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ABSTRACT OF THE THESIS

Commonsense-Guided Text Generation with Knowledge Grounding and Scoring

by

Felix Zhang

Master of Science in Computer Science

University of California, Los Angeles, 2023

Professor Nanyun Peng, Chair

This thesis investigates improving the world knowledge and commonsense reasoning abilities

of Language Models (LMs) such as GPT2 and T5 (Radford et al., 2019; Raffel et al., 2020)

through the task of commonsense language generation using the CommonGen benchmark

(Lin et al., 2020). We propose a framework that guides pretrained LMs to generate more

commonsensical sentences without updating the LMs’ parameters. To do so, we introduce

an automatic commonsense metric grounded on ConceptNet (Speer et al., 2017) inspired by

ACCENT (Ghazarian et al., 2023). To this end, we introduce a parser to extract triplets of

commonsense-related concepts from a input sentence trained on few-shot GPT3-annotated

data. We take the extracted triplets and compute similarity scores using COMET (Bosselut

et al., 2019) to measure how well the sentence is grounded to ConceptNet, which we assume as

the oracle of commonsense knowledge. Finally, we extend the Neurally-Decomposed Oracle

by Meng et al. (2022), adding our commonsense metric masked with the lexical constraint

into the signal used to train the auxiliary network, and demonstrate our framework is able

to guide LMs towards more commonsensical generations while satisfying lexical constraints.
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CHAPTER 1

Introduction

Natural Language Processing (NLP) has made significant strides in recent years. Large

Language Models like GPT-3 (Brown et al., 2020) can now pass the sections of the Bar Exam

(Bommarito and Katz, 2022), solve challenging Math Olympiad problems (Polu et al., 2022),

and demonstrates mastery across a variety of difficult benchmarks (Brown et al., 2020).

While these models have made remarkable progress, there have been criticisms around its

commonsense reasoning ability (Marcus, 2020), lack of world knowledge (Elazar et al., 2021),

and inability to reliably and robustly incorporate commonsense knowledge (Mahowald et al.,

2023). Specifically, Mahowald et al. (2023) points to its weaknesses in functional competence

relating to language use to do things in the world, covering skills such as world knowledge

and formal reasoning.

Our contributions explore addressing this gap in the functional competence area of world

knowledge using the task of commonsense generation: generating a plausible sentence of an

everyday scenario that obeys our underlying commonsense knowledge.

We explore this question using CommonGen (Lin et al., 2020), which is a constrained

text generation task and benchmark designed explicitly to test for generative commonsense

reasoning. The benchmark contains pairs of concept sets and their corresponding reference

sentences. Each concept set is composed of a reasonable set of concepts that can be composed

into a sentence and each reference sentence contains all the corresponding concepts. The

objective is to assemble the concepts in the concept set into a plausible sentence defined by

similarity to reference sentences. More detail can be found in Section 4.1.
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Various systems have been proposed for generative commonsense reasoning on Common-

Gen. One type are systems like KG-BART (Liu et al., 2021) and DKMRˆ2 (He et al.,

2022) that directly integrate an external knowledge corpus through retrieval or as inputs.

These systems can be highly effectively, but require costly access to Knowledge Bases during

inference time and require training updates to the pretrained LMs parameters.

On the other hand, controllable generation approaches like FUDGE (Yang and Klein,

2021), GeDi (Krause et al., 2021), and NADO (Meng et al., 2022) control generation without

retraining the base language model. Specifically, Neurally-Decomposed Oracle (NADO)

guides generation with a trained oracle to achieve high lexical control on CommonGen.

However, these approaches don’t address the commonsense aspect of sentences, sometimes

resulting in implausible sentences.

For example, given the set of commonsense concepts { food, customer, watch, employee,

prepare }, NADO achieves perfect lexical control and generates ”An employee is watching a

customer prepare food.” This, however, is not commonsensical, since one would expect the

employee to be preparing food for the customer.

To address this issue, we introduce a novel framework to guide the generation of pre-

trained LMs using a commonsense scorer in a controllable generation fashion.

In Table 1, we show a couple of motivating examples comparing NADO to generations

produced by our framework. We are able to generate more commonsensical sentences than

just guiding with lexical constraints (such as in Meng et al. (2022)). This increase in com-

monsense is reflected later in post-generation scoring using our commonsense scorer. We do

note that post-generation sentences are not always scored higher due to variability in our

parser. Still, even then the framework is able to guide generation toward sentences that are

more commonsensical.

To accomplish this, we first propose an automatic commonsense metric grounded on

ConceptNet (Speer et al., 2017) inspired by ACCENT (Ghazarian et al., 2023). In or-
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der to create our commonsense metric, we then introduce a parser to extract triplets of

commonsense-related concepts. We additionally compute similarity scores using tails gen-

erated by COMET (Bosselut et al., 2019) to measure how well the sentence is grounded to

ConceptNet.

Finally, we extend NADO by adding our commonsense metric masked with the lexical

constraint into the signal used to train the auxiliary network.

We then demonstrate through a set of experiments that our framework is able to guide

the generation of pretrained LMs towards more commonsensical generations while satisfying

lexical constraints.

Model Sentence CS Score

NADO A man is using a piece of burning wood to design a piece of furniture. 0.46
Ours A man is using a tool to burn wood to design a piece of furniture. 0.84

NADO An animal is being ridden by a man who is lassoing it and catching it. 0.71
Ours man rides a horse and catches an animal with a lasso. 1.00

NADO A man is holding a tree and sitting on it. 0.36
Ours A man is sitting on a tree holding an umbrella. 0.44

NADO A man is performing a spin throw with a baton. 0.48
Ours A man performs a spin and throws a baton in the air. 0.68

NADO An employee is watching a customer prepare food. 0.36
Ours customers watch employees prepare food 0.32

Table 1.1: We compare sentences produced using lexically-guided generation with NADO
(Meng et al., 2022) and sentences using commonsense-guided generation with our framework.
Underlined are portions that are nonsensical while italicized are more commonsensical por-
tions that we can generate. All sentences shown also match the lexical coverage of NADO.
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1.1 Thesis Contributions

Our contributions are as follows:

1. We introduce a framework for guiding pretrained Language Models to more common-

sensical generations without requiring retraining of the base Language Model (shown

in Figure 1.1)

2. In order to guide our Language Model, we devise an automatic commonsense metric

based on ConceptNet (Speer et al., 2017) which is inspired by ACCENT (Ghazarian

et al., 2023). We find it has moderate correlation with human judgment of common-

sense without reference sentences and outperforms or matches referenced-based metrics

in a pilot study.

