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Abstract
Clear speech is a vocal style used when a speaker wishes to im-
prove comprehension, usually due to the presence of external
noise, less-than-optimal listening conditions, or when they are
simply instructed to speak clearly. Clear speech has many dis-
tinguishing features, including increased duration, pitch, and
amplitude, as well as the exaggeration of articulatory move-
ment. We use game theory to model the phenomenon of clear
speech, and make predictions of how it changes under differ-
ent circumstances. We view the behaviours of speakers and
hearers when communicating as optimal strategies in commu-
nication games. When comprehension becomes more difficult,
the optimal strategies of the games shift so that speakers exert
more energy to improve the likelihood of accurate communica-
tion. We discuss how our models correspond to experimental
observations and see what predictions are made for future ex-
periments.
Keywords: phonetics; game theory; communication games;
clear speech; Lombard effect

Introduction
In many situations, speakers use clear speech: speech whose
properties are modified with the intention of being more com-
prehensible. Contexts in which clear speech occurs include in
the presence of external noise, when speaking to the hearing
impaired or language learners, or merely when the speaker
is instructed to speak clearly. Clear speech is not identical
in these different contexts, but there are certain features that
remain similar: increased amplitude, higher pitch, and longer
duration (Lam, Tjaden, & Wilding, 2012). Another important
feature of clear speech is that phonetic differences between
phonemes are exaggerated in order to make distinguishing
different phonemes easier for the hearer (Lindblom, 1990).

There is a need for a predictive theory of the differences
between clear and plain speech. One issue is the multitude of
different effects observed in different studies, and the need to
have a systematic framework for their organization and study.
Another is the fact that many predicted and observed effects
in clear speech are in tension with each other. For example,
making a larger articulatory gesture (and thus making the in-
dividual phoneme easier to hear) may result in making a pair
of phonemes more confusable (Leung, Jongman, Wang, &
Sereno, 2016). How does the speaker resolve these compet-
ing demands, and what paradigms can we use to probe these
issues experimentally?

Our basic assumption is that clear speech exists for the pur-
pose of improving the probability of correct transmission of

information. Though it is known that clear speech strategies
do not always work, (shouting does not help someone un-
derstand you when you don’t share a language), in many con-
texts they do. We conjecture that clear speech style developed
as an adaption to improve communication in adverse condi-
tions, and use this assumption to make predictions about clear
speech styles.

We use the framework of Game Theory to model clear and
plain speaking styles (DeVos & Kent, 2016; Jäger, 2008). We
imagine a speaker and a hearer who are engaged in a commu-
nication game that they play over and over again. The game
involves the speaker transmitting one of a few different pos-
sible messages to the hearer. The speaker is allowed to emit
a continuous-valued signal to communicate the message, and
must decide how different messages are encoded as different
signals. When the signal is transmitted, its value is perturbed,
so that the hearer only receives a corrupted version of it. The
hearer then must decide on a strategy for decoding the mes-
sage from the signal. Two important factors in the game are
that different signals have different costs to the speaker, and
that the presence of noise in the system leads to the possi-
bility of transmission of the wrong message. It will turn out
that the speaker has to strike a balance between the effort ex-
pended in communication and the probability that the wrong
message will be received, just as in Lindblom’s H&H theory
(Lindblom, 1990). Our results demonstrate that as the noise
level in the game increases, the speaker will devote more ef-
fort to emitting the signal in order to increase the probability
of correct communication again. This shift in strategy in re-
sponse to more noise in the system is what we take as our
model of clear speech.

Basic Model
We begin with the most basic version of our model, which we
depict in Figure 1. The speaker has one of two messages to
convey: either a or b. We may imagine that the speaker is
ordering a beverage at a café, so that a means “coffee” and
b means “tea”. We assume that the two messages need to be
transmitted equally often, and the consequences of mistak-
enly transmitting a for b are the same as for transmitting b
for a. To convey the message the speaker has a single vari-
able whose value they may set and then transmit. For exam-
ple, suppose the speaker may only emit a single tone of fixed
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Figure 1: A schematic showing our basic model. The speaker
is required to communicate one of two messages: a or b.
They select signal values xa or xb which they transmit to
the hearer. Noise in the communication channel leads to the
hearer receiving a perturbed signal which they classify as ei-
ther a or b based on the criterion c.

duration, but is able to select the pitch. Now either in produc-
tion, transmission, or reception, noise is added to the variable,
so that the original value selected by the speaker is perturbed
before it is perceived by the hearer. Then the hearer must in-
fer what message was intended by the speaker from this noisy
stimulus.

