C suggests that at least part of 

the transcriptional trajectory captured by these modules reflects the differentiation of neurons, 

and conversely, that the differentiation of neurons can model these transcriptional trajectories in 

vitro. 

 

Gene Ontology Analysis: Genes in network modules were characterized using GO Elite (version 

1.2.5 updated on 7/7/12) to control the network-wide false discovery rate using the cortex-

expressed genes as background (Zambon et al., 2012). GO Elite uses a Z-score approximation of 

the hypergeometric distribution to assess term enrichment, and removes redundant GO terms to 

give a concise output. I used 10,000 permutations and required at least 10 genes to be enriched in 

a given pathway at a Z-score of at least 2. Gene Ontology enrichment results fulfilling these 

criteria are reported for all modules in Figure 2.2C, Figure A1.1D, and Table A1.1B. 

 

Protein-Protein Interaction Analyses: Protein-protein interactions were compiled from two 

resources, InWeb (Rossin et al., 2011) and BioGRID (Stark, 2006). Data were downloaded for 

InWeb via the DAPPLE web resource at http://web.mit.edu/~erossin/Public/ on 3/13/2013. 

BIOGRID 3.2.98 data were downloaded on 3/21/2013 and restricted to physical interactions 
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observed in Homo sapiens. I used only non-redundant interactions, and defined all interactions as 

undirected edges in a binary network. A union of the two networks was taken, and a degree-

matched permutation analysis was applied in order to control for biological and methodological 

biases in PPI data. For every module, the subset of compiled PPIs between genes in that module 

was extracted and all edges were counted. The entire PPI dataset was split into percentiles based 

on the degree of connectivity of every gene to other genes, and equally sized null modules 

matching the degree percentiles in the observed module were generated, and their interactions 

were counted over 10,000 iterations. A p-value was calculated based on the rank of the observed 

module count among the null module counts (Table A1.1B). 

I also assessed whether the enriched subsets of RDNVs are interconnected by PPIs above 

chance using DAPPLE (Rossin et al., 2011), which uses a within-degree within-node 

permutation method that allows one to rank PPI hubs by p-value. RDNV-affected genes in both 

M2 and M3 show increased PPI connectivity (Figure A1.2). Thus, independent data supports the 

coherent nature of these co-expressed RDNV affected genes, as they are highly connected at the 

protein-protein interaction level. 

 

Criteria for Shared Function by Multiple Systems Biology Resources: For downstream 

characterization of modules, I kept modules that fulfilled two of the following three criteria: 1) 

significant preservation in independent developmental expression data after Bonferonni 

correction; 2) enrichment for protein-protein interaction after Bonferonni correction; 3) 

enrichment for GO terms at an FDR < 0.01. From the initial set of 17 modules, 12 passed these 

criteria of reproducibility and independent functional validation. These 12 modules were used for 

downstream analyses. 
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Gene set over-representation: All enrichments of gene sets were performed using a two-sided 

Fisher exact test with 95% confidence calculated according to the R function fisher.test. I 

preferred p-values from this two-sided approach to the one-sided test (which is equivalent to the 

hypergeometric p-value) as I do not a priori assume there will be enrichment (Rivals et al., 

2007). To reduce the likelihood of false positives, I focus on FDR adjusted p-values (Benjamini 

and Hochberg, 1995). I computed the false discovery rate for all gene set enrichments relevant to 

the primary analysis (candidate genes, RDNV discovery set, and FMRP interactors) based on 

204 tests (Table A1.3), and focused on enrichments with OR > 1 passing FDR < 0.05. For the 

RDNV replication set, given the smaller sample size and differing methodology of the 

replication study, I required an OR > 1, p < 0.05 or validation. The stricter FDR threshold may 

result in false negatives when the claim is made that a gene set is not enriched in a given module, 

e.g. when I claim ID genes are not enriched in M2, M3, M13, M16, or M17. Therefore, to reduce 

the risk of false negatives for such claims I require p > 0.05 for non-enrichment. I make note of 

the enrichment trends that do not reach significance where applicable, as these processes or 

pathways may be significant once additional data is available. Thus, in favoring stronger 

enrichment when claiming enrichment and in favoring weaker enrichment when claiming lack of 

enrichment, I ensure my claims are more accurate. 

It is critical that the background set in an over-representation analysis reflect the claim 

being made. I use a cortex-expressed protein coding gene set for enrichment analyses unless 

otherwise specified in Table A1.2B. Protein coding is defined by the biotype annotation 

“protein_coding” in Gencode. Ensembl Gene IDs in Gencode v10 were overlapped according to 

the HUGO symbol, and all conversions among identifiers were performed using the R package 
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biomaRt. This set of 20,007 genes was intersected with the 22,084 cortex-expressed transcripts, 

resulting in a “cortex-expressed background” set of 15,585 unique gene symbols. Gene 

membership in each set is delineated in Table A1.1A. In the case of asdM12 and asdM16, I used 

the set of 8,108 protein coding genes that had probes called as expressed in Voineagu et al., 

2012. In the case of FMRP interactors, I use one-to-one human-mouse protein coding orthologs 

as the background set. 

 

ASD and ID implicated gene sets: The ASD SFARI list was compiled using the online SFARI 

gene database, AutDB (https://gene.sfari.org/autdb/, accessed 8/20/2012). The database contains 

ASD candidates based on varying levels of evidence from the published literature (Basu et al., 

2009). I restricted this list to genes with strong genetic evidence by filtering by the category S 

(syndromic) and evidence levels 1-4 (high confidence - minimal evidence). The minimal 

evidence category encompasses any gene in an ASD-associated multigenic CNV, genes near 

GWAS variants, convincing but not replicated association study results, and genes with multiply 

identified mutations that were not identified in a genome-wide statistical context. Importantly, 

this prioritization excludes genes with equivocal evidence (one of multiple genes found under a 

linkage peak, for example) and genes that functionally interact with higher-confidence genes 

(PPI, co-expression, or other network-based categorizations). This resulted in 155 total candidate 

ASD risk genes that have observed genetic evidence. 

I obtained asdM12 (444 genes) and adsM16 (386 genes) from an independent gene 

expression study that identified reproducible gene expression changes in ASD post-mortem 

cortex and applied WGCNA to identify modules of dysregulated genes ASD (Voineagu et al., 

2011). An important rationale behind using asdM12 is that it is possible that the SFARI ASD 
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gene set is biased by the likely over-representation of studies investigating candidate synaptic 

genes in ASD, but asdM12 is agnostic to such biases. 

I also considered a set of 72 CNV-affected genes that were highly interconnected by a published 

functional network analysis called NETBAG, which I refer to as NETBAG CNV genes (Gilman 

et al., 2011). Although this gene set exhibited elevated ORs (>1.5) in M2, M3, M16, and M17, I 

did not observe significant enrichment for the NETBAG genes in any module due to the small 

size of the gene set. Since the NETBAG network constructed without considering brain tissue 

specificity or molecular relationships from brain development among genes (shared phenotype, 

shared PPI, shared annotated terms from many resources), I asked if it was coalescing genes 

from different neurobiological pathways into one network. Post-hoc analysis testing enrichment 

of NETBAG genes in ASD modules (M2, M3, M13, M16, or M17 as one set) confirmed 

enrichment for NETBAG genes in this larger non-specific set (p = 5.3x10-3, OR = 2.1 [1.2-3.5]), 

suggesting that incorporating brain gene expression added specificity above previous methods in 

these analysis. 