3. As part of our automatic commonsense metric, we propose a parser for ConceptNet

triplet extraction that is trained on few-shot LLM-annotated relation data. We explore

various settings for training our parser.

4. Finally, we propose a simple extension to Neurally-Decomposed Oracle (Meng et al.,

2022) using our commonsense score, shifting from a lexically-constrained objective to a

combined commonsense and lexical objective. We find that from initial experiments our

oracle is able to guide generations toward higher commonsense scores while satisfying

lexical constraints.
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Figure 1.1: Our pipeline consists of three main phases, Parsing, comprising a triplet parser;
Compatability, comprising of a commonsense scorer ground on a knowledge graph; and
Guidance, commonsense-guided generation with NADO. Triplets are parsed with our parser
module and then aligned using our compatibility module to ConceptNet. We then use
those scores along with lexical scores to guide the generation of pretrained LM using our
commonsense-guided generation module.
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1.2 Thesis Overview

The thesis is organized as follows:

Chapter 2 reviews related work in commonsense, knowledge-based and controllable gen-

eration approaches to CommonGen, and various automated and knowledge-based metrics.

Chapter 3 expands the core methodology of our framework, outlining our parser module,

compatibility module, and guided-generation module.

Chapter 4 reports our experimental results that consist of parser experiments, a human

correlation study, and guided-generation experiments.

Chapter 5 concludes with a discussion and areas of future work.
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CHAPTER 2

Related Work

This chapter presents a review of relevant literature in Commonsense, Controllable Gener-

ation, and Automated Metrics in the context of Natural Language Processing. We begin

by providing a discussion of some relevant research in commonsense, focusing on Knowl-

edge Graphs and the CommonGen benchmark (Lin et al., 2020). We then discuss various

knowledge-based and controllable generation systems proposed on CommonGen and provide

a closer look into the NADO framework (Meng et al., 2022). We conclude by exploring

various types of automated metrics.

2.1 Commonsense in NLP

Commonsense knowledge and reasoning has been a prominent topic in natural language

processing (NLP) in recent years. Various avenues of research have been proposed to better

endow machines with human-like understanding. Recent approaches have culminated in

large graph structures of commonsense referred to as knowledge graphs which are generated

by extracting or scraping commonsense data (Sap et al., 2020). These knowledge graphs can

then later be directly integrated into models or used for retrieval.

Knowledge graphs have been a rich resource for the field of commonsense. ConceptNet

(Speer et al., 2017) and ATOMIC (Hwang et al., 2020) are two popular knowledge graphs or-

ganized using triplets of the form head, relation, and tail. ConceptNet contains 3.4M triplets

spanning 36 different relations such as AtLocation and PartOf. It consists of primarily high

7



quality taxonomic, lexical, and physical commonsense knowledge. ATOMIC on the other

hand focuses primarily on event-based commonsense relations, and comprises 880k triplets

over 9 relations. It narrows its focus from ConceptNet, which contain a large portion of

lexical and taxonomic relation data.

These knowledge graphs, while useful, are difficult to interact with. Searching a single

triplet in knowledge graph often entails costly lookup. Additionally, these knowledge graphs

often suffer from a lack of coverage; not all possible relations of commonsense could possibly

be contained in the graph. Based on these issues, Bosselut et al. (2019) proposes the neural

knowledge model COMET. COMET is trained to represent knowledge graphs and accepts a

head or phrase subject, s, and a relation, r, and generates the corresponding tail or phrase

object o. We explore COMET more in Section 3.2.1.

Many downstream commonsense benchmarks have been built on knowledge graphs for

a variety of tasks such as question answering (Xiong et al., 2019) or dialogue (Zhou et al.,

2018). We focus specifically on the task of generative commonsense reasoning using the

CommonGen benchmark (Lin et al., 2020). It is organized as a dataset of concepts matching

those in ConceptNet, and corresponding scraped and human-written evaluation sentences.

We discuss CommonGen more in section 4.1.

2.2 Knowledge-Augmented Generation Systems

Various systems have been proposed to tackle the issue of generative commonsense reasoning

on CommonGen. One common approach is to directly integrate Knowledge Bases into the

neural network itself, we refer to these as Knowledge-Based Systems.

DKMRˆ2 (He et al., 2022) is one such Knowledge-Based System. It directly incorporates

knowledge by retrieving from a external corpus of candidate sentences and re-ranks the

retrieved sentences based on relevance. It then uses a metric distillation process to improve

both the ranker and retriever.
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KG-BART (Liu et al., 2021) is another example of a system of this type. KG-BART

directly incorporates a Knowledge Graph, searching and adding relevant Knowledge Graph

Data into the pretrained model as inputs.

These approaches can be highly effective, however they require accessing and searching

an external corpus during inference, resulting in significant inference costs. Additionally, we

wish for our commonsense addition to be compatible with future pretrained model architec-

tures, without requiring the need for additional model design and costly retraining.

2.3 Controllable Generation with Guidance

Another approach to generative commonsense reasoning on CommonGen is using Control-

lable Generation to directly satisfy the lexical constraint of the task. These approaches don’t

incorporate Knowledge Graphs or address commonsense, instead focus more on controlling

the existing pretrained model to satisfy a defined oracle-level constraint. Some advantages

to these approaches is that they don’t require access to an external corpus during inference,

and are compatible with existing model architectures without need for retraining.

GeDi (Krause et al., 2021), FUDGE (Yang and Klein, 2021), and NADO (Meng et al.,

2022) are some examples of Controllable Generation. GeDi controls generation by using a

class-conditioned language model as a discriminator to guide the generation of the pretrained

model. FUDGE on the other hand learns an attribute predictor on partial sequences, thereby

allowing it to better guide generation during inference time. However, both these methods

require an external dataset of positive and negative examples.

NADO solves this issue by introducing sampling from the base pretrained model and

provides a mathematically rigorous framework for guided-generation with a trained decom-

posed oracle. NADO also directly applies this framework to the lexical constraint portion

of the CommonGen benchmark. Due to the lack of an external dataset, we choose to use

NADO for the Guided-Generation module of our framework.

9



2.3.1 Neurally-Decomposed Oracle for Guided-Generation

NADO guides generation by training an auxiliary model on sampled generations from the

base pretrained model. It uses the auxiliary model to decompose a sentence-level oracle

signal, which it later uses to guide the generation of the pretrained model to satisfy the

conditions of the oracle.