The speaker’s strategy is to select two values of the vari-
able x: xa and xb for the signals a and b respectively. Without
loss of generality we assume that xa < xb. Now, depending on
the message, a or b, what is perceived by the hearer is either
y = xa +σn or y = xb +σn where n is a standard Gaussian
random variable, and σ is a noise amplitude. The hearer must
make a decision based on the heard signal y. The hearer’s task
is an instance of the standard model in Signal Detection The-
ory (Macmillan, 2002): the optimal choice is to fix a value c,
known as the criterion, and choose a when y≤ c and choose
b otherwise. The optimal value of c will be the one that max-
imizes the probability of receiving the correct message. Re-
calling that each message is equally likely, we can express
this probability as

P(xa,xb,c) = P(correct transmission)
= P(correct|a)P(a)+P(correct|b)P(b)

=
1
2
P(xa +σn≤ c)+

1
2
P(xb +σn > c)

=
1
2

F
(

c− xa

σ

)
+

1
2

[
1−F

(
c− xb

σ

)]
Here F is the cumulative distribution function of a stan-
dard normal random variable with mean 0 and variance 1,
as shown in Figure 2 left. A simple use of calculus shows that
whatever xa and xb are, the optimal value for the criterion is
c = (xa + xb)/2. So whatever the speaker chooses for xa and
xb, this is the choice the hearer will make in equilibrium.
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Figure 2: Left: F , the cumulative distribution function of a
standard normal random variable. Right: g, the function de-
scribing the cost in our model of emitting a signal with a given
phonetic variable.

The issue remains of how the speaker should choose xa and
xb. If there are no constraints on x, the probability of success
will increase to 1 as the distance between xa and xb increases.
In any realistic system there is either a finite range of possi-
bilities for x, or there is a disincentive for using large or small
values of x. The idea is that more extreme values of x require
more effort, and the speaker will make less effort unless there
is sufficient benefit to making more effort (Lindblom, 1990).

We combine these ideas by defining a cost for emitting
a signal that depends on x, the phonetic variable of the sig-
nal. Suppose that the effort required to emit signal x is k g(x)
where g is defined as

g(x) =
1

x(1− x)
, for 0≤ x≤ 1, (1)

and set g(x)=∞ for x< 0 or x> 1, as shown in Figure 2 right.
k is some positive constant we use to parameterize the overall
effort in emitting a signal. We chose this form for g because
it means that (i) only sounds in the range (0,1) can be emit-
ted and they all have positive cost, (ii) more extreme sounds
are more difficult to emit, (iii) effort is close to constant for
signals within the middle of range. Other, similar, forms of g
give the same qualitative results as we present here.

We now make a fairly strong assumption for the purposes
of simplicity: the speaker and the hearer have the same pay-
off function in the game. So they are equally interested in the
correct message being transmitted, and are equally interested
in the speaker’s effort being minimized. (This is clearly not
always a reasonable assumption, and future work will con-
sider different models.) Following this symmetric modelling
choice, we assume that the expected payoff to the speaker and
the hearer in one round of the communication game is

E(xa,xb,c) = P(xa,xb,c)−
k
2
(g(xa)+g(xb)) ,

that is, the probability of the message being correct minus
the average cost to the speaker of transmitting x. We assume
the speaker and hearer will act to maximize this quantity. As
we have mentioned, the optimal solution will always have
c = (xa + xb)/2. The symmetry of g(x) about x = 1/2 im-
plies that the optimum will always have xb−1/2 = 1/2− xa
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Figure 3: The basic model. Top: The value of the optimal
xa,xb and c for varying k and σ = 0.05. Bottom: The same
for k = 0.05 and varying σ .

implying c = 1/2. So we only need to maximize the func-
tion P(1/2−∆x,1/2+∆x,1/2) with respect to ∆x≥ 0 to find
the optimum of the original problem. This can be performed
by a numerical optimization. This and all other optimization
problems we study were solved using Matlab’s fminsearch
routine (The MathWorks, Inc., 2016).

Using our computed solutions to the optimization problem,
we study how xa, xb, and c depend on σ (the noise amplitude)
and k (the effort parameter). Figure 3 top shows how xa,xb,
and c depend on k for a fixed value of σ = 0.05. We see that
as k goes to 0, xa goes to 0 and xb goes to 1, which makes
sense, since in this limit, there is no penalty for making the
gestures as large as possible. Likewise, as k goes to infinity,
xa and xb both go to 1/2, the cheapest possible signal, since
the cost of emitting a signal becomes large compared to the
benefit of accurate communication.

