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Multisize RFs Just As With Ocular Dominance and Orientation Columns
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Abstract

Cells in the visual cortex are selective not only to ocular
dominance and orientation of the input, but also to its size
and spatial frequency. The simulations reported in this pa-
per show how size selectivity could develop through Hebbian
self-organization, and how receptive fields of different sizes
could organize into columns like those for orientation and ocu-
lar dominance. The lateral connections in the network self-
organize cooperatively and simultaneously with the recept-
ive field sizes, and produce patterns of lateral connectivity
that closely follow the receptive field organization. Together
with our previous work on ocular dominance and orientation
selectivity, these results suggest that a single Hebbian self-
organizing process can give rise to all the major receptive field
properties in the visual cortex, and also to structured patterns
of lateral interactions, some of which have been verified exper-
imentally and others predicted by the model.

Introduction

In their first recordings from the primary visual cortex of the
cat, Hubel and Wiesel (1959, 1962) reported that cortical cells
were more selective to the width of patterns than were retinal
cells. They noted that cortical cells would give no response
to a bar covering the whole receptive field (RF), whereas in
the retina and the LGN, cells would typically respond to such

patterns. Subsequently, detailed studies by Campbell et al.

(1969), De Valois et al. (1982) and others showed that cor-
tical cells are narrowly tuned to the spatial frequency of in-
puts, and had typical bandpass responses, responding only to
inputs in a specific frequency range. A continuum of spa-
tial frequencies from low to high were represented in the cor-
tex (Silverman et al. 1989), and cells in each range of spa-
tial frequency were organized into distinct spatial frequency
columns (Tootell et al. 1981; Tootell et al. 1988). In essence,
cortical cells exhibited an organization of spatial frequency
selectivity similar to ocular dominance (OD) and orientation
(OR) columns.

Several computational models have been built to demon-
strate how other RF properties such as OR preference, OD,
and retinotopy can emerge from simple self-organizing pro-

cesses (e.g. Goodhill 1993; Milleret al.1989; Obermayer et al.
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1992; von der Malsburg 1973). However, to date, only one
computational model has included the development of spa-
tial frequency selectivity (Miller 1994). In Miller’s model,
OR preference and spatial frequency selectivity develop to-
gether, and perhaps because of the interactions between these
two domains, does not produce a clear columnar organization
of spatial frequency selectivity. Although the above models
replicate the self-organization of afferent structures quite well,
they are based on the simplification that the neuronal response
properties are primarily determined by the organization of af-
ferent synapses. Lateral interactions between neurons are ap-
proximated by simple mathematical functions (e.g. Gaussi-
ans) and assumed to be uniform throughout the network; the
structured lateral connectivity of the cortex is not explicitly
taken intoaccount. Such models do not explicitly replicate the
activity dynamics of the visual cortex, and therefore can make
only limited predictions about interactions between receptive
fields and cortical function.

Recent experiments have shown that lateral connection pat-
terns closely follow the neuronal response properties (Gil-
bert and Wiesel 1989; Malach et al. 1993). For example, in
the normal visual cortex, long-range lateral connections link
areas with similar OR preference (Gilbert and Wiesel 1989).
Like neuronal response properties, the connectivity pattern is
highly plastic in early development and can be altered by ex-
perience (Katz and Callaway 1992). Such patterned lateral
connections develop at approximately the same time as the
cortical columns (Burkhalter et al. 1993; Katz and Callaway
1992). Together, these observations suggest that the same
experience-dependent process drives the development of both
neuronal response properties and lateral connectivity.

Previously, we have shown that a single Hebbian self-orga-
nizing process can account for the development of patterned
lateral connections, afferent receptive fields, topographic
maps and OD and OR columns in the cortex (LISSOM,
the Laterally Interconnected Synergetically Self-Organizing
Map; Sirosh 1995; Sirosh and Miikkulainen 1995a, 1995b,
1996b, 1996a). However, we have not studied the selectivity
to different-sized stimuli with LISSOM before, although it is
a major component of cortical organization. This article in-
vestigates whether the same self-organizing process can give
rise to RFs selective to different stimulus sizes. Because size
selectivity is closely related to spatial frequency selectivity,



Receptive Surface

Figure 1: The Receptive-Field LISSOM architecture. The affer-
ent and lateral connections of a single neuron in the LISSOM net-
work are shown. The afferents form a local anatomical receptive
field on the retina.

such self-organization should account for spatial frequency
columns as well.

Several new results are reported in this article. It is shown
how afferent RFs of different sizes develop from simple ret-
inal images and organize across the network in a systematic
fashion. In addition, lateral connections self-organize cooper-
atively and simultaneously with the size selectivity proper-
ties, producing patterns that follow the receptive field organ-
ization. In combination with our previous work, these results
suggest that a single unified self-organizing process can give
rise to not only all the major receptive field properties in the
visual cortex, but also the patterns of lateral interactions.

The Receptive Field LISSOM (RF-LISSOM)
model

The LISSOM network is a sheet of interconnected neurons
(figure 1). Through afferent connections, each neuron re-
ceives input from a “retina”. In addition, each neuron has
reciprocal excitatory and inhibitory lateral connections with
other neurons. Lateral excitatory connections are short-range,
connecting only close neighbors. Lateral inhibitory connec-
tions link neurons over both short and long distances, and may
even implement full connectivity between neurons in the net-
work.

Neurons receive afferent connections from broad overlap-
ping patches on the retina called anatomical RFs. The N x N
network is projected on to the retina of R x R receptors, and
each neuron is connected to receptors in a square area of side s
around the projections. Thus, neurons receive afferents from
corresponding regions of the retina. Depending on the loc-
ation of the projection, the number of afferents to a neuron
from the retina could vary from -%s x %s (at the corners) to
s x s (at the center). Typically, R is much less than N and
s is large enough to cover many receptors, resulting in large
overlap between receptive fields of nearby neurons.

The input to the model consists of gaussian spots of “light”
on the retina:
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where £a 4 is the activation of receptor (a, b), u? determines
the width of the spot, and (z;,¥i): 0 < zi,¥ < Rits cen-
ter. Without normalization, larger-sized spots would produce
stronger activation. Therefore, the retinal activity vector is
normalized to constant length. The width u is chosen uni-
formly randomly in a given range, so that inputs of a variety
of sizes are presented to the network.

The external and lateral weights are organized through an
unsupervised learning process. At each training step, neurons
start out with zero activity. The initial response #;; of neuron
(¢, ) is based on the scalar product

Nij =0 Zfab#ij,ab " 2)

a,b

where £, is the activation of retinal receptor (a, b) within the
anatomical RF of the neuron, p1;; qs is the corresponding affer-
ent weight, and o is a piecewise linear approximation of the
familiar sigmoid activation function. The response evolves
over time through lateral interaction. At each time step, the
neuron combines the above afferent activation 3 £ with lat-
eral excitation and inhibition:

mij(t) = o ( L Eptve 1oy Eijrimea (t — 1)—
% 2k Lijma(t 1)),

where E;; x, is the excitatory lateral connection weight on the
connection from neuron (k, !) to neuron (%, j), Ii; & is the in-
hibitory connection weight, and 7, (¢t — 1) is the activity of
neuron (k,!) during the previous time step. The constants v,
and ; determine the relative strengths of excitatory and inhib-
itory lateral interactions. The activity pattern starts out diffuse
and spread over a substantial part of the map, and converges
iteratively into stable focused patches of activity, or activity
bubbles. After the activity has settled, typically in a few iter-
ations of equation 3, the connection weights of each neuron
are modified. Both afferent and lateral weights adapt accord-
ing to the same mechanism: the Hebb rule, normalized so that
the sum of the weights is constant:

Wij mn (t) + a’)l'ijn
A [wij,mn(t) + a'linmn] )

3)

Wij,mn(t +4t) = 5 4
where 7;; stands for the activity of neuron (i, j) in the final
activity bubble, w;; mn is the afferent or lateral connection
weight (i, E or I), a is the learning rate for each type of con-
nection (o, for afferent weights, a g for excitatory, and ay for
inhibitory) and X,,,, is the presynaptic activity (£ for afferent,
7 for lateral).

Both inhibitory and excitatory lateral connections follow
the same Hebbian learning process and strengthen by cor-
related activity. At long-distances, very few neurons have
correlated activity and therefore most long-range connections
eventually become weak. Such weak connections are elim-
inated periodically, and through weight normalization, inhib-
ition concentrates in a closer neighborhood of each neuron.



(@) Ocular dominance and lateral connections

l

b) Orientation columns and lateral connections

Figure 2: Ocular dominance and orientation columns, and lateral connection patterns. In figure (a), each neuron in a self-organized
LISSOM network is labeled with a grey-scale value (black — white) that represents continuously-changing ocular dominance from exlusive
left to exclusive right. Small white dots indicate the strongest lateral input connections to the neuron marked with the big white dot, after
self-organization. Only the long-range inhibitory connections are shown. The connections of a monocular neuron predominantly link areas of
the same ocular dominance. In figure (b), the orientation preference and selectivity of each neuron is represented in grey scale, and the lateral
connections of a typical neuron are plotted as in (a). The connections preferentially link similar orientation columns.

The radius of the lateral excitatory interactions starts out large,
but as self-organization progresses, it is decreased until it cov-
ers only the nearest neighbors (c.f. Self-Organizing Map; Ko-
honen 1982, 1989). Such pruning of lateral connections pro-
duces activity bubbles that are focused and local. As a result,
weights change in smaller neighborhoods, and receptive fields
become better tuned to local areas of the retina.

Self-Organization of Ocular Dominance and
Orientation Columns and Lateral Connections

We have previously used variations of the RF-LISSOM net-
work to model the development of OD and OR columns in
the primary visual cortex. Although these phenomena can be
modeled with a variety of techniques (Goodhill 1993; Miller
et al. 1989; Obermayer et al. 1992; von der Malsburg 1973),
RF-LISSOM model is unique in that it also shows how the
lateral connections self-organize in the process and what role
they play in self-organization and information processing.

In the ocular dominance study (Sirosh and Miikkulainen
1995b; Sirosh and Miikkulainen 1996b), two retinas were
connected to the cortical network. Uncorrelated gaussian
light spots were used as input, simulating strabismic vision,
which is known to result in very pronounced ocular domin-
ance columns (Lowel and Singer 1992). The simulation res-
ults are in very good agreement with the biological observa-
tions (figure 2a). Sharp and intertwined patterns of ocular
dominance form, and neurons are predominantly connected to
other neurons with similar selectivity.

In the orientation column experiment (Sirosh and Miik-
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kulainen 1995a; Sirosh and Miikkulainen 1996a), elongated
gaussians with various orientations and degrees of eccentri-
city were used as input instead of symmetric gaussians. The
cortical network developed a representation of orientation
preference and selectivity very similar to those observed in
the visual cortex (Blasdel and Salama 1986; Blasdel 1992;
figure 2b). Receptive fields of various eccentricity and ori-
entation develop, and neurons are ordered into an orientation
map that exhibits linear zones (where orientation preference
changes smoothly), pinwheels (singular points around which
all orientation preferences appear) and fractures (where pref-
erence changes abruptly). The lateral connections again con-
nect neurons thatrespond to similar inputs. Some of the lateral
connection patterns have just recently been discovered, others
are predictions of the model.

Self-Organization of Multisize Receptive Fields
and Lateral Connections

The hypothesis tested in the present study was whether similar
columnar organization and lateral connection patterns would
form also when the size of the gaussian light spot was the main
dimension of variation in the input. Simulations were carried
out on a network of 192 x 192 neurons, with inputs coming
from a 24 x 24 retina. The anatomical RF size was chosen
tobe 11 x 11, so that there is substantial overlap between the
RFs. All the connections were initialized to random weights.
A total of 25, 000 training steps were used. At each step, a
random-size Gaussian spot was presented on the retina as in-
put. The lateral excitatory radius of each neuron started out as



(a) Small RF: neuron (78, 109)

(b) Large RF: neuron (69, 124)

Figure 3: Self-organized receptive fields. The afferent weights of neurons at two different locations in a 192x192 network are shown
after self-organization. Initially the weights are completely random, but after self-organization, a smooth hill-shaped weight profile devel-
ops. Though the anatomical RFs are the same, the afferent weights are organized into a variety of sizes from narrow, highly peaked receptive

fields to large and broad ones.

19, but as training progressed, it was gradually decreased to 1
(as in the Self-Organizing Map algorithm (Kohonen 1989)).
The lateral inhibitory connections had a radius of 47, and
weak connections were pruned at intervals of 10, 000 itera-
tions.

The self-organization of afferents results in smooth, hill-
shaped RFs. A variety of RFs of different sizes are produced,
some narrow and tuned to small stimuli, others large and most
responsive to large stimuli (figure 3). Simultaneously with
the RFs, each neuron’s lateral connections evolve, and by the
Hebbian mechanism, are distributed according to how well
the neuron’s activity correlates with the activities of the other
neurons. Let us examine the nature of such activity correla-
tions. The inputs vary in size fromu = 0.75tou = 8.0,
and are normalized. Therefore, the smallest inputs produce
very bright activity in a few receptors. They are also smal-
ler than the size of each anatomical receptive field. Therefore,
these inputs predominantly stimulate neurons with small re-
ceptive fields and having anatomical RFs in the same position
as the spot. Such neurons will have strong activity correla-
tions with other small receptive field neurons, but little cor-
relation with neurons having broader receptive fields 2. The
global organization of size preferences and lateral connections
can be visualized by labeling each neuron with a color that in-
dicates the width of its RF, and plotting the patterns of lateral
connections on top. As figure 4a shows, the RF organization
has the form of connected, intertwined patches, similar to OD
columns (e.g. see Sirosh and Miikkulainen 1995b), and the
lateral connections of neurons connect to regions of the same
size preference. The actual strengths of the connections are
shown in figure 4b.

Neurons with larger receptive fields have a slightly differ-

*Note that even small spots produce quite widespread activity in
the network, becauseeach retinal receptor connects to a large number
of cortical neurons
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ent pattern of activity correlations. The larger spots are not
localized within the anatomical RF as are the smaller inputs,
and extend beyond it. They produce activity over a wider area
in the network than the smaller, localized spots. As a res-
ult, the inputs that best stimulate larger RF neurons also cause
activity in large parts of the network. Therefore, the activity
correlations of such neurons are not as strongly determined by
size as that of small RF neurons. Therefore, the lateral con-
nections of neurons with larger RFs often link to smaller RF
neurons also. In the cortex, neurobiologists have not yet stud-
ied how the patterns of lateral connections relate to either size
or spatial frequency preferences.

The columnar organization does not develop in small net-
works. Simulations show that, for a given variance of the
stimuli size, the ratio of neurons in the network to receptors
in the retina (the magnification factor) has to be greater than a
threshold value for a stable columnar organization to appear.
Below the threshold, smooth RFs and an ordered topographic
map develop, but all the RFs tend to have the same size, cor-
responding to the average width of the input stimulus. Above
the threshold, symmetry breaking occurs, producing a vari-
ety of RF sizes. Such symmetry breaking is similar to that of
the Self-Organizing Map (Kohonen 1982, 1989), where an in-
put feature is represented in the network only if its variance
is greater than a threshold proportional to the magnification
factor (Obermayer et al. 1992).

It is not known whether the long-range lateral connections
in the cortex are organized according to size or spatial fre-
quency selectivity. So far, the lateral connection patterns have
only been studied in relation to the organization of OD and OR
preference (Malach et al. 1993; Léwel and Singer 1992; Gil-
bert and Wiesel 1989). However, considerable psychophys-
ical and neurobiological evidence indicates selective lateral
interactions between neurons tuned to different spatial fre-
quencies (De Valois and Tootell 1983; Bauman and Bonds



b L

(a) Columns and lateral connections

(b) Lateral inhibitory weights

Figure 4: Size selective columns, and lateral connection patterns. In figure (a), each neuron in the network is labeled with a grey-scale
value (black — white) that represents continuously-changing size preference from small values to large values. Small white dots indicate the
lateral input connections to the neuron marked with the big white dot. The size preferences are organized systematically across the network
into connected, intertwined patches, and the strongest lateral connections predominantly link areas of the same size selectivity. Figure (b)
shows the weights of the lateral connections plotted in (a). The connection strengths represent the activity correlations of the neuron with
the other neurons in the network. The columnar organization of the RFs is reflected in the weights. The connections also are strongest in the
immediate vicinity of the neuron (at center) and become weaker with distance. The large areas of zero weights stand for the connections that

have been pruned away during self-organization.

1991). As in the RF-LISSOM model, these interactions are
also known to be largely inhibitory (De Valois and Tootell
1983; Vidyasagar and Mueller 1994). The model suggests
that the long-range lateral connections could be the anatom-
ical substrate for inhibition between spatial frequency chan-
nels. The model further predicts that the patterns of lateral
connections in the cortex would be influenced not only by
OD and OR preference, but also by selectivity to spatial fre-
quency.

Discussion

Combined with our previous work on OD and OR maps
and lateral connections, the new results suggest that a single
Hebbian mechanism produces the receptive fields and lateral
interactions in the primary visual cortex. It also makes sev-
eral predictions on the lateral connectivity patterns in the cor-
tex. However, itis important to note that the units and connec-
tions in the RF-LISSOM model do not correspond one-to-one
to neurons and synapses. Instead, each unit should be seen
as a vertical column of neurons, and the connections stand
for the interactions between these columns. One important
prediction of the model is that long-range lateral interactions
are inhibitory: This is computationally necessary for the self-
organization of receptive fields to occur. However, it doesn't
mean that the synapses on long-range connections necessar-
ily have to be inhibitory, as long as their overall effect on the
column is inhibitory.

Perhaps most significantly, the RF-LISSOM model sug-
gests a computational role for self-organized structures in the
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primary visual cortex. According to the model, two different
computations are performed during sensory processing: First,
the inputs are projected onto the principal feature dimensions
represented by the afferent receptive field structure. Then, the
redundancies are filtered out by the inhibitory lateral interac-
tions. The result is an efficient, redundancy-reduced sparse
coding of the visual input which is then passed on to higher
processing levels. This predictioncan probably be verified ex-
perimentally by using information theory to analyze the op-
tical images of cortical activity patterns produced in response
to simple retinal images. If confirmed, it would constitue
a major step in understanding the function of the observed
primary visual cortex structures.

Conclusion

The RF-LISSOM model shows how a columnar organization
of multisized receptive fields can develop and how lateral con-
nection patterns follow this organization. Combined with our
previous work, these results show how a single local and un-
supervised self-organizing process can be responsible for the
development of both the afferent and lateral connection struc-
tures in the primary visual cortex. The model suggests that
afferent receptive fields develop a sparse coding of the visual
input, and that recurrent lateral interactions eliminate redund-
ancies in cortical activity patterns.
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