It accomplishes this by training the auxiliary model to predict the success-rate prediction

function RC
p which is used to provide Guided-Generation through a token-level distribution

q on inference time. During training, we train with a cross entropy objective between RC
p

which is derived from our oracle signal and our predicted function RC
θ from our auxiliary

model.

Ey∼p(y|x)LCE(x, y, R
C
θ ) =

T∑
i=0

CE(RC
p (x,y≤i), R

C
θ (x,y≤i))

NADO also introduces a tunable regularization term λ which is included in our loss. We

further describe the setting of NADO in Section 3.3.1.

2.4 Automated Metrics

Popular metrics in NLP, such as BLEU (Papineni et al., 2002) and ROUGE (Ganesan,

2018), are based around n-gram matching between the candidate and reference sentences.

The sentence score is assigned corresponding to overlap between a single candidate and one

or more reference sentences. For example, BLEU is calculated using the precision of n-gram

overlap between the candidate and the corresponding reference sentences, with parameters

for brevity and size of the N-gram.

These metrics provide a fast approximation of sentence quality. However, recently there

has been a push toward more semantically meaningful scores for evaluation. Metrics such as

SPICE (Niu et al., 2022) extend this framework over scene graphs to provide a more mean-

10



ingful representation. Various model-based metrics have also been proposed to incorporate

model understanding of candidate and reference sentences.

2.4.1 Model-Based Metrics

Model-Based Metrics are another type of metric that use the embedding similarity of the

candidate and reference sentences. For example, BERTScore (Zhang et al., 2019) is a model-

based metric that has been proposed to evaluate sentence similarity by comparing the con-

textual BERT (Devlin et al., 2019) embeddings of tokens.

By creating contextual embeddings of both the references and candidate sentences it can

compare them using pairwise cosine similarity to produce the corresponding BERTScore

after some adjustments in weighting and rescaling.

One significant limitation is that BERTScore isn’t well defined in the case where there

are no reference sentences. This prevents us from using the score unless we have reference

sentences, and even then, we would only be able to evaluate how closely related it was to

the reference sentences. It can, however, provide some approximation of commonsense since

the human-written references sentences are typically commonsensical.

2.4.2 Knowledge-Based Metrics

One final type of metric that we review are Knowledge-Based Metrics. These are metrics

based on commonsense, specifically those grounding on knowledge graphs. For example,

Zhou et al. (2022) measures the commonsense of dialogue turns by hard and soft matching

relations across each turn to ConceptNet. ACCENT (Ghazarian et al., 2023) focuses on

measuring the event commonsense and leverages the ATOMIC knowledge graph (Bosselut

et al., 2019) to ground the dialogue. Specifically, ACCENT trains a parser based on a human-

written dataset of dialogue turns and runs a compatibility test using COMET-ATOMIC to

measure the commonsense of the dialogue.

11



Our metric is inspired by ACCENT but is primarily focused on sentences over dialogue.

Additionally we differ by grounding using ConceptNet grounding and training our parser on

a LLM-annotated dataset.

12



CHAPTER 3

Methods

We present Commonsense Guidance as a framework for guiding the generations of pretrained

Language Models (LMs) to more commonsensical generations. In our framework, we define

commonsense using alignment with ConceptNet (Speer et al., 2017). ConceptNet is a Knowl-

edge Graph connecting phrases with labeled edges in triplet form and is designed to represent

general knowledge and relationships between phrases. We construct our notion of how com-

monsensical our generation is by considering the alignment of each parsed triplet to existing

triplets in ConceptNet. For our work, we limit ourselves to examining one-hop relationships

in the generation. Figure 3.1 provides a overview of our commonsense scorer.

Our framework consists of three main stages:

1. Parsing: ConceptNet Triplet Extraction. We first parse relevant triplets from

the sentence for each relevant relation. This is done using a pretrained T5 (Raffel

et al., 2020) finetuned on sentences parsed by a few-shot Large Language Model.

2. Compatibility: ConceptNet Alignment of Parsed Triplets. We then evaluate

the alignment of each parsed triplet with ConceptNet. We notably leverage COMET

(Bosselut et al., 2019) to access ConceptNet following ACCENT. We use our alignment

scores to construct a final commonsense score (CS Score).

3. Guidance: Guided-Generation Using Commonsense Score. We finally guide

the generation of a pretrained LM controlled by a modified NADO (Meng et al., 2022)

using our final score along with the lexical coverage score described in NADO.

13



During inference after training with our framework, NADO is able to guide the genera-

tion of the pretrained Language Model without gradient updates, parsing, or access to the

Knowledge Graph. In the following sections we will discuss each stage of our framework.
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Figure 3.1: The commonsense scoring portion of our framework comprising the Parsing and
Compatibility module is shown in this Diagram. Triplets are parsed with our parser module
and then aligned using our compatibility module to ConceptNet. We then use it in the
commonsense guided-generation explained in section 2.3.1.

3.1 Parser: ConceptNet Triplet Extraction

Our parser module serves to extract all relevant triplets of the form (head, relation, tail)

from each generation for all interested relations. We focus on a subset of relations that exists
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in ConceptNet. Namely, we aim to parse any triplets in the generation containing relations

of the type UsedFor, CapableOf, AtLocation, and PartOf.

We aim to extract triplets containing both reasonable and unreasonable relationships to

inform our commonsense score. To achieve this, we align our parsing approach with the

definition of relations in ConceptNet. It’s worth noting that the relation UsedFor is defined

in ConceptNet as both a connection between a concept and its intended use and an activity

carried out on a concept. For instance, (Piano, UsedFor, Music) and (Piano, UsedFor,

Playing) are both examples of UsedFor relationships. Figure 3.1 shows an overview of our

triplet parser.

3.1.1 Few-Shot LLM Annotation to Train Parser

Large Language Models have demonstrated an emergent ability of few-shot in-context learn-

ing (Brown et al., 2020), allowing such LLMs to perform tasks given only demonstrations with

relevant context without gradient-based parameter updates. LLMs have also demostrated

promising performance for semantic parsing (Dong and Lapata, 2016; Dunn et al., 2022).

To refine our parser to accurately extract the relevant triplets, we leverage a few-shot

Large Language Model to annotate our sentences with parsed triplets for each relation. Our

sentences are human-written and sourced from CommonGen (Lin et al., 2020). A detailed

discussion of CommonGen is presented in Section 4.1.

The few-shot LLM we use is OpenAI’s Da-Vinci-003 GPT3.5 Model. Davinci is a GPT-

3-like model (Brown et al., 2020), finetuned on code and text with a mixture of supervised

learning and reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022a).

