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Abstract 
Nonparametric coalescent-based models are often employed to infer 
past population dynamics over time. Several of these models, such as 
the skyride and skygrid models, are equipped with a block-updating 
Markov chain Monte Carlo sampling scheme to efficiently estimate 
model parameters. The advent of powerful computational hardware 
along with the use of high-performance libraries for statistical 
phylogenetics has, however, made the development of alternative 
estimation methods feasible. We here present the implementation 
and performance assessment of a Hamiltonian Monte Carlo gradient-
based sampler to infer the parameters of the skygrid model. The 
skygrid is a popular and flexible coalescent-based model for 
estimating population dynamics over time and is available in BEAST 
1.10.5, a widely-used software package for Bayesian pylogenetic and 
phylodynamic analysis. Taking into account the increased 
computational cost of gradient evaluation, we report substantial 
increases in effective sample size per time unit compared to the 
established block-updating sampler. We expect gradient-based 
samplers to assume an increasingly important role for different 
classes of parameters typically estimated in Bayesian phylogenetic 
and phylodynamic analyses.
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Introduction
Inference of effective population size over time from a sample 
of molecular sequences is a key aspect of many phylodynamics  
studies. Inference methods typically employ coalescent models 
that connect population dynamics to the shape of a genealogy  
relating such a sample. A wide range of coalescent models has 
been developed over the past decades, gradually extending the  
original coalescent theory of Kingman1. In particular, flexible 
nonparametric coalescent models have become widely used2–8. 
These models typically posit that the effective population size 
as a function of time (also referred to as the “demographic  
function”) assumes a piecewise constant form, thereby avoiding 
restrictive a priori assumptions about the specific parametric 
form of the demographic function. In a Bayesian framework,  
coalescent models function as prior distributions for phylogenetic 
trees and, in conjunction with observed sequence data likeli-
hoods based on continuous-time Markov models for molecular 
character evolution on trees9, they enable the estimation of  
effective population size directly from molecular sequence data.

Among such nonparametric models, the Bayesian skygrid7 has 
emerged as a popular choice for a number of reasons. Unlike 
most competing models, the skygrid can incorporate data 
from multiple unlinked genetic loci, which has proven to be  
invaluable for accurate reconstruction of past population  
dynamics10. Further, the skygrid has been extended to integrate 
external time-varying covariates11, enabling the assessment of 
the relationship between effective population size and ecologi-
cal and epidemiological indices, and also potentially yielding 
improved estimates of effective population size trajectories 
and genealogies12. Like the skyride model6, the skygrid aims to  
construct a smooth population size trajectory over time through 
a Gaussian Markov random field (GMRF) smoothing prior. 
Finally, the skygrid is implemented in the widely used BEAST  
1.10 software package13,14, where it can be combined with a wide 
range of models for evolutionary heterogeneity, phylogeography, 
and phenotypic trait evolution to build sophisticated phylody-
namic models. This enables the efficient analysis of large data 
sets using a combination of complex models, in large part owing 
to BEAST’s integration with BEAGLE, a high-performance  
library for efficient phylogenetic likelihood calculation15.

Inference in Bayesian phylogenetics relies on Markov chain  
Monte Carlo (MCMC) methods to sample from the posterior 
distribution16,17. MCMC methods simulate a correlated sample 
that converges in distribution to the posterior. The efficiency of a  
given MCMC algorithm depends on the transition kernel, 
which proposes a new simulated value based upon the current  
simulated value. Standard random walk transition kernels pro-
pose new values in a relatively blind fashion and generally update 
only one component of the multi-dimensional parameter space  
at a time. This can lead to a very slow, inefficient explora-
tion of the posterior distribution where the MCMC algorithm  
would have to run for a relatively large number of iterations in  
order to simulate a suitable sample. 

Fortunately, sophisticated, tailor-made transition kernels can 
often sample from the posterior much more efficiently. Made  

possible by the specific structure of the model, the skygrid adapts 
a highly efficient block-updating MCMC (BUMCMC) sam-
pling scheme18 that simultaneously proposes new values for the 
GMRF precision parameter and the effective population size 
values that correspond to the different levels of the piecewise 
constant demographic function. The GMRF smoothing prior 
along with the nonparametric coalescent likelihood gives the 
full conditional density of the effective population size in the  
form of a hidden Markov random field, allowing us to efficiently 
sample from its Gaussian approximation19.

