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ABSTRACT OF THE THESIS
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by
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Professor Alexander Hoffmann, Chair

Influenza affects millions worldwide each year with responses varying from individual to

individual. Influenza can be broken down into several subtypes, specifically H1N1, H3N2,

Yamagata, and Victoria. One way to measure the immune response to influenza is to measure

a person’s antibody response to influenza. To measure how many antibodies are present in a

sample, a hemagglutination inhibition assay (HAI) is used. DNA methylation is an epigenetic

mechanism used to regulate gene expression in cells. Its mechanism of action is the addition

of a methyl group to cytosine at a cytosine-guanine pair. DNA methylation has been shown

to change in response to stimuli such as viral or bacterial infections. DNA methylation

can be measured by bisulfite sequencing. In this study, data was taken from patients who

had the flu vaccination. Their antibody data was measured using the HAI assay by the

University of Georgia and their methylation data was measured using reduced representation

bisulfite sequencing by the Pellegrini and Reed labs at UCLA. Using various statistical

learning algorithms, we were able to find methylated sites that were good predictors of

vaccine response. Elastic net regression proved to be a particularly good predictor of vaccine
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response, and after further analysis, it was revealed that the best prediction happened with

relatively few methylated sites being used in prediction. Some of these significant sites

seem to be involved in regulating immune response and membrane function. Further work

will be done to determine the prediction accuracy of these algorithms with just these sites.

Ideally, after this future work and other experiments, these methylated sites can be used as

biomarkers to predict response to flu vaccination.
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CHAPTER 1

Introduction

The influenza virus, more commonly known as the flu, is a virus that infects humans and

is normally responsible for congestion, fever, and a cough. commonly referred to as flu like

symptoms. Influenza attacks the body in a similar way to most other viral infections. First,

the virus enters a cell and makes its way to the nucleus of a cell. Once at the nucleus,

the virus releases its RNA into the nucleus of the cell. The viral RNA inserts itself into

the cell’s genome and becomes an active infection. The virus uses the cell’s machinery to

create more viral particles which then spread out of the cell and continue to attack the body

[Mog17]. Normally influenza is treated relatively easily and the patients make a full recovery.

However, influenza is highly mutable and many strains have led to global pandemics that kill

tens of millions of people most notably the 1919 flu pandemic. Additionally, the flu can be

much more deadly in older individuals or in individuals with a compromised immune system

[MVA20]. In general, it has been shown in this work and others that older individuals have

a weaker immune response to infection.

Influenza is a highly mutable virus that is broken down into two subtypes Influenza A

and Influenza B. From here they are broken down into multiple strains including H1N1,

H3N2 for Influenza A, and Yamagata and Victoria for Influenza B. We will be studying

many substrains that come from the 4 strains listed above. While there are many substrains

of influenza, the yearly flu vaccine only has 4 strains it protects against. In our study, we

have a vaccine with a strain from H1N1, H3N2, Yamagata, and Victoria.

The body fights influenza and other viruses through the immune system. The body uses
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both the adaptive immune system and the innate immune system to do this. The innate

immune system takes advantage of natural killer cells and macrophages to indiscriminately

attack cells that could be infected with influenza. In this paper, we will have a stronger

focus on the adaptive immune system. The adaptive immune system works by using killer

T-cells to target specific cells that have been infected by the virus. The T-cells find infected

cells by antibodies which are produced by B-cells. These antibodies attach themselves to

the virus and to cells infected by the virus, allowing the T-cells to identify them [BLW16].

For this reason, one way to measure the effectiveness of someone’s immune system against

a virus is to track their antibody count. There is a seasonal flu vaccine that is designed to

prevent infection by influenza by prepping the adaptive immune system. This is done by

presenting a weaker virus to the body and allowing the body to create its own antibodies

without causing an infection.

DNA methylation is an epigenetic mechanism that regulates gene expression in cells.