The ID set was compiled based on four reviews (Inlow, 2004; Lubs et al., 2012; Ropers, 

2008; van Bokhoven, 2011) of genes that have been associated with ID. After removing 

redundant gene symbols, this resulted in 401 genes. Notably, GO enrichment of the ID set using 

DAVID implicates the terms disease mutation, mental retardation, and epilepsy as the top three 

enriched terms, but many other terms associated with syndromic disorders and brain disorders 

are also enriched, suggesting this gene set agrees well with systematic annotation. 

I also analyzed enrichment for overlapping ASD and ID genes (ASD/ID overlap, 38 

genes) and ASD genes with ID-implicated genes removed (ASD only, 117 genes) and ID genes 

with ASD implicated genes removed (ID only, 363 genes). These were also used in Figure 2.6 
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and Figure A1.4 to ensure the overlapping genes did not confound the layer enrichment analyses. 

The intersection of candidate gene sets with genes expressed in cortex is available in Table 

A1.1A, while the full lists are in Table A1.2A. 

I obtained RDNVs from four publications (Iossifov et al., 2012; Neale et al., 2012; 

O’Roak et al., 2012; Sanders et al., 2012). Sanders et al., O’Roak et al., and Neale et al. were 

used as a discovery set as they shared similar criteria for calling variants, while Iossifov et al. 

was used as a replication set as more stringent filters were used to avoid false positives which 

may have increased the false negative rate. I note that the two studies predominantly sequenced 

trios (Neale et al., 2012; O’Roak et al., 2012), thus due to this and the reduced hit rate of protein-

disrupting and missense RDNVs in siblings, I have fewer total genes available from unaffected 

siblings which decreases power to assess gene set enrichment in siblings (Table A1.2B). I 

compiled all rare de novo mutation affected genes reported in these studies and categorized them 

as protein disrupting (there is a protein-coding change that induces a nonsense, splice-site, or 

frameshift mutation), missense (an amino acid change), or silent (no amino acid change). 

Contributions of each variant type from each study are delineated in Tables A1.2C-D. In total, 

these studies identify 125 protein disrupting, 559 missense, and 236 silent RDNV hit genes in 

965 affected individuals and 36 protein disrupting, 307 missense, and 126 silent RDNV hit genes 

in 565 unaffected siblings, though the variant counts are higher as some genes are affected by 

recurrent RDNVs. I mapped the position of mutation for these variants to Ensembl gene models 

using biomaRt to ensure that all symbols complied with Gencode v10. 

 

Robustness of RDNV enrichments: One concern when taking variants across multiple studies is 

the difference in exome capture, DNA sequencing, and bioinformatic analyses that could lead to 
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results being driven by only one study (Gratten et al., 2013; Leek et al., 2010). Table A1.2D 

shows that all studies contribute to the observed results. The ratio of protein disrupting and 

missense variants to silent variants is similar across studies (2.4-4.7, combined across studies 

3.0), while the ratio of protein disrupting, missense, and silent variants in probands compared to 

siblings is similar in the two studies with matching probands-siblings pairs. Finally, M2 and M3 

were enriched for protein disrupting and missense variation in M2 and M3 in the vast majority of 

resampled networks (Figure A1.2A), demonstrating that enrichment for RDNVs in M2 and M3 

is extremely robust. 

 

Comparative Enrichment of Common Variants from Genome-Wide Association Studies: In order 

to test whether common variants differentially affect ASD implicated modules M2, M3, M13, 

M16, and M17, I compared the distribution of p-values from two genome-wide association 

(GWA) studies, one from the Autism Genome Project (AGP) and another from the Autism 

Genome Resource Exchange/Children’s Hospital Philadelphia (AGRE/CHOP). Both have been 

published previously, though no single finding was replicated between the two at a genome-wide 

significant level (Anney et al., 2012; Wang et al., 2009). Of note, the published AGRE cohort 

overlaps with the AGP cohort. I used a modified set of AGRE subjects that is independent of the 

AGP cohort for this analysis, and obtained GWA p-values by re-running the association using 

permutation-based tests in PLINK (Purcell et al., 2007). It had previously been shown that 

common variants from the AGRE/CHOP GWA were enriched in asdM12 (Voineagu et al., 

2011) using a modified Kolmogorov-Smirnov (K-S) test (Wang et al., 2010). For each gene 

model and the 30kB upstream from that gene, the SNP with a minimum p-value from the GWA 

is taken to tag the gene, and an enrichment statistic is calculated. Genes were tagged by SNPs 
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using the Ensembl gene model and dbSNP137 SNPs and their locations in on hg19. The 

distribution of SNP p-values near genes is then calculated for a given pathway (or in this case, a 

module). 

I utilized a similar approach, but applied a permutation-based procedure to assess pair-

wise differential enrichment for low p-value SNPs from GWA in order to control or differences 

in gene size, since longer genes are more likely to contain a lower p-value SNP by the above 

definition of tagging. First, I compared the distribution of the SNPs in a pair of modules, and 

calculated the Kolmogorov-Smirnov test statistic. Next, I drew 10,000 pairs of distributions 

sharing the same number of tagging SNPs as the initial pair (controlling for gene size and 

haplotype structure), and re-computed the K-S statistic each time. Finally, I calculated a p-value 

based on the rank of the observed K-S statistic in this distribution. I also conducted this test with 

p-values from a GWAS in psoriasis (Nair et al., 2009), and found that none of the pairwise 

comparisons passed FDR < 0.05. 

 

Transcription Factor Binding Site (TFBS) Enrichment: TFBS enrichment analysis was 

performed by scanning the canonical promoter region (1000bp upstream of the transcription start 

site) for the genes in each co-expression module. For each TF, I assessed the top 200 connected 

genes (ranked by kME) in each module using the following steps: 1) putative motifs bound by 

the TF were obtained from TRANSFAC (Matys, 2003). 2) upstream sequences of these 200 

genes were scanned with the Clover algorithm (Frith, 2004) to calculate motif enrichment; and 

iii) enrichment above background was calculated using the MEME algorithm (Bailey and Elkan, 

1994). I compared enrichment for each TF motif in three different background datasets to ensure 

robustness: 1000 bp sequences upstream of all human genes, human CpG islands, and the 
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sequence of human chromosome 20. P values are computed by drawing 1000 sequences of the 

same length and testing them for enrichment using MEME, and computed the p-value based on 

the observed motif enrichment rank versus the randomized sets. I report TFs with p < 0.05 across 

all 3 backgrounds (Table A1.3A-B). 