Hamiltonian Monte Carlo (HMC)20,21 is an MCMC sampling  
scheme that bears some similarities to the BUMCMC sampler in 
that it aims to efficiently explore high probability regions of the 
posterior distribution and update all dimensions of the model  
parameter space simultaneously. HMC proceeds by introduc-
ing fictitious auxiliary “momentum” variables and reduces  
simulating from the posterior distribution to a matter of tracing 
Hamiltonian dynamics. While HMC’s theoretical basis in differ-
ential geometry initially hindered its adoption, it has emerged in 
recent years as a widely-used method in statistical computing22. 
While adapting HMC to optimize the search through tree 
space is currently not possible, Dinh et al.23 have developed an  
approach to sample from distributions on spaces with intricate 
combinatorial structure (such as for phylogenetic tree space).  
Applications of HMC in the field of Bayesian phylogenetics have 
started to emerge that focus on efficiently estimating classes of 
model parameters. Recently, Ji et al.24 developed a linear-time 
algorithm for O(N)-dimensional gradient evaluation – where 
N is the number of sampled molecular sequences – and showed  
HMC to greatly improve inference efficiency of branch-specific 
evolutionary rates.

Here, we present the implementation of an HMC transition  
kernel for the nonparametric skygrid coalescent model and  
compare its performance to the BUMCMC sampler. We com-
pare the performance on three real viral data sets and find 
that in all cases HMC more efficiently explores the posterior  
distribution of skygrid model parameters. In some instances, the 
improvement afforded by HMC is especially striking, generat-
ing effectively independent posterior samples over five times as  
fast as BUMCMC.

Methods
The skygrid nonparametric coalescent model
The skygrid posits that demographic function N

e
(t) is a 

piecewise constant function that can change values only at  
pre-specified points in time known as “grid points.” As in Gill 
et al.7, let x

1
, . . ., x

M
 denote the temporal grid points, where  

x
1
 ≤ x

2
 ≤ · · · ≤ x

M −1
 ≤ x

M
 . The M grid points divide the 

demographic history timeline into M + 1 intervals so that  
the demographic function is fully specified by a vector  
θ = (θ

1
, . . ., θ

M
 

+1
) of values that it assumes on those intervals.  

Here, N
e
(t) = θ

k
 for x

k−1
 ≤ t < x

k
, k = 1, . . ., M, where it is  

understood that x
0
 = 0. Also, N

e
(t) = θ

M +1
 for t ≥ x

M
 . Note  

that x
M
 is the time furthest back into the past at which the  

effective population size can change. The values of the grid 
points as well as the number M of total grid points are specified  
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beforehand by the user. A typical way to select the grid points 
is to decide on a resolution M, let x

M
 assume the value furthest  

back in time for which the data are expected to be informa-
tive, and space the remaining grid points evenly between x

0
 = 0  

and x
M
. Alternatively, as discussed in the next section, grid  

points can be selected to align with covariate sampling times in 
order to facilitate the modeling of associations between the log 
effective population size and external covariates.

Suppose we have m known genealogies g
1 
, . . . , g

m
 representing 

the ancestries of samples from m separate genetic loci with the  
same effective population size N

e
(t). We assume a priori that 

the genealogies are independent given N
e
(t). This assumption  

implies that the genealogies are unlinked which commonly  
occurs when researchers select loci from whole genome sequences 
or when recombination is very likely, such as between genes  
in retroviruses. The likelihood of the vector g = (g

1 
, . . . , g

m
) of 

genealogies can then be expressed as the product of likelihoods of 
individual genealogies:

		     ( (

1

) = ).
=

∏ i

m
P P g

i
g θ θ 	                       (1)

To construct the likelihood of genealogy g
i
, let t

0i
 be the most  

recent sampling time of sequences contributing to genealogy 
i and t

MRCAi
 be the time of the MRCA for locus i. Let xαi

 denote  
the minimal grid point greater than at least one sampling time 
in the genealogy, and xβi

 the greatest grid point less than at  
least one coalescent time. Let u

ik
 = [x

k–1
, x

k
], k = α

i
 + 1, . . . ,  

β
i
, u

iαi
 = [t

0i
, xαi

], and u
i(βi + 1)

 = [xβi
, t

MRCAi
]. For each u

ik
 we let t

kj
, 

j = 1 , . . . , r
k
, denote the ordered times of the grid points and  

sampling and coalescent events in the interval. With each t
kj
 

we associate an indicator ( ) ( ) ( )p p ,= +H U Kφ φ, kj
 which takes a value of 1 in the  

case of a coalescent event and 0 otherwise. Finally, let v
kj
 denote 

the number of lineages present in the genealogy in the interval  
[t

kj
, t

k( j+1)
]. Following Griffiths and Tavaré25, the likelihood of 

observing an interval is

  	         ( 1)

( –1)
(

2
1 : 1

–1
( – 1)( – )

exp –
2

1

θ
θφ

θ
+

) =
≤ < =

 
×  

 =

∏

∏

kj kj
ik k

k
k kj

k
kj kj k j kj

k

v v
P u

j r

r
v v t t

j

|

          (2)

for k = α
i
,...,β

i
 + 1.