More interesting is the case of fixed k and varying σ . Fig-
ure 3 bottom shows how xa,xb and c depend on σ for a fixed
value of k = 0.05. For small values of σ , as we might ex-
pect, xa, xb go to 1/2 as σ goes to zero. This makes sense, as
when there is no noise, even the slightest difference between
xa and xb gives perfect communication, and setting both to
1/2 minimizes effort. Less expected is what happens as σ

increases. Initially, as σ increases from 0, gestures become
more extreme in order to improve the probability of correct
communication. This is the standard clear speech effect, and
is a key part of Lombard speech, that is, speech in the pres-
ence of noise (Brumm & Zollinger, 2011). See, for example,
(Ferguson & Kewley-Port, 2002) for this effect in F2 in En-
glish vowels and (Tartter, Gomes, & Litwin, 1993) for dura-
tion and amplitude.

Surprisingly, past a certain noise level the effect reverses
itself, and gestures become less extreme in our model. This
occurs because, if the noise is large enough, the probability of
communication regardless of the signals used is so low that it
is no longer worth the effort to make the more extreme ges-
tures that were worthwhile for a lower level of noise. We
know of no observations of this phenomena, but predict that
it will be observed for human subjects with sufficiently large
amplitudes of noise. Indeed, (Summers, Pisoni, Bernacki,
Pedlow, & Stokes, 1988) observes speech amplitude increas-
ing with a decreasing rate as noise level is increased, and a
reduction in amplitude may be observable if an even larger
noise level is tried. A similar phenomenon has been observed
in domestic fowl (Brumm, Schmidt, & Schrader, 2009). The
chickens studied varied the frequency with which they re-
peated their calls in the presence of different amounts of
noise. It was observed that for lower levels of noise the birds
increased call frequencies with increasing noise, and it is con-
jectured that this is an adaption to improve the probability of
communication by expending more effort. However, inter-
estingly the authors noted that after the noise was increased
past a certain point, the birds decreased the frequency of their
calls, as would be predicted by our model.

Four-Message Model
The basic model of the previous section can also be extended
to an arbitrary number of messages analogously. Here we
just consider the case of four messages, as we will build on
this case subsequently. Now there are messages a,b,c,d,
again corresponding to four distinct meanings. The strat-
egy of the speaker is to choose signals xa < xb < xc < xd to
represent them. Whatever these values, the optimal choice
for the hearer is to use criterion points cab = (xa + xb)/2,
cbc = (xb + xc)/2, and ccd = (xc + xd)/2. When the hearer
receives signal y= x+σN, they select message a if y≤ cab, b
if cab < y≤ cbc, c if cbc < y≤ ccd, and d if y > ccd. We do not
explicitly state the expressions for the probability of correct
transmission and the expected cost, since they are unwieldy
and completely analogous to those given for the basic model.
Again the payoff function E(xa,xb,xc,xd,cab,cbc,ccd) is the
the difference between the probability of correct transmission
and the expected cost, and both speaker and hearer act to max-
imize it.

We show in Figure 4 the results of the optimization for this
case for a range of σ and k. Similarly to the two-message
case, with both decreasing cost parameter k and increasing
but low noise level σ , the speaker uses more extreme signals
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to convey the same message. In contrast to the two-message
case though, where the hearer adopted the same strategy for
all values of k and σ , in the four-message case, the speaker
must adjust the criterion points cab and ccd in response to
the change in the speakers strategy. As the dashed lines in
Figure 4 show, when the speaker uses more extreme signals,
the hearer must compensate.

We note in passing that in the four-message game, the
speaker uses a larger portion of the phonetic space. This can
be seen by comparing the range of x used for the signals for
any particular k and σ , as in Figures 3 and 4. For exam-
ple, when k = 0.1 and σ = 0.05, in the two-message case,
the signals used range from about 0.4 to 0.6, whereas in the
four-message case they range from about 0.25 to 0.75. This
is in general accordance with the Theory of Adaptive Dis-
persion (Liljencrants & Lindblom, 1972; Lindblom, 1986),
which postulates that the more phonemes needed to fit into a
space, the more dispersed they will be. One way of describ-
ing it is that the basic model has a smaller range of x than the
four-message model because that smaller range already pro-
vides sufficient contrast between two messages. When two
more messages are added, and the number of contrasts that
needs to be made rises to three, there is a need for expand-
ing the phonetic space. But because more extreme signals
x are more costly, and signals less than 0 or greater than 1
are impossible, the range cannot be tripled. The net effect is
that with more messages to transmit, the speaker expands the
phonetic space used, while decreasing the spacing between
the signals for distinct messages.