For our few-shot prompt, we hand-curate five example sentences as shown in Appendix

A.1. We then attach our few-shot prompt as the prefix to our sentence to generate our

parsing result.
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3.1.2 Finetuned T5 Parser in LLM-Annotated Data

Using GPT-3 Davinci to parse all our generations is computationally expensive. To address

the issue of limited computational resources, we propose the implementation of a finetuned

T5 model (Raffel et al., 2020) for the purpose of parsing generations. The T5 model has

demonstrated strong learning capabilities in low-resource settings, and has been trained on

our few-shot LLM-Annotated sentences dataset.

Fig. 3.2 depicts the relationship between our Few-Shot LLM and Finetuned T5 Parser.

In our training approach, we parse all triplets of one relation individually per example. Each

sentence thereby yields one example per relevant relation. We choose to use one unified T5

for all the relations. Our choice for T5 Parser design is informed by ACCENT (Ghazarian

et al., 2023), and Appendix A.2 provides the prompt for each relation that is attached as a

prefix during training and inference.

On inference time, we make multiple forward passes for each desired relation we want to

parse. We then gather all parsed triplets to generate our parsing result.

Triplet Parser

Common Gen Sentences:
 fog rolling into the mountains

  pestalozzi students wait for the talk to begin
 demonstrator on car animate the crowds

 villa on the beach reveals the beauty of nature

GPT-3.5 Few 
Shot Parser

Label/Annotate Train

Figure 3.2: We use a GPT-3.5 Few-Shot Parser to annotate a dataset of CommonGen (Lin
et al., 2020) Sentences. We then finetune a T5 model on our annotated sentences to create
our triplet parser. The GPT-3.5 parsing is performed in one pass, while the Finetuned T5
parsing is performed in one pass per relation and later collated together.
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3.2 Compatibility: ConceptNet Alignment of Parsed Triplets

Our Compatibility module constructs our Commonsense Score (CS Score) by evaluating

how aligned each triplet is with ConceptNet. We adapt the Compatability module described

in ACCENT (Ghazarian et al., 2023) to ConceptNet relations to score our concept-based

triplets. Our goal is to check if our parsed triplets are sensible and aligned with ConceptNet.

Due to the size of ConceptNet, the Compatibility module uses COMET (Bosselut et al.,

2019) to access triplets in ConceptNet. Figure 3.1 shows an overview of the commonsense

scoring portion of our framework that uses our compatibility module.

3.2.1 Accessing ConceptNet with COMET

COMET is a generative approach to representing a given commonsense knowledge base

(CSKB). Given a phrase subject, s, and a relation, r, it is trained to generate the phrase

object, o, of the triplet {s, r, o}. In this manner, it is able to both efficiently return triplets

stored in the CSKB as well as generalize to novel commonsense knowledge.

In our framework, we use COMET to query phrase objects given a phrase subject and

relation, represented as {st, rt}. Using k-beam search generation, we query the generalized

top-k COMET phrase objects as og. We then compare them to our existing phrase object

ot to evaluate if a given triplet t is sensible.

3.2.2 Alignment of Parsed Triplets to ConceptNet

In order to evaluate the similarity between the phrase object ot and top-k generalized

COMET outputs og, we leverage SentenceBERT (Reimers and Gurevych, 2019) to embed

our phrases. Following ACCENT (Ghazarian et al., 2023), we then calculate the similarity

score by taking the closest phrase object og with our existing phrase object ot.
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COMPAT((h, r, o)|C) = max
1≤i≤k

cos(embed(ot), embed(oig))

One problem we come across is that there are some phrase subjects such as people,

woman, man where the set of phrase objects is prohibitively large. For these phrase subjects

we simply ignore them and set their score to be 0.5.

We perform this compatibility test for all p parsed triplets for all relevant relations. We

then take the minimum score for all triplets as our compatibility score. Our rationale is that

given a sentence, a single incorrect triplet can result in a nonsensical sentence. We define

the commonsense score as follows:

CS Score = min
∑

0≤i≤p

COMPAT((hi, ri, oi)|C)

The commonsense score reflects the level of how well a generation aligns with common-

sense knowledge in ConceptNet. The CS ranges between 0 and 1, where 1 indicates that all

parsed triplets in the generation align perfectly with commonsense knowledge in Concept-

Net. A CS of 0 indicates that one of the parsed triplets is completely misaligned with the

commonsense knowledge in ConceptNet.

In the following section, we describe how we use our derived commonsense score to guide

the generations of our Language Model toward more commonsensical generations.
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3.3 Guidance: Guided-Generation Using Commonsense Score

In order to guide generations of our pretrained language model with our commonsense score,

we train a Neurally Decomposed Oracle (NADO) introduced by Meng et al. (2022). We

follow the sampling scheme of the original NADO and slightly finetune our pretrained GPT-

2 base to produce the sampled generations. We then diverge from the original and train

with continuous rather than binary labels as well as introduce our commonsense score into

our oracle guided-generation.

3.3.1 NADO Method Overview

NADO decomposes a sequence-level boolean oracle to token-level guided-generation. It does

this by training an auxiliary neural model on sampled generations from the base model scored

by oracle C. The auxiliary neural model approximates the token-level guided-generation

function RC
θ .

Then, during inference, the auxiliary neural model, RC
θ , guides the generations of the base

model to satisfying oracle constraints. In practice, NADO also introduces a KL divergence

hyper-parameter, λ, to regularize the effect of the guided-generation model. We also find this

parameter necessary to prevent overfitting the oracle signal. Further details are discussed in

Section 2.3.1.

Our auxiliary neural model, RC
θ , is trained on sampled generations from the base model.

It uses a temperature parameter to sample from a distribution of generations. In order to

sample plausible generations, we also use importance sampling and fine-tune the base model

on sentences from the dataset.

NADO demonstrates successful control given the lexical constraint task on CommonGen.

The oracle formulation simply checks if all input keywords are in the generation and returns

a boolean value used as the oracle label.
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LM

NADO

LM

Lexical Constraint x: 
food, customer, watch, employee, prepare

Generations

(X, Y1,  LEX_SCORE)
(X, Y2, LEX_SCORE)
(X, Y3, LEX_SCORE)

...

SAMPLINGY1:  customer watches the employee
Y2: the employee is preparing food at the store
Y3: the employee watches the food get prepared
Y4: food is being prepared on the grill by employees

ORACLE
TRAINING

Figure 3.3: This diagram describes the application of NADO on the task of lexical control.
The oracle function checks if all keywords x are in the generation y. Using samples from the
Base Model, we then train Rθ to provide token-level guided-generation pushing the generated
text to satisfy the oracle function. Diagram inspired from Meng et al. (2022).