The product of interval likelihoods (2) yields the likelihood 
of coalescent times given the sampling times with genealogy  
g

i
. To obtain the likelihood of the genealogy, however, we 

must account for the specific lineages that merge and result in 
coalescent events. Let P

*
(u

ik
|θ

k
) denote P(u

ik
|θ

k
) except with  

factors of the form 
( –1)

2θ
kj kj

k

v v
 replaced by 2(2–1) 1

.
2θ θ

=
k k

 Then

        	                  ( ( |

1β

θ
α

+

) = ).
=
∏

i

ik ki

i

P g P u*
k

| θ                            (3)

We introduce some notation that will facilitate the derivation of 
a Gaussian approximation used to construct an MCMC transition 

kernel. If c
ik
 denotes the number of coalescent events which occur 

during interval u
ik
, we can write

                          

1
1

( exp – ,
S

β

θ θ
α

+
  

) =      =
∏

i ik
ik

i
k k

i

c
P g

k
| θ                         (4)

where the S
ik
 are sufficient statistics from the genealogy. Rewriting 

this expression in terms of γ
k
 = log(θ

k
), we arrive at

                         
– ––( exp

1

γ

β
γ

α

+
 ) =  

=
∏ k k

i

ik
iki

i

cP g e S e
k

| γ                         
(5)

                         ––exp – .

1β
γγ

α

+
 =  

=
∏ k

i

k ik ik

i

c S e
k

                       (6)

Invoking conditional independence of genealogies, the likelihood 
of the vector g of genealogies is

	
( ( | )

1

) =
=

∏ i

m
P P g

i
g| γ γ

                                                  (7)

	        
––exp –

=1

1β
γγ

α

+
 =  

=
∏ ∏ k

i

k ik ik

i

m
c S e

i k

                       

(8)

	           –exp – –
1

1

γγ
+

=

 
  =    
  
∑
M

k
k k k

k

c S e                               
(9)

where 1== ∑m
ikikc c  and 1== ∑m

ikikS S ; here, c
ik
 = S

ik
 = 0 if k ∉  

[α
i
, β

i
 + 1].

The skygrid incorporates the prior assumption that effective 
population size changes continuously over time by placing a  
GMRF prior on γ :

	          ( ) ( )/2 2
1| exp – –

2
1

.ττ τ γ γ+

 
 ∝  
 = 

∑
M

M
i iP

i
γ                      (10)

This prior does not inform the overall level of the effective  
population size, just the smoothness of the trajectory. One can 
think of the prior as a first-order unbiased random walk with  
normal increments. The precision parameter τ determines how  
much differences between adjacent log effective population size 
values are penalized. We assign τ a gamma prior:

		        –1 –
( ) .

ττ τ∝ a bP e     	                     (11)

In absence of prior knowledge about the smoothness of the  
effective population size trajectory, we choose a = b = 0.001 so 
that it is relatively uninformative. Conditioning on the vector  
of genealogies, we obtain the posterior distribution

	         ( , | ) ( | ) ( | ) ( ).τ τ τ∝P P P Pγ γ γg g                      (12)
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Block-updating Markov chain Monte Carlo sampling
The original implementation of the skygrid adapts a BUMCMC 
sampling scheme for GMRFs18 to sample γ and τ when  
approximating the posterior (12). First, consider the full  
conditional density

	

( ) ( ) ( )

( )
1

g, g

exp Q .
2

Μ −γ/2

γ τ ∝ γ γ τ

 τ∝ τ − γ γ − γ +′ 
 

∑ k

M+

k k k
k=1

P P P

c S e
          (13)

Let h
k
 (γ

k
) = (γ

k
c

k
 + S

k
e−γ

k). We can approximate each term h
k
 (γ

k
) by 

a second-order Taylor expansion about, say, ˆkγ :

2

ˆ 2

ˆ ˆ– –

2ˆ–

1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( – ) ( )( – )

2

1– ˆ ˆ 1
2

ˆ– –

1
.

2

γ

γ γ

γ

γ γ γ γ γ γ γ γ

γ γ

γ γ

γ

≈ + +′ ′′

 = + +  

 +  

 +   

k k k k k k k k k kk k

k
k kk

k k
k k k k k

k
k k

h h h h

S e

c S e S e

S e
          (14)

We center the Taylor expansion about a point 1 1
ˆ ˆ ˆ( ,..., )Mγ γ +=γ  

obtained iteratively by the Newton-Raphson method:

                     
2 1

( 1) ( ) ( ) ( )
– [ ( )] ( ( ))γ γ γ γ−

+
= ′

n n n n
d f df               (15)

with γ
(0)

 = γ (n) the current value of γ. Here,

                       ( ) ( )
1

1

1

2
.kγγ

+
−

=

= − τ − +′ ∑
M

k k k
k

f c S eQγ γ γ                   (16)

Replacing the terms h
k
 (γ

k
) with their Taylor expansions yields 

the following second-order Gaussian approximation to the full  
conditional density P(γ|g, τ):

            

( ) ( )

( )

ˆ/ 2

1
ˆ ˆ

1

1
| , exp Diag

2

ˆexp ,

−γ

+
−γ −γ

=

  τ ≈ τ − τ +′   
 

− − γ γ−  
 
∑

k

k k

M
k

M

kk k k k
k

P S e

c S e S e

g Qγ γ

          

(17)

where Diag(·) is a diagonal matrix.