DNA methylation works by attaching a methyl group to a cytosine nucleic acid. This

methyl group alters gene expression in the cell and is important in cell differentiation and cell

response to stimuli. DNA methylation can change in response to stimuli to either up-regulate

or down-regulate certain genes [SG99]. We are interested in seeing if DNA methylation can

act as a predictor of immune response and if so what specific regions seem to be important

in a strong immune response. Additionally, we are interested in seeing if DNA methylation

changes as a result of a flu vaccination.
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CHAPTER 2

Methods

Vaccines were administered at the University of Georgia to 4 different cohorts. Cohort one

consisted of 149 patients during 2016, cohort two consisted of 256 patients during 2017,

cohort three consisted of 260 patients during 2018, and cohort four consisted of 461 patients

during 2019. Flu vaccines were administered to the patients and demographic data was

recorded on age, biological sex, BMI, and ethnicity. The vaccine administered had one

vaccine strain for H1N1, H3N2, Yamagata, and Victoria. Samples were also taken the day

of vaccination to be used for a hemagglutination inhibition assay [CIC19] [NCA17]. Similar

samples were later collected 21 days after vaccination for cohort 1 and 2 and 28 days after

vaccination for cohort 3 and 4 to be used for a hemagglutination assay as well.

For each subtype of H1N1, H3N2, Victoria, and Yamagata there was HAI data on the

vaccine strain used as well as additional data for other strains under each subtype. The

number of substrains in each subtype varied but was generally between 5-10.

For cohort 4, blood samples were also taken at day 0 and day 28 from 62 of the indi-

viduals to be used for methylation profiling. These individuals were profiled using reduced

representation bisulfite sequencing at both day 0 and day 28 [MFM22].

All demographic data and HAI data was placed in an Excel sheet and analyzed by our

group. All methylation data was similarly put in an excel sheet.

All statistical work was done in R, Python, or occasionally Excel. In R, prepossessing and

data transformation was performed on the original UGA 1-4 datasets. The main data trans-

formation process was to add seroprotection and seroconversion indicators to each strain.
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These indicators labeled whether a sample was seroprotected or seroconverted for a certain

influenza substrain. Seroprotection is defined as an HAI score of above 40 and indicates

strong immunity to a certain substrain of the virus. Seroconversion is defined as an HAI

score that has quadrupled 21 days after vaccination or infection and is above 40. It indicates

a strong immune response to a vaccine as well as a immunity to the virus. The seroprocetion

and seorconversion indicators were added through a function that added an extra column to

the data set for each substrain at day 0 and day 21/28 to indicate seroprotection status. As

well as an extra column at day 21/28 for each substrain to indicate seroconversion status.

The seroprotection columns were then populated with 1’s and 0’s to indicate seroprotection

or no seroprotection respectively. These 1’s and 0’s were determined by going back to the

original data set and doing a comparison with each sample. If the sample had an HAI score

of 40 or above a, 1 was placed in the column. If it was below 40, a zero was placed. The

seroconversion columns were populated with 1’s and 0’s to indicate seroconversion or no

seroconversion status, respectively. Population was done by going to the original day 21/28

column and making sure the HAI score was above 40, and that the day 21/28 column value

had a quadruple increase from the day 0 if both of these requirements were met then a 1 was

placed, otherwise a 0 was placed. The addition of seroprotection and seroconversion columns

allowed for more binary and classification analysis instead of just regression analysis.

Methylation analysis began with loading the data sets into Python and into dataframes

through Pandas. Along with the methylation datasets, datasets with the UGA HAI data

were loaded along with the seroprotection and seroconversion indicators attached. A dataset

containing metadata for each individual (age, sex, BMI, ethnicity, and smoking status) was

also attached. The datasets had a full inner merge performed between them to only keep the

samples that had methylation data and to combine the datasets. This left only 62 samples

that had methylation and the other samples from UGA 4 had to be removed. The final

dataset contained metadata, HAI data, seroprotection/seroconversion status, and methyla-

tion data. The Methylation data consisted of 10,000 methylated sites. The methylation data
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was then scaled using the Sckit-Learn Package. [PVG11] Scaling is done by calculating the

z-statistic for each site. After this, principal component analysis (PCA) was performed using

the Sckit-Learn package and leaving 2 principal components which retain 12 percent of the

original variance. We kept 2 principal components as that allowed for us to graph the data

on a two dimensional axis. PCA is a data reduction tool for visualization that maximizes

the amount of original covariance conserved in as many principal components that the user

specifies. After the top 2 principal components were calculated, each sample was graphed

against the 2 component’s. These samples were then overlaid with their seroprotection sta-

tus as well as their age status. The overlay with seroprotection status allowed us to look for

separability in each strain and the overlay with age allowed me to compare seroprotection

trends with age trends in the top 2 principal components. Along with overlay from actual

age, I overlaid the PCA graph with age predicted by the methylation data. Methylation data

can be used to predict someone’s age and this was done by members of Matteo Pellegrini’s

group who shared the methylation age data with me. After this, the top loadings of the PCA

were looked at to see if any one particular chromosome or chromosome region contributed

heavily to either principal component.