3.3.2 Commonsense Soft Constraint with NADO

We modify NADO by introducing our Commonsense Score into the oracle function. As

outlined in Section 3.3.1, NADO uses a boolean oracle function to check if all keywords

are satisfied. Our oracle function uses the same lexical boolean and multiples it with our

Commonsense Score in order towards push it to generations that are both lexically-controlled

as well as more commonsensical. Inference time we then use our trained NADO to produce

the desired generated text. Figure 3.3 provides a summary of this process.

One consideration is that our commonsense score is not able to generalize to completely

unseen concepts since our oracle needs some notion of commonsense relations for the con-

cepts. One future approach that can be used to alleviate this issue is by sampling using

concepts of interest.
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CHAPTER 4

Experiments and Results

This section presents an evaluation of the efficacy of various stages of our framework. The

evaluation is conducted through a series of experiments that aim to assess the impact of

varying settings for the parser module, the validity of our commonsense score, and the

overall performance of commonsense guided-generation with the full framework.

To evaluate the parser module, we conduct experiments using different training dataset

sizes and model settings. We also perform a pilot human correlation study to compare

our commonsense score against reference-based methods. To assess the effectiveness of the

commonsense-guided generation module, we conduct experiments exploring the impact of

guided-generation with the commonsense score and the commonsense and lexical combined

score.

We leverage the CommonGen dataset (Lin et al., 2020) for both the parser training set

and guided-generation. All experiments are run on a single NVIDIA RTX A6000.
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Figure 4.1: This diagram is from Lin et al. (2020). CommonGen is composed of concept
sets xi and corresponding reference sentences yi. It aims to measure relation reasoning and
compositional generalization. One example shown above is the concept set of { exercise,
rope, wall tie, wave } which align with the shown relations. A provided reference sentence
for the concept-set is a woman in a gym exercises by waving ropes tied to a wall.

4.1 Dataset Overview

The CommonGen task is a generative commonsense reasoning task designed to evaluate

commonsense relation reasoning and compositional generalization (Lin et al., 2020). The

associated dataset is collected by sampling sentences containing 3-5 concepts (of which are

present in ConceptNet) from several caption-related datasets. The development and testing

set is then created using Amazon Turk by annotating a collection of held-out concept sets

resulting in a set of human-written sentences. Figure 4.1 provides an illustration of the

dataset.

The training set contains 32,651 unique concept sets while the development set contains

993 concepts. For reference sentences, The training set has 67,389 sentences and the develop-

ment set has 4,018 sentences. We use the training set sentences to train our parser, evaluate

the correlation of referenced-based metrics, and fine-tune our base model for NADO.
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4.2 Parser Experiments

The triplet parser plays an integral role in the framework to accurately generate our common-

sense score. We aim to create a parser that can accurately understand the composition of the

sentence and parse out the relevant relations. We want these relations to accurately reflect

the composition of the sentence, regardless of whether they are sensible or not. Additionally,

we want to cover all existing triplets in the sentences.

4.2.1 Parser Training Setup

As described in 3.1, in order to train our parser we leverage Davinci, a few-shot LLM, to

annotate our training data with triplet parsings. We access Davinci through the OpenAI

API and generate using our few-shot prompt with greedy decoding and a temperature of 0.7.

We use Davinci to few-shot parse a training set of 1097 training sentences. We additionally

few-shot parse a validation set of 250 sentences, on which we then perform a second human

validation pass to fix any mistakes or incorrect parsings.

We note that there is a slight domain shift between our sentences and later sampled

generations. Typically, sentences from CommonGen are more commonsensical and coherent

than sampled generations. In Section 4.3 we find the score using our parser can still able to

achieve moderate human correlation despite the mismatch.

We also choose to use a pretrained T5 (Raffel et al., 2020) for our model following

ACCENT (Ghazarian et al., 2023). We note that any sequence-to-sequence model could

work in our framework.

Figure 4.2 show the distribution of the number of triplets per relation in our eventual

train and validation sets. Most relations have 1-2 triplets per sentence, while PartOf is less

present in most sentences.
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Figure 4.2: Our parser dataset consists of a training split of 1097 generations and a valida-
tion split of 250 generations. In our dataset, we use the following relations: { AtLocation,
CapableOf, PartOf, UsedFor }. PartOf is biased toward not being contained in the genera-
tion, and we find a slight shift in the positive and negative ratios between the splits.

4.2.2 Comparison of Different Parser Architectures

We explore the space of parser architectures and try three different settings. We first explore

using the instruction tuned T5-Flan (Chung et al., 2022) for our base model. We then

compare against using Davinci Few-Shot. Finally, we do a quick ablation using only the

CommonGen concept set as our parsed triplets. We call this ”T5-Large w/ CG Naive.”
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4.2.3 Parser Results

For all experiments, we report the precision, recall, and f1-score of the set of predicted triplets

and ground-truth validation triplets averaged for each relation.

We explore balancing the relations by removing positive or negative (empty set) sentences

until the desired ratio is reached for each relation. This did not improve our performance.

We experiment with training our parser on various dataset sizes and balances of positive

and negative (empty set) triplets for each relation. Specifically, we train on 200, 400, 600,

800, 1000 sentences, randomly sampling from our original training set to explore the effect

of our low-resource setting. As shown in Table 4.1, we find that our model improves with

scale but already starts to plateau. Hence, we choose to train with our full training set of

1097 sentences.

Using an instructed-tuned T5 doesn’t seem to improve our results for our setting. We

also find our trained T5 outperforms using Few-Shot Davinci on our validation set. We also

find just using the concept-set of CommonGen as the parsed triplets performs poorly due to

low recall of existing triplets in the sentence and lack of coverage for nonsensical relations.

25



Model Precision Recall F1-score

T5-Large w/ LLM labeled
200 examples 70.14 64.04 66.34
400 examples 73.32 65.84 68.90
600 examples 78.24 65.62 70.79
800 examples 77.76 65.54 70.50
1000 examples 79.92 66.75 72.01

T5-Large w/ LLM labeled
50/50 positive/negative 78.36 62.50 68.82
Drop 25% negatives 76.65 66.25 70.46
Drop 50% negatives 77.35 65.35 70.23

T5-Large w/ CG Naive 42.16 37.58 38.85
T5-Large w/ LLM labeled 79.60 67.90 72.56
T5-Flan w/ LLM labeled 78.22 68.20 72.24
Da-Vinci Few-Shot Parser 74.68 65.18 69.17

Table 4.1: Table showing precision, recall, and F1-score for various parser models. In the first
section, we display the results of our experiments scaling the dataset size. The second portion
shows initial testing in dropping the posiitve and negative ratio. The last section explores
ablations in model settings, specifically testing instruction-tuned and naive common-gen
based models.
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4.3 Pilot Human Correlation Studies

To confirm the accuracy of our score, we conducted a pilot study on a sample of NADO

sentences. We compare our score against BLEU4 and SPICE, popular N-gram reference-

based metrics. For our references, we use the corresponding sentences from CommonGen. To

further validate our score, we also compare against BERTScore (Zhang et al., 2019), which

serves a strong baseline against embedding-based metrics.

4.3.1 Pilot Study Settings

The settings of our pilot study is as follows: we recruit two undergraduate students to

rate 60 sampled generations on a scale from 1 to 3, where 1 is not commonsensical, and

3 is commonsensical. We instruct them to disregard coherency and instead focus on the

commonsense of the relations between concepts in the sentence. The full instruction prompt

is found in Appendix B.1.

For our sampled generation, we randomly sample from the top and bottom quartile of our

generations, resulting in a non-normal distribution. To address this issue, we run Spearman’s

Rank correlation, but also include Pearson’s correlation for interest.

Metric Spearman’s Rank Pearson’s

FT T5 - CS Score 0.4508 0.4203
GPT3.5 - CS Score 0.5727 0.4531

Referenced-Based:
BERTScore 0.3796 0.4597
BERTScore - ALL 0.4899 0.5125
BLEU4 0.2509 0.2615
SPICE -0.1594 -0.0761

Table 4.2: We run a correlation study comparing our commonsense metric against various
reference-based metrics. We primarily evaluate the correlation using Spearman’s Rank cor-
relation, due to the non-normal distribution of our data. We evaluate BERTScore with one
reference to mimic our low resource setting, and set BERTScore-ALL for using all the pro-
vided references. Our Inter-annotator Spearman’s Rank is 0.4841.
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4.3.2 Pilot Study Results

We now can compare the correlation of our commonsense score and automated reference-

based measurements against human commonsense scores. We see that the both our trained

T5 parser and few-shot LLM have substantially higher correlation compared to N-gram based

metrics. Our trained T5 parser lags behind our few-shot parser, which we attribute to the

domain shift of our training versus sampling and correlation studies.

We compare against both BERTScore with one reference and BERTScore with full ref-

erences (1-3 sentences) and find our LLM-based parser outperforms both. Our finetuned T5

also beats BERTScore in the low-resource setting while matching or slightly lagging behind

BERTScore in the full resource setting.

One explanation of the strong performance of BERTScore is that it essentially approx-

imates some measure of commonsense, since it measures the distance from the common-

sensical reference sentences. It is also able to capture underlying coherence patterns that

can bias annotators, such as sentence fragments, thereby boosting its score. There are also

instances of commonsensical sentences that BERTScore misses due to missing coverage of

the reference sentences.

We conclude that our T5 trained parser has higher correlation with humans on a com-

monsense rating task than popular CommonGen N-gram measurements and matches the

strong baseline of a reference-based BERTScore while requiring no human-written reference

sentences.
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4.4 Guided-Generation Experiments

In this section, we conduct a series of experiments using our framework to guide the gener-

ation of a pretrained GPT2-Large (Radford et al., 2019) on the CommonGen dataset. We

investigate guided-generation with just our commonsense score and our commonsense score

with the lexical boolean. We also compare the effect of guided-generation with different

scores, reporting common automated metrics as well as lexical coverage and our common-

sense score.

4.4.1 Guided-Generation Experiment Setup

Our experimental setup follows the original settings in NADO (Meng et al., 2022). We first

finetune the pretrained GPT2-Large on the CommonGen training split for 3 epochs in a

Sequence-to-Sequence fashion, where our input is our concept-set and output generation is

the reference sentence.

We then sample 1.5M sentences from the finetuned base with a temperature of 0.8 con-

ditioned on the 32,651 unique concept-sets of the CommonGen training split. Using our

framework, we then score our sampled generations. With our scored sampled generations,

we then train NADO for 19 epochs with a learning rate of 1e − 5. Our validation split is

the CommonGen validation split and all referenced-based metrics are run against provided

CommonGen validation sentences.
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Epoch CS-Score BLEU3 BLEU4 ROUGE CIDEr SPICE Coverage %
Base 0.4792 39.1 29.2 53.1 15.81 30.7 90.74
1 0.5290 38.7 28.8 52.9 15.72 30.4 90.74
3 0.5241 38.7 28.8 52.6 15.59 30.4 90.66
5 0.5253 39.0 29.2 52.9 15.70 30.7 90.96
7 0.5321 38.8 29.0 52.8 15.65 30.6 90.72
9 0.5321 38.8 29.0 52.7 15.59 30.5 90.53
11 0.5297 38.5 28.7 52.4 15.48 30.4 90.53
13 0.5329 38.7 28.9 52.6 15.60 30.5 90.74
15 0.5358 38.6 28.8 52.6 15.55 30.6 90.50
17 0.5349 38.7 29.0 52.5 15.61 30.5 90.77
19 0.5359 38.4 28.7 52.5 15.52 30.6 90.64

Table 4.3: This table presents our results for Guided-Generation with Commonsense Score.
We specifically train NADO solely on the commonsense score without any lexical constraints.
We evaluate on standard metrics as well as our commonsense metric. NADO clearly seems to
be able to guide the generation of the model toward a higher commonsense score, but since
it does not train to improve lexical constraints, the coverage does not change. Additionally,
the automated metrics, which are shown to have a low correlation with human judgments of
commonsense, also do not show a noticeable change.

4.4.2 Investigation of Guided-Generation with Commonsense Score

We train NADO on only the commonsense score without the lexical boolean. Specifically,

we take the minimum compatibility score of all extracted relation triplets from the sample

generation and use that as our soft label for the sentence.

As shown in Table 4.4.1, we find that we are able to successfully increases our Com-

monsense Score in this setting, but it doesn’t significantly move any of our referenced-based

metrics or coverage. An explanation for this is that these metrics are measuring the similar-

ity between our output sentence and references, which as shown in our pilot study, have little

correlation with human judgments of commonsense. Our aim is to guide the generation of

our sentences to be both commonsensical as well as satisfying the lexical constraint objective

for the CommonGen Task, and in the next experiment, we explore guided-generation with

both our lexical and commonsense score.
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Epoch CS-Score BLEU3 BLEU4 ROUGE CIDEr SPICE Coverage %
Base 0.4792 39.1 29.2 53.1 15.81 30.7 90.74
1 0.5282 38.7 28.8 52.9 15.77 30.7 92.08
3 0.5311 38.1 28.3 53.2 15.80 30.9 92.43
5 0.5318 39.2 29.3 53.3 16.04 30.9 93.24
7 0.5311 38.1 28.4 54.4 16.03 31.2 93.72
9 0.5303 39.4 29.5 53.4 16.10 31.1 94.74
11 0.5325 39.6 29.6 53.5 16.16 31.2 94.98
13 0.5364 39.6 29.5 53.7 16.08 31.2 95.44
15 0.5655 39.7 29.8 53.5 16.05 31.2 95.52
17 0.5622 39.7 29.6 53.6 16.08 31.2 95.46
19 0.5645 40.0 30.1 53.9 16.32 31.3 95.44

Table 4.4: This table presents our results for Guided-Generation with a combined Com-
monsense and Lexical Score. We evaluate on standard metrics as well as our commonsense
metric. NADO is able to successfully guide generations to both higher coverage as well as
higher commonsense score. Due to our lexical constraint, the automated metrics also seem
to noticable improve. More generations can be found in Appendix ??.

4.4.3 Investigation of Guided-Generation with Lexical and Commonsense Score

We conduct another experiment where we train NADO using both our lexical and common-

sense score. As described in Section 3.3.1, our score is commonsense score masked by the

lexical coverage boolean in order to encourage generations that are both commonsensical as

well as lexically constrained.

Table 4.4.2 shows our results. We are able to successfully improve our Commonsense

Score while also improving lexical coverage and reference-based automated metrics. Figure

4.3 shows a sample of selected generations compared to the base model and our best model

trained only on lexical constraints. We find that empirically it is able to produce more

commonsensical sentences compared to the base model.

A limitation to our evaluation is that the only systematic measurement of commonsense

for our generated sentences is the Commonsense Score we are training on and our selected

samples. We address possible future systematic evaluation methods in Section 5.2.
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Concepts : design piece burn wood tool

Base (0.84): A man is using a tool to burn a piece of wood.

LEX (0.46): A man is using a piece of burning wood to design a piece of furniture.

CS & LEX (0.84): A man is using a tool to burn wood to design a piece of furniture.

Concepts : walk dog ride

Base (0.34): A man is walking a dog and riding it.

LEX (0.47): A dog is walking on a leash while someone rides on it.

CS & LEX (0.31): A man is walking his dog while riding a scooter.

Concepts : hold sit tree

Base (0.00): A group of people sitting under a tree.

LEX (0.36): A man is holding a tree and sitting on it.

CS & LEX (0.44): A man is sitting on a tree holding an umbrella.

Concepts : air baton perform spin throw

Base (0.48): A man is performing a spin throw with his baton.

LEX (0.48): A man is performing a spin throw with a baton.

CS & LEX (0.64): A man performs a spin and throws a baton in the air.

Concepts : food customer watch employee prepare

Base (0.36): An employee is watching a customer prepare food.

LEX (0.36): An employee is watching a customer prepare food.

CS & LEX (0.32): customers watch employees prepare food.

Concepts : horse ride animal lasso catch

Base (1.00): A man is riding a horse and catching a wild animal with a lasso.

LEX (0.71): An animal is being ridden by a man who is lassoing it and catching it.

CS & LEX (1.00): man rides a horse and catches an animal with a lasso.

Figure 4.3: Here we present a selected sample of generations with
implausible portions underlined and more commonsensical portions italicized. We also
provide the predicted commonsense score in parentheses. LEX is only lexical following the
setting in (Meng et al., 2022), CS + LEX is using both commonsensical and lexical signal,
and BASE is the pretrained model finetuned for 3 epochs. We find that the commonsense
addition helps generations make more sense while preserving lexical constraints compared
to just using NADO. We notice that sometimes the model is able produce a more common-
sensical sentence even if the predicted score after generation is lower. This is likely due to
variability and noise of the parser and is a area of future improvement.
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4.4.4 Investigation of Effect of Lexical and Commonsense Scoring

We perform an ablation to investigate the effect of each component of our score. Using our

finetuned base, we run three experiments, choosing the highest Commonsense Score for each

run. As shown in Table 4.4.4, We find that the lexical-only score does result in high CS-

Score, but together they achieve a higher CS-Score than any component alone. We also find

that using our combined lexical and commonsense score preserves our automated metrics

with a slight degradation of Coverage compared to our lexical-only score.

CS-Score BLEU3 BLEU4 ROUGE CIDEr SPICE Coverage

Base (3 epochs) 47.92 39.1 29.2 53.1 15.81 30.7 90.7
+ Lexical 55.61 39.0 28.9 52.8 15.86 31.2 96.5
+ Commonsense 53.58 38.6 28.8 52.6 15.55 30.6 90.5
+ Commonsense & Lexical 56.55 39.7 29.8 53.5 16.05 31.2 95.5

Table 4.5: Here we provide an ablation of Lexical and Commonsense Signal in Guided-Gen-
eration. We choose top performing epoch and use a base that is pretrained for 3 epochs. We
evaluate on our standard automated and commonsense scores. All scores are able to provide
noticeable changes in commonsense scoring to the base, we hypothesize that this is due to
the lexical constraints being commonsensical in nature, causing higher coverage to result in
more commonsensical sentences. However, we still find guided-generation with the combined
commonsense and lexical scores to result in a higher commonsense score.
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CHAPTER 5

Conclusion

This thesis has presented a framework for guiding text generation models toward more

commonsensical generations using a commonsense score grounded on a Knowledge Graph.

We first introduced our triplet parser that captures the relevant triplets from a sentence

based on the desired relations. Through a series of experiments, we showed that our parser

performs well in our low-resource settings and is able to generate accurate triplets for guiding

text generation.

We then introduced our commonsense scoring method, which leverages the Knowledge

Graph to score the commonsense of the triplets generated by our parser from the sampled

generations. Our evaluation showed that the score produced by our method is correlated

with human judgments of commonsense and outperforms many automated referenced-based

metrics, validating the effectiveness of our approach.

Finally, we integrated our commonsense score into a text generation pipeline and eval-

uated the impact of the commonsense guided-generation on generated texts. Our experi-

ments demonstrated that incorporating commonsense guided-generation results in generated

texts that are more commonsensical compared to those generated with just lexical guided-

generation.
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5.1 Discussion

Overall, our framework provides a promising approach for improving the quality of text

generation by incorporating commonsense knowledge through guided-generation grounded

on a Knowledge Graph. However, there are still limitations to our approach that should be

addressed in future work.

One limitation is the quality of the underlying Knowledge Graph, which can impact the

accuracy of the commonsense scores generated. Improvements to the Knowledge Graph, such

as expanding its coverage and increasing the granularity of its relationships, could enhance

the accuracy of our framework.

Another limitation is the accuracy of our parser trained on annotated data from a few-

shot LLM. Using existing symbolic parsing methods, providing additional syntactical data,

or training on a broader distribution of sentences could improve the parsing results. Further-

more, using a larger and more diverse few-shot prompt could improve the few-shot annotation

quality, resulting in a more accurate trained parser.

Given these possible areas of improvement, another significant limitation is the existence

of error propagation in our framework. To address this issue, simplifying the number of steps

or using a more unified framework could result in improvement in eventual accuracy.

5.2 Future Work

Knowledge Graphs are a rich and expansive resource. One possible line of future work that

we would like to consider is expanding both the number of relations considered as well as

exploring our framework on an event-based task with an event-based Knowledge Graph like

ATOMIC (Hwang et al., 2020). Additionally, other forms of Knowledge Graphs such as

distilled LLM-based Knowledge Graphs (West et al., 2021) could be interesting avenue to

explore.
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Another line of investigation is providing a more systematic analysis of our results. One

significant study that we plan to do is to investigate the coherence and commonsensical-

ness of our generated text through a human correlation study on quality of generations.

Additionally, we could expand our pilot correlation study by by increasing participants and

number of rated generations.

There has been significant work using Reinforcement Learning to train Language Models

(Ouyang et al., 2022b; Bai et al., 2022). Our framework specifically uses guided-generation

from scores generated by our Guided-Generation and Compatibility Module, but it could

be interesting to explore using the setting of reinforcement learning using knowledge graph

scores.

Finally, one of the most interesting future directions is to extend this framework to

event-based commonsense. ATOMIC and ACCENT (Hwang et al., 2020) already supports

event commonsense, and guiding with event commonsense scoring could improve tasks like

question answering and chain-of-thought reasoning.
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APPENDIX A

Prompts

A.1 Few-Shot LLM Parser Prompt

Extract a l i s t o f tup l e s (A, B) from the sentence f o r the r e l a t i o n s based on the d e s c r i p t i o n .
Put None i f the re are no tup l e s .

UsedFor : A i s used to do B. B being used f o r A.
AtLocation : A i s at the l o c a t i on or l a r g e r area B.
CapableOf : A i s capable o f doing B
PartOf : A i s part o f the b igge r whole B.

The boy put h i s f oo t in to the sock .
UsedFor : None
AtLocation : ( f oo t i s at l o c a t i o n sock )
CapableOf : None
PartOf : ( f oo t i s part o f boy )

a man s i ng s in to a microphone on stage wearing a s h i r t
UsedFor : ( microphone i s used to s ing ) , ( s h i r t i s used f o r wear )
AtLocation : (man i s at l o c a t i o n s tage ) , ( microphone i s at l o c a t i o n s tage )
CapableOf : (man i s capable o f s i ng ing in to a microphone ) , (man i s capable o f wearing a s h i r t )
PartOf : None

Bride wearing her wedding dre s s r e c e i v e s help by her br idesmaids wearing red d r e s s e s .
UsedFor : None
AtLocation : None
CapableOf : ( br ide i s capable o f r e c e i v i n g help ) , ( br idesmaids i s capable o f wearing red d r e s s e s ) , ( br ide

i s capable o f wearing wedding dre s s ) , ( br idesmaids are capable o f he lp ing )
PartOf : None

I used a c h i s e l and hammer to carve a p i e c e o f wood .
UsedFor : ( c h i s e l i s used to carve ) , (hammer i s used to carve ) , (wood i s used to carve )
AtLocation : None
CapableOf : ( I am capable o f us ing a c h i s e l and hammer) , ( c h i s e l and hammer are capable o f carv ing )
PartOf : None

Figure A.1: This is our few-shot prompt for Davinci. We feed it in as a prefix p, and add
our sentence x for our input p + x.
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A.2 Finetuned T5

1 AtLocation_prompt = "Extract a list of tuples (A, B) from the sentence \

2 where A is at the location or larger area B in \

3 the sentence. Sentence: "

4 UsedFor_prompt = "Extract a list of tuples (A, B) from the sentence \

5 where A is used to do B or B being used for A \

6 in the sentence. Sentence: "

7 CapableOf_prompt = "Extract a list of tuples (A, B) from the sentence \

8 where A is capable of doing B \

9 in the sentence. Sentence: "

10 PartOf_prompt = "Extract a list of tuples of (A, B) from \

11 from the sentence where A is part of the \

12 bigger whole B in the sentence. Sentence: "

Figure A.2: These are the prompts we use for the T5 parser trained on LLM-annotated data.
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APPENDIX B

Correlation Study Specification

Score each sentence from 1 to 3 based on how ’ commonsensical ’ the sentence i s . S p e c i f i c a l l y ,
c on s id e r the

r e l a t i o n s between the concepts in the sentence and the commonsensical−ness o f those
r e l a t i o n s .

The rub r i c i s as f o l l ow s :

1 : I s not commonsensical . The sentence has r e l a t i o n s that do not obey commonsense knowledge .
2 : I s somewhat commonsensical . The sentence does not complete ly agree with commonsense

knowledge .
3 : I s commonsensical . A l l r e l a t i o n s in t h i s sentence obey commonsense knowledge .

We de f i n e ’ commonsense knowledge ’ as the f o l l ow i n g :
”Commonsense knowledge i n c l ud e s the ba s i c f a c t s about events ( i n c l ud ing a c t i on s ) and t h e i r

e f f e c t s , f a c t s about knowledge and how i t i s obtained , f a c t s about b e l i e f s and d e s i r e s .
I t a l s o i n c l ud e s the ba s i c f a c t s about mate r i a l ob j e c t s and t h e i r p r op e r t i e s . ”

Score the s en t ence s accord ing to what s en t ence s agree most with the ’ commonsense knowledge ’
you po s s e s s .

− Only pena l i z e grammatical mistakes i f they a l t e r the meaning o f the sentence .

Figure B.1: This is our specification for our correlation study. Annotators are prompted to
rate generations on a scale of 1 to 3, where 1 is not commonsensical and 3 is commonsensical.
They are directed to rate it considering commonsense relations within the sentence and to
not penalize grammatical mistakes if they don’t alter the underlying meaning of the sentence.
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