Conflicts Between Clearness and
Comprehensibility

In the two-message case we saw that the speaker needs to
modify their strategy in the presence of greater noise in or-
der to maximize payoff. But in this case the hearer does not
need to make any adjustment to their strategy in response to
the speaker’s speech style, as shown by the flat dashed line
labeled c in Figure 3.

In the four-message case, we see from the dashed lines in
Figure 4 that the hearer does have to adjust their strategy as
well when k or σ is changed, in order to optimally respond to
the speaker’s change of strategy. Such changes in hearer’s
strategies in interpreting stimuli based on context (such as
for accent, gender, or identity of the speaker) are well at-
tested, and known to be an important part of comprehension
(McMurray & Jongman, 2011).

However, a problem for our language users can arise if the
speaker is using a clear speech style, with its exaggerated sig-
nals, but the hearer thinks the speaker is using a plain speech
style. If the hearer is using the plain speech criterion points
(low noise) to interpret a clear speech signal (high noise), they
may end up with the wrong message after decoding. For a
concrete example, take our four-message model, and see Fig-
ure 4 bottom. Suppose k = 0.05 and σ takes one of two val-
ues: σ1 = 0.01 or σ2 = 0.05. Suppose the speaker believes
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Figure 4: The four-signal model. Top: The value of the op-
timal phonetic variable values xa,xb,xc,xd (solid blue line)
used by the speaker and criteria cab,cbc,ccd (dashed black
line) used by the hearer for varying effort parameter k and
noise level σ = 0.05. Bottom: The same for k = 0.05 and
varying σ .

σ = σ2 and intends to transmit message b and so utters a sig-
nal near y = 0.4. If the hearer thinks σ = σ1, they will decode
this as message a, the wrong message. The problem is that a
plain (σ1) b has a similar signal to a clear (σ2) a, and so the
hearer cannot tell them apart if they don’t know whether a
plain or clear style is being used.

An example of how this might occur in a natural language
is in the difference between tense and lax vowels in English,
as exemplified by the minimal pairs “keyed – kid” (/i – I/),
“cod – cud” (/A – 2/), “cooed – could” (/u – U/). In each pair
the tense vowel is longer and the lax vowel is shorter. This
distinction has been shown to be perceptually important in
spoken English (though there are other important contrastive
features between these vowels as well) (Klatt, 1976). So sup-
pose that a speaker wishes to be clearer by lengthening the
vowels of their production. This may create a problem for
the hearer, since a long “kid” might be difficult to distin-
guish from a normal “keyed”. There is a conflict between
a non-phonemic speech clarity effect (i.e. lengthening) and a
phonemic contrast (Leung et al., 2016).
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A similar phenomenon may occur in animal communica-
tion systems. Many animals lengthen their alarm calls in the
presence of external noise (Brumm et al., 2009). But Brants’
whistling rat uses a duration of alarm call to indicate the level
of threat (Le Roux, Jackson, & Cherry, 2001). It is suggested
that they may not lengthen their calls in the presence of noise
for this reason (Brumm et al., 2009), though this has not yet
been experimentally investigated.

So what is the optimal strategy in the case where the
speaker is aware of σ , but the hearer is not, and must use one
set of criterion points for both noise levels? One possibility is
that the speaker decides it is not worth it to have two different
sets of signals, one for each level of noise. The other extreme
possibility is that the speaker just assumes that the hearer does
know what the noise level is, even though they don’t. As we
will see, the predicted behaviour is a compromise between
these two simpler strategies.

To explore the predictions of our model for these con-
texts we consider three different cases for the speaker’s and
hearer’s knowledge of the noise level σ . The speaker is
communicating one of four different possible messages, with
k = 0.05 and where in each trial σ takes the value of either
σ1 = 0.01 or σ2 = 0.05 with probability 1/2. Each of mes-
sages a,b,c,d occur with probability 1/4. To simplify nota-
tion we let X = (xa,xb,xc,xd) and C = (cab,cbc,ccd) be strat-
egy vectors for the speaker and hearer respectively. For each
condition we state the optimal values for X and C as com-
puted by numerical optimization.

Case i: Neither Oblivious. Both speaker and hearer know
the value of σ in each trial. Thus both their strategies can
be modified with respect to noise level. So we determine X (1)

and C(1) for noise level σ1 and X (2) and C(2) for noise level σ2
as in the previous section. Equivalently, X (1),X (2),C(1),C(2)

together maximize

1
2

E(X (1),C(1),k,σ1)+
1
2

E(X (2),C(2),k,σ2)

Here, because the σ1 vectors and the σ2 vectors are in
separate terms, they can be solved for independently.

Case ii: Oblivious Hearer. The speaker knows the value
of σ in each trial but the hearer does not. Speaker has strate-
gies X (1) and X (2) depending on the noise level, but the hearer
only has C. X (1), X (2) and C together maximize

1
2

E(X (1),C,k,σ1)+
1
2

E(X (2),C,k,σ2).

Case iii: Both Oblivious. Neither the speaker nor the
hearer know the value of σ for each trial. In this case X and
C are determined by maximizing

1
2

E(X ,C,k,σ1)+
1
2

E(X ,C,k,σ2).

In Figure 5 we show the optimal strategies for the speaker
and hearer in the four-message, two noise-level game, in each
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Figure 5: The optimal strategies for the speaker and the hearer
in the four-signal model with two levels of noise. The con-
dition is indicated along the x-axis. The y-axis indicates the
value of the signal used for each of the four messages by the
speaker (in blue), and the three criterion points used by the
hearer (in red). Lines are present merely to guide the eye.

of the three cases. The signals xa,xb,xc,xd are shown as blue
circles, and the criterion points cab,cbc,ccd are shown as red
×s. Lines connecting corresponding signal values and cri-
terion points are added to aid comparison. Leftmost in the
figure, we show the strategies for each level of noise when
both speaker and hearer are aware of the level of the noise
(Neither Oblivious). As we expect from the previous section
and Figure 4, the speaker uses more extreme signal values
when the noise is greater, and the hearer is able to take this
into account in the setting of the criterion points. The payoff
achieved in this case is 0.750. In the middle of the figure, we
show the strategies when only the speaker is aware of the level
of the noise (Hearer Oblivious). The speaker still emits more
extreme signals when the noise level is higher, as in the Nei-
ther Oblivious case. But this effect is relatively muted: when
the noise level is σ1 the range of the signals is greater than
in the Neither Oblivious case, and when the noise level is σ2
the range of the signals is less than in the Neither Oblivious
case. The fact that the hearer is unaware of the noise level
means the speaker cannot deploy this strategy to full effect.
The payoff achieved is now 0.741, and hence a cost is paid
for the hearer’s ignorance. Finally, for purposes of compari-
son, on the right we show the effect of two noise levels when
neither speaker nor hearer is aware of the level in a particular
trial (Both Oblivious). In this case, the speaker and hearer use
a compromise of the strategies in the other cases, leading to a
payoff of 0.729, worse than either of the other two cases.

Thus according to our model, uncertainty in the speaker
about whether a clear speech style is being used diminishes
the speaker’s distinction between plain and clear speech. One
way to investigate this effect experimentally when eliciting
clear speech is to vary the instructions, sometimes explaining
that the intended hearer will be aware that the speech is clear,
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and sometimes not. Alternatively, both a speaker and hearer
could be studied together, with noise of different levels being
played on separate headphones. Whether the speaker knows
if the hearer has the same noise level or not can be manipu-
lated, allowing this effect to be investigated.

Predictions of our Model
Here we summarize the predictions our model makes for the
contrast between clear and plain speech.

1. Phonetic features used to distinguish phonemes will be ex-
aggerated (produced with more extreme values) in clear
speech.

2. In noise-induced clear speech, as the noise level is in-
creased, signals will first be exaggerated but then eventu-
ally become less exaggerated past a certain noise level.

3. Increasing the number of phonemes contrasted by a single
variable will cause the phonetic range to increase while the
phonemes are packed closer together within it.

4. In noise-induced clear speech, if both speaker and hearer
are aware of the noise level, differences between clear and
plain speech will be greater than in the case where the
speaker believes the hearer is unaware of the noise level.

Future Directions
There are many ways to extend our models to explore further
aspects of clear speech. We list some of them here.

1. More and Less Probable Messages. We assumed that all
messages were equally likely to be transmitted. This is not
at all necessary for our model, and in future we will study
how making a message more frequent changes the position
of its signal in phonetic space.

2. Multiple Phonetic Variables. We considered a communi-
cation game in which the speaker can vary only one pho-
netic variable in the signal. In real speech many different
dimensions of a signal can be controlled. Our models can
be expanded to handle more signal dimensions. This will
allow us to model and study the effects of variables like am-
plitude (i.e. loudness or intensity) which are typically not
used contrastively, as well as how speakers decide among
multiple variables which to use as a contrastive one.

3. Asymmetric Payoffs. We have assumed that the speaker
and hearer have the same payoff function. In reality the
speaker bears the cost of articulation alone, and the speaker
and hearer may not be equal in how important it is to them
for the message to be transmitted correctly. These factors
may be important in determining how clear speech is used
in a social context.
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