After early PCA exploratory analysis, I performed a prediction analysis using the methy-

lated sites as features and one of the influenza strains HAI score as the response variable.

Prediction analysis allows us to see how much a set of independent variables (features) con-

tribute to a dependent variable (response variable). It also allows for feature selection from

the independent variables or the selection of the most important features to the response

variable. In our case, we are interested in seeing how much DNA methylation contributes to

the HAI score of patients. Prediction analysis was performed in Rstudio and took advantage

of the dplyr and caret packages [WFH22] [Kuh08]. In order to perform prediction analysis,

I chose a substrain HAI score as the predictor variable and used all the methylation sites as

predictors and ran these datasets through a prediction model. The models used were elastic

net Gaussian regression, elastic net Poisson regression, partial least squares regression, and
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random forests. Elastic net Gaussian regression is similar to normal linear regression except

for the addition of regularization terms that are designed to simplify the model. Elastic net

uses a structure where a L1 regularization and L2 regularization are performed and there is a

tuning parameter to choose more heavily towards L1 or L2 regularization. L1 regularization

removes variable’s from the model where L2 regularization simply has features contribute

less. Poisson elastic net is similar to Gaussian elastic net except a link function is used to

convert the output from the features into a Poisson distribution. A Poisson link function

was chosen because the Poisson distribution is a discrete data distribution, and since the

HAI data is a count (discrete) dataset a Poisson link function is a natural choice. PLS

regression is a regression that reduces the original feature space to a reduced space based on

feature correlation and then performs normal linear regression on the reduced feature space.

Finally, random forests is a bagging technique where many different individual decision trees

are trained by the model each one trained on a randomly selected subset of the original

feature space. Each of these models have hyperparameters to be tuned and they were tuned

and selected for by the train function in caret through grid search using leave one out cross

validation.

After performing prediction analysis, the models and hyperparamaters were observed.

I then looked at the features that had the most importance in predicting a certain strain

across the 4 model types. I paid particular to the most accurate models according to R2

and mean squared error metrics. I took the top most important features from the best

performing model and created a new model for predicting the strain HAI score using just

those most important features. The reasoning for creating models with less features is to

create simpler models that focus only on the most influential features. This allows us to see

what methylation sites seem to contribute the most to the HAI score of each strain. We

then can interpret what is happening biologically and make recommendations on wet lab

experiments that can be performed to confirm our hypothesis. Biological interpretation was

done by looking at the most important features from the variable reduced model through
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the UCSC genome browser. The browser gives us insight into what gene or genomic region

each methylated site affects and allows us to create a biological hypothesis as well as further

experiment ideas that can be implemented to confirm our hypothesis.
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CHAPTER 3

Results

Principal Component Analysis was performed on the DNA methylation and overlaid with

seroprotection status for each vaccine strain in accordance with the methods stated above.

Figure 3.1: PCA Graphs
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From the figure, we can see the seroprotection status across each principal component

for each viral type. As can be seen there appears to be a split in the H1N1 vaccine strain

between seroprotected and not seroprotected individuals, and this split occurs along Prin-

cipal component 1. There are not enough seroprotected individuals in the H3N2 graph to

determine if there is any split along seroprotection. In the Victoria as well as Yamagata

strains there doesn’t seem to be a split between seroprotected and not seroprotected individ-

uals. This split in H1N1 implies that there may be more separability in the original dataset

between seroprotected individuals and not seroprotected individuals. The separability may

imply that there is a stronger effect that DNA methylation has on HAI.

Figure 3.2: PCA Age Graph

Looking at the figure, we see that principal component 1 seems to follow an age related

trend, with younger individuals on the left side of principal component 1 and older individuals

towards the right of principal component 1. By comparing this to the PCA graph with H1N1

overlaid, we see that both the trends are similar implying that as individuals get older they

have a weaker immunity to H1N1.

After this initial exploratory analysis, I fit regression models to the data as detailed in

the methods section with methylation data acting as the independent features and HAI score

acting as the dependent feature.
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Figure 3.3: Performance Metrics

The figures above show the best top performing models validation R2 score for each flu

type.

As can be seen from the figures above, the best performing model was Poisson Elastic Net

for all subtypes except Yamagata. Poisson Elastic net having the most accurate performance

can be expected because the original HAI data follows a count distribution class and Poisson

Elastic Net accounts for its dependent variable following a Poisson distribution which is a

discrete probability distribution. We also see that generally the highest performance in the

models comes from H1N1 and this can be explained by H1N1’s higher separability discussed

above.

Now we can look at some of the most important features that were extracted from each

model.
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Figure 3.4: Feature Importance

Above are the graphs for the feature importance for each model applied on methylation

data predicting H1N1 HAI scores. Feature importance for Poisson elastic net, Gaussian

elastic net, and PLS was calculated by normalizing the absolute value of the t-statistic for

each model. Feature importance for the random forest was calculated by going to each tree

and calculating the accuracy of the tree, then calculating the accuracy after permuting each

predictor variable. The difference between the two is calculated for each tree, averaged out,

and finally normalized to get the feature importance value.

As can be seen, the two most important chromosome sites according to the Poisson

elastic net, Gaussian elastic net, and PLS regression are Chr3-53891847 and Chr7-5781615.

11



According to the UCSC genome browser [KBD03], the site on chromosome 3 is in an exon

region of the human gene Selenok. Selenok is a gene that encodes a transmembrane protein

that has been shown to be involved in promoting Ca(2+) flux in immune cells. This implies

that methylation on this gene affects people’s innate immunity to H1N1 and the gene should

be studied further. Again, according to the UCSC genome browser, the site on chromosome

7 is part of an exon region on human gene RNF216. This gene encodes for a protein that

interacts with the serine/threonine protein kinase and can also act as a E3 ubiquitin ligase.

Again, further analysis should be done on this site and chromosome.

Now since Poisson elastic net seemed to perform the best we can take a look into the

structure of Poisson elastic net.

L(β̂) =
∑n

i=1
(yi−yilog(x

T
i β̂))

2n
+ λ1−α

2

∑m
j=1(β̂

2) + α
∑m

j=1 |β|

Above is the loss function for an Poisson elastic net this function is the normal Poisson

regression loss function
∑n

i=1
(yi−yilog(x

T
i β̂))

2n
plus a regularization parameter λ1−α

2

∑m
j=1(β̂

2) +

α
∑m

j=1 |β|. This regularization parameter and its hyperparameters are important for inter-

pretation of our model. The two hyperparameters of interest are α and λ. λ controls over

all how much regularization there is i.e a higher value means more regularization. α controls

the type of regularization with a value of 1 being full L1 regularization and a value of 0

being full L2 regularization. A high amount of L1 regularization will lead to the elimination

of many individual features and this implies strong correlation between features.

Alpha Value Lambda Value R2 Value

0.1 1.18 0.041

0.8 1.18 0.028

0.8 33.5 0.73

Table 3.1: Model Comparison

Above is a table showing a selected list of Poisson elastic net models predicting H1N1
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HAI scores R2 values and their hyperparameters from the hyperparameter tuning stage. As

can be seen, the most accurate model had a high lambda value (33.5) and a high alpha value

(0.8). This implies that our model performs best when there is a lot of regularization and

when that regularization is using a L1 regularization method. Taken together, this implies

large correlation between prediction features and only a couple of true features contributing

to the HAI score at day 0 for H1N1. Further work should be done to narrow down our

features and find the ones contributing to day 0 immunity.
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CHAPTER 4

Conclusion

These results show a general trend of higher separability among H1N1 patients that is not

seen in the other influenza subtypes. This separability also follows a similar trend for age.

From this, we see that day 0 immunity for H1N1 is affected by age, but age does not affect

immunity for the other subtypes. After running regression analysis on the different subtypes,

we see that the most accurate method is Poisson elastic net. Specifically, it is Poisson elastic

net with a high alpha and lambda value. Taken together, this shows our predicted variable

(HAI score) follows a count distribution and our features have correlation among them.

More work should be done to narrow down the features space to find the features actually

contributing to day 0 immunity biologically. Finally, some of the most important features

seem to be involved in genes that have been shown to be active in the immune system from

previous literature. After narrowing down the feature space, experiments can be done on

these sites to determine the exact contribution they have to day 0 immunity. There is more

analysis that can be done on these datasets with the generation of new data. Methylation

data from day 28 of our cohort could allow for a similar regression analysis on day 28 patients

HAI scores. Additionally, longitudinal analysis could be done between day 0 methylation and

day 28 methylation. This would give insight into how methylation is changing in response to

the influenza vaccine, and if patients who have a stronger immune response have a different

methylation trajectory. Finally with a larger cohort, epigenome wide association analysis

(EWAS) could be done on this type of data to confirm the function of important sites found

earlier, and discover new sites
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