Starting from current parameter values (γ(n), τ(n)), we first  
generate a candidate value for the precision, τ* = τ(n) f, where 

f is drawn from a symmetric proposal distribution with  

density 1
( )P f f

f
∝ +  defined on [1/F, F]. The tuning constant F 

controls the distance between the proposed and current values  
of the precision. Next, conditional on τ*, we propose a new  
state γ* using the Gaussian approximation (17) to the full con-
ditional density P(γ |g, τ*). In the final step, the candidate  
state (τ*, γ*) is accepted or rejected according to the Metropolis-
Hastings ratio16,17.

Hamiltonian Monte Carlo sampling
HMC can be applied to most problems with continuous param-
eter spaces and produces distant proposals for the Metropolis  

algorithm16 that nevertheless enjoy a high probability of  
acceptance. This enables efficient MCMC sampling by avoiding 
the slow exploration of the state space that accompanies simple 
random-walk proposals. Consider a d-dimensional position 
vector ( ) ( ) ( )p p ,= +H U Kφ φ, . This is the parameter whose posterior distribution  
we wish to sample from, and in the case of the skygrid, we have 

( ) ( ) ( )p p ,= +H U Kφ φ,  = (γ, τ, β). HMC proceeds by introducing a d-dimensional  
vector of auxiliary momentum variables p and sampling from the  
product distribution π(( ) ( ) ( )p p ,= +H U Kφ φ, , p) = π(( ) ( ) ( )p p ,= +H U Kφ φ, )π(p) by simulating Hamiltonian 
dynamics. The Hamiltonian function is defined as

 	               ( ) ( ) ( )p p ,= +H U Kφ φ,                             (18)

where U(( ) ( ) ( )p p ,= +H U Kφ φ, ), the potential energy, is defined as the negative 
log density of the position vector ( ) ( ) ( )p p ,= +H U Kφ φ,  and K(p), the kinetic energy  
of the momentum variable p is defined as K(p) = pT M−1p/2, 
where M is a symmetric, positive-definite (usually diagonal) 
matrix known as the “mass matrix.” For p, we make the  
common assumption that it follows a multivariate normal  
distribution p ~ N(0, M). It has become standard in basic HMC 
implementations to set M = I, but we will discuss a more  
informed choice later.

HMC generates a Metropolis proposal from the current state  
(( ) ( ) ( )p p ,= +H U Kφ φ,

0
, p

0
) in the space (( ) ( ) ( )p p ,= +H U Kφ φ, , p) that evolves according to Hamilton’s 

equations:

                                 

( ) ( )

( ) 1

d
log

d
d

M
d

π

−

= −∇ = ∇

= ∇ =

U
t

K
t

p

p p.

φ φ

φ                            (19)

The leapfrog method to approximate a solution to Equation 19 
performs the following updates for each of n leapfrog steps of  
size 𝜖:

                             

( )

( )

/ 2

1
/ 2

/ 2

log
2

log .
2

π

π

+

−
+ +

+ + +

= + ∇

= +

= + ∇

t t t

t t t

t t t

p p

M p

p p

φ

φ φ

φ

�

� �

� � �

�

�

�

                        

(20)

The use of HMC therefore requires the user to specify these 
two parameters, i.e. the step size 𝜖 and the number of steps n. In  
addition, we assume a standard HMC transition kernel by  
employing an identity matrix I for the mass matrix M. Through 
its internal auto-tuning capabilities, BEAST 1.10 enables tuning 
𝜖 during an ongoing analysis, but n still needs to be provided  
by the user.

Data
We compare the performance of the BUMCMC and HMC  
transition kernels for the skygrid on three real data sets. First, we 
analyse the population dynamics of the rabies epizootic among 
raccoons in the northeastern United States starting in the late  
1970s26. The sequence data consist of 47 sequences sampled  
from rabid raccoons between 1982 and 2004 and encompass 
the complete rabies nucleoprotein (N) genes as well as large  
portions of the glycoprotein (G) genes. Based on a previous  
analysis11, we set a cutoff for the skygrid of 40 years during  
which we estimate the log population size for 50 time intervals. 
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We assume a single HKY nucleotