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Abstract

Probabilistic approaches for tracking physiological states in the cortex through sleep and
seizures

by

Vera Marie Dadok

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Andrew J. Szeri, Chair

We present work in this dissertation on methods to map measured electrode signals from
human subjects into the physiologically relevant parameter space of a mathematical model
of the cortex, approaching two specific dynamical brain phenomena: sleep and seizures.

In the context of sleep, we develop a probabilistic method for mapping human sleep
electroencephalogram (EEG) signals onto a state space based on a biologically plausible
mathematical model of the cortex. From a noninvasive EEG signal, this method produces
physiologically meaningful pathways of the cortical state over a night of sleep. We propose
ways in which these pathways offer insights into sleep-related conditions, functions, and
complex pathologies. To address explicitly the noisiness of the EEG signal and the stochastic
nature of the mathematical model, we use a probabilistic Bayesian framework to map each
EEG epoch to a distribution of likelihoods over all model sleep states. A Hidden Markov
Model (HMM) is incorporated to improve the path results using the prior knowledge that
cortical physiology has temporal continuity.

Next we adapt our probabilistic methodology to infer the parameter region in the math-
ematical model of the cortex most likely to be producing seizures observed in an electro-
corticogram (ECoG) signal. This method produces a probabilistic pathway of the temporal
evolution of physiological state in the cortex over the course of individual seizures. We de-
scribe ways in which these methods and results offer insights into seizure etiology and suggest
potential new treatment options.

Once again, a probabilistic Bayesian framework is used to map features of EEG or ECoG
segments onto a distribution of likelihoods over physiological parameter states. And again,
a Hidden Markov Model (HMM) is introduced to incorporate the belief that cortical physi-
ology has both temporal continuity and also a degree of reproducibility between individual
seizures. However, for seizures, we additionally inspect the ratio of likelihoods between
HMMs run under two possible parameter regions, both of which produce seizures in the
model, to determine which physiological parameter regions are more likely to be causing the
observed seizures. We show that between individual seizures, there is consistency in these
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likelihood ratios between hypothesized regions, in the temporal pathways calculated, and in
the separation of seizure from non-seizure time segment likelihood maps. We also improve
upon several of the underlying techniques for sampling the parameter state space, feature
selection, and probability density estimation.
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Chapter 1

Introduction

Approximately 0.4 to 1% of the world’s population has epilepsy [65], a clinical condition
characterized by recurring seizures. Although epilepsy has been diagnosed and studied for
hundreds of years, many of the causes of both epilepsy and the onset of individual seizures
are not well understood [12; 41; 73].

1.1 Epilepsy Background

Epilepsy is a pathological condition in which chronic, recurrent seizures occur, and epilep-
togenesis is the way in which a normal brain develops epilepsy [72]. Seizures are each a
single event in which a neuronal population in the brain “exhibits abnormal synchronous
excitation” [72].

There are many different classifications of epilepsies based on clinical symptoms, etiology,
and mechanisms of action. Often a clinical classification is based on the development of the
abnormal brain patterns. Partial or focal epilepsy is a seizure that originates at a small
region of the brain, the ‘focus’ of the seizure. The focal seizure may have a secondary
generalization, in which the abnormal synchronous behavior spreads throughout the brain.
This differs from generalized seizures in which the initial onset is generalized throughout
both hemispheres of the brain [37].

There are many pathological conditions that are known or hypothesized to be caused by or
correlated with seizures in different types of epilepsy. Typically focal seizures are thought to
be brought on by increased excitability of neurons which may be caused by changes in cellular
properties, alterations in synaptic connections (possibly due to scarring, tumors, blood clots,
abnormal cell populations, abnormal glial cell functionality, etc) [37]. Comparatively, in the
case of generalized seizures, which have a more heterogeneous presentation of brain activity,
hyperexcitability of the cortex is still expected, but the thalamocortical pathways are thought
to play a large role in the rapid generalization to the entire cortex [37].

Although some general characteristics are expected or hypothesized to be present in the
development of seizure onset (ictogenesis), the true mechanisms underlying the transition
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from normal brain behavior into seizure are not well understood in many cases [19; 93].
Examples include contention over whether focal seizures develop due to focuses or networks,
whether hyposynchrony may be essential to ictal onset, and if excessive inhibition can trigger
seizures [25].

1.1.1 Treatments

Treatment options for epilepsy patients are limited. Generally, anti-seizure medications are
tried first, and prove effective in approximately two thirds of cases [63]. These anti-epileptic
drugs (AEDs) have numerous risks and side effects associated with their use and the reasons
for their efficacy or failure are often unclear [63]. Epilepsies that do not respond to AEDs
are referred to as refractory epilepsy.

After the failure of medication to treat seizure symptoms, refractory epilepsy patients
typically pursue resection surgery if seizures are focal. If resection surgery is not viable or
seizures are not focal, patients may choose to have an implanted Vagus Nerve Stimulator
(VNS) device which is less than 3% effective in entirely preventing seizures but reduces
seizure frequency by about 50% on average in patients [9; 21; 20].

Two new deep brain stimulation (DBS) devices, developed by NeuroPace and Medtronic,
have recently been moving through the FDA approval process and show promise [82; 29; 35].
The Neuropace device is just now receiving pre-market FDA approval. Overall, treatment
options are limited with few viable selections for patients, each with significant risks and
side effects.

1.1.2 Sleep and seizures

For certain types of seizure, sleep has a significant impact, and literature shows that sleep
stage may be playing an important role in determining the onset of seizures [41; 23] and
plays a significant role in the failure of seizure prediction algorithms [73].

Thus a better understanding of both seizure and sleep physiology dynamics is crucial
for a better understanding and treatment of pathologies such as epilepsy that interact with
sleep. Full measurement of the physiological state of the brain during sleep would require
invasive measurements and is poorly suited for typical human subjects research. Thus re-
searchers have long used noninvasive measurements of electrical brain signals for traditional
sleep staging. Traditional sleep stages were not developed to capture and thus do not cap-
ture all of the physiological information and microstructures available in EEG and other
electrical signals. However sleep staging does provide a rich standard for classifying sleep
and serves as a foundation to inform additional more detailed representations of sleep and
its microstructure such as those described in [8; 83; 11; 58; 51; 31] and this work. Recently
Lopour et. al [51] worked quantitatively to relate experimentally measured human sleep
EEG data to a continuous set of sleep states based on a dynamical mathematical model of
the brain.
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1.1.3 Tools for study of epilepsy and treatment development

Investigations of epilepsy and seizures typically fall into the following categories: experi-
mental based animal studies, clinical data collection of human subjects and data mining of
clinical data, mathematical model-based investigations of modeled seizures, and investiga-
tions of experimental data leveraging mathematical models.

Experimental animal studies, including studies of cultured tissue, brain slices, and in-
vivo animal studies, are often referred to as ‘animal models’ [88]. In each of these cases, the
applications of the study results are limited due to the constraints of the experiment. Clearly,
the behavior of cultured tissue and brain slices in isolation may differ greatly from that of
whole-brain in-vivo. Similarly, animal models and in-vivo experiments are applicable to the
types of seizures generated or found in those animals. This encompasses only a limited set
of epilepsy types that often only loosely relate to a few epilepsy types found in humans. For
instance, seizures are often artificially introduced into the animals via electroshock, chemical
compounds, genetic modifications, and other methods [33; 12; 4]. Though the results of
these often share certain characteristics with clinically observed seizures in humans, and
offer insights into certain types of epilepsies, the mechanisms of epileptogenesis and resulting
mechanisms of seizure evolution and propagation do not survey the full spectrum of human
epilepsies. Animal models are used extensively for studying the efficacy and safety of new
antiepileptic drugs (AEDs) [33; 12], in fact [5] shows which AEDs are effective in several
different animal model classes.

There are also a number of clinical and data-mining studies of epilepsy and seizures using
non-invasively measured human subject data and data gathered in the course of medically
necessary treatments. These studies may investigate in-vivo properties such as electrode mea-
surements (electroencephalogram (EEG), electrocorticogram (ECoG), or depth electrodes)
or other time series data collected (e.g. heart rate, blood oxygen content, video). Many
seizure detection and prediction papers (e.g. [27; 1; 16; 57]) use such data-mining methods
on EEG to build empirically verified detection or prediction algorithms that could be applied
for medical or clinical applications in the future. In recent years, more databases of such
clinically-relevant collected data sets have been established or are being established (e.g.
[34; 28]) and will enable cheaper and more reliable access to data.

Additionally, studies are conducted on other human subjects data such as the properties
of resected tissue samples after medically necessary surgery, genetic samples, and MRI data.
Studies using surgically resected tissues from focal seizures often investigate the histopathol-
ogy, or microscopic and cellular properties, of the tissues (e.g. in cortical dysplasia [14]).

We also call attention to a body of literature on models of epilepsy and primarily model-
based analysis of seizures. There are numerous computational models at various scales from
single-neuron, to neural network, to meso-scale mean-field models of the brain [88]. Many
of these model-centric studies focus on modeled seizures with only a brief or qualitative
discussion of experimentally measured data. These studies often offer important insights
into what types of mechanisms and models may be associated with seizures (e.g. [59]),
develop new mathematical models that show certain important properties, analyze model
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seizures with the hope of understanding mechanisms or testing new treatments (e.g. [50]),
or conduct other exploratory investigations that are not practical for experimental studies
by using a model as a testbed.

The final type of analysis are studies that attempt to bridge the gap between mathe-
matical modeling and experimental data in a quantitative way. The goal of these studies is
to leverage the insights gained from mathematical models to explain or clarify the hidden
processes in experimental data. Verified mathematical models also hold promise to extend
experimental knowledge beyond understanding of past experiments and into prediction of
new phenomena. Many papers have identified the benefits of such analyses and their poten-
tial applications range from aid in developing new seizure treatments to new understanding
of physiological mechanisms in seizures [88; 3; 42; 43]. Such studies can avoid the prohibitive
costs both financially and ethically that are involved in experimental studies and are more
flexible for conducting more exploratory analyses.

These are all promising areas, however, all have their drawbacks. Animal-based studies
are costly, and only investigate certain types of seizures that are possible to trigger in animal
models. Clinical data collection is essential, but studies based only on clinical data do not
always fully interpret the physiological meaning underlying the results and do not often offer
the potential to predict new results. Pure model-based studies are not always grounded in
reality, and are challenging to defend. However it is quite difficult to relate models to reality,
as no model is a full description of the human brain. However, we believe that this leveraging
of models to understand better the physiology of seizures is essential to the development of
improved treatment strategies for epilepsy.

1.2 Contributions of this dissertation

In this work we explore the intersection of experimental cortical measurements and a math-
ematical model of cortical dynamics. Experimental human measurements are vital for a
patient-specific, individual-based understanding of pathologies and functionality of brain
states. Mathematical representations are an excellent non-invasive platform we leverage to
understand better true brain dynamics. By using models to understand seizures and sleep,
we can expect to improve prediction, treatment, and investigations into these brain states
above what we could accomplish with empirical models and experimental data alone. Also,
as research progresses in finding stronger connections between such models and brain mea-
surements, we may be able to work with less invasive measurements and run preliminary
experiments via computation, using promising model-based results to choose better the di-
rection of costly experiments.

With this broad aim, we present work in this thesis on promising ways to map measured
electrode signals from human subjects into the physiologically relevant parameter space
of a mathematical model. With these methods we approach two specific dynamical brain
phenomena: sleep and seizure.
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1.2.1 Probabilistic sleep evolution

The first major contribution to the field is the development of a probabilistic method for
mapping human sleep electroencephalogram (EEG) signals onto a state space based on a
biologically plausible mathematical model of the cortex. From a noninvasive EEG signal, this
method produces physiologically meaningful pathways of the cortical state over a night of
sleep. We propose ways in which these pathways offer insights into sleep-related conditions,
functions, and pathologies. To address explicitly the noisiness of the EEG signal and the
stochastic nature of the mathematical model, we use a probabilistic Bayesian framework to
map each EEG epoch to a distribution of likelihoods over all model sleep states. We show
that the mapping produced from human data robustly separates rapid eye movement sleep
(REM) from slow wave sleep (SWS). A Hidden Markov Model (HMM) is incorporated to
improve the path results using the prior knowledge that cortical physiology has temporal
continuity.

This sleep mapping is proposed as a more detailed and physiologically relevant way to
understand sleep via EEG recordings. It is an improvement over classic R&K sleep staging
often used in clinical practice due to its physiological insights. This work also extends [51],
which produced a mapping into cortical states via a dimensionality reduction method. The
method presented in this dissertation is an improvement as it handles the stochastic nature
of the system explicitly with probabilistic methods and also incorporates a method to handle
temporal continuity of the physiological states.

1.2.2 Probabilistic seizure evolution

The second major contribution is the application of this probabilistic method to inferring the
parameter region in a biologically plausible mathematical model of the cortex most likely to
be producing seizures observed in an electrocorticogram (ECoG) signal. Additionally, this
method produces a probabilistic pathway of the temporal evolution of physiological state in
the cortex over the course of individual seizures, leveraging a model of the cortex to describe
cortical physiology. We describe ways in which these methods and results offer insights into
seizure etiology and suggest potential new treatment options.

Leveraging the work in mapping sleep to a mathematical model, we again account for
the stochastic and noisy nature of the mathematical model and the ECoG signal, and use
a probabilistic Bayesian framework to map features of ECoG segments onto a distribution
of likelihoods over physiological parameter states. A Hidden Markov Model (HMM) is then
introduced to incorporate the belief that cortical physiology has both temporal continuity
and also a degree of reproducibility between individual seizures. By inspecting the ratio
of likelihoods between HMMs run under two possible parameter regions, both of which
produce seizures in the model, we determine which physiological parameter regions are more
likely to be causing the observed seizures. We show that between individual seizures, there is
consistency in these likelihood ratios between hypothesized regions, in the temporal pathways
calculated, and in the separation of seizure from non-seizure time segment likelihood maps.



CHAPTER 1. INTRODUCTION 6

One of the major improvements of this approach over current literature in this area is
the usage of this physiologically based model to understand electrical brain signals, rather
than using only signal processing techniques with no eye to the biological context. Much
literature analyzing EEG and ECoG signals in seizures limits itself to pure signal processing
approaches without full consideration of the biological basis of these signals. A more full
description of the surrounding literature and the differences in this approach are described
in Chapter 5.

1.3 Map of this dissertation

In Chapter 2 we describe the mathematical model for sleep and seizure and motivate its
usage in the following studies. Next, in Chapter 3 we introduce some of the probabilistic
methods used in our analyses. After these introductory chapters, Chapter 4 contains the
methods for and experimental results of mapping sleep EEG data into a parameter space
of the model. We then describe in Chapter 5 the methods for choosing more likely seizure
parameter regions and demonstrate the results tracking parameter changes over the course
of seizures. We then conclude and offer insights into future extensions in Chapter 6.
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Chapter 2

Cortical model

We use a mean field model of the cortical dynamics developed in [47; 77; 48] for the waking
cortex and in [76] for the sleeping cortex as a platform to explore the physiological evolution
of seizures and of sleep. Such spatially-continuous models have been proposed in literature
for some time to model mesoscale and macroscale phenomena (e.g. EEG, ECoG) with less
computational cost than neural networks. This mesoscale model of the cortex treats the brain
as an active medium in which average neuron populations of inhibitory and excitatory cells
interact with subcortical inputs and short and long range connections between populations.
The model is derived from a physiological understanding of cortical connectivity and its
parameters are based on experimentally measured physiological quantities. A sketch of the
principles operating in this dynamical model is shown in Figure 2.1.

This type of mesoscale model is well-suited for comparison to EEG or electrocorticogram
(ECoG) data, due to the fact that EEG electrodes measure the aggregate behavior of neuron
populations as a result of the large electrode spatial scale. In fact, simulations of this
model produce ECoG-like data, approximated by either dimensionless variable h̃e (for sleep
analysis) or h̃m

1 (for seizure analysis), which we will leverage to understand how physiological
states in the model produce brain waves with different properties.

This model also has the advantage of significant literature displaying its applicability to
modeling both seizures and sleep as well as other phenomena such as anesthesia and comas
[42; 79; 90; 46; 7].

In mathematical terms, this model is a set of stochastic nonlinear partial differential
equations displayed in full in Section 2.3 along with brief descriptions of the parameters and
variables.

2.1 Seizures in the cortical model

In a variety of parameter settings, this model exhibits seizure-like behavior [42; 43; 74].
These seizures exhibit sharp rhythmic spiking waves which propagate through the simulated

1This metric is derived and described in [50]
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Figure 2.1: A conceptual sketch of the biological principles underlying system of partial
differential equations governing the cortical model. Neuronal populations of excitatory and
inhibitory cells are arranged in macrocolumns that interact with populations in neighboring
columns and within each column. Additionally there is a stochastic subcortical input to the
cortex populations, modeling the inputs from other brain structures. A single macrocolumn
is depicted here with implied neighboring columns.

cortex. We delve further into particular seizure parameter regimes and examples in Chapter
5.

2.2 Cortical model of sleep

This particular cortical model is adapted to the sleeping brain by the presence of two pa-
rameters L and ∆hreste , presenting a natural continuous 2-dimensional state space for sleep
[76; 51]. The parameter L describes the connection strength of excitatory neuron popula-
tions as a gain on the excitatory postsynaptic potentials, and reflects the biology of synaptic
downscaling that is believed to be an important function of sleep [13; 49; 18]. The other
parameter ∆hreste represents a change in the resting potential of the excitatory population of
neurons in the cortex. This is the primary target for the various brain-stem neuromodula-
tors that control arousal (acetylcholine and amines), and also the various somnogens such as
adenosine that increase sleepiness. Thus the model is able to link processes of interest at the
cellular level with changes in neuronal excitability and connectivity and hence with changes
in the EEG. More information on this model and its derivation can be found in [76; 91].
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Table 2.1: Model variables

Variable Description

h̃e,i Dimensionless mean soma potential

Ĩee,ie,ei,ii Dimensionless postsynaptic activation

φ̃e,i Dimensionless distant input to neuron populations
t̃ Dimensionless time
x̃ Dimensionless space

2.3 Model equations and default parameters

The dimensionless version of the model developed in [76] detailed in [42] for seizures and in
[51] for sleep is presented in Equations 2.1 to 2.8. In Table 2.1 the definitions of the variables
are described while the parameter definitions and nominal values for sleep and seizure cases
are contained in Tables 2.3 and 2.2 respectively. For further information on these parameters
see [48; 78] for general parameters and [76] for sleep parameters.

∂h̃e

∂t̃
= 1− h̃e +

∆hreste

hrest
+ LΓe(h

0
e − h̃e)Ĩee + Γi(h
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∂h̃i
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Ĩie = Nβ
i S̃i

[
h̃i

]
+ Pie + Γ̃3 (2.5)(

1

Ti

∂

∂t̃
+ 1

)2
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The sigmoid transfer functions that transform the mean soma voltage to the dimensionless
firing rates (S̃e, S̃i) for the population are shown in Equations 2.9 and 2.10.

S̃e

[
h̃e

]
=

1

1 + exp
[
−g̃e(h̃e − θ̃e)

] (2.9)

S̃i

[
h̃i

]
=

1

1 + exp
[
−g̃i(h̃i − θ̃i)

] (2.10)

The stochastic input from subcortical sources are shown in Equations 2.11 to 2.14.

Γ̃1 = αee
√
Peeξ1[x̃, t̃] (2.11)

Γ̃2 = αei
√
Peiξ2[x̃, t̃] (2.12)

Γ̃3 = αie
√
Pieξ3[x̃, t̃] (2.13)

Γ̃4 = αii
√
Piiξ4[x̃, t̃] (2.14)

Variables ξk represent white Gaussian noise with zero mean, δ-function correlations and
approximated numerically by:

ξk[x̃, t̃] =
R(m,n)√

∆x̃∆t̃
(2.15)

and [x̃, t̃] = [m∆x̃, n∆t̃]–integer coordinates on a grid spaced by [∆x̃, ∆t̃]. This PDE was
simulated in MATLAB with an Euler predictor-corrector method designed in [51].

For only the sleep model, Equation 2.16 is used for αxx, all subcortical inputs, and the
form of this equation is from [51]. In this equation µe is based on the values of the equilibrium
points he of the PDE, scaled so that µe varies between 0 and 1, where 0 is the minimum
over this region of the manifold, and 1 is the maximum over the manifold. For further
information, please see [51].

αee,ei,ie,ii = α̂(−4µe + 5) (2.16)

For the seizure model, a measurement variable h̃m, developed in [50], derived from other
state variables, and displayed in Equation 2.17 is used as an ECoG-like measurement.

hm = (heo)− h̃eĨm =
(45− he)
−70

Ĩm (2.17)
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Parameter Definition Value

Γ̃e,i Influence of input on mean soma poten-
tial

Γe,i exp(1)Smax

γe,i|hreve,i −hrest|
1.42×10−3, 0.0774

h0
e,i Dimensionless reversal potential hreve,i /h

rest
e,i -0.643, 1.29

Te,i Dimensionless neurotransmitter rate
constant

τγe,i 12.0, 2.60

λe,i Dimensionless corticocortical inverse
length scale

τvΛee,ei 11.2, 18.2

Pee,ie Subcortical input to e populations pee,ie/S
max 11.0, 16.0

Pei,ii Subcortical input to i populations pei,ii/S
max 16.0, 11.0

Nα
e,i Number of distant connections Nα

e,i 4000, 2000

Nβ
e,i Number of local connections Nβ

e,i 3034, 536
g̃e,i Dimensionless sigmoid slope at inflec-

tion point
ge,ih

rest -19.6, -9.80

θ̃e,i Dimensionless inflection point for sig-
moid

θe,i/h
rest 0.857, 0.857

hreste Resting potential -70 mV
αee,ei,ie,ii Stochastic input gain 1.6

L Strength of excitatory connections 1
∆hreste Change in resting potential 0

Table 2.2: Nominal model parameters for seizures. Note that sleep variables L and ∆hreste

are chosen to have no effect in this parameter set for seizures. These default parameter
values are taken from [42].
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Parameter Definition Value

Γ̃e,i Influence of input on mean soma poten-
tial

Γe,i exp(1)Smax

γe,i|hreve,i −hrest|
4.6875×10−4, .0105

h0
e,i Dimensionless reversal potential hreve,i /h

rest
e,i 0, 1.0938

Te,i Dimensionless neurotransmitter rate
constant

τγe,i 12, 3.6

λe,i Dimensionless corticocortical inverse
length scale

τvΛee,ei 11.2, 11.2

Pee,ie Subcortical input to e populations pee,ie/S
max 25, 25

Pei,ii Subcortical input to i populations pei,ii/S
max 25, 25

Nα
e,i Number of distant connections Nα

e,i 3710, 3710

Nβ
e,i Number of local connections Nβ

e,i 410, 800
g̃e,i Dimensionless sigmoid slope at inflec-

tion pt
ge,ih

rest -29.021, -19.347

θ̃e,i Dimensionless inflection point for sig-
moid

θe,i/h
rest 0.91406, 0.91406

hreste Resting potential -64 mV
L Strength of excitatory connections

∆hreste Change in resting potential
α̂ Minimum gain on subcortical input

Table 2.3: Nominal model parameters for sleep simulations. Values for all parameters in this
default set were taken from [51].
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Chapter 3

Probabilistic Methods

In this section, we present two of the probabilistic models that will enable our analysis: a
Naive Bayes model for inference of state given stochastic observations and a Hidden Markov
model for incorporating dynamical state evolution through time.

We describe them in depth here and use them later in Chapters 4 and 5 to analyze data
from the stochastic dynamical system of the cortex.

3.1 Naive Bayes for likelihood estimation

3.1.1 Inference problem

Suppose we are given a system with a set s of K discrete states sk, k ∈ [1, . . . , K],
each of which produce M stochastic observations e = [e1, . . . , eM ] via some unknown
probabilistic relationship, defined by a probability distribution conditioned on each state
p(e1, . . . , eM |s = sk). Additionally, we have been given a set of training data (labeled
samples): known states paired with their observations (sk, e)i. The problem we seek to
address is to infer what the underlying state is for a new set of observations; equivalently
to estimate the posterior probability of each state given the observations p(sk|e). This is
a classic inference problem. As an example, the states could be a binary option on the
statement ‘this email is spam’ and the observations could be measurements such as words
present, email address, and time of day. We additionally have a historical data set of samples
from past emails. Then, for each email, the problem becomes to infer the state (whether it
is spam or not) given our observations of the current email combined with knowledge of the
system.

One way to address this inference problem is by using Bayes’ rule, shown in Equation
3.1. The training data is used to estimate a likelihood function p(e1, . . . , eM |sk). The prior
probability p(sk) is estimated from the data or assigned values based on assumptions. The
marginal likelihood p(e) in the denominator is a summation of the numerator over all states.
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Figure 3.1: Graphical model of a Naive Bayes structure. The parameter state s of the model
directly influences the probable outcome of the observations, and this state is the only parent
to each feature. This structure implies that the observations are independent of one another
given the state. More information on these models can be found in [10]

p(s = sk|e) =
p(e|s = sk)p(sk)

p(e)
(3.1)

Returning to the earlier example, upon encountering a new email with observed features
e, if we estimate from historical, labeled data the distribution of what has been observed
in the past from the states p(e|s = sk), assume a prior on states p(sk), and normalize with
p(e), we can take past, known observations and build a model to infer the probability over all
states sk of the unknown state underlying new observations. This is a very powerful tool and
Bayes’ rule is used across all disciplines. It describes how to leverage observed information
to better estimate for an unknown state that is probabilistically linked to those observations
the probability across possible states .

3.1.2 Likelihood function estimation

For a very simple problem with a large number of samples and only a few binary observations
and a binary state, estimating p(e|s = sk) is a straightforward process. However, as the
number of states K and observations M increase, the problem of estimating the likelihood
function with no assumptions about its structure becomes intractable as both the necessary
amount of training data and computational time increases exponentially.

To reduce the amount of time and number of data samples necessary to estimate p(e|s =
sk), one can make an assumption that the data has an underlying ‘Naive Bayes’ structure,
shown as a graphical model in Figure 3.1. Note that this structure implies that the features
are independent of one another conditioned the state p(ei, ej|s = sk) = p(ei|s = sk)p(ej|s =
sk), which is assumed to be a ‘naive’ assumption, hence the name of the structure. Under
this structure, the joint conditional probability distribution p(e|s = sk) can be simplified to
a product of one-variable conditional distributions as shown in Equation 3.2.
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p(e|s = sk) =
M∏
i

p(ei|s = sk) (3.2)

Naive Bayes structures are often applied to classification problems and can also be used
for probability density function estimation. They are often excellent classifiers [69] in spite of
their simplicity even if the assumption of independence is incorrect. Some empirical evidence
that Naive Bayes classifiers can perform well for probability density estimation is shown in
[52].

3.2 Hidden Markov Models

Given a sequence of stochastic observations in a time series [e1, . . . , eT ], derived from an
underlying, but unobserved state trajectory [s1, . . . , sT ], one could treat the observations
as independent events when trying to estimate the underlying state from the observations.
However, if one assumes that there is an underlying structure to the evolution of state in
time, ignoring the temporal aspects in this way can lead to incorrect results and ignore
important correlations due to the dynamics.

One way to incorporate temporal dynamics evolution is to use a Hidden Markov Model
(HMM) which is used to model stochastic processes with Markovian dynamics in which a
state at time t depends on the state at time t−1 and have the property that p(st|s[1,...,t−1]) =
p(st|st−1). This property can be seen via the graphical representation of an HMM shown in
Figure 3.2. Thus it incorporates a notion of temporal dynamics, and is a relatively simple
model with well-known statistical algorithms. HMMs are very versatile and used to model
such things as human speech, DNA, and other non-stationary processes [86].

s1 s2 s3 sT 

e1 e2 e3 eT 

P(s) 

Figure 3.2: A graphical representation of the structure of a Hidden Markov Model. The
arrows denote conditional dependencies.

HMMs are known as ‘Hidden’ Markov Models because they additionally assume that
the states are unobserved, and only the noisy measurements of the states can be observed.
Hidden Markov models consist of two levels, as seen in Figure 3.2 a ‘hidden’ level (blue in
the figure) in which the state st of the system of interest evolves in a Markovian manner, and
an observed level (green in the figure), containing some directly measurable observations or
evidence, et that is dependent on the hidden state at the same time. An overview of Hidden
Markov Models can be found in [86].
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Each arrow in Figure 3.2 represents a conditional probability relationship. The arrow
from each state to its observation represents the probability distribution of observing et

given state st, and is defined by the function p(ei|s = sk). The arrows between hidden
states represent a transition matrix or function Amn = p(st+1 = sn|st = sm) which assigns
the probabilities of switching from state sm to every other state sn at the consecutive time
instant.1 Note that

∑
n p(s

t+1 = sn|st = sm) =1, as probability must be conserved between
time instants and thus we assume that the state always transitions to some state in the
model and does not exit the set of states. Finally, the arrow leading into the first hidden
state s1 represents a prior distribution for the first hidden state p(s1).

Implementation of the HMM requires that these three components Amn, p(s1), and
p(ei|s = sk), be chosen or estimated. The set of these HMM assumptions are indicated in
the conditions of the following probability distributions asM = {Amn, p(s1), p(ei|s = sk)}.

3.2.1 HMM algorithm

Under these assumptions, we are prepared to examine the probability of being at any state
st

′
= sk at time t′ given an entire sequence of observations [e1, . . . , eT ] = eT . The joint

probability distribution of the full HMM p(sT , eT |M) and is shown in Equation 3.3. The
posterior probability p(sT |eT ) is shown in Equation 3.4. Finally, the posterior marginal
probability at time instant t′, p(st

′ |eT ,M), is shown in Equations 3.5 and 3.6.

p(sT , eT |M) = P1

T−1∏
t=1

At,t+1

T∏
t=1

p
(
et|st

)
(3.3)

P1 = p(s1|M)

At,t+1 = p
(
st+1|st,M

)

p(sT |eT ,M) =
p(sT , eT |M)

p(eT |M)
(3.4)

p(st
′ |eT ,M) =

∑
s{t6=t′}

p(sT |eT ,M) (3.5)

Due to the Markovian properties and structure of the HMM, Equation 3.5 can be equiv-
alently written as Equation 3.6, written in terms of functions α and β.

1One can consider this transition function essentially a lookup table of transition probabilities between
every two states, thus this is a lookup table of size N2, with each entry a probability (a number between 0
and 1).
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p(st
′ |eT ,M) =

α(st
′ |M)β(st

′|M)

p(eT |M)
(3.6)

α(st
′|M) = p(e1, . . . , et

′
, st

′|M)

β(st
′|M) = p(et

′+1, . . . , eT |st′ ,M)

p(eT |M) =
∑
st′

α(st
′
)β(st

′
), ∀t′ (3.7)

The alpha-beta algorithm (also known as the forward-backward algorithm), efficiently
calculates the α and β terms found in Equation 3.6, and a simple summation over all states
at any time t′ yields the normalization factor in the denominator (calculation shown in
Equation 3.7). For each time t′, this algorithm calculates the influence of all past to current
observations [1, . . . , t′ − 1, t′] in α and all future observations [t′ + 1, . . . , T ] in β and
incorporates these into the posterior marginal probabilities of each of the states at time
t′. Because both current and future time is used in each calculation, this is known as a
smoothing operation.

The normalization factor on the posterior marginal probabilities p(eT |M) is the same at
every instant t′ in time and is given in Equation 3.7, and is simply the summation over all
states of the alpha beta product.
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Chapter 4

A probabilistic framework for a
physiological representation of
dynamically evolving sleep state

4.1 Introduction

All humans sleep and approximately 10% of the population [66] has sleep disorders which
include conditions as varied as insomnia, restless leg syndrome, and sleep apnea. Such
pathologies, and other temporary conditions that disrupt sleep cause significant problems in
individual emotional, psychological, and physical well-being. In turn, such widespread sleep
disruptions cause broader economic impacts and demonstrate the significant research that
must be conducted to investigate the properties of sleep. Thus a better understanding of
sleep dynamics is crucial for developing more knowledge about the fundamental dynamics
and treatment of pathologies that interact with sleep. Full measurement of the neurophys-
iological state of the brain during sleep would require invasive measurements and is poorly
suited for typical human subjects research. Thus researchers have long turned to noninvasive
measurements of electrical brain signals for traditional sleep staging. Traditional sleep stages
were not developed to capture and thus do not capture all of the physiological information
and microstructures available in EEG and other electrical signals. However sleep staging
does provide a good standard for classifying sleep and serves as a foundation to inform addi-
tional more detailed representations of sleep and its microstructure such as those described
in [8; 83; 11; 58; 51; 31; 64] and this work.

Recently Lopour et al. [51] worked quantitatively to relate experimentally measured
human sleep EEG data to a continuous set of sleep states based on a dynamical mathematical
model of the brain which has been extensively studied and developed for sleep, seizures,
anesthesia and other applications [76; 77; 79; 43; 79; 80; 75; 81; 91; 89]. This and other
dynamical models with phase transitions have been applied to understand better mammalian
sleep and anesthesia qualitatively and experimentally; the related literature includes work
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exploring the foundations of the K-complex [91], understanding up and down state transitions
of cortical oscillations [92], and other applications. For a more complete introduction to
these models we refer the reader to [75]. Previous work in directly mapping EEG data to a
dynamical model of sleep [51] presented a novel and practical application of a mathematical
model; however [51] used a deterministic and temporally static method that did not fully
account for noise in the data, nor use temporal information directly.

In this chapter we address these issues and demonstrate a method of mapping EEG sleep
data that elegantly handles the stochastic and temporal nature of the problem. We use a
Bayesian framework to map sleep states onto a continuous two-dimensional representation of
sleep derived from a physiologically plausible dynamical model of the cortex. This continuous
representation of sleep allows for inference of physiological information. Bayes’ rule allows
us to take probability of A given B and use that to calculate the likelihood of B having
observed A. In this case, we sample a stochastic dynamical model of the cortex multiple
times to estimate the probability distribution of EEG features at each possible brain state
in the model. Then upon observing a new EEG signal from an unknown cortical state,
we leverage the state-to-EEG distributions within a Bayesian framework to estimate the
likelihood that this signal was generated from each brain state given that observation. Thus,
with a model that generates EEG-like data, we create a way to map probabilistically a night
of sleep epochs onto the continuous space of brain states in the model.

Using a probabilistic framework addresses the uncertainty which appears frequently when
classifying noisy measurements into disjoint classes. For example, with a noisy EEG mea-
surement that appears to be 51% likely to be in state A, but 49% likely to be in state B,
where A and B could be stages or points in a continuous representation of sleep, a probabilis-
tic framework allows that information to be preserved, while a non-probabilistic framework
might force this measurement to be considered state A. Also, after using a probabilistic
framework on data, a threshold (or maximum function) can be applied to force the classified
data into disjoint sets. Note that this probabilistic approach allows for the use of confidence
intervals on classifications.

We next incorporate temporal information into this continuous representation using a
Hidden Markov Model (HMM) inference algorithm, which reduces noise when tracking the
sleep state through time. We do this based upon the expectation that sleep state at time t
is correlated to sleep state at time t+ 1, and assuming that the brain is a dynamical system
with a state that evolves through time. This HMM is a more complex statistical model and
an extension of the previously mentioned static likelihood calculations, in essence linking the
static likelihood calculations together in a temporal string. When evaluating the probability
of being at a brain state at time t, the HMM includes knowledge of observations from time t,
but also prior and later observations from times before and after t. This is similar to what the
human mind does when faced with a bad telephone connection–any particular word may be
difficult to understand if heard in isolation, but after a full sentence is spoken, the temporal
information combined with grammar allows one to decipher the full sentence.

The purpose of this work is to offer a method for mapping noninvasive electrical measure-
ments of sleep to a representation that offers additional physiological insights. The results
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presented here also demonstrate a rich representation of EEG sleep data that offers insight
into sleep dynamics, and a visualization of sleep EEG data that can be created in real-time
for each epoch or to track the physiological trajectory. Our work both explicitly handles the
noise inherent in EEG and the stochasticity of the model, and also incorporates the idea of
temporal continuity and uses the time series sequence order as information into the algo-
rithm. These extensions are significant improvements over previous algorithms and offer a
more robust framework for this mapping process and future work. This paper demonstrates
results that serve to validate the underlying mathematical model by quantitatively linking
sleep EEG to states in the model. Due to the general nature of the mapping procedure,
this method can be adapted to other sleep models for comparisons between representations.
Such a tool will be useful for both theoretical and experimental research.

In this chapter we are solving the inverse problem: given measured signals from the brain,
can we identify in a continuous model the sleep state that produced the observation. This
work begins with a description of the continuous representation of sleep and the dynamical
model underpinning that representation in Section 4.2. Next, in Section 4.3 we explain
the foundations of the probabilistic framework, which is followed by a discussion of feature
selection in Section 4.4. Extending that framework to incorporate sequential information, in
Section 4.5 we introduce the temporal HMM model and methods for tracking sleep states
using knowledge of the entire night of sleep, both future and past epochs, at every epoch
calculation. Results from the mapping from EEG to the continuous state space with static
likelihoods are presented in Section 4.6 most significantly including a demonstration of the
separation of slow wave sleep and REM sleep using this representation. Results using the
temporal information and HMM information are presented in Section 4.7, showing examples
of model parameter trajectories through time for human subject data.

4.2 Sleep Model

4.2.1 Sleep Stages

Sleep is typically measured by recording electroencephalogram (EEG), electrooculogram
(EOG), and electromyogram (EMG) time series signals sampled from a subject over the
course of a night. Often additional measurements such as eye movement or breathing patterns
are monitored, especially for clinical assessment of sleep disorders. Using these electrical
signals measured from the brain activity, eye movements, and muscle movements the night
of sleep is typically parsed into 20 or 30 second segments which are classified by an expert
into the different sleep stages: wake, stage 1 (S1), stage 2 (S2), stage 3 (S3), stage 4 (S4), and
rapid eye movement (REM) sleep. For the purposes of this work, slow wave sleep (SWS),
will be defined as sleep with slow waves including spindles and thus be comprised of S2, S3,
and S4 sleep stages.

These sleep stages are characterized by certain patterns described by classification rules
that are apparent in the EEG, EOG, and EMG signals with EEG being of primary impor-



CHAPTER 4. A PROBABILISTIC FRAMEWORK FOR A PHYSIOLOGICAL
REPRESENTATION OF DYNAMICALLY EVOLVING SLEEP STATE 21

tance in differentiating non-REM stages. The Rechtschaffen and Kales (R&K) sleep stages
are based on visual patterns in the time domain and are thus not a complete description of
the underlying biological processes during sleep; rather these are useful tools that provide
international standards for use in sleep research but leave room for augmentation via new
representations. The original work developing the R&K criteria notes in the conclusion that
the staging criteria ‘should be viewed as a working instrument rather than a statute’ [70; 67].

Typical EEG segments from the various stages are depicted in Figure 4.1. Note that
there is a significant amount of microstructure to the typical EEG segments, an indication
that sleep stages are functional labels only, but do not serve as descriptors of the physiology
underlying the sleeping brain.

0 2 4 6 8 10

Stage 1

Stage 2

Stage 3

Stage 4

REM

100 mV

Time (s)

Figure 4.1: A snapshot of typical EEG patterns found in sleep stages. Note the changes in
the microstructure as the sleep stages move from light (S1, REM) to slow wave sleep (S3,
S4).

4.2.2 Dynamical Cortical Model

The cortical model described in Chapter 2 is used as a platform to create a continuous state
space representation of sleep as in [51].

These two sleep parameters L and ∆hreste define the sleep state in this model.

4.2.3 Sleep Manifold

Given a pair of sleep parameters (L, ∆hreste ), we can solve for the equilibrium point(s) of the
set of partial differential equations given in Section 2.3. These equilibrium points are fixed
points in the PDE model in the absence of stochastic forcing. That is, these points are sets
of variables [h̃e,i, Ĩee,ei,ie,ii, φ̃i,e]

T ∈ R[8×1], which cause all time and space derivatives of the
PDE equations to be zero given no subcortical input (ξk = 0). They are called equilibrium
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Figure 4.2: Sleep manifold of equilibrium
states of he over a two-dimensional param-
eter space. A view of this manifold from
above is shown in Figure 4.3.

Figure 4.3: Sleep manifold projected into
two-dimensional parameter space. The
transparency of this manifold highlights the
parameter area with multiple equilibrium
states. The scale shows the values of the
mean soma potential, he in mV.

points or fixed points because with no perturbations to the system, the variables do not
change if the system of equations is integrated forward in time at such a point.

The exact values of these points depends on the set of sleep parameters and the other
parameters defined in Section 2.3. As we vary the sleep parameters (L, ∆hreste ), both the
exact values of these equilibrium points and the number of equilibrium points change. Thus
equilibrium points are not unique at all sleep parameter values. To depict this change, we
show one variable, the mean soma potential h̃e, from these 8-vector equilibrium points plotted
over a range of sleep parameters in Figures 4.2 and 4.3. We refer to this surface, shown from
two viewpoints in the two figures, as the sleep manifold because it is a two-dimensional
surface embedded in three-dimensional space.

From Figure 4.3 it is particularly clear that there is a wedge-shaped region of sleep
parameters in which there are three equilibrium points. The theory of this model suggests
that the area of multiple equilibria is a location at which a rapid transition occurs from SWS
stages (S4, S3) to REM sleep stages [76]. The lines defining this multiple equilibria region
will be referred to as the fold lines, and the region as the cusp region due to the cusp point
at one end. On several other plots of parameter space, these curves will be drawn to remind
the reader of this region.

Over the course of a typical sleep cycle, a qualitative trajectory through this sleep param-
eter space has been explored conceptually by [76]. Initially, the brain state moves to deeper
slow wave sleep gradually, with a rapid jump to REM sleep, and then gradual descent back
into SWS. The fast transition from SWS to REM is thought to be due to a fast jump (first
order transition) from the lower branch of the sleep manifold to the upper branch of the sleep
manifold when the sleep parameters are such that there are multiple stable states in the sleep
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manifold (see Figure 4.2) [76]. After this rapid transition, the sleeping cortex evolves slowly
through higher ∆hreste and then back to slow wave sleep via a trajectory down the contin-
uous slope from REM to SWS. Then for the next sleep cycle, this counter-clockwise cyclic
behavior of the manifold and in the cortex is repeated.

4.2.4 Sleep hormones and parameters over a typical night

Sleep is a complex physiological phenomenon involving many brain structures. However,
EEG measures the summation of voltage fluctuations due to cortical neuronal activity. The
mathematical model chosen for this work is parsimoniously based on a section of undiffer-
entiated cortical tissue and is representative of general qualitative aspects of sleep and the
effects of the most influential neurotransmitters [76; 51; 91]. Other descriptions of sleep and
models that incorporate additional brain structures such as the thalamus can be found in
[37; 71].

The parameter ∆hreste (and to a lesser extent the parameter L) reflects the relative
strengths of somnogen and arousal neuromodulators. These are numerous compounds, but
for simplicity may be represented by actions of adenosine and acetylcholine. During REM
sleep and wakefulness acetylcholine levels are high, which increases ∆hreste , depolarizing the
membrane potential due to shutting of the potassium leak currents. This depolarization
causes neurons to be more likely to fire by decreasing the amount of excitatory neuronal
input needed to fire. The opposite effects occur when acetylcholine decreases during SWS.
This fluctuation in acetylcholine input to the cortex from the brain-stem occurs over ap-
proximately 90 minute cycles through the night in humans. Early in the night the adenosine
levels are high causing a tendency to neuronal hyperpolarization by opening potassium leak
channels [76]; through the course of the night the adenosine progressively decreases, resulting
in a progressive depolarizing drift. Thus changes in ∆hreste primarily show 90 minute cycles
overlaid on a slow (about 6hr) depolarization. The sleep parameter L is modestly influenced
by the aforementioned neuromodulator milieu, but is more strongly a direct indicator of
the processes of sleep-induced synaptic homeostasis. At the start of the night the synaptic
strength, and glutamate levels are high and both progressively decrease through the night,
if the nature of the sleep pattern is effective.

4.2.5 Model EEG data

The mathematical model of the cortex can generate EEG-like model data via electrode-
like measurements of the cortical state gathered during simulations of the full stochastic
PDE model [51]. This model EEG-like data is a measure of the dimensionless variable h̃e
which corresponds to a dimensionless mean soma potential, and is theoretically proportional
to measurements that would be made by an electrode on the simulated cortex1. For the

1In previous work a measure other than h̃e was used for feedback control to reflect more accurately an
ECoG measurement [50], however for the purposes of this analysis, which does not require electrical input
based on precise measurements, h̃e will serve well as it does in [51]
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Figure 4.4: Left: the state space of the model (equivalently the parameter space or parameter
grid) with two example states, sA and sB, highlighted. Right: examples of EEG-like data
from states sA and sB in the parameter space. State sA is a parameter state from the SWS
portion of the manifold while state sB is at a parameter set that contains both REM and
SWS equilibrium points in the manifold. The manifold area with 3 stable states is shown in
red.

purposes of this work, we will be converting the mean soma potential h̃e into millivolts,
which will be considered model EEG-like data and comparing features of this model data to
features of patient EEG-data measured from human subjects. Figure 4.4 shows two EEG-like
signals generated from the model at two different states.

4.3 Probabilistic method for mapping EEG epochs to

a sleep state

Problem statement: Given a patient EEG time series over sleeping epochs, find the
dynamical evolution of sleep parameters in the cortical model that is most likely to underlie
this observed signal. Equivalently, at each time t, find the most likely pair of sleep parameters
causing the current EEG output given the entire night of sleep EEG.

These pairs of parameters are referred to as the states of the system, and each state
sk = [Lk, ∆hreste,k ] is a point in the two dimensional sleep parameter space. Figure 4.4 shows
the gridded parameter space and sample EEG-like data from two states.

This is an inverse problem–in this algorithm input is an EEG time series and output is
the underlying parameters that generated the EEG signal.
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Figure 4.5: A sketch of EEG processing: epoch feature extraction

To address this problem, we use a three-step approach. First, using the mathematical
model of the cortex we run multiple simulations at each state and use these to create a
probabilistic model of the feature value distributions over the state space. This first step is
completed only once to set up the probabilistic framework to map patient EEG data onto
the model state space. After this probabilistic model has been created, patient EEG data is
parsed into epochs (Figure 4.5) and the next two steps calculate the likelihood of being at
each state sk given the observed data.

Overview of the algorithm for a new patient data set

1. First the EEG signal is segmented into 30 second epochs, and feature vectors e are
calculated at each epoch as shown in Figure 4.5 and described in Section 4.3.2.

2. Next, for each isolated time epoch, the likelihood of being at each model state given
the patient feature vector is calculated with the probabilistic framework as depicted in
Figure 3.1 and described in detail in Section 4.3.3.

3. Finally temporal evolution of the cortex is incorporated using a Hidden Markov Model
(HMM) framework as described in Section 4.5.

4.3.1 Notation

A state in the model sk within the state space s = [s1, . . . , sK ] is a particular pair of
parameters sk = [L,∆hreste ]k, treating k ∈ [1, K] as an index to a particular state in the
state space of size K, where each state is a 2-tuple. The continuous state space has been
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gridded into a finite number of points covering the parameter space of interest (see Figure
4.4). For this application, in which general evolution of parameters is concerned, the grid
size is sufficient, however note that the coarseness of the grid can be increased or decreased
depending on the application.

Features that are extracted from a particular segment of EEG data are e = [e1, e2, . . . , eM ],
where the letter e represents evidence and can be thought of as an observation of the under-
lying brain state.

When including the temporal evolution of sleep, a state at time t is st = sk, and the
entire state space at time t would be st. Similarly, a set of observed features from time t is
et = [et1, e

t
2, . . . , e

t
M ]. Time over an entire night is also discretized so that there are T time

instances T = [1, . . . , T ], each separated by time step ∆t. The entire set of observations
is eT = e [1, ..., T ], and the states over the entire set of time is sT = s [1, ..., T ].

4.3.2 EEG time series preprocessing

Feature extraction from a time series To compare two stochastic non-stationary time
series, it is often not sufficient to compare directly the values measured through time–consider
one time series that is then offset by a second compared to itself. Although we might consider
these time series almost the same except for an offset of a second, direct comparison of the
values measured over each sampling time could easily show no relationship.

Instead of direct comparison, scalar features may be calculated from the time series and
then these features may be compared in lieu of comparing time series points themselves.
This reduces complexity and parses the data in a straightforward manner. These features
can include any number of mathematical operations on the time series that operate on a
time series vector and produce a scalar value. In this particular work we consider features
that are meaningful to sleep EEG signals such as the power in different frequency bands or a
measure of the number of sleep spindles in a segment. A full list of features and descriptions
is in Appendix A.1.

The full set of features to extract was initially developed heuristically from patient data
and domain knowledge, then a subset of features was refined by measurements of success of
mappings to the parameter space as discussed in sections 4.3.3, 4.4, and 4.6.

Preprocessing algorithm The input to this algorithm is an EEG time series measured
from a sleeping patient over the course of a night. The first few steps of processing this input
into a more useful form are shown in Figure 4.5. As shown in this figure, first the algorithm
takes the input of an EEG signal and parses it into T segments of time (epochs), which
discretizes the path of physiological parameters. Next, features eti are calculated for each
segment time t, and assembled into a feature vector for that epoch et = [et1, e

t
2, . . . , e

t
M ].

After feature calculation, each feature is normalized by the root mean square (RMS) over
all sleep epochs.
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Human subject data source The data used in this analysis is from the Sleep-EDF
database, experimentally measured EEG sleep data from four normal human subjects ob-
tained from from a publicly available de-identified data source PhysioBank [28] in the Sleep-
EDF Database [40; 39] and are labeled sc4002, sc4012, sc4112, and sc4102 which we will
refer to in that order as Subjects 1 through 4.

As an example of the features and results of this time series processing, Figure 4.6 shows
two of the calculated features varying over all epochs in the course of the night for Subject
1.
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Figure 4.6: Human subject data: subplots show the evolution of two example features over
the course of one night of sleep. The colors correspond to different sleep stages to illustrate
how features vary between stages. Black, red, yellow, green, light-blue, dark blue respectively
indicate wake, REM, S1, S2, S3, and S4. Appendix A.1 contains more information about
these features.

4.3.3 Building a static likelihood map from features to
parameter state

The cortical model is a stochastic model, meaning that each time it is run at a particular set
of parameters, it generates a different EEG-like signal due to the Gaussian noise subcortical
input. For a more complete picture of the typical output from a fixed state, the model is
simulated multiple times at each parameter pair in the gridded sleep manifold. Features
calculated for each of the EEG-like outputs at a single state can be viewed as a histogram,
or a sample of the distribution of all features that might be calculated at that state. The
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Figure 4.7: Example histogram of one feature at one parameter state generated from many
runs of the model with different stochastic input. The red line is the probability distribution
function of a Gaussian mixture model curve fitted to this data.

cortical model was run 100 times at each parameter state sk in the grid. An example of a
histogram for a single feature at a single parameter state is shown in Figure 4.7.

Each feature is then approximated with a one dimensional probability distribution func-
tion which is fitted to its histogram. A Gaussian mixture model distribution is fitted to each
feature histogram individually, such that the probability of observing a feature ei at state sk
is p(ei|s = sk) shown in Equation 4.1. Variables σh,i,k and µh,i,k are the sample variance and
mean of feature i at state sk on the h-index component of the Gaussian mixture model. M
indicates the number of components and wh the weight of each component.

p(ei|s = sk) =
M∑
h=1

wh

σh,i,k
√

2π
exp

(
(ei − µh,i,k)2

−2σ2
h,i,k

)
(4.1)

There are many such probability density function estimation methods and for this work a
Gaussian mixture model (GMM) was flexible enough to cover the sometimes bimodal feature
distributions. The GMM was also used to prevent over-fitting due to the relatively small
number of samples–a histogram or kernel method could work as well if the number of samples
was increased significantly. The mixture model was limited to contain between one and three
components, and the number of components was chosen to minimize the Akaike’s information
criterion [2]. Choosing up to three components is expected to capture the model behavior as
we know that the theoretical sleep manifold has between one and three equilibrium points
at any state.

At this point, the system has been simulated multiple times at each state, but to use these
feature distributions to estimate probabilities and likelihoods, assumptions must be made
about the structure of the probabilistic system. Here we assume that the the graphical model
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Figure 4.8: At each state sk in a 2-dimensional state space representation of sleep, sampling
multiple stochastic simulations produced probability distributions p(e|s = sk) of observed
features e at sk. The left grid shows the full state space and two example states that point
to example distributions for two features. The top red signal represents a new patient EEG
signal from which two features are calculated and red lines show these feature values in the
p(e|sk) distributions. For each state, the likelihood L(s = sk; e) of being at state k given the
features is calculated using a Naive Bayes graphical model (see Figure 3.1) In this particular
example, the likelihood of the unknown signal is greater at sA than sB.

shown in Figure 3.1 and described in Section 3.1 represents the underlying structure of the
probabilistic relationship between the features and the state of the sleep parameters. Note
that this structure implies that the features are independent of one another given the state.

We now have a set of probability distributions across each state for each feature. This
can directly be used to estimate the probabilities p(e|s = sk) of observing a feature given
a parameter state. More importantly, using Bayes’ rule, we can leverage this probabilistic
structure to calculate the likelihood L(s = sk; e) of being at a state sk given a feature vector
e = [e1, e2, . . . , eM ] of an EEG epoch generated from an unknown state.

For this simple graphical model the likelihood L(s = sk; e) is calculated using Bayes rule
and is shown in Equation 4.2. This corresponds to a Naive Bayes structure, in which each
feature is independent given the state, and the result is that the overall likelihood for the
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Figure 4.9: Model data: Mean features calculated over the samples at each state in the sleep
parameter space.

feature vector is simply the multiplication of the individual likelihoods of each feature.

L(s = sk; e) = p(e|s = sk) =
∏
i

p(ei|s = sk) (4.2)

L(s = sk; e) ∝
∏
i

1

σi,k
√

2π
exp

(
−(ei − µi,k)2

2σ2
i,k

)
(4.3)

With this probabilistic structure built from samples of model EEG data, we have created
the tool necessary to calculate the likelihood at each state of a new EEG epoch. These tools
require time-consuming simulations, but must only be created once and then may be quickly
and efficiently applied to generate likelihood maps from patient EEG data.

4.3.4 Calculating static likelihoods from an EEG epoch

The question this work seeks to answer is what is the likelihood of being at state sk given
an EEG epoch measured from a human patient and thus generated from an unknown sleep
state. The procedure for this calculation is shown in Figure 4.8.

First, features e are calculated from the EEG epoch. Then Equation 4.2 is used to
calculate the likelihoods L(s = sk; e) at every state sk in the state space. This simply
consists of evaluating the GMMs at each feature and taking the product.

The result of this calculation on a single epoch is a likelihood at each grid point that can
be viewed via a color plot or surface over the two-dimensional state space.
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Figure 4.10: An example complete subgraph of redundant features in model space

4.4 Feature selection

Using the entire set of features will not necessarily give a robust or better mapping than
using a subset of features. For instance, some features may be noisy, inconsistent between
patients, or redundant, and using all features can lead to overfitting, excess complexity, noisy
results, and biases. In fact, with this particular algorithm, there are several clear goals that
a final feature set should satisfy. At the very least, the features used in this algorithm should
meet three requirements. (1) Features should contain meaningful variations between SWS
and REM in both human patient data and the model. (2) Features should vary in the same
qualitative direction between SWS and REM, which is a first indication as to whether the
feature is captured by the model or relies on unmodeled cortical dynamics. (3) The feature
set should not contain redundant features due to the Naive Bayes independence conditional
on state assumption.

To achieve the optimal set of features under a certain algorithm and cost function crite-
rion, one typically must iterate through every possible subset of features, each time running
the full algorithm and evaluating the cost function to find the minimizer. However, the num-
ber of possible subsets grows exponentially and this approach becomes intractable for large
numbers of features. Good results can be achieved by using heuristics or scoring functions
to prune features from the initial set. The full procedure for feature selection is described in
Appendix A.2.

The final feature set chosen is the slope of the power spectral density, spindle index,
weighted delta wave steepness, and the equiprobable mutual information. Figure 4.9 shows
these chosen features varying over the feature set and Appendix A.1 includes descriptions of
these features.

Pruning procedure summary

1. Remove features without meaningful variations between SWS and REM in the hu-
man subject data using the Spearman correlation coefficient, a nonlinear measure of
correlation.
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Figure 4.11: The left plot shows an example of a single epoch log likelihood log (L(s = sk; ek))
with the strength of the log likelihood indicated by the colors. The right image then shows
shows the 95% likelihood region of the right likelihood map. The states marked by red
squares on the right are the states that contain 95% of the likelihood in the left log-likelihood
map. All of the unshaded states together contain the remaining 5% of likelihood in the right
map. The outline around the red squares is the convex hull of this region, which we use for
visualization.

2. Remove features in which the model has different trends than human subject data.
This was accomplished by comparing the direction of trends (increase/decrease) of
each feature in both the subject data and the model data from SWS to REM.

3. Test for linear redundancy in the features using the Pearson correlation coefficient, and
only include up to one feature from any full connected set of correlated features. See
Figure 4.10 for an example fully connected set of features found in this algorithm.

4. Do not include feature sets in which any two features are highly correlated given the
state.

Evaluating pruned feature subsets The sets generated after the pruning procedure
were evaluated with a cost function that penalized the overlap of SWS with REM. This
overlap was defined using the overlap of regions in parameter space that contained 95% of
the likelihood for average likelihood for each stage. Figure 4.11 shows this procedure.

4.5 Method for tracking the temporal evolution of

sleep

The static likelihood mapping developed in Section 4.3.3 and with results in Section 4.6 is
applicable to a single segment of EEG, or a single epoch in time, but does not incorporate the
expected continuous time evolution of the system or the information from the entire night
of sleep signals. That is to say, it does not use the information that might be contained in
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earlier and later observations to inform the likelihood at a particular point in time. Up to
this point, the likelihood has implicitly been L(st = sk; e

t), the likelihood of being at state
sk at time t given the observation of feature vector et at time t. To incorporate information
from all segments of time, the posterior marginal probability of being at state sk at time t
given all observed features throughout the night, p(st = sk|e[1, ...,T ]), must be calculated.

One way to calculate this type of likelihood is to use a Hidden Markov Model (HMM)
as described in Chapter 3.2. Recall that Figure 3.2 shows a graphical representation of a
Hidden Markov Model. In this model, there is a hidden state st which cannot be directly
observed–this is the parameter state. The observations et are the feature vectors calculated
at each time segment, one feature vector per time step up to time T . The arrow from each
state to its observation is the probability distribution of observing et given state st, and
is defined by the time-independent measures we calculated for each epoch: p(ei|s = sk) in
Equation 4.1.

We choose the transition function p(st+1 = sn|st = sm) to be a two-dimensional Gaussian
distribution in parameter space with a variance of three grid points and mean centered on
each originating point, Equation 4.4, effectively favoring nearby transitions2. The initial
prior distribution p(s) is assumed to be uniform over the entire parameter space. Altering
this prior can be straightforward and would not change the methods presented here.

p(st+1 = sn|st = sm) = p
(

[L, ∆hreste ]
t+1

n

∣∣∣[L, ∆hreste ]
t

m

)
= N ([L, ∆hreste ]

t

n, Σ) (4.4)

=
1

2π|Σ|1/2
exp

(
−1

2
(sn − sn)TΣ−1(sn − sn)

)
(4.5)

Σ =

[
.3 0
0 1.5

]
Using this framework and assumptions, the alpha-beta algorithm (also known as forward-

backward algorithm), calculates the posterior marginals p(st = sk|eT ), Equation 3.5. For
each time t, this algorithm calculates the influence of all past observations [1, . . . , t − 1]
and future observations [t+ 1, . . . , T ] and incorporates that into the likelihoods of each of
the states at time t.

4.5.1 Verification of tracking method on temporal evolution of
model data

Before investigating the results of the epoch and HMM posterior marginals on patient EEG
data, these methods were tested on model EEG-like data, so that comparisons could be

2This transition matrix and prior assumption can be relaxed or altered without a significant change to
the algorithm. For instance, a transition matrix may be learned using the Baum-Welch algorithm given
sufficient data and under certain assumptions [86].
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Figure 4.12: Model pseudo-EEG data: using model data, a known path through the state
space generated EEG-like data. This true path is shown via the green ‘x’ marks in the plot.
Next, the EEG-like data was put through the algorithm and the HMM posterior marginal at
each point was calculated. The black triangles show the path of maximum HMM posterior
marginals maxsk p

(
st = sk|e[1, 2, ...,T ]

)
, and the polygons show the convex hulls containing

80% of the posterior marginal at each time epoch. This a segment of a longer overall
path illustrating typical results. The numbers labeling each convex hull indicates the epoch
number to clarify the ordering of the convex hulls which progress in time from darkest to
lightest gray.

made between the known parameter state of the model data and the results of the posterior
maps. Figure 4.12 shows the calculated maximum state points of the posterior marginals for
a known path. Note that the maxima depicted are noisy measurements of the full posterior
marginal probability maps which have some value across every state, thus convex hulls of
the regions containing 80% of the posterior marginal probability are included.

The depicted path is created from a segment of a pseudo-EEG path generated with 800
epochs, each at different parameter states in the model. The posterior marginal probability
at each epoch was calculated after applying the method to the entire path of 800 epochs,
however only a few epochs are shown for clarity. The probability regions and maximum
probability locations show results that are typical throughout the entire path. Several other
paths were also generated with similar results. The pseudo-EEG signals underlying these
paths were generated using the assumptions made in the HMM, with the only difference being
that actual states were not required to lie on grid points, but were allowed to be generated
from any location within a continuous space with the same bounds. First an initial state was
chosen from a uniform distribution across a continuous state space. Then, for the rest of the
epochs, the next state was chosen from a Gaussian distribution of its neighbors as defined
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Figure 4.13: Human subject data: these plots depict the logarithm of the average static
likelihoods of each sleep stage, using the feature set containing the slope of the power spectral
density, spindle index, delta wave steepness, and the mutual information. These plots are
an average over all subjects.

by the transition matrix in Equation 4.4. In this way, the purpose was not to investigate
a path similar to a typical night’s sleep cycle but rather test the efficacy of this algorithm
on model-generated data using the assumptions. Generating data from known states is the
only way to create a signal in which there is a known ‘ground-truth’ and testing this assures
us that this inverse problem is solvable. By showing that this method works for model data,
it implies that it is more feasible that the method may work on patient data and serves as
a low-level proof-of-concept.

4.6 Results of probabilistic likelihood mapping of

patient data

With the chosen set of features, we now probabilistically map the patient EEG data epochs
to the state space using the static likelihood mapping method. After this procedure, for each
patient we have a set of likelihood maps, with one map for each time epoch from the original
data set.

To summarize the resulting mapping in a way that allows us to leverage accepted sleep
knowledge, we examine this mapping in the context of classical sleep stages. We collect the
static likelihood maps L(st; et) of all epochs of all subjects that correspond to each stage
and average the likelihoods within each stage to produce average log likelihood maps shown
in Figure 4.13 and calculated using equation 4.6. Relative differences in likelihood reflect
the relative differences in p(e|s), for instance SWS stages appear to have overall slightly
lower likelihoods, perhaps indicating that REM features are relatively better captured by
our mathematical model.

log
1

NStageA

( ∑
t∈StageA

L(st|et)

)
(4.6)
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Figure 4.14: Human subject data: these plots depict the logarithm of the average static
likelihoods of REM (top row) and Stage 3 (bottom row), using the feature set containing
the slope of the power spectral density, spindle index, delta wave steepness, and the mu-
tual information. Each column shows data from a different human subject. These plots
demonstrate the consistency in location of stages between different subjects.

Additionally, Figure 4.14 shows the log of the average likelihood under this feature set
for each of four human subjects for two representative stages: REM and Stage 3. This
demonstrates the consistency of this mapping across different subjects for the same stages,
with some minor variations in location that may indicate differences in individual sleep
patterns.

As a result of the feature selection process, the average locations of 95% likelihood regions
of Stage 4 sleep and REM sleep are fully separated in the manifold. To show that this is
robust for individual epochs, which are noisier than averages, Figure 4.15 shows results from
all individual epoch mappings. This figure shows the ratio of the numbers of SWS to REM
epochs whose maximum likelihoods are mapped to each state. There is very good separation
of SWS (which is both Stage 4 and Stage 3 in this figure) and REM maximum likelihood
locations, and only a few states in the manifold in which there is overlap. With noise in the
EEG and an overlap of SWS and REM expected in certain areas of the manifold, this is quite
good separation. This is one of the principal findings of this work. In fact, the fraction of
REM overlapping SWS-majority locations is 2.2% (17 out of a total 741 REM epochs) and
the fraction of SWS overlapping REM-majority is 4.1% (22 out of a total 529 SWS epochs).

This result for average sleep likelihoods is a successful mapping of measured sleep onto
this two-dimensional physiologically meaningful parameterization of sleep. Using just this
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probabilistic method on each epoch, EEG sleep can be mapped in real time3 to this state
space and provides a set of information unavailable in typical sleep stages. This could be
performed automatically and the results used for sleep studies and investigations into the
hormones of sleeping patients. Seizures and sleep disorders could be investigated using this
additional sleep information based on a dynamical model for further insights into causes and
potential cures.
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Figure 4.15: Human subject data: this plot demonstrates the robustness of the separation of
REM and SWS on the manifold. At each SWS and REM epoch in all subjects, the maximum
likelihood state was identified and plotted on this plot. States that were never a maximum
likelihood area for SWS nor REM are white. States that were only maximum likelihood
locations for REM and SWS are pure red and pure blue respectively. The shade of purple
indicates the ratio of the count of SWS epochs that had maximum likelihood at that state
to the count of REM epoch that had maximum likelihood at that state. Note that very few
states have any overlap.

4.7 Results of HMM temporal evolution of patient

data

We show typical results of applying the HMM methods to the data from one human subject
in Figures 4.16 and 4.18, demonstrating the temporal evolution of sleep parameters.

The state corresponding to the maximum posterior marginal at a particular time are a
coarse and noisy measure of these probabilistic results; thus Figure 4.16 additionally shows

3This method is a real-time method in the context of each 30-second epoch constituting an instant of time.
However note that minor changes would need to be incorporated into the implementation of this method to
achieve effective real time evaluation–primarily, the RMS normalization of the human subject data would
need to be calculated using a real-time approximation of the normalization parameters (an approximation
of the RMS). We would not expect this approximation to change significantly the results.
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Figure 4.16: Human subject data: HMM posterior marginal convex hulls containing 80% of
posterior marginal evolving over time epochs A to D (each ∆t between steps is 60 seconds,
showing every other epoch) for a single subject. The maximum likelihood locations at each
epoch is shown as a triangle of the same color. The colors represent the sleep stage at each
time. REM, Stage 2, and Stage 3, are red, green, and blue respectively. This sample set of
epochs was chosen to demonstrate an example of a transition from SWS to REM.

posterior marginal outlines of 80% of non-contiguous probability evolving in time for HMM
posterior marginals. These outlines encapsulate the maximum posterior marginal and all
the highest probability points until 80% of the posterior marginal probability is accounted
for at a particular time step. This set of epochs consist of Subject 3 epochs 432, 434, 436,
and 438 after sleep onset, which occurred at epoch 1196, these epochs are identified as A, B,
C and D respectively. This transition is typical of the movement into REM from SWS and
these epochs chosen to capture such a transition.

For comparison to the static likelihood method, Figure 4.17 shows the same epochs using
simple static likelihood rather than the full HMM implementation.

For a more comprehensive view of a typical night of sleep, all epochs in Subject 3 data are
displayed in Figure 4.18. This figure shows the evolution of the locations (average weighted
by posterior marginal probability) in the two coordinates L and ∆hreste of the HMM posterior
marginals colored by sleep stage. It does appear from these plots that major oscillations in
L on the order of 100 minutes are present in this patient data as is expected. In particular
note that in the top plot containing L through time, troughs occur around epoch 50, then
around epoch 150, and finally around epoch 290, similarly peaks occur at around 0, 100,
and 230 epochs. With this current data set, early to late night changes are not immediately
apparent.

We also show in Figure 4.19, the results without applying the HMM. Note that these
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Figure 4.17: Human subject data: for comparison with Figure 4.16 this plot shows the same
epochs static likelihood (no temporal continuity assumed via HMM) convex hulls containing
80% of likelihood evolving over time steps. Note that these epoch regions cover larger areas
than the HMM likelihood plot. This is an indication of the utility of including the HMM
algorithm.
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Figure 4.18: Human subject data: HMM posterior marginal centroid locations over entire
night of sleep for a single subject. This figure presents the sleep of subject 3, each point
indicating an epoch. The colors represent the sleep stage at each time. REM, Stage 1, Stage
2, Stage 3, and Stage 4 are red, yellow, green, light blue, and dark blue respectively.
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are simply centroid locations, and as these are weighted averages they are not as drastically
impacted by using the HMM as the 2-dimensional plots over each epoch would be. However,
one can see that the ∆hreste is very significantly impacted by the HMM application and
that L is somewhat impacted. Recall though that these are portions of a 2-dimensional
representation so the overall trajectory is a composition of both.
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Figure 4.19: Human subject data: Likelihood centroid locations over entire night of sleep for
a single subject. This figure presents the sleep of subject 3, each point indicating an epoch.
The colors represent the sleep stage at each time. REM, Stage 1, Stage 2, Stage 3, and Stage
4 are red, yellow, green, light blue, and dark blue respectively.

Finally, we turn to a consideration of the placement on the sleep manifold of the sleep
trajectory over the course of a night. Although one might expect lower L values over the
course of REM stage sleep to emerge, that is not a strong tendency in the present results;
in that respect our results agree with [51]. However, we do see indications of decreases in
∆hreste over SWS when compared with REM. The choice of the regions (and the NREM-
REM cycles) in [76; 91] were based on information from other studies that suggested the
change in acetylcholine levels would result in predominantly antagonism of the hyperpo-
larizing (potassium channel opening) effects of adenosine. The effects of acetylcholine to
decrease the magnitude of the EPSP are relatively minor (approximately 10%). However
these assumptions were partially based on intuition as to what is reasonable. The purpose
of the method presented in this paper is to let the EEG data speak for itself and define what
regions of the manifold are occupied in a less biased manner. From Figure 4.16 we see that
the NREM-REM transition seems to have more to do with the changes in synaptic (EPSP)
gain than with the resting membrane potential (which covers a wide range in both states).
This is a novel conclusion from this study and would agree with suggestions [22; 18] that
the NREM state is associated primarily with a reduction of synaptic EPSP impact (the idea
of “cortical block”) as compared to the REM and awake states – rather than primarily a
change in resting membrane potential mediated by intrinsic currents.
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Another note to make here as we examine these results is that it can be seen in Equations
2.1 and 2.2 that L is multiplied by a number of terms (e.g. Γe) to control/describe the
excitatory activity of the neuronal population. The parameter L is a dimensionless gain
term, and there is a possibility that some of the changes in L seen in these results could
potentially be influenced by changes in the other multiplicative terms (e.g. Γe) that may
occur in the complex dynamics of human sleep.

Also, although in the model equations the ∆hreste and L are independent parameters, it is
possible that the values of the two parameters are conflated to some degree. It must also be
acknowledged that factors influencing the membrane potential and the synaptic gain are not
necessarily physiologically completely independent [32]. However our model does emphasize
the importance of changes in synaptic gain in the transition between REM to NREM sleep
over the changes in ∆hreste . Thus the model supports many of the assertions made by Tononi’s
group about importance of sleep stages in modifying synaptic gain and activity; they have
measured both fluctuations in extracellular glutamate and direct measurements of EPSP
[49].

4.8 Potential Extensions

While this method was applied to a particular mean-field model, the algorithm described
could be adapted for other models of the brain as well, and potentially used to compare
models of sleep. In this Bayesian framework, comparing the overall likelihood of a Hidden
Markov Model can inform which model is more likely to have generated the data.

In addition, although the HMM posterior marginal calculation uses both future and past
data points in its calculation via the alpha-beta algorithm, thus smoothing and filtering the
observed data, one could use only past and current data and calculate a filtered likelihood
in an online algorithm in real-time using all previous epochs (but not future epochs). This
might be useful in applications that are required to be executed in real-time and is essen-
tially an intermediate step in the full HMM calculation (the alpha portion of the alpha-beta
algorithm).
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Chapter 5

A probabilistic method for
determining cortical dynamics during
seizures

The goal of this work is to develop a better understanding of the physiology underlying or
occurring in conjunction with seizure onset and evolution by leveraging a physiologically
meaningful mathematical model of mesoscale cortical dynamics. If we engineer a way to
take EEG or ECoG measurements of seizures and learn how the corresponding physiology is
changing in a model of the cortex, there is great potential to gain understanding of seizures
that among other implications may lead to new treatment strategies for individual seizures
or epilepsy as a condition, including such options as new drug development to target certain
physiological changes, new implantable therapies, or new algorithms for existing devices
[42; 43; 88].

We note that in many patients, individual seizures produce patterns with repeated motifs,
indicating a potentially repetitive pathological brain state evolution. If this is the case, then
perhaps causes or correlates to that pathological pathway can be discovered via a model and
new treatment options developed to render that pathway to seizure impassable, or perhaps
speed up such a trajectory so that seizures last only a fraction of a second rather than tens of
seconds or minutes. To investigate the physiological state at the root of seizure evolution, we
first assume seizures from the neocortex can be modeled with a stochastic nonlinear meso-
scale description of undifferentiated cortex, in which the state of the model parameters (e.g.
strength of subcortical input or measures of synaptic connectivity strength) can lead to non-
seizure or seizure-like brain activity like that which is observed with ECoG measurements.
This is effectively an inference problem, and we can use Bayes theorem to decode what is
happening in the underlying system (the physiology) after observing what is communicated
from this underlying physiology over the noisy channel of the cortical dynamics [53].

There have been several studies in associating cortical states (including seizures) mea-
sured in patients with these types of meso-scale cortical models and neural mass models for
both seizures [42; 43; 60; 87] and sleep [51; 17]. In [42; 43], pathways to seizure regions
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identified with bifurcation analysis through the particular mesoscale model used in this work
were explored qualitatively to determine potential directions through seizure and enumer-
ate seizure regions. Using a different but related mathematical model, [60] explores a more
quantitative approach to determining parameter pathways, concentrating on time domain
waveforms and attempting to match specific waveforms in measured EEG to waveforms gen-
erated by a neural mass model. Similarly [87] uses a minimalist model to analyze seizure
waves.

With an application to sleep rather than seizures, in [51; 17], sleep states were associated
with sleep physiological parameters in such a meso-scale cortical model. The methods pre-
sented in this work most closely resemble the methods used in [17] and in Chapter 4 with
a new application to seizures, an extension to comparing model regions rather than analy-
sis within a single region, and technical improvements including improved sampling and a
simplified feature selection algorithm.

However the eventual goal of the work presented here is aligned closely to one of the
goals of [60]: to determine quantitatively underlying parameters. In comparison to [60], we
present a probabilistic approach to handle a stochastic model and use a wider variety of
features in the feature set encompassing not only time domain features but also frequency
domain features, wavelet features, and features of neighboring ECoG channels.

It is also important to note that there are several other areas of active research in under-
standing the physiology of the brain by leveraging models. Related research and methods
include explorations of seizures in mesoscale model under the theoretical impact of certain
anesthetic drugs [46; 91; 81; 24] and Dynamic Causal Modeling [26; 56] which looks at
coupling of brain areas from neuroimaging time series.

In this paper we present a probabilistic method to map ECoG data onto the physiological
parameter states of a cortical model over the course of pre-seizure, seizure, and post-seizure
activity on a subject-by-subject basis. In addition, we show that given two possible pa-
rameter state regions (among many) in which pathological trajectories could be lying, we
can correctly choose the region that is more likely given the observed evidence. First, the
state trajectory tracking and parameter region identification is shown to work robustly with
model-generated data. Next, a proof-of-concept example is shown with human subject ECoG
data containing multiple seizures. The reliability of the region identification and trajecto-
ries produced by this method is demonstrated across multiple seizures. Although this work
does not test all possible paths to seizure, it demonstrates how this method could easily be
extended to multiple seizure models

The principal idea is that if this model of seizures is in some way faithful, and if true
seizures come from trajectory paths within the modeled parameter spaces, we can determine
along which path seizures evolve and the quantitative physiological trajectory. And a key
ingredient is that the parameters are connected to meaningful physiological measures, like the
strength of the post-synaptic response from excitatory neurons or the strength of subcortical
inputs. That means if we find a parameter region or a trajectory through parameter space,
and if the model is faithful, then we can infer something about the underlying physiological
evolution.
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This work begins with an overview of the cortical model and probabilistic methods which
are presented in Section 5.1. Results are then presented in Section 5.2. A discussion of the
implications of the results in the context of recent literature is discussed in Section 5.3.

5.1 Methods

5.1.1 Overview of method

In this paper, we first assume that the human cortex and its measured ECoG signals are
well-modeled by the chosen cortical model1 and its ECoG-like output, described in detail
in Section 5.1.2. Given this assumption, we can leverage this model to understand how the
physiological parameter state of the cortex translates into ECoG observations. Then we can
aim to take human subject ECoG observations and solve the inverse problem to infer what
underlying parameter states are most likely changing to cause the observed ECoG signal and
therefore also infer the underlying physiological states.

We approach this inference problem in several steps. As a preliminary step, we choose
two possible cortical parameter regions in which the true seizures may lie and hypothesize
that seizures may lie on trajectories generated by one or the other. These parameter regions
are sets of physiological values bounded within certain ranges. The purpose of this is two-
fold. First, the aim of this paper is to demonstrate that this method works robustly under
the assumptions made and also has promise for human subjects research, in which case some
of these assumptions do not hold. Thus we do not survey all possible parameter sets in
the full cortical model, but rather choose subsets of typical parameters with seizure regions.
Secondly, as human subject seizures are investigated, it may be that in different subjects,
different parameters (or different parameter ranges) may be of primary importance, and
we may be able to classify such seizures into different categories based on which parameter
regions are most likely to encompass the trajectory. Keeping multiple parameter regions has
the potential to reduce the computational complexity while allowing multiple hypotheses to
be compared against one another. In this work we use two planar regions, but one could
choose many multi-dimensional regions.

After choosing two parameter regions to investigate, we present a process for mapping
ECoG onto either of them via a general procedure similar to that in [17]. To account for
the innate stochasticity and noisiness of this system, we simulate the stochastic cortical
model multiple times at each model parameter state to estimate the probability distribution
functions of ECoG features at each state. Then, when observing features from a new ECoG
signal generated at an unknown cortical state, we estimate the likelihood that this signal was
generated from each possible cortical state given the observation by using the state-to-ECoG
probability distributions in a Bayesian likelihood function. This likelihood mapping is fully
described in Section 5.1.5.

1 Note that other cortical models could be substituted into this methodology with few changes
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This likelihood mapping from observed ECoG features to likelihoods over each cortical
state treats each ECoG segment as probabilistically independent. However, the ECoG epochs
of a trajectory are observed in sequence through time and contain temporal information,
which we incorporate by modeling the sequence of underlying cortical states and observed
features as a Hidden Markov Model (HMM). Calculating the HMM posterior marginal prob-
abilities of each cortical state at each epoch in time given a sequence of features evolving
over time provides a probabilistic trajectory over cortical states. Given two potential seizure
parameter regions, we can compare the posterior probability of the hypothesized parameter
regions given the data and choose the more probable region. The HMM model and methods
are described in Section 5.1.6.

5.1.2 Cortical Model

We use a mean field model of cortical dynamics described in Chapter 2 and developed in
[47; 77; 48] as a platform to explore the physiological evolution of seizures. The parameters
and variables are also described in Chapter 2 and several references [48; 78]. Simulations
of this model produce ECoG-like data, dimensionless variable h̃m, which we will leverage
to understand how physiological states in the model produce brain waves with different
properties. A few examples of simulated ECoG-like data (model-generated data) are shown
in the right portion of Figure 5.1. In addition, this model has been covered extensively in
literature and has proven its ability to model seizures and other brain states such as sleep
[42; 79; 90; 46; 7].

5.1.2.1 Submodel parameter planes

We have made a preliminary assumption on the structure of this problem: that the brain
is well modeled by this cortical PDE model, and additionally as a proof-of-concept demon-
stration in this paper, we offer two sub-hypotheses which we will use Bayes theorem to test
against one another. For convenience in the writing, we will conflate the hypotheses with
the planes in parameter space. H1 is that all parameters remain at nominal values with
the exception of Pee and Γ̃e which vary within the bounds shown in Figure 5.1. The second
hypothesis is H2, that all parameters remain at nominal values with the exception of g̃e and
Γ̃i which vary within the bounds shown in Figure 5.1. In both parameter planes, there are
pathways to seizures, however, these pathways have different physiological meanings due to
the locations in different parameter planes.

Both parameter planes include parameters that impact excitatory and inhibitory charac-
teristics of the neuronal populations. It is often hypothesized that increases in excitation or
decreases in inhibition lead to seizures, and typically anti-convulsant drugs block excitation
or enhance inhibition [37].

In H1, Pee, ranging between 0 and 531.25, is the dimensionless subcortical input to
excitatory neurons and higher Pee implies increased excitation in excitatory populations,
often thought to be a typical factor in inciting seizures. Increases in Pee may be due to
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Figure 5.1: Parameter planesH1 andH2 top left and bottom left respectively, the color shows
the fraction of simulation epochs that contained seizures, red indicates 100% of simulation
epochs contained seizures, blue indicates 0% of simulations epochs contained seizures. To
the right are two example trajectories hm from each parameter plane in mV, the parameter
state at which they were generated is shown on the left with an ‘X’ marker.

increases in pee or decreases in Smax in dimensional parameters, described in Table 5.1. Γ̃e,
ranging from 9.0e-4 to 1.5e-3, is a dimensionless measure of how input influences the mean
soma potential of excitatory neurons and also impacts the excitation. It has a more complex
relation to several dimensional parameters shown in Appendix 2.3. Further discussion of
these two parameters can be found in [42; 43].

In H2, g̃e ranges between -30 and -8.75 and relates to the sigmoid slope of the transfer
function between the average membrane voltage and the firing rate. This change in the firing
rate of excitatory neurons is another mechanism to increasing or decreasing the excitability
of the cortex2. This dimensionless parameter depends on the dimensional parameters ge and
hreste , described in Table 5.1. Γ̃i, ranging from 0.08 to 0.124, is a dimensionless measure
of how input influences the mean soma potential of inhibitory neurons. By including this
parameter, we explore whether changes in inhibition can exacerbate or ameliorate seizure
formation.

In each of these parameter planes, we grid the space into discrete states shown as indi-

2This particular parameter plane uses the sigmoid curve properties to change the excitatory behavior
rather than Pee, a departure from previous literature [42; 43] that yields an alternative set of pathways for
exploration
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Table 5.1: Selected dimensional parameter definitions. Dimensional parameters are fully
described in [78]

Parameter Description
hreste resting potential
ge sigmoid slope at inflection point of function from mean

soma potential to average firing rate
pee subcortical spike input to neuronal populations
Smax sigmoid maximum firing rate
Γe,i amplitude of excitatory/inhibitory post-synaptic potential
hreve,i reversal or Nernst potential
γe,i rate constant for excitatory/inhibitory post-synaptic po-

tential neurotransmitters

vidual blocks in Figure 5.1. These discrete parameter states, often referred to as states, are
identified as sk, where k is simply an index identifying the specific state out of all possible
states. The goal of this work will be to take a sequence of features calculated from a se-
quence of epochs and estimate (a) which parameter plane is most likely to have generated
that sequence of features and (b) what states are probable to have generated each epoch’s
data on a particular parameter plane, in other words determine the underlying trajectory
through state space that generated the observed ECoG signal.

With the data given and these assumptions, we can compare which hypothesis the data
(measured ECoG signal) supports more strongly and thus which parameter plane is more
likely to have created the observed data. In the future we can extend these hypotheses
to be larger sets of parameters of interest. For now, we are interested in whether one of
these parameter planes offers a better explanation for the development of the human subject
seizures we analyze from a particular subject and what that may tell us of the pathology
and the system.

We first must make sure this is a feasible comparison to make by comparing known
trajectories through these parameter planes and making sure they are distinguishable; i.e.
that this problem is invertible in the way we pose it and that given correct assumptions this
problem produces appropriate answers. Secondly, we test this problem on real data points
and determine the more likely set of parameters for an example dataset.

5.1.3 Human subjects data and protocol

To augment a model-based discussion, we consider human subject ECoG data collected
from a human patient undergoing routine medically-necessary monitoring at UCSF prior to
surgical resection. The data was collected in accordance with UCSF and UC Berkeley human
subjects guidelines and proper IRB protocols. A total of 16 seizures were collected over the
course of 1 day of monitoring under a 64 electrode ECoG grid over the left frontoparietal
region. We used two of the electrode measurements that were identified as pathological
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by clinicians. The final clinical diagnosis was ILAE type IIA focal cortical dysplasia using
classification system of [6].

5.1.4 ECoG time series processing

The procedure for analyzing the data involves a preprocessing step, then feature extraction,
and finally an estimation of probabilistic physiological state.

Preprocessing First we preprocess the ECoG data by removing the 60 Hz line noise and
resampling the signal to 256 Hz. We then subtract the mean voltage over the entire time
series. We then parse the full ECoG time series into epochs of 3 seconds, overlapping by
40%. This is now a sequence of epochs from t = 1 to T .

Features Each epoch is a shorter time series, however, instead of directly comparing the
values composing these time series, we calculate a variety of features–scalar measurements of
properties of the signal such as variance, powers in different frequency bands, and coherence
metrics between two neighboring electrodes. We refer to individual features as ei, a vector
of features as e = [e1, . . . , eN ], a set of features at time t as et and the sequence of the set
of features over all time as e [1, ..., T ] = eT . See Figure 5.2 for a display of several individual
features over the course of a seizure.

Probabilistic state Finally, we apply the probabilistic methods described in Sections
5.1.5 and 5.1.6 to estimate the likelihoods and probabilities of this epoch being generated
from each parameter state sk considered.

5.1.5 Likelihood function of state given observations

We assume that for each epoch of observed ECoG data, there is an underlying cortical state
that generated that data. The problem is thus how to infer which state in our cortical model
is most closely associated with the observed data, knowing that the features observed are an
indirect and noisy measurement of the underlying physiology.

To address this problem, we first need to learn how the underlying state translates to
the output ECoG signal analyzed by examining features. In probabilistic terms, we need to
know the probability of observing different values of feature i given each underlying state sk,
p(ei|s = sk). We generate samples of p(ei|s = sk) by running the cortical model 75 times3

within each state sk of interest and calculating features over each epoch.
We then estimate the one-dimensional probability distribution functions p(ei|s = sk) at

each state using kernel density estimates4.

3These 75 runs were uniformly sampled within the state region and thus not from a single point in
parameter space. Also, 5 overlapping epochs per 10 second run were extracted from each sample.

4In particular, the ksdensity function from MATLAB was used for pdf estimation
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Figure 5.2: This figure shows four features calculated from human subject data over 16
seizures plotted with time scaled by the length of the seizure. Note that the seizure points
in green lie between 0 and 1 due to this scaling. These features demonstrate the significant
changes in features from pre-seizure to seizure to post-seizure epochs. This is an indication
of the usefulness of a feature-based approach to understanding seizures. The four features
shown are from top to bottom, the median frequency over the epoch, the ratio of the coher-
ence in the band 0.1 to 1 Hz to the total coherence, the spike fraction (ratio of points outside
of 1 standard deviation), and the wavelet energy ratio. Note that the bottom 3 features are
part of the final feature set.

Equipped with better knowledge of how the state of the cortical model is communicated
to the individual observed features, we now need a likelihood function L(s = sk; e,Hj) that
takes as an argument a set of newly observed features e and estimates the likelihood at
every state sk. The likelihood function is defined by the first equality in Equation 5.1, has
its foundation in Bayes rule. To find the likelihood of a set of features e, we use a Naive Bayes
structure which assumes that the individual features’ probability distribution functions are
independent. The second equality in Equation 5.1 shows that this assumption leads to a
simple product for calculating the likelihood function at each state from a set of features. A
summary of our methods to calculate likelihoods is shown in Figure 5.3.

L(s = sk; e,Hj) = p(e|s = sk,Hj) =
∏
i

p(ei|s = sk,Hj) (5.1)

Evaluating this likelihood function at each state at a time epoch yields a likelihood map
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Figure 5.3: This figure shows a summary of the methods of calculating the likelihood of
an epoch over a particular parameter plane. Here we show H2 on the left bottom as the
example parameter plane containing states sk onto which we map epochs. The process is as
follows: given a new epoch of ECoG (top left, red), features are calculated (top right, red),
then at each state (here two states are shown sA in green and sB in blue), the likelihood is
calculated using the estimated distributions of features at that state combined with a Naive
Bayes structure. In this case, considering only two states and two features, it is clear that
the likelihood of sA would be larger than the likelihood of sB given the feature set observed.

over the state space that can be used to highlight maximum likelihood regions, to note
unlikely regions, or begin comparisons of the relative likelihood of cortical states.

Note that the likelihood function is proportional to the posterior marginal probability
p(s|e) = p(e|s)p(s)

p(e)
if we assume a uniform prior distribution over all states p(s = sk) is

constant.

5.1.6 HMM-augmented trajectories

In the calculation of likelihood, each epoch is considered independently, and ignores the
fact that the data epochs come from a time sequence. To incorporate the assumption that
there is temporal continuity to the underlying physiology, we use a Hidden Markov Model
framework as described in Section 3.2.

HMMs require the definition of a transition matrix Amn = p(st+1 = sn|st = sm) and
a prior distribution for the first hidden state p(s1). For this work, the prior distribution
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is assumed to be uniform across the state space. The transition matrix is assumed to be
a two-dimensional Gaussian, which is generated by the rules shown in Equations 5.2 and
5.3 to model the idea that closer state transitions are favored over large jumps in cortical
state5. These HMM assumptions are indicated in the conditions of the following probability
distributions as M.

p(st+1 = sn|st = sm) = N ([Pee, Γ̃e]
t

m, Σ1), Σ1 =

[
125, 0
0, 2.2e−4

]
(5.2)

p(st+1 = sn|st = sm) = N ([g̃e, Γ̃i]
t

m, Σ2), Σ2 =

[
5.0, 0
0, 1.6e−2

]
(5.3)

Under these assumptions, we are prepared to examine the probability of being at any
state st

′
= sk at time t′ given the entire sequence of features over all epoch times observed

[e1, . . . , eT ] = eT . The joint probability distribution of the full HMM p(sT , eT |Hj,M) and
is shown in Equation 5.4. The posterior probability p(sT |eT ,Hj) is shown in Equation 5.5.
However, the quantity of interest as we track seizures through time is the posterior marginal
probability at time instant t′, p(st

′ |eT ,Hj,M), which is shown in Equations 5.6 and 3.6.

p(sT , eT |Hj,M) = P1

T−1∏
t=1

At,t+1

T∏
t=1

p
(
et|st,Hj

)
(5.4)

P1 = p(s1|Hj,M)

At,t+1 = p
(
st+1|st,Hj,M

)

p(sT |eT ,Hj,M) =
p(sT , eT |Hj,M)

p(eT |Hj,M)
(5.5)

p(st
′|eT ,Hj,M) =

∑
s{t6=t′}

p(sT |eT ,Hj,M) (5.6)

Due to the Markovian properties and structure of the HMM, Equation 5.6 can efficiently
calculated using the alpha-beta algorithm described in Section 3.2.

5.1.7 Hypothesis comparison

One can use the results of the HMM alpha-beta algorithm to calculate the ratio of the
posterior probabilities of the two hypotheses given the data (Equation 5.7).

5Although there is transition matrix for each parameter space, these are chosen to have the same effect
in coordinates normalized over the range of each parameter plane, in essence the standard deviation covers
the equivalent of 4 neighboring states
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p(H1|eT ,M)

p(H2|eT ,M)
=
p(eT |H1,M)p(H1)

p(eT |H2,M)p(H2)
(5.7)

Recall these hypotheses are that the seizures lie in one of two parameter planes. That
is, we can calculate the posterior probability that the observed features sequence over a
seizure was generated by the HMM M on each hypothesized parameter plane (Equation
5.8) and then compare the two probabilities to determine which hypothesis is more likely to
be correct.

p(Hj|eT ,M) =
p(eT |Hj,M)p(Hj)

p(eT |M)
(5.8)

p(Hj|eT ,M) =
p(eT |Hj,M)p(Hj)∑
Hj
p(eT |Hj,M)p(Hj)

(5.9)

p(Hj|eT ,M) ∝p(eT |Hj,M)p(Hj) (5.10)

To compare these two hypothesized parameter planes, we must make an assumption
about the prior on the two hypotheses. As there is no reason to favor one over the other,
we assume that they are equiprobable p(H1) = p(H2). With this assumption, the ratio
simplifies to Equation 5.11 which is the ratio of the two normalization constants under each
hypothesis, shown before in Equation 3.7.

p(H1|eT ,M)

p(H2|eT ,M)
=
p(eT |H1,M)

p(eT |H2,M)
(5.11)

With this ratio, we can easily compare the hypotheses and suggest which parameter plane
is more likely to have produced the data6. We will refer to this as the hypothesis ratio in
the following results and discussion.

5.1.8 Selected feature set

The final feature set is a set of seven features, listed and defined in Table 5.2.
Three of these features are shown over the course of human subject seizures in Figure

5.2. The method for determining the feature set is fully described in Appendix B.

6Note that this hypothesis ratio is only one way to evaluate and compare models. Often a more involved
method called Bayesian model comparison is used to sweep across model parameters and assess model
complexity in addition to comparing models [53]. Here both hypothesized planes are of the same complexity
so our comparison is valid. For certain types of future analysis one may wish to investigate models with
differing numbers of parameters or complexity, in which Bayes factors may be appropriate
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Table 5.2: List of features used in the results of this work.

Feature
Log of the ratio of coherence in the band containing frequencies 15 to 26 Hz and 100 Hz
and above
The fraction of the coherence in band from 0.1 to 1 Hz compared to the total coherence
across all frequencies
The correlation coefficient of the Hilbert amplitude between channels at 0 time delay.
The auto-bicorrelation at a delay of 4 time steps (1/64 sec). Implemented with the MATS
toolbox described in [84].
The wavelet energy ratio of the second leaf in a wavelet packet decomposition using a
Daubechies wavelet, with 4 levels7 Including this feature was inspired by features in [44]
The spike fraction, measured as the number of points over 1 standard deviation in ampli-
tude within the epoch

5.2 Results

5.2.1 Demonstrating method effectiveness with model data

Before applying these techniques to human subject data, we must demonstrate that this
method yields good results when run purely on model data. With simulated model data
we know the true underlying cortical states and can demonstrate typical results and quality
metrics under the conditions regulated by the assumptions. The goal is to assess whether it
is possible to ascertain the correct parameter plane and path from observed feature sets.

Two trajectories of 1000 epochs were generated using the transition matrices between
states shown in Equations 5.2 and 5.3. The first trajectory Tr1 was generated from states
within parameter plane 1 H1, and the second Tr2 from within H2.

With these trajectories, we show metrics of the success of this algorithm. First, we show
that the ratio of the posterior probability of the two hypotheses using this data favors, as
expected, the true parameter plane underlying the trajectory.

For the full 1000 epochs sequences, Tr1 is predicted as exp(3270) times more likely to
have been generated from H1 than H2, and Tr2 is predicted as exp(2127) times more likely
to have been generated from H2 than H1. In addition, we test shorter and more diverse sub-
trajectories, and show the results as fractions of runs in which the hypothesis ratio correctly
identifies the generating parameter plane in Table 5.2.1. The hypothesis ratio is tested for
the following cases (i) 10 sequences of 100 epochs, (ii) 100 sequences of 10 epochs, (iii) 20
shuffled sequences of 50 epochs, (iv) 100 shuffled sequences of 10 epochs.

These results show robust reliability in identifying the correct parameter plane underlying
a simulated trajectory. Even in the case of shuffled data, in which we expect that our
assumptions about the HMM transitions to be incorrect, we can reliably identify the correct
parameter plane that generated the simulated data.

Having shown the ability to identify correctly the generating parameter plane, we next
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Plane (i) (ii) (iii) (iv)
H1 1.0 1.0 1.0 0.95
H2 1.0 1.0 1.0 0.85

Table 5.3: Fraction of correct identification of underlying parameter plane that generated
the simulated data under different cases.
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Figure 5.4: Simulated model data from known parameter states are processed using the
algorithms described in this work to demonstrate typical results under known conditions.
Each plot shows results from a single epoch: the true parameter location that was used to
generate the model data in a simulation is shown as a black ‘X’, and the underlying colormap
is the log posterior marginal probability created using the methods described above. The
top row shows typical results from simulations within H1, and the bottom row shows typical
results from simulations within H2. Note that the most probable states are localized around
the true state that generated the epoch data.

test the quality of the posterior marginal probabilistic trajectories by comparing these to
the true state trajectories. Table 5.2.1, shows for each parameter plane the following met-
rics: (a) the average normalized distance from the centroid of the HMM posterior marginal
probabilities at an epoch to the true state of the generated data and (b) the mean fraction
of states that had lower probability than the true state. Normalized distances are calcu-
lated by dividing the absolute parameter differences by the ranges of the parameters before
calculating the 2-norm.

Typical trajectories and log posterior marginal results from a few epochs are shown in
Figure 5.4 for two different trajectories, one in each parameter plane. Note that although
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Plane (a) Distance (b) Fraction of States
H1 0.15 0.95
H2 0.20 0.92

Table 5.4: This table shows two metrics of the quality of the probabilistic trajectory produced
using the methods described above.

only one parameter plane is shown for each known trajectory in these figures, log-probability
maps are generated for both parameter planes.

5.2.2 Results on human subject data

Having shown that with model-generated data from known state trajectories, the algorithm
correctly choses the proper plane and produces reliable trajectory tracking, we test the
algorithm on human subject data.

The data for subject 1 contained 16 seizures. For the purposes of this work, pre-seizure
and post-seizure epochs of up to 2 minutes were included. For each individual seizure, the
HMM algorithm was run to generate the posterior marginal probabilities. Seizure boundaries
were assessed by a board-certified clinical neurophysiologist8.

5.2.2.1 Hypothesis Ratios

For this feature set, we find that for all individual seizures, H1 was the more likely parameter
plane. The hypothesis ratio (Equation 5.11) ranged from exp(469) to exp(107) with a mean
log hypothesis ratio of 303.

5.2.2.2 Probabilistic Trajectories

The average locations of pre-seizure, seizure, and post seizure epochs for this subject is
shown in Figure 5.5 for both parameter planes. Although we have shown that under our
assumptions the evidence supports that these seizures are more likely to have been generated
in the parameter plane of H1, we show results from both hypothesized planes.

To augment the average locations of seizure epochs and delve into the dynamic evolution
throughout seizures, Figure 5.6 shows one metric of the estimated evolution of seizures. In
this figure, the centroid position of the posterior marginal probability in parameter space is
used as a representation of where in parameter space the epoch probability lies. Of course,
these centroids are only averages of the posterior marginal probabilities and do not have the
detail of full mappings across all states, but they provide a useful visualization to detect
large trends over all the seizures.

8Dr. Heidi E. Kirsch at the University of California, San Francisco assessed these seizure boundaries.
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Figure 5.5: Summary of likelihood locations for parameter plane H1 (top row) and H2

(bottom row). The information displayed is the logarithm of the average likelihoods of all
epochs falling into three different categories: pre-seizure, seizure, and post-seizure.

Additionally, Figure 5.7 shows a brief summary of how pre- and post- seizure locations
change over the course of the epochs.

In summary, we do not know that this parameter plane is where the physiological seizure
trajectory lies for this human subject data, but of these two parameter planes, H1 is the
more likely.

5.3 Discussion

5.3.1 Implications of clinical pathology

Focal cortical dysplasia is one of the most common types of refractory epilepsy pathologies
[14; 36] and is characterized by abnormal cortical cells and malformations of the cortical tis-
sue [62]. Type IIA cortical dysplasia is classified according to [6], and presents as abnormal
dysmorphic neurons, lack of cortical layer differentiation, and blurring between the gray and
white matter transitions. In particular, the neuronal changes often include increased diame-
ter of both cell nucleuses and pyramidal or interneuron cells, changes in Nissl substance, and
changes in neurofilaments [6]. Although the histopathological features of cortical dysplasia
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Figure 5.6: Left plots show the first and last 10% of epochs plotted as posterior marginal
probability centroids in H1 (top) and H2 (bottom). Note that start points (blue) and end
points (red) appear to be concentrated in different regions of the parameter planes. The
magenta and green points show the centroid of the posterior marginal probability just before
and just after the secondary generalization of the seizure respectively. These points were
included to investigate whether significant changes occurred in parameter space at the onset
of the secondary spread of the seizure to regions beyond the focus. On the right, two plots per
parameter plane show the temporal evolution of seizure epoch posterior marginal probability
centroid positions of each parameter, where time has been scaled according to the length of
the seizure. With these two plots, one can see large differences between the beginnings and
ends of seizures and the typical evolution in parameter space over the course of seizures.
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Figure 5.7: Left plots show the first and last 5% of pre-seizure epochs plotted as posterior
marginal probability centroids in H1 (top) and H2 (bottom). Right plots show the first and
last 5% of post-seizure epochs. The background colormap shows the fractions of seizure
epochs located in each state region, where 1 is all seizures and 0 is no seizures. Note that
start points (blue) and end points (red) appear to be concentrated in different regions of the
parameter planes for H2 (bottom) pre-seizure epochs, but seem to remain localized in one
region for post-seizure epochs.

are well known, it is not generally well understood what causes the abnormal tissue to lead
to seizures [14; 38] although there are many diverse theorized mechanisms described in liter-
ature including hyperexcitability of certain abnormal cells, reduction in inhibitory neurons,
and abnormal and aberrant synaptic connectivity [14; 30; 15; 85].

We ask how these changes in histopathological features may translate into the meso-
scale model and trajectories found. There may be many ways, and we discuss potential
implications of pathways through both parameter spaces.

5.3.1.1 Parameter Plane 1

In H1 results shown in the top row of Figure 5.6, seizures evolve from higher Γ̃e counter
clockwise to lower Γ̃e, along the bottom edge of seizure regions. At times just preceding
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the secondary spread of the seizure (magenta points), parameters appear to be in the same
locations as when the seizure began, while in times immediately post-generalization (green
points), there is a slight decrease in Γ̃e, perhaps coupled with a slight increase in Pee. There
is some noisy evidence that trajectories exit seizure regions at lower Γ̃e and Pee than at entry,
as shown in top row of Figure 5.7 (comparing early post-seizure and late pre-seizure points),
although it appears that in the post-seizure time frame, there may be a migration to higher
Pee and Γ̃e over time (compare locations of blue (starting 5%) and red (ending 5%).

The importance of Pee in these seizures may demonstrate the role of subcortical brain
structures in initiating or correlating with initiation of seizures via changes in dimensional
variable pee. Perhaps an increase in excitatory input from other brain substructures is
correlated with one of the mechanisms that cause the abnormal region of cortical dysplasia
to enter a seizure state. An alternative interpretation may be that the connections from the
cortical dysplasia to the subcortical structures are abnormal and there may be a constant
state of higher subcortical excitation to these regions (note that the last 5% of post-seizure
states seem have higher Pee than the initial 5%). Note that another explanation is via the
dependence of Pee on Smax, and thus these changes seen in Pee could be due to abnormal
changes in the maximum firing rate, perhaps related to cortical dysplasia.

Even more noticeable are large trends in Γ̃e, which could arise from a number of di-
mensional physiological parameters, as shown in its definition in Table 2.2. A decrease in
Γ̃e could be caused by a decrease in Γe or Smax, or by an increase in γe or the quantity
|hreve − hrest|, all of which are defined in Table 5.19. As this is a measure of influence of the
excitatory synaptic inputs into mean soma potentials, changes in the cortex due to corti-
cal dysplasia synaptic connectivity may be associated with these large swings in excitatory
synaptic strength parameters.

Trajectories across seizures show marked trends to reductions in Γ̃e over the course of
the seizure, agreeing with the qualitative findings of [42] for the subject data analyzed in
that report. This agreement using different features and a different method is interesting
and may imply that there may be a consistency to mechanisms or correlates of mechanisms
of seizure evolution.

5.3.1.2 Parameter Plane 2

In H2, we see in the bottom row of Figure 5.6 that seizure evolution correlates with a
trajectory that begins at a lower Γ̃i and g̃e, and then over the course of seizure moves to
higher values of Γ̃i and g̃e.

The increase in g̃e over the course of seizures may relate to the abnormality in the cells in
cortical dysplasia regions. The parameter g̃e is related to the slope of the sigmoid function
that determines the average firing rate given the mean soma voltage. Higher g̃e (less negative)
implies lower ge (less positive) in the dimensional model or lower hreste . Here we focus on
the potential implications of lower values of ge which indicates a less steep slope in the

9In some sense this shows the power of the dimensionless approach, as any of these changes could lead
to the change in the dimensionless parameter associated with the observed dynamics.
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sigmoid function. When related back to the basic properties of the neurons composing the
neuron populations, this sigmoid slope may be thought of as a product of the variance in
the firing rate thresholds in individual neurons–lower ge implying higher variance. In fact
[55] suggests that ge may be roughly inversely proportional to the variance in the firing
rate thresholds of the neuron, but may also be due to the diversity of neuronal states in
underlying neuron populations. Perhaps seizure onset is correlated with a more synchronous
state (lower variance, higher ge, lower g̃e), which then over the course of seizure evolution
gives way to more variance in the neuronal states or firing rate thresholds by the end of
seizures (lower ge, higher g̃e). It is possible that this occurs just after the onset of secondary
spread (green points), perhaps with neuronal variance occurring due to the interaction of
pathological tissue and normal tissue.

In addition, we see increases in Γ̃i over the course of seizure epochs, which could be
caused by an increase in Γi or Smax, or by a decrease in γe or the quantity |hreve − hrest|,
defined in Table 5.1. Many of the histopathological characteristics of cortical dysplasia could
influence these different parameters contributing to the dimensionless influence of input on
the mean inhibitory soma potential. It is also a possibility that this increase in inhibitory
synaptic activity is an indication that the cessation of seizure is correlated to or caused by
increases in variability or inhibitory activity.

These discussions of cortical dysplasia with the results shown in the mapping from human
subject data to these parameter planes represent just a few preliminary thoughts on links
between this meso-scale model and seizure pathologies that may be further investigated with
additional analysis.

5.3.2 Potential applications of methodology

We propose this type of analysis as a way to leverage a mathematical model of the cortex to
understand better the physiology of seizure evolution. For instance, in our example human
subject data, we see certain consistent markers over seizure evolution in the parameter
pathways which suggest possible interpretations of the underlying physiology leading to the
changes seen. Perhaps further study may show that the general pathway in parameter
space may be prevented from occurring under the proper application of novel drug or other
treatments, or perhaps the cycle could be accelerated so that the duration of seizures is
short enough to avoid impacting quality of life. The idea that such tools could provide the
direction and incentive to develop new treatment options is a powerful motivator for this
research.

Additionally, as we find parameter pathways such as this one in the model parameter
space, we may be able to incorporate theorized or empirical models of drug action or other
stimuli (electrical, optogenetic) that would either mitigate the brain wave behavior (for in-
stance electrical inputs as in [50]), or alter the cortical parameter state itself (pharmaceutical,
optogenetic inputs [74], etc. may change neuron population behaviors) and test the efficacy
in model space.
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Finally, although we have discussed this as a testbed for pathway analysis and under-
standing specific classes of seizure etiologies, in the future it might be useful for diagnosis
and classification of etiology. In particular, if this method is adapted for EEG signals, it
may augment non-invasive diagnosis and help with determining the optimal choice from
treatment options.

5.3.3 Practical implications

Note that the HMM algorithm is a smoothing operation and thus cannot be performed in
real time. However the likelihood calculations, a precursor to the HMM runs, can easily be
implemented in real time to track roughly trajectories of seizures as they evolve10.

5.3.4 Limitations of analysis

For the work with human subject data, our two parameter planes may be too limited to
capture the true physiological evolution for this subject’s seizure; however it provides a
necessary proof-of-concept to show the potential for the application of this method. With
success and consistency at this level, we propose that in the future pathological parameter
regions of higher dimensionality or specific sets of parameters corresponding to a particular
hypothesized pathology may be tested by leveraging this mesoscale model and examining
what parameter regions and pathways are most likely. In fact, one need not compare multiple
regions at all–the pathway tracking results could be valuable in studying seizure evolution
through a particular region of interest in parameter space.

10Note that in addition, the intermediate component α of the alpha–beta algorithm for calculating the
full HMM posterior marginal probability, can be used as a filtered version of the likelihood and run in real
time.
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Chapter 6

Conclusion

6.1 Summary of results

In this work we have explored the intersection of experimental cortical measurements and a
physiologically meaningful mathematical model of cortical dynamics. In two different appli-
cations areas, sleep and seizure, we have explored how signals measured from human subjects
(EEG and ECoG) can be related to a physiologically based model of cortical dynamics.

First, given a signal measured from the brain (EEG), we have successfully demonstrated a
method that infers the cortical evolution in terms of physiological parameters in a continuous
two-dimensional representation of sleep. This procedure can be performed in real time using
a static likelihood method, or post-data-collection using a HMM posterior marginal that
accounts for temporal information. The mappings were shown to separate robustly SWS and
REM epochs and produce results that augmented classical sleep stage knowledge. We also
presented results of tracking human subject data through an entire night while incorporating
the entire night of sleep information into each individual epoch calculation.

One of the key advantages of representing sleep with the two-dimensional sleep parameter
space in this model is that these parameters tie directly to some of the most important bi-
ological processes governing sleep. In fact, although this model lacks a thalamic component
to drive changes in neuromodulators, successfully mapping sleep into these two parame-
ters may allow noninvasive techniques that could lend insight into the evolution of sleep
neuromodulators.

Next, we have shown a quantitative way to map ECoG data from epilepsy patients
onto physiologically meaningful parameter states in a stochastic mesoscale model of the
cortex to understand better the evolution of individual seizures. We have shown that this
quantitative link is possible to make and successful at tracking seizure parameter pathways
under certain assumptions. The method is successful at both distinguishing the correct one
of two parameter planes and probabilistically tracking a known parameter pathway when
ECoG-like data is generated using the mathematical model.

We have also tested our analysis on human subject data, and find consistent trends in
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parameter plane likelihood ratios and pathways over each seizure.
Overall we have presented a method to link quantitatively a mesoscale model with ex-

perimental measurements using methods that explicitly handle stochastic systems.

6.2 Future directions

The work presented here has contributed important components to linking experimentally
measured cortical signals to mathematical models, however there is a wealth of future studies
needed to extend and further validate this approach for future practical applications.

Future work will include leveraging the results of this work in a similar probabilistic
framework to investigate cortical seizure evolution during sleep as well as investigating the
similarities and differences in sleep, anesthesia, and comas. The ability of this meso-scale
PDE framework to model key aspects of these different conditions is an important feature
in its applicability [42; 77; 79; 90]. Bringing the two-dimensional representation of sleep and
the tracking of seizure states together into a single technique would allow these methods
to be applied broadly in practice. Additionally other pathologies or sleep research could
be investigated using this methodology to gain insight into different dynamics of sleep that
may appear under different conditions. This method offers new ways to use noninvasive
measurements of the cortex.

In the future, these methods should be thoroughly tested and extended. The ways in
which we would suggest testing the results of this method depend on the available exper-
imental techniques. A first pass would be to compare the results of this method across
many subjects who have been classified into different seizure categories by their drug effi-
cacy history, known etiology, or other classifications that provide insight into the underlying
pathological physiology of seizure evolution. With such a set of classified subjects, one
would expect similar underlying behavior from subjects within the same class, and such
an experiment could help refine the methodology. The problem with this approach is that
such classifications may cover broad categories that encompass multiple types of pathways
or influence them in different ways. For instance, one drug may have multiple actions that
propagate into different aspects of a meso-scale model.

This should be paired with large studies of the efficacy of certain treatment types or
etiology to validate the results with a ground truth. If a certain class of seizures are treated
effectively by drug A, we might hope to see similarities in the physiological pathways when
compared with seizures that do not respond to that drug. This type of analysis has begun
to be explored in [46; 91] for anesthesia drugs.

Ideally, one would be able to measure the physiological changes and create a ground
truth of the physiological parameters while simultaneously recording via EEG or ECoG–this
has little likelihood of being possible or feasible as an experiment to run, however perhaps
partial measurements of the physiology may become possible in animal studies or as scientific
equipment advances.
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In addition to testing this method and its results in future experiments, the underlying
parameter space should be extended to parameter regions of interest to specific problems
or hypotheses. One could imagine that a set of perhaps five parameters over certain ranges
may be of particular interest in a particular etiology or in a particular animal model. In
such cases, this particular region could be investigated in isolation, or compared to multiple
other regions. Also, extensions to incorporate sleep parameter regimes and investigate the
interactions of sleep and seizures using this model would be an excellent opportunity to
leverage this multi-purpose platform. For certain types of seizure, sleep has a significant
impact, and literature shows that sleep stage may be playing an important role in determining
the onset of seizures [41; 23] and plays a significant role in the failure of seizure prediction
algorithms [73]. We hope that the methodology proposed in this work gives insight to
researchers tackling these challenging extensions.

.
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Appendix A

Features for Sleep Analysis

A.1 Initial feature set

• Power in the delta, theta, alpha, beta, and gamma frequency ranges, and total power

• Statistical properties: variance, skewness, and kurtosis

• Composite permutation entropy index (CPEI) [61]

• Spindle index [54]

• Power fractions: high power fraction (beta and gamma fraction of total power), and
low power fraction (delta and theta fraction of total power)

• Properties of the log power spectrum curve: slope and offset of a fitted line, maximum
alpha power above the linear fit, and maximum delta power above the linear fit [45],[51]

• Delta wave steepness properties: the average steepness of delta waves, fraction of epoch
covered by delta waves, and combination delta wave steepness. The code for calculating
this was developed for this paper by the authors and is included in Appendix C, con-
taining the code of the m-files deltaWaveSteepnessFxn.m and epochFeatsFromWaveS-
lope.m. However, the importance and meaning of this feature is highlighted in [68].

• Median frequency [84]

• Autocorrelation functions with delay τ = 1 time-step: Spearman autocorrelation, Pear-
son autocorrelation, and partial autocorrelation [84]

• Bicorrelation with delay τ = 1 time-step [84]

• Mutual information measures including: equidistant mutual information, equiprobable
mutual information, and the first minimums of both types of mutual information.
Algorithms were from [84], and for these features, with delay τ = 1 time-step
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• Hurst exponent [84]

• Hjorth parameters [84]

Note that several of the more complex feature calculation algorithms were implemented
using MATLAB code created by other researchers. In particular, many standard time series
analysis features were taken from the MATS toolbox [84], and others from supplemental
material to papers including [61; 54; 45; 51]. The code sources are indicated in the above
listing.

A.2 Feature selection

A.2.1 Feature pruning

The requirements stated in Section 4.4 provide a baseline for creating heuristic scoring func-
tions to prune features and then select a limited number of feature subsets that are likely to
perform well. First, the staged patient data is used to split epochs into SWS or REM sleep.
The feature selection algorithm is the only time we make use of labeled sleep stage data in
this algorithm other than for visualization purposes. Because both the model and patient
data contain labels of areas or epochs that are SWS and REM sleep, this is applicable to
both types of data and between the two types of data.

Then, with these labeled epochs, the Spearman rank correlation between SWS and REM
of each feature was calculated in both the model and the sleep data. That is to say that SWS
and REM were converted into a binary variable, respectively 0 and 1. Then the Spearman
rank correlation was calculated between this binary variable and the feature values at a
particular feature, giving both a correlation and a p-value. One can think of this as a
measure of how likely an REM epoch feature value is to be greater than a SWS epoch
feature value. If this correlation is close to 1, that means that most REM feature values
are larger than SWS feature values. Conversely, a correlation close to -1 means that most
SWS feature values are larger than REM feature values. A correlation close to 0 indicates
that SWS and REM features values are well mixed in ranking–a typical feature value of a
SWS epoch is equally likely to be greater than or less than a typical feature value of an
REM epoch. If all SWS features are greater than all REM features, the correlation would
be precisely negative one. The Spearman correlation is a non-linear measure of correlation,
and only compares the ranking of values.

To remove features that did not vary significantly between SWS and REM in the patient
data, all features with less absolute value Spearman correlation than a threshold of 0.35
in all patients were removed. The features removed due to lack of importance were the
low power fraction, the skewness, gamma power, median frequency, bicorrelation, and the
mutual information first minimums.

Next, using the same Spearman correlations, all remaining features that had opposite
signs of correlation coefficient between the model and sleep were removed from the feature



APPENDIX A. FEATURES FOR SLEEP ANALYSIS 75

set if absolute value of the model Spearman correlation was greater than .25. This was
implemented because a different sign of correlation coefficient is an indication that the model
features vary with an opposite trend when compared to patient data. Opposite trends
between SWS and REM may demonstrate that the feature is not modeled well with the
model, but only if the model shows a clear trend is this significant. Only few features were
of opposite sign, and only the power in the β-band and the maximum alpha band power
spectral density above a linear approximation exceeded that threshold.

Finally, to choose subsets of features that reduce redundancy, the Pearson correlation (a
linear correlation) of features across the model for each state was calculated. Features that
highly correlated to one another in the model space were identified by thresholding corre-
lations and identifying features that had over ρ = .9 correlation. From this, a connectivity
graph of which features were connected by high correlations could be drawn, for example see
Figure 4.10 which shows one of the complete subgraphs, in which all features are redundant
with each other and thus all features are fully connected to each other. To remove excess
redundancy, the feature selection algorithm allowed only one feature from each complete
subgraph to be contained in the final feature set. This also reduced the number of possible
subsets.

Naive Bayes models also assume conditional independence of features (conditioned on
the state), a ‘naive’ assumption that gives this model its name. We do not expect the
naive Bayes model assumptions to be met exactly, but to avoid high correlations, we do not
allow feature sets to contain any two features that given the state have an average Pearson
correlation coefficient of 0.4.

A test set of all feature subsets from size one to six were generated after pruning features
and limiting redundancy according to these rules.

A.2.2 Feature subset cost function analysis

All subsets generated using the rules above were tested against a cost function designed to
separate REM and SWS regions. As a significant goal is to distinguish SWS and REM when
the EEG epochs are mapped to the sleep parameter space, the average likelihood of each
stage of each subject for each feature subset was calculated. Figure 4.11 shows an example
of this type of region.

Next, the states in parameter space that contained 95% of the likelihood for average
REM likelihood and SWS sleep were each identified. Areas to the left (lower L) and below
(lower ∆hreste ) the cusp of the manifold region were identified as SWS regions, while REM
regions were identified as regions above the manifold region (higher ∆hreste ). The manifold
itself and the top left corner beyond the cusp of the manifold were allowed to be either REM
or SWS - this is because the manifold is thought to be a transition region, and while low L
and high ∆hreste is theorized to contain REM, the results in [51] have indicated that perhaps
some SWS may lie in these areas.

From these 95% likelihood regions (composed of a set of states), the percentage overlap of
REM into SWS-identified areas and SWS into REM-identified areas of the parameter space
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were calculated. A cost function composed of the sum of these percentages was minimized
at each feature set size. Under visual inspection, the solution for the feature set with four
features was chosen.
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Appendix B

Features for Seizure Analysis

The likelihood and HMM calculations described in Chapters 3 and 5 assume a fixed set of
appropriately chosen features. To find such a set, we start with a large set of dimensionless
or normalized features (e.g. log power ratios, dimensionless quantities, etc.), and then use
a feature selection algorithm to reduce this to a smaller set of relevant features. This large
set included features in the time domain, frequency domain, wavelet features, measures of
coherence, and correlation, among others.

Our assumptions at this point are that features can be classified in one of three cate-
gories: irrelevant features that do not reflect meaningful information about seizure dynamics,
unmodeled features that are not captured by the mathematical model of the cortical tissue
within these parameter planes, and relevant features that can be used in this algorithm for
tracking.

B.1 Pruning

As a first step, to reduce the run time of the feature search algorithm, the feature set was
pruned using a heuristic pruning technique.

Earlier, we made the assumption that the underlying cortical dynamics of seizures evolve
through one of the two parameter planes Hj hypothesized to have produced the seizures.
Given this assumption, values of features from human subject seizures must be contained in
the range of values produced by the cortical model under these hypothesized planes. Thus,
we calculate for each feature over all human subject data the 5% and 95% quantiles, and
compare these values to the minimum and maximum of the same feature calculated from all
model simulated data. If the feature range identified by these quantiles in human subject
data exceeds the range over all model simulations within a parameter plane, this feature
is pruned and considered to be capturing noise or unmodeled dynamics. The 5% and 95%
quantiles are used for human subject data rather than the full range to allow for artifacts
and noise in the data.
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B.2 Cost function

Next, we use a greedy feature selection algorithm to minimize a cost function, shown in Equa-
tion B.1 with components explained below. Roughly speaking, we penalize three different
things: (1) classification error in the human subject data, to make sure seizure and non-
seizure regions are separable in the data; (2) on-average inconsistent localization of seizure
and non-seizure likelihoods in parameter planes; (3) number of features included in the fea-
ture set. As an additional step, due to the Naive Bayes assumptions of independence, at each
greedy step, we only consider features that have an absolute value correlation coefficient less
than 0.4 conditioned on the state.

J(eTsub,L(·), Nf ) = CLoc + λfN
2
f (B.1)

The first component CLoc function penalizes the amount of normalized average likelihood
of human subject seizure epochs that maps into non-seizure regions of the parameter planes
and likewise penalizes the fraction of average likelihood of non-seizure epochs that lies in the
seizure-regions of the parameter planes. As this criterion involves both simulated data and
human subject data, its goal is to pick features that are well-captured by this model and
exclude features that are not. It also inherently penalizes classification errors in the human
subject data as separability in the likelihood regions is an indication of separability in the
human subject data alone.

This CLoc is a criterion based on the average likelihood regions of seizure and non-seizure
subject data epochs mapped onto each hypothesis plane. Zj is a matrix over all states in
the Hj parameter plane that is 1 at states of the model plane that contain only seizures, 0
on states that contain only non-seizures, and the fraction of seizure epochs on states that
contained both seizure and non-seizure epochs. Nj,sz is the average likelihood of all seizure
points normalized so that it sums to one, shown in Equation B.3. For speed, in these feature
calculations, instead of a likelihood calculation based on a kernel estimate of the probability
distribution of each feature, we used a simpler probability distribution function of an 8-bin
histogram with add-one Laplace smoothing.

CLoc =
1

2

∑
Hj

∑
sk

((1− Zj)Nj,sz + ZjNj,non−sz) (B.2)

Nj,sz =

∑
tsz
Lj(etsz)∑

sk

∑
tsz
Lj(etsz)

(B.3)

Finally, we add a regularization cost on the final number of features via λfNf , where Nf

is the number of features and λf=0.001.
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Appendix C

MATLAB Code

Here we present two MATLAB m-functions that were used to calculate the delta wave
steepness feature used in the sleep analysis of Chapter 4.

The function deltaWaveSteepnessFxn.m is used to process raw EEG data and produce
measures of steepness of individual delta waves. The function epochFeatsFromWaveSlope.m
is used to parse this delta-wave information into features over epochs.

C.1 deltaWaveSteepnessFxn.m

function [ amtUpslopes, amtDownslopes, iUps, iDowns] = ...

deltaWaveSteepnessFxn(data, sRate, paramIn)

% [ amtUpslopes, amtDownslopes, iUps, iDowns] = ...

% deltaWaveSteepness(data, sRate, varargin)

% Created: 11-13-2012

% Author: Vera Dadok

%

% INPUT: data: EEG data in row-form

% sRate: sampling rate of EEG data

% paramIn: optional structure with fields to set parameters

% deltaRange - range in Hz of waves to capture

% nStdDev - number of standard deviations to count wave

% filterOrder - order of Butterworth filter

%

% OUTPUT: amtUpslopes: average steepness of up-slopes of delta waves

% amtDownslopes: average steepness of down-slopes of delta waves

% iUps: indices of up-slopes of delta waves

% iDowns: indices of down-slopes of delta waves

%
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%% DETAILS OF METHOD from this code:

%

% Summary of algorithm:

% (1) Find delta waves by filtering to delta band only

% (2) Identify peaks and valleys of filtered data

% (3) Identify adjacent peaks and valleys with which to calculate slopes.

% (3) Calculate average slope between peaks and valleys within filtered

% data (Note: in the future you could alter this function to return to

% the original data and use peaks and valleys on the original data,

% however that may result in a noisier feature).

%% Parameters Setup:

% Defaults:

par.deltaRange = [.5,3]; %range of frequencies considered a delta wave.

par.filterOrder = 4; %filter order

par.nStdDev = .5; %number of standard deviations that

%defines the threshold for a ’delta wave’

if nargin>2

parFields = fieldnames(par);

for k=1:length(parFields)

if isfield(paramIn, parFields{k})

par.(parFields{k}) = paramIn.(parFields{k});

end

end

end

%Note: could change this to different fraction of a wavelength.

waveThreshold = 0.75/min(par.deltaRange);

%max length in seconds allowed for a single delta wave.

%% Check inputs for validity:

% Make sure data is a row vector

[a,b] = size(data);

if b==1

data = data’;

end
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%% (1) Filter Signal to delta band:

%BUTTERWORTH FILTER:

deltaRange = par.deltaRange;

deltafreqsFilter = [deltaRange(1)/sRate,deltaRange(2)/sRate]*2;

[B,A] = butter(par.filterOrder,deltafreqsFilter);

nStdDev= par.nStdDev;

%filtered EEG within the frequency range

filtData = filtfilt(B,A,data);

%% (2) Find peaks

minPeakDistance = 1;

%Find potential peaks/valleys within filtered data:

[~,iPeaksA] = findpeaks(filtData, ...

’Minpeakdistance’, minPeakDistance);

[~, iValleysA] = findpeaks(-filtData, ...

’Minpeakdistance’, minPeakDistance);

%Throw out false peaks that are insignificant

%OPTION A: use Hilbert amplitude (may be better, but slower)

%Hilbert transform of filtered data

hilbData= hilbert(filtData);

%amplitude of data

ampData = abs(hilbData);

stdAmp = std(ampData);

itmppk = find(ampData(iPeaksA)>nStdDev*stdAmp);

itmpval = find(ampData(iValleysA)>nStdDev*stdAmp);

iPeaksB = iPeaksA(itmppk);

iValleysB = iValleysA(itmpval);

%% Part 1c: find sloped points:

%Upslopes:

[iBottoms, iTops] = findUpSlopes(iValleysB, iPeaksB,sRate,...

waveThreshold);

%Downslopes: (these are indices of edges)

[iBottoms2, iTops2] = findUpSlopes( iPeaksB,iValleysB,...

sRate, waveThreshold);

%% Part 2: Calculate upslope and downslopes
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% of everything in delta filtered set.

%Using sRate converts to mV/s

amtUpslopes = ...

calculateSlopeAmounts(iBottoms, iTops, filtData);

amtUpslopes = amtUpslopes*sRate;

amtDownslopes = ...

calculateSlopeAmounts(iBottoms2, iTops2, filtData);

amtDownslopes = amtDownslopes*sRate;

%% Prep for output:

iUps = [iBottoms; iTops];

iDowns=[iBottoms2; iTops2];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% ------- HELPER FUNCTIONS ------ %%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function amtSlopes = calculateSlopeAmounts(iStarts, iStops,

timeSeriesData)

%[amtSlopes] = ...

% calculateSlopeAmounts(iStarts, iStops, timeSeriesData)

% This function calculates slopes between iStarts and iStops

% for timeSeriesData, returning a list of slopes.

amtSlopes= (timeSeriesData(iStops) ...

-timeSeriesData(iStarts))./(iStops-iStarts);

end

function [iBottoms, iTops] =

findUpSlopes(iMins, iMaxes, sRate, waveThreshold)

%[iBottoms, iTops] = findUpSlopes(iMins, iMaxes, sRate, waveThreshold)

% This function finds adjacent pairs of wave edges that define

% the boundaries of a min to a max

% (so edges of a delta wave sloping up or down)

% waveThreshold default is 2;due to max 2 seconds per wave. .5 HZ.

% Merge and sort the two, keeping track of which are mins and maxes. Then

% find the min and max neighbors using a flag.

flags = [0*ones(1,length(iMins)), ones(1,length(iMaxes))];

[~, iSortAll] = sort([iMins, iMaxes]);

sortFlags = flags(iSortAll);
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iiBottomsTest=find(diff(sortFlags)>0);

iiTopsTest=iiBottomsTest+1;

iBottoms = iMins(iSortAll(iiBottomsTest));

iTops = iMaxes(iSortAll(iiTopsTest)-length(iMins));

%Now waves that are longer than waveThreshold:

iWaveLengths = iTops-iBottoms;

iTooLong = find(iWaveLengths/sRate>waveThreshold);

iTops(iTooLong) =[];

iBottoms(iTooLong) =[];

end

C.2 epochFeatsFromWaveSlope.m

The feature used in the feature set of Chapter 4 is the third output of this function (avg-
WaveSlopeWeighted).

function [ avgWaveSlopeRaw,amtWaveCoverage, avgWaveSlopeWeighted ] =...

epochFeatsFromWaveSlope( data, samplingRate, ptsPerEpoch, ...

ptsInOverlap, paramIn )

%[ avgWaveSlopeRaw,amtWaveCoverage, avgWaveSlopeWeighted ] =...

% epochFeatsFromDeltaWaveSteepOut( data, samplingRate, ptsPerEpoch, ...

% ptsInOverlap, paramIn )

% This function calculates 3 features of delta-wave steepness on each epoch

% over a segmented time series, using deltaWaveSteepnessFxn.m.

%

% INPUTS: data - time series vector

% samplingRate - sampling rate in Hz

% ptsPerEpoch - number of points in each Epoch

% ptsInOverlap - number of points to overlap each window by

% paramIn - optional input structure that can be passed to

% deltaWaveSteepnessFxn.m, see that function for details

% deltaRange - range in Hz of waves to capture

% nStdDev - number of standard deviations to count wave

% filterOrder - order of Butterworth filter%

%

% OUTPUTS: avgWaveSlopeRaw - average slope of waves. If no waves are present

% this will be zero.

% amtWaveCoverage - amount covered (fraction) by sloping parts

% of waves.

% avgWaveSlopeWeighted - average slope up in wave weighted by

% fraction of epoch covered by waves.

%
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% Created: November 2012

% Author: Vera Dadok

%

% See Also: deltaWaveSteepnessFxn

%% Options:

avgFunctionHandle = @median;

%% Setup:

[a,b] = size(data);

if b==1;

data=data’;

[a,b] = size(data);

end

iEpochsStarts = 1:(ptsPerEpoch-ptsInOverlap):(b-ptsPerEpoch+1);

nEpochs = length(iEpochsStarts);

if (nargin<5)

paramIn=struct();

end

%% Calculate full data epochs delta waves:

[ amtUpslopes, amtDownslopes, iUps, iDowns] = ...

deltaWaveSteepnessFxn(data,samplingRate, paramIn);

%% Get information on each epoch

%Features we’ll calculate:

avgDeltaUp = zeros(nEpochs, 1);

avgDeltaUpB = zeros(nEpochs, 1);

amtWaveCoverage = zeros(nEpochs, 1);

avgDeltaDown = zeros(nEpochs, 1);

avgWaveSlopeRaw = zeros(nEpochs, 1);

avgWaveSlopeWeighted = zeros(nEpochs, 1);

%Do the calculations:

for k=1:nEpochs

j=iEpochsStarts(k);

iStart = j;

iStop = (j+ptsPerEpoch-1);

%Find waves to consider: for now any wave that begins

% or ends in the epoch as a wave to use.

iWaves=find(((iUps(1,:)>iStart) & (iUps(1,:)<iStop))|...

((iUps(2,:)>iStart) & (iUps(2,:)<iStop)));

iWavesDown = find(((iDowns(1,:)>iStart) & (iDowns(1,:)<iStop))|...

((iDowns(2,:)>iStart) & (iDowns(2,:)<iStop)));
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if ~isempty(iWaves)&&~isempty(iWavesDown)

avgDeltaUp(k) = avgFunctionHandle(amtUpslopes(iWaves));

avgDeltaDown(k) = avgFunctionHandle(amtDownslopes(iWavesDown));

avgWaveSlopeRaw(k) = (avgDeltaUp(k)+abs(avgDeltaDown(k)))/2;

%Get amount of epoch covered by delta-waves.

%(Future: make sure up and down waves don’t ever overlap)

nCoverUpWaves = sum(min(iUps(2,iWaves), iStop)...

-max(iUps(1,iWaves), iStart));

nCoverDownWaves = sum(min(iDowns(2,iWavesDown), iStop)...

-max(iDowns(1,iWavesDown), iStart));

amtWaveCoverage(k) = (nCoverUpWaves+ nCoverDownWaves)/...

ptsPerEpoch;

%Weight the wave slope by the amount coverage:

avgWaveSlopeWeighted(k) = amtWaveCoverage(k)*avgWaveSlopeRaw(k);

avgDeltaUpB(k) = amtWaveCoverage(k)*avgDeltaUp(k);

else

if isempty(iWaves)

avgDeltaUp(k) = 0;

else

avgDeltaUp(k) = avgFunctionHandle(amtUpslopes(iWaves));

avgWaveSlopeRaw(k) = avgDeltaUp(k);

nCoverUpWaves = sum(min(iUps(2,iWaves), iStop)...

- max(iUps(1,iWaves), iStart));

amtWaveCoverage(k) = (nCoverUpWaves)/ptsPerEpoch;

avgWaveSlopeWeighted(k) = amtWaveCoverage(k)*avgWaveSlopeRaw(k);

end

if isempty(iWavesDown)

avgDeltaDown(k) = 0;

else

avgDeltaDown(k) = avgFunctionHandle(amtDownslopes(iWavesDown));

avgWaveSlopeRaw(k) = abs(avgDeltaDown(k));

nCoverDownWaves = sum(min(iDowns(2,iWavesDown), iStop)...

-max(iDowns(1,iWavesDown), iStart));

amtWaveCoverage(k) = (nCoverDownWaves)/ptsPerEpoch;

avgWaveSlopeWeighted(k) = amtWaveCoverage(k)*avgWaveSlopeRaw(k);

end

end

end

end
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