I also asked whether existing ChIP data for TFs from either ENCODE (The ENCODE 

Project Consortium, 2011) or other compiled genome-wide ChIP data (Lachmann et al., 2010) 

(ENCODE ChIP data website: 

http://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html, accessed 

2/6/2013; ChEA data website: http://amp.pharm.mssm.edu/lib/chea.jsp, accessed 5/8/2013) 

supported computationally predicted binding sites. For TFs where a dataset was readily 

available, I report the fraction of sites that overlap in the existing data. Most of these TF binding 

sites come from non-neuronal cell lines, and many come from proliferating cells (most ENCODE 

lines are cancer cell lines). I therefore cautiously interpret this experimental support for 

computationally predicted binding sites, but find it encouraging that a moderate to large fraction 

of predicted binding sites have been observed in experiments, suggesting that it is at least 

possible for the TF to bind near the predicted target gene. 

 

Layer-specific and Cell-type Marker Enrichment: To quantify layer-specific gene expression 

during development, I utilized micro-dissected human fetal neocortical laminar gene expression 

datasets from BrainSpan, two for each of the earlier and later fetal periods. The 15 PCW and 16 

PCW data together comprises 351 samples in total, including 6 regions and 8 layers, while the 

two 21 PCW brains’ data comprises 337 samples. Entrez gene IDs corresponding to array probes 

were mapped to Gencode v10 gene symbols using biomaRt. Since multiple probes can cover 
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each gene, I picked the probe with maximum mean expression level to represent each gene. For 

adult layers, I used primate neocortical laminar gene expression data from macaque data 

comprising 10 cortical regions and 5 layers within each region (Bernard et al., 2012). I used adult 

cortical dissections for cell-type analyses, as I found that laminar differential expression exhibits 

gradients in the fetal data. In contrast, differential expression of genes in adult primate cortical 

data at t > 2 reflected well ISH patterns of laminar specificity seen in human (compare specific 

genes where overlaps occur with Zeng et al., 2012). 

For laminar enrichment, the limmar package in R was used to calculate the t-statistics of 

differential expression for all genes in each layer against all the other layers. Then, for each gene 

set, the difference in the distribution of t-values in each layer for that set versus background was 

computed using a Z statistic. This quantifies the skew of differential expression t-values of each 

gene set in each layer. If there is no layer specificity, the distribution of t-values from a gene set 

is expected to follow the same distribution as the background set (with Z = 0), while a significant 

skew toward differential expression in a layer results in a positive Z score. I calculated an FDR 

cut-off across all enrichments in all layers (Z = 2.7, FDR = 0.01) and computed bootstrapped 

confidence intervals for each enrichment. To quantify cell-marker relationships, I used the same 

method, with the t-value replaced by the correlation of each gene to the first principal component 

of a set of known cell marker genes in the adult layer data (Table A1.1A lists cell-type marker 

genes and r values). I reported both strong, FDR-corrected enrichment, as well as nominal 

enrichment to emphasize trends. Statistical comparison of enrichment trends across layers 

between ASD and ID gene sets set was performed by 1) computing the difference in the Z score 

between the two sets for each layer, 2) summing this difference across all layers, and 3) 
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comparing this to the distribution of summed differences in layers of 10,000 permuted pairs of 

sets matched for gene set size (see Extended Experimental Methods for details). 

 

Network analysis resources and R code parameters for network analysis: Table A1.4 shows an 

example of prioritizing RDNV affected genes from a module using information from these 

analyses (see Discussion for details). Future work using the same methods here can increase the 

temporal tiling (which could result in more specific modules) and expand the pool of mutations 

implicated in ASD (this would improve the signal-to-noise in the enrichments). I have provided 

the code used in this analysis that will allow future work to easily update and incorporate this 

level of analysis. I provide a template for other to build upon by providing the R code and 

processed expression data at: 

http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/developingcortex 

to allow reconstruction of networks with additional data and mapping of new genes as they are 

discovered.	
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A1.2. Extended Figures 
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Figure A1.1, related to Figure 2.2. Further Characterization and Validation in Independent Data of 

Coexpression Network and Modules (A) Module robustness analysis was carried out by reconstructing networks 

with the same parameters and randomly resampling from the initial set of samples (as described in Langfelder and 

Horvath, 2012). Modules were found to be reproducible with perturbations to the initial individual subject, regional, 

and temporal structure, and the fraction of times each gene was assigned to the same module is reported in Table 

A1.1A. (B) Module preservation analysis was used to calculate the Zsummary statistic for each module (Langfelder et 

al., 2011). This permutation test assesses whether module density and intramodular connectivity are preserved. An 

advantage of the Zsummary statistic is that it allows one to rigorously argue that a module is not preserved (Zsummary< 

2), if it is moderately preserved (Zsummary > 2), or if it is highly preserved (Z > 10). I applied the module preservation 

analysis to assess whether modules are preserved in three epochs from an independent dataset of prefrontal cortex 

microarray spanning development (Colantuoni et al., 2011). At the first time window (Panel B, left), many modules 

were preserved, while at later time points some modules were not preserved. Of note, M13 and M16 are highly 

preserved at all time points, while M2 and M3 are highly preserved at the earliest time point, and moderately or 

weakly preserved thereafter. This non-preservation of M2 and M3 in later time points is also seen in the adult 

BrainSpan data (Table A1.1B). Bonferonni-corrected p-values for these Z-scores are reported in Table A1.1B. 

Modules that were enriched for ASD risk genes are shown in bolded italics. (C) Module preservation analysis in 

Table A1.1B indicates that modules are preserved during normal human neural progenitor (NHNP) development 

(Konopka et al., 2012a), despite differences in in vivo and in vitro neural development. Plots of expression 

trajectories based on the eigengene and the average normalized expression in modules enriched for ASD risk genes 

show that NHNPs show a similar temporal trend as early in vivo development  (PCW 8-20). Compare modules from 

Figure A1.1D to Figure 2.2C. This suggests that modules, at least in part, reflect the differentiation of neuronal 

progenitors to neurons. (D) Module eigengenes and gene ontology for remaining 6 modules that pass 2/3 replication 

criteria described in A1 Extended Methods. For each plot, the eigengene trajectory and gene ontology are plotted, 

with top 4 GO terms passing Z > 2 (for FDR values see Table A1.1B). See Table A1.1B for eigengenes and 

additional details for GO term enrichment. 
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Figure A1.2, related to Figure 2.4. Direct and indirect protein-protein interaction networks for RDNV-

affected genes in M2 and M3. (As obtained from InWeb PPIs via DAPPLE (Rossin et al., 2011)). (A) M2 direct 

interaction network obtained by inputting genes in M2 with a variant identified in the combined set of protein 

disrupting and missense RDNVs. (B) M2 indirect interaction network, which allows for one node to be skipped 

when calculating enrichment and network relationships. (C-D) Same as A-B, for M3. Expected values and p-values 

are calculated via the DAPPLE’s within-degree within-node permutation methodology that allows ranking of PPI 

hubs by p-value. PPI hubs in the RDNV sub-network from M2 with p < 0.01 include: KDM6B, SRCAP, ZNF311, 
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and RTF1. PPI hubs for the RDNV sub-network from M3 with p < 0.01 include: DHX9, RUVBL1, SMARCC2, 

HNRNPF, HNRNPUL1, MSH6, SMARCC1, GCN1L1, NFIA, KIAA1967, PPP1R15B, FAM129B, XPO5. 

	
  

	
  

Figure A1.3, related to Figure 2.4. Further characterization of ASD risk gene enrichment in modules and 

P(HI) score comparisons. (A) Enrichment for Protein Disrupting and Missense RDNV affected genes from 

probands in M2 and M3 from the 100 resampled networks shows that the enrichment is robust to perturbations in 

network structure. (B-C) In B), comparison of P(HI) scores among background and three mutation-affected gene 

categories reveals a significant difference, but in C) a comparison of scores excluding background reveals no 
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significant difference, suggesting that all RDNV-affected gene sets, including those affected by silent variants, are 

predicted to be more deleterious than background. Thus, stratification of protein disrupting and missense RDNV 

affected genes distinguish them from the silent set requires additional information. (D) Stratifying the RDNV 

affected gene sets by co-expression relationships, based on membership in M2 or M3, yields a significantly elevated 

P(HI) score both sets compared to the silent set. (E) Differential enrichment for common variants suggests that M13 

is enriched for common variant genome-wide association (GWA) signal compared to M2 and M3 (see A1 Extended 

Methods for details). M16 is also preferentially affected by common variation, but only in one GWA. AGP refers to 

the GWA performed in by Anney et al. (Anney et al., 2012), while AGRE/CHOP refers to a GWA by Wang et al. 

(Wang et al., 2009a). Of note, the latter set was re-analyzed with samples overlapping the AGP cohort removed to 

establish independent sets. 

	
  

	
  

Figure A1.4, related to Figure 2.6. Laminar enrichment for PCW 21 and cell-type marker enrichment in 

adult primate cortex. (A-B) Laminar enrichment at PCW 21 shows an identical pattern of enrichment to PCW 

15/16 for candidate genes and B) modules. (C-D) Cell-type marker enrichment in the adult primate cortex for 

candidate genes and D) modules. This enrichment was calculated using the distribution of Pearson correlation values 

to the first principal components of the set of cell markers for each cell-type as delineated in Table A1.1. Z > 2.7 is 

equivalent to an FDR < 0.01, and 95% CIs were derived from bootstrapping the underlying expression data 10,000 
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times, as in Figure 2.6. For detailed t-values for each gene as well as cell markers used for Figures A1.4C and D, see 

Table A1.1. 

 

A1.3. Extended Tables 

Please see the electronic tables associated with this document for extended tables (Tables A1.1-

4). Descriptions for these tables follow: 

Table A1.1, related to Figures 2.2. Network analysis details and analysis results for genes 

and modules compiled across analyses. (A) Network statistics, gene set membership, laminar 

specificity, and cell-type enrichment information for all 22,084 protein-coding and noncoding 

transcripts. For each gene, this includes (in order from left to right) gene ID and associated 

information from Gencode v10, module assignment (by color and label) and robustness 

(P(Assigned to same module in resampled network)), average expression level at multiple 

temporal epochs, square root of the adjusted R2 when using neocortical region as the factor in a 

linear model with expression values as the outcome, correlation of the transcript to RIN, 

connectivity to the module eigengene (kME, correlation to the ME, a measure of centrality in the 

module) across all modules (all related to Figure 2.2), membership in candidate and RDNV gene 

sets (related to Figures 2.3 and 2.4), t-values for layer-specificity from limma differential 

expression analysis (Figure 2.6, Figure A1.3A-B), and r values from correlation to marker genes 

from cell-type marker analysis (Figure A1.3C-D). In the Module Label column, genes assigned 

to M7, the grey module, are marked with a “-“ as the grey module represents the set of genes not 

strongly co-expressed with other genes. (B) Module-level statistics, including GO term 

enrichment, enrichment of PPIs, module preservation, and module eigengenes across all samples. 

This includes (in order from left to right), a summary of the independent levels of validation 

supporting each module, the proportion of variance explained by the ME, the top 5 GO terms 
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from GO Elite, PPI enrichment statistics (p-value, observed interactions, and percentiles of 

randomized distributions), module preservation in 4 independent datasets (including the Zsummary 

and the associated Bonferonni-corrected p-values), pairwise correlation between MEs, and the 

ME value across all samples for each module. For details, see A1 Extended Methods. 

C) List of BrainSpan neocortical samples used to construct developmental networks. 

 

Table A1.2, related to Figure 2.3, 2.4, and 2.5. Gene sets and enrichment analysis for 

curated lists and RDNV lists. (A) Gene lists used for enrichment analysis in this study. (B) 

Network-wide enrichment for candidate gene sets, RDNV-associated gene sets, and FMRP 

interactors. Contains number of genes in each module overlapping with each set. The 

background set was all 15,585 cortex-expressed protein coding genes, except in the case of 

asdM12/asdM16 where I restricted the background to genes Illumina probes used in Voineagu et 

al., 2012, and in the case of FMRP interactors where I used the background set of all protein 

coding one-one human-mouse orthologs. Enrichments with OR > 1, FDR < 0.05 are bolded and 

italicized while enrichments with OR > 1, p < 0.05 are bolded. FDR values are reported as 

corrected across enrichments performed for the candidate ASD and ID gene sets, the RDNV 

discovery set, and the FMRP target set. (C) Compilation of RDNV data from four studies – 

Iossofiv et al. 2012, Sanders et al. 2012, O’Roak et al. 2012, and Neale at al. 2012. (D) 

Assessment of the contribution of RDNVs from four studies to the enrichments in the network 

analysis. 

 

Table A1.3, related to Figure 2.5. TF binding site analysis results for enrichments 

connecting two or more modules. A) Summary of enrichment by module. A “Y” is marked for 
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enrichment if the motif for the TF from TRANSFAC is enriched (p < 0.05) above the three 

background sets. If the TF is associated with neuronal function or neuronal development, a 

reference is provided. If ChIP data exists for the TF, I report the fraction of overlapping sites. B) 

Individual TF-motif enrichments driving module-level enrichment above background. 

 

Table A1.4, related to Figure 2.8. Example prioritization of M2 and M3 RDNV affected 

genes using information from Table A1.1. As described in section 2.5 Discussion. 
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A2. Additional Methods and Figures for Chapter 3 

A2.1. Extended Methods 

Gene sets used for enrichment: The sources for all gene sets used in this chapter are described in 

the main text. For laminar and cell-type specific gene sets, transcriptomes from each lamina or 

cell were compared against all other lamina or cells from that study, including global whole-

tissue in the comparison for the cellular transcriptome data. Comparisons were performed with a 

two-tailed t-test and all genes with Benjamini-Hochberg FDR adjusted p < 0.05 in a given 

lamina or cell type were used. 

 

Logistic regression for enrichment analysis: Methodologically, most gene set enrichment 

analysis studies utilize the hypergeometric test to evaluate whether a gene set is enriched over 

background, providing a p value and enrichment value for gene set enrichment. This is 

equivalent to a one-sided Fisher’s exact test, which is arguably preferable as it can offer an upper 

and lower confidence interval to the odds-ratio for enrichment, and does not assume a priori that 

the gene set of interest is enriched, and allows for it to be depleted (Rivals et al., 2007). An 

assumption with either of these tests is that the background set reflects the gene set considered 

for enrichment for all factors other than pathway membership. 

In the specific case of identifying genes affected by de novo variants in genes by WES, 

gene length alone is highly correlated to the mutation rate on that gene (Samocha et al., 2014). 

The goal of my investigations is to identify whether specific gene sets are predictive of mutations 

in ASD, and in the initial study in Chapter 2, I utilized enrichment for synonymous mutations as 

a control set to ensure that factors such as gene length, GC content, or other unmeasured 

variables affecting detection of mutated genes did not drive enrichment. I had also checked 
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results by stratified permutation analysis using gene-wise mutation rates (Michaelson et al., 

2012) to ensure mutation rate alone was not driving observed enrichments. However, upon 

assessing the same sets with new data, there was considerable enrichment in synonymous gene 

sets. 

To correct for this gene length bias, Iossifov et al., 2014 utilized a stratified permutation 

analysis. This is equivalent to using gene length as a covariate, and similar to what I had done for 

PPI enrichment in Chapter 2, where it was necessary to control the global PPI degree for genes in 

order to identify true PPI enrichment in modules. I therefore adopted a modified enrichment 

analysis using logistic regression. Logistic regression involves specifying predictors and a binary 

outcome. Beta values can be interpreted as odds-ratios, and odds-ratios and p values computed 

by logistic regression for binary gene set membership as a predictor and binary gene set 

membership as an outcome, with the intersected set of background genes as the full data results 

in highly equivalent enrichment results. The major benefit of this approach is that I can add gene 

length as a predictor, and remove the effect of gene length on the enrichment result. 
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A3. Additional Methods and Figures for Chapter 4 

A3.1. Extended Methods 

Sample description: Tissue samples for this study were acquired from the Autism Tissue 

Program (ATP) brain bank at the Harvard Brain and Tissue Bank and the National Institute for 

Child Health and Human Development (NICHD) Eunice Kennedy Shriver Brain and Tissue 

Bank for Developmental Disorders. Sample acquisition and Material Transfer Agreement 

protocols were followed between UCLA and both brain banks, and subjects were de-identified 

prior to acquisition. 

Up to three brain regions from each individual were assessed in this study: dorsolateral or 

medial prefrontal cortex (frontal cortex, FC, from BA9), superior temporal gyrus (temporal 

cortex, TC, from BA41, BA42, or BA22 unless otherwise noted), and cerebellar vermis (CB). 

Dissections were batched for maximal balance of age, sex, brain region, and diagnostic status. 

Brain samples were dissected on dry ice in a dehydrated dissection chamber to reduce 

degradation effects from sample thawing or humidity. Approximately 100mg of tissue across the 

cortical region of interest was isolated from each sample for up to two RNA extractions using the 

miRNeasy kit (Qiagen). 

 

Library preparation and RNA-seq: For each RNA sample, RNA quality was quantified using the 

RNA Integrity Number (RIN) (Schroeder et al., 2006). I compared both poly(A) selection 

(referred to as polyA+) and depletion of cytoplasmic and mitochondrial rRNAs for RNA-seq 

using existing data and a pilot experiment, and found that the quality of polyA+ RNA-seq drops 

off with RIN < 9, and considerably after RIN < 8, largely due to transcript degradation, resulting 

in a strong 3´ bias. Given that RIN values were rarely above 8 in the samples for this study, I 
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opted for rRNA depletion with the RiboZero Gold kit. This library preparation approach captures 

a large fraction of transcripts which are not polyadenylated (Cheng, 2005; 2012), and about 40% 

of reads are expected to align to intronic regions (Ameur et al., 2011). Due to the start date of 

library preparation and the need to keep a consistent protocol, I did not use strand-specific library 

preparation protocols. I took several precautions to ensure intronic and antisense transcription 

did not confound findings, as discussed below. Additionally, I assessed 50bp and 100bp single-

end and paired-end (PE) RNA-seq through artificially trimming the same 2x100bp (PE) data. I 

found highly similar mapping and transcriptome quantification results using 2x50bp or 2x100bp 

RNA-seq, and opted to use 2x50bp RNA-seq to maximize the number of fragments given a 

constant sequencing depth. Taken together, these assessments led to the use of libraries prepared 

with RiboZero Gold rRNA depletion for 50bp PE RNA-seq and aim for an average sequencing 

depth of 50 million base pairs per sample. 

Specifically, ribosomal RNA was depleted from 2 µg total RNA with the Ribo-Zero Gold 

kit (Epicentre). Remaining RNA was then size selected with AMPure XP beads (Beckman 

Coulter) and resuspended in 8.5 µL of Illumina resuspension buffer and an additional 8.5 µL of 

2x EPF buffer. Subsequent steps followed the Illumina TruSeq protocol (starting at page 84 of 

the sample prep v2 guide, no changes). After this protocol was followed, libraries were 

quantified with the Quant-iT PicoGreen assay (Life Technologies) and validated on an Agilent 

2200 TapeStation system. Libraries were pooled to multiplex 24 samples per lane using Illumina 

TruSeq barcodes, and each pool was sequenced six times on a HiSeq2000/2500 instrument using 

high output mode with standard chemistry and protocols for 50bp paired end reads. Most 

libraries were sequenced across two sequencing cores at UCLA. After confirming that read 
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quality was similar across both core facilities and lanes, reads from six lanes for each sample 

were pooled after demultiplexing (with Casava v1.8) for downstream analysis. 

 

RNA-seq read alignment: The paired-end raw reads were mapped to the human reference 

genome assembly GRCh37.73 (Harrow et al., 2006) using Tophat2 (Trapnell et al., 2012a) as 

follows: 

tophat -o outputfolder -g 10 -p 8 -r 99 --no-novel-juncs -G 

GRCh37.73.gtf GRCh37bowtieindex pairedread1.fastq pairedread2.fastq 

Aligned reads were sorted and alignments mapped to different chromosomes were removed from 

the BAM file using samtools (Li, 2011). 

 

Genotyping-based quality control: Genotypes were called from RNA-seq data using a 

modification of an existing pipeline shown to detect SNPs optimally from RNA-seq data (Quinn 

et al., 2013). Genotypes reflecting sites that are heterozygous or homozygous for the minor allele 

relative to the reference genome were called using by removing duplications (rmdup) from .bam 

files and constructing .vcf files from piled up (Li, 2011) reads: 

samtools mpileup -I -S -gu -f GRCh37reference sorted_reads_rmdup.bam | 

bcftools view -bvcg - > var.raw.bcf 

bcftools view var.raw.bcf | vcfutils.pl varFilter -D100 > var.flt.vcf 

Genotypes were then coded as NA (homozygous for the major allele or not enough depth to 

detect), 1 (detected heterozygous), or 2 (homozygous for the minor allele). Pairwise spearman 

correlations were assessed between samples, and any sample from an individual that did not 

match the genotype of another sample from the same individual was assessed for contamination 

or sample mix-up. 
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RNA-seq quality control: I performed quality control (QC) analysis after read alignment using 

PicardTools v1.100 (commands ReorderSam, CollectAlignmnetSummaryMetrics, 

CollectRnaSeqMetrics, CollectGcBiasMetrics) and samtools (duplication metrics other statistics 

from the flagstat command). Sequencing metrics were used to remove samples with poor 

sequence quality based on the following sequencing metrics: %Total Reads, %High-quality 

Aligned Reads, %mRNA Bases, %Intergenic Bases, Median 5 to 3’ Bias, GC Dropout, and AT 

dropout. To detect outliers, a quality z-score was calculated for each metric, and samples with 

low quality (Z > 2 for %Intergenic Bases, GC Dropout, or AT Dropout and Z < -2 for %Total 

Reads, %High-quality Aligned Reads, %mRNA Bases, or Median 5 to 3’ Bias) in this matrix 

were identified as outlier values, and any sample with greater than one outlier value was 

removed due to sequencing quality concerns. This QC was performed with 263 initial samples: 

28 samples were not for this study, and QC removed 30 samples (13%). Of these one-third had 

very low RIN (< 4), one-fourth had a high 5’ to 3’ bias (>0.7), and one-third had a high 

proportion of reads aligned to intergenic regions (intergenic read proportion > 20%).10%). The 

remaining 205 samples from 79 individuals along with assessed QC metrics are shown in Table 

A3.1. 

 

Brain sample metadata: Brain samples were obtained from 33 neurotypical controls and 46 ASD 

individuals (38 idiopathic with no identified cause of autism and 8 with confirmed duplications 

in the 15q region). Individuals defined as autistic for this study had either a confirmed ADI-R 

diagnosis (30/46), duplication 15q syndrome with confirmed ASD (8/46), or a diagnosis of 

autism supported by other factors such as clinical history (8/46). 
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Available metadata from brain banks included age, sex, medical history, and sample 

quality information. Variable levels of detail were available regarding medical case history for 

the individual and previous sample quality information. Medical history information was used to 

identify history of psychiatric medications, history of seizures, co-morbidities, post-mortem 

interval, neuropsychiatric test results, and cause of death where possible. Notably, medication 

status, seizures, ADI-R, and IQ test results were available only for individuals with ASD, with 

22/45, 23/45, 25/45, and 6/45 ASD individuals having available measurements for these, 

respectively. History of medication and seizures were categorized as having a reported history as 

supported by medical information (Yes) or not having mention of such medication or co-

morbidities (No) despite other medical records being available (one individual did not have 

enough information to evaluate these criteria). 

Additional post-mortem tissue metrics included previously recorded RNA integrity 

number (RIN), pH, and brain weight, but these were available only for the NICHD brain bank. 

Notably, where I could assess it, 86% of cortical and 93% of cerebellar RNA extractions were 

within 2 RIN values of previously documented RIN values, and 46% of cortical and 52% of 

cerebellar RNA extractions had better RIN values than what was previously documented. A 

comparison of pH between 12 case and 9 control samples from NICHD revealed weak 

correlation between diagnosis and pH (r2=0.12, p = 0.12), and there was no correlation between 

diagnosis and brain weight (r2=0.01, p=0.4). Together, these data demonstrate that 1) elapsed 

time at the brain bank had minimal effect of RNA quality despite some brains being stored for 

many years, 2) the pH in ASD and control brains is similar, and 3) post-mortem brain size is not 

different between ASD and controls. 
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Cause of death was categorized based on agonal state as previously described in a study 

assessing relative effects of multiple factors on post-mortem gene expression (Monoranu et al., 

2009). The main difference between cases and controls in agonal state was that 6 individuals 

with dup15q died of sudden death from epilepsy (SUDEP), while no controls did. Otherwise, the 

proportion of individuals with agonal state classifications was similar between groups. Complete 

and quantitative data types were used as described below in covariate analyses while incomplete 

variables were assessed to evaluate their effect on observed relationships where appropriate. All 

phenotypic information used in the analysis is provided in Table A3.1. 

 

Quantification of gene expression: Gene expression levels were quantified for samples passing 

QC using multiple methods: 

HTSeq (v.0.6.1) with a union exon model: 

python -m HTSeq.scripts.count --stranded=no --mode=union --type=exon --

quiet inputfile.sam --GTF GRCh37.73.gtf >> outputfolder 

HTSeq with a whole gene (union exon + introns) model: 

python -m HTSeq.scripts.count --stranded=no --mode=union --type=gene --

quiet inputfile.sam --GTF GRCh37.73.gtf >> outputfolder 

Cufflinks v2.1.1: 

cufflinks -o outputfolder --num-threads 8 --GTF GRCh37.73.gtf --frag-

bias-correct GRCh37reference --multi-read-correct --compatible-hits-

norm inputfile.bam 

Each approach quantifies gene-level expression in a slightly different manner, but the overall 

expression values are highly correlated, as are the principal components in the data (Figure S1). 

Notably, HTSeq counts simply counts paired read fragments on the given gene models and does 

not use reads with multiple alignments or that overlap gene models, while Cufflinks uses these 
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multi-mapped reads, quantifies transcripts first, and then provides a gene level estimate. For 

primary analyses, I use the HTSeq union exon quantifications, and apply the other methods for 

ensuring data quality. Genes were kept if they pass the following criteria within all cortical and 

cerebellar samples separately: 

- Expressed in 80% of samples with HTSeq union exon quantification of 10 counts or more 

(to remove genes supported by only a few reads) 

- Expressed in 80% of samples with HTSeq whole gene quantification 10 counts or more 

(removes genes supported solely by intronic reads of other genes) 

- Expressed in 80% of samples with Cufflinks (lower bound FPKM estimate > 0) 

The resulting read counts, reflecting fragments mapped to each union exon model, were 

converted to log2 transformed and GC content, gene length, and library size normalized 

fragments per kilobase million mapped reads (FPKM) values using the cqn package in R (default 

options, but setting cqn=FALSE which turns of quantile normalization) (Hansen et al., 2012). 

Where used, these values are referred to as log2(Normalized FPKM). 

 

Exploratory data analysis and adjustment of covariates: Normalized FPKM data were assessed 

for effects from biological covariates (condition, age, sex, brain region), technical variables 

related to sample processing (RIN, Brain Bank, Sequencing Batch), and technical variables 

related to sequencing quality metrics (sequencing metrics plus the proportion of exonic reads, as 

defined by total quantified reads in the union exon model divided by total quantified reads in the 

whole gene model for each sample). 
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For biological variation, two major observations were made. There was an age imbalance 

as there were few controls younger than 10 years old, and several ASD samples younger than 10 

years. Additionally, dup15q samples were more likely to be outliers. Based on these 

observations, I opted to analyze all idiopathic aged 10 or older in the primary analysis, and use 

the younger ASD samples for independent validation and extension of findings. Dup15q samples 

were analyzed separately against the same controls used in the idiopathic set. 

For technical variation, there was no strong relationship between any factor and 

diagnosis, largely due to the fact that I randomized all samples at multiple points (dissection, 

RNA extraction, and multiplexing) over all biological covariates. However, there was a strong 

relationship between the first principal component of gene expression and RNA and sequencing 

quality metrics, including the RIN, sequencing 5’-3’ bias, and the proportion of exonic reads. 

Given the large number of sequencing quality features, I performed PCA on these data and found 

that the first two PCs explain nearly 99% of the variance. Consequently, I opted to use these 2 

sequencing surrogate variables (seqSVs) as covariates (Figure A3.1). The use of biological and 

technical covariates is discussed below as appropriate for differential gene expression (DGE), 

differential splicing (DS), and weighted gene co-expression network analysis (WGCNA). 

 

Differential gene expression analysis: Differential gene expression (DGE) analysis: Differential 

expression analysis was performed with the normalized gene expression levels (not normalized 

for technical variation). Cortical samples (ba9 and ba41-42-22) were analyzed separately from 

cerebellar vermis samples. A linear mixed effects model framework was used to assess 

differential expression in log2(Normalized FPKM) values for each gene for cortical regions (as 

multiple brain regions were available from the same individuals) and a linear model was used for 
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cerebellum (where one brain region was available in each individual, with a handful of technical 

replicates removed). Individual brain ID was treated as a random effect, while age, sex, brain 

region (except in the case of cerebellum, where there is only one region), and diagnoses were 

treated as fixed effects. I also coded the technical variables discussed above (RIN, proportion of 

reads mapping to exons, sequencing batch, and brain bank batch) as fixed effects into this model. 

Effect sizes and p-values for diagnosis were extracted from the model across all genes for both 

HT-seq Counts and Cufflinks FPKMs, and q-values were computed to assess the false discovery 

rate. 

 

Quantification of transcript splicing and analysis: I utilized multiple approaches for quantifying 

transcript splicing. The main analyses are performed using Multivariate Analysis of Transcript 

Splicing (MATS, v3.08), utilizing the PSI values in the linear mixed regression framework 

described above for DGE (Shen et al., 2012). The results from ssplicing analyses are sensitive to 

the use of different splice junction databases and different aligners, so I also computed PSI 

values with OLego and Quantas (Wu et al., 2013). Using PSI values from these two different 

methods, the linear mixed regression framework gives similar results in DS analysis (Figure 

A3.3A). MATS identifies five type of splicing events: spliced exons (SE), alternative 5’ splice 

sites (A5SS), alternative 3’ splice sites (A3SS), mutually exclusive exons (MXE), and retained 

introns (RI). The last category was excluded from these analyses since many false events are 

called due to retention of pre-mRNA by the ribosomal RNA depletion library preparation used in 

this study. 

For each event, MATS reports counts supporting the inclusion (I) or exclusion (E) of a 

splicing event. To reduce spurious events due to low counts, I set a filter requiring at least 80% 
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of samples to have I + S >= 10. For these events, the percent spliced in, PSI = I / (I + S) was 

calculated. PSIs for events were used in all statistical analyses, for example in the linear mixed 

effects modeling. This approach is advantageous over existing methods as it allows me to model 

covariates and take into consideration the variance across samples when assessing event 

significance with ASD. 

 

Genotyping and CNV calling for dup15q samples: Previously the type of duplication and the 

copy number in the breakpoint 2-3 region were available for these brains (Scoles et al., 2011).  

To expand this to the regions between each of the recurrent breakpoint in these samples, 7/8 

dup15q brains were genotyped.  The number of copies between each of the breakpoints is 

reported in Table A3.3, with discrepancies with previous studies noted. 

 

Weighted gene co-expression network analysis: The R package WGCNA was used to construct 

co-expression networks using the technical variation normalized data (Langfelder and Horvath, 

2008; Zhang and Horvath, 2005). I used the biweight midcorrelation to assess correlations 

between log2(Normalized FPKM) values for both Cufflinks and HT-seq Counts data (Langfelder 

and Horvath, 2012). Parameters for network analysis were the same as used previously (section 

A1.1). I utilized a modified version of WGCNA which involves bootstrapping the underlying 

dataset 100 times and constructing 100 networks. The consensus of these networks (50th 

percentile across all edges) was then used as the final network (Langfelder and Horvath, 2007). 

The first principal component of each module (eigengene) was related to ASD diagnosis, age, 

sex, and brain region in a linear mixed effects framework as above, only replacing the expression 

values of each gene with the eigengene. 
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Enrichment analyses: All enrichment analyses were performed either with Fisher’s exact test 

(see A1.1 Extended Methods) or logistic regression (see A2.1 Extended Methods). GO term 

enrichment analysis was performed using GO Elite (Zambon et al., 2012) as in Chapter 2. I 

focused on molecular function and biological process terms for display, but discuss cellular 

compartment terms where relevant. Cell type specificity analysis was performed using the gene 

sets described in Chapter 3 (see section A2.1). 

 

Transcription Factor Binding Site Enrichment: 

Transcriptional factor and chromatin regulator binding sites were obtained from a published 

study (Arbiza et al., 2013), and intersected with brain-specific data using bedtools (Quinlan, 

2002) and discussed in the main text. 

 

GWAS enrichment: PGC cross-disorder data 

 GWAS data were obtained from the Psychiatric Genetics Consortium (PGC, 

http://www.med.unc.edu/pgc/downloads) and correspond to the 2013 release of the cross-

disorder data. GWAS SNPs were associated to genes using the methodology described in section 

A1.1. 
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A3.2. Extended Figures 

 

PicardTools Metric Median [2.5%-97.5%] 

Reads Aligned 43 million [16-76] 

% of mRNA bases 53% [34-71] 

% of intronic bases 40% [23-58] 

% intergenic bases 6.5% [4.9-16] 

Median 5’-3’ bias 0.60 [0.52-0.66] 

Mapping Statistics (this study, RIN = 7.6 [3.0-8.6]) 

Dissection and RNA extraction – BA9, BA21/22/42, 
cerebellar vermis 

(randomized over age/sex/region/dx/dissector) 

Library prep: RiboZero Gold + TruSeq Library prep 
+ 50bp PE RNA-seq 

(randomized over above + RIN) 

Multiplexed 24 samples / lane, randomizing 

RNA-seq workflow 

After sequencing QC and genotype filtering, removal 
of samples not for this study 

81 unique individuals, 196 unique samples (205 
total) 

A B"

C"

PicardTools Metric Median [2.5%-97.5%] 

Reads Aligned 14 million [2.2-66] 

% of mRNA bases 75% [48-86] 

% of intronic bases 6% [2.7-18] 

% intergenic bases 18% [10-40] 

Median 5’-3’ bias 0.16 [0.0027-1.0] 

Mapping Statistics (polyA+ on other ASD and CTL 
samples, RIN = 4.8 [2.1-6.9]) 
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Figure A.3.1 RNA-seq methodology, sequencing quality metrics, reproducibility analyses, covariate effects, 

and alternate methods of gene quantification. A) RNA-seq workflow. B) Mapping statistics from this study, , 

with mean and [95% confidence interval]. C) Mapping statistics from another study(Gupta et al., 2014) utilizing 

polyA+ RNA-seq on similar samples in ASD. D) RNA-seq read coverage relative to normalized gene length across 

transcripts from the 5’ to the 3’ end. E) Dependence between coverage and RNA integrity across the normalized 

gene models from D), where a high magnitude r value on the y-axis would suggest strong dependence on RNA 

quality. F) Correlation of ASD vs CTL effect sizes between previously evaluated and new ASD samples in cortex by 

RNA-seq, with red highlighting genes that were at p < 0.05 the old samples. G) Correlation between effect sizes as 

in F), but for cerebellar samples. H-I) Correlation between covariates and ASD vs CTL status in cortex and 

cerebellum, respectively. J) Correlation between gene-level quantifications in cortex when utilizing different 

methods and models for gene expression quantification, results are similar in cerebellar samples. 
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Figure A.3.2 Additional analyses for differential gene expression and cortical patterning analyses. A-C) 

Agreement of main DGE analysis p values with DGE analyses using additional sequencing quality associated 
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surrogate variables (SVs), permutation analysis, and limma voom, respectively. R2 values are from Spearman’s rank 

correlations. D) Cell-type enrichment analysis of four major cell types in genes significantly increased and 

decreased in ASD. E) Heatmap of DGE clustering using all significant genes over all cortical samples from ASD (N 

= 123). F) Association of the first PC from the DGE set with all measured covariates. G) Comparison of changes in 

CB compared to CTX, highlighting those with p < 0.05 in CTX. H) Evaluation of ASD signature in CB using the 

first PC of genes at p < 0.01. I-J) Histograms of p values from paired Wilcoxon rank-sum test DGE between FC and 

TC in CTL and ASD, respectively. K) Histogram of Bartlett’s test p values for differences in gene expression 

variance between ASD and CTL, with difference in variance for genes with attenuated cortical patterning 

highlighted. L-M) Results of learned cortical region classifications using LASSO regression from BrainSpan on 

CTL samples from this study, where 1 = TC, 0 = FC. N-O) Results of learned cortical region classifications in ASD. 

In receiver-operator characteristic plots, the area under the curve (AUC) is given and the x-axis is the rate of true 

positives, while the y-axis is the rate of false positives. 
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Figure A.3.3 Additional analyses for differential splicing and splicing factor analysis. A) Comparison of the 

CTX splicing analyses in when using PSI values obtained via read alignment by TopHat2 (Trapnell et al., 2012b) 

followed by the MATS (Shen et al., 2012) pipeline (used throughout this study) against read alignment by OLego 

followed by Quantas (Wu et al., 2013). B) Distribution of p values for changes in the PSI between ASD and CTL for 

all events (left) and event subtypes (SE, spiced exon; A5SS, alternative 5’ splice site; A3SS, alternative 3’ splice 

site; MXE, mutually exclusive exons). C) Difference between ASD and CTL in the DS set based on PC1 of the DS 
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set at the PSI level, and PC1 of the gene expression levels of genes in the DS set. D) Similar to C), but with 

nominally DGE genes (p < 0.05) removed. E) Evaluation of association between PC1 of the DS set and all measured 

covariates. F) Enrichment for cell-type specific genes in the genes harboring DS events at p < 0.01. G) Hierarchical 

clustering and heatmap of all samples (“Matched ASD” + “Young ASD”) with the DS set. H) The 10 samples with 

the lowest expression of RBFOX1 in ASD are compared against all CTL samples and run in the same DS analysis 

used for all samples, with effect sizes in this stratified set compared with the effect sizes across all samples in I). J-

K) Similar to H-I) but for NOVA1. 
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Figure A.3.4 Additional analyses for differential gene expression and splicing analysis in dup15q. A) DGE 

across the 15q region of interest in dup15q vs CTL and ASD vs CTL CB. B) Comparisons of effect sizes in dup15q 
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vs CTL and ASD vs CTL in CB. C) Comparisons of effect sizes in dup15q vs CTL CB and dup15q vs CTL CTX. 

A-C) Should be interpreted with caution, as only 3 samples are available for dup15q CB. D) Cell type enrichments 

for genes DGE in dup15q vs ASD CTX at FDR < 0.05. E) Association of PC1 of the dup15q vs CTX DGE set with 

all measured covariates. F) Splicing changes in dup15q and ASD compared to CTL in the 15q region of interest, 

showing all detected splicing events. G) Average linkage hierarchical clustering heatmap of correlations between 

samples at the PSI level using all events at FDR < 0.2 in dup15q vs CTL CTX. H) PC1 of the DS set using event-

level PSIs and gene-level expression values for the genes on which events were identified. I) Removing all 

nominally DGE events (p < 0.05) from H) and re-evaluating PC1 differences. J) PC1 of the DS set associated with 

all measured covariates. K) Cell type enrichments for the genes harboring events in the DS set. For cell type 

enrichment heatmaps, N = neurons, A = astrocytes, OG = oligodendrocytes, MG = microglia). 
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Figure A.3.5 Additional analyses related to the co-expression network analysis. A) Modules identified from a 

dendrogram constructed from a consensus of 100 bootstrapped datasets using the 137 CTX samples. Correlations for 

each gene to each measured factor are delineated below the dendrogram (blue = negative, red = positive correlation). 

B) Module-trait associations as computed by a linear mixed effects model with all factors on the x-axis used as 

covariates. All p values are displayed where the coefficient passed p < 0.01. C) Module enrichments for cell type 

specific markers, N = neurons, A = astrocytes, OG = oligodendrocytes, MG = microglia (see Materials and Methods 

for details). D-E) Two modules related to ASD and dup15q, with top 25 genes and top 8 GO terms shown. 
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A3.3. Extended Tables 

Please see the electronic tables associated with this document for extended tables (Tables A3.1-

3). Descriptions for these tables follow: 

Table A3.1 Biological and technical metadata for samples used in this study. l 

Table A3.2 Differential gene expression changes in CTX and CB, cortical patterning 

results, and co-expression network module assignments for CTX, related to Figure 1, 3, 

and 4. A) Results for DGE between ASD and CTL in ASD and dup15q, as well as cortical 

patterning analysis results and co-expression network results for CTX. B) DGE results for 

cerebellum in CB. 

 

Table A3.3 Differential splicing changes in CTX and CB, related to Figures 2 and 3. A) DS 

results for cortex. B) DS results for CB. 

 

Table A3.4 Copy number between dup15q breakpoints, related to Figure 3. 

Breakpoints 1-3 2-3 3-4 4-5 
AN09402 4 4b 2 2 
AN14829 4 4 4 3 
AN17138 4c 4 2 2 
AN03935 4 4 4 3 
AN05983 4 4 4 3 
AN06365 4 4 4 3 
AN11931 4 4 4 3 
AN14762 - 4a - - 

a Obtained from Scoles et al., 2011 who evaluated duplication in this region by RT-PCR of 

SNRPN/GABRB3/UBE3A vs B2M 

b Discrepancy with Scoles et al., who report 5 here (Scoles et al., 2011) 

c Discrepancy with Wintle et al., who report 2 here (Wintle et al., 2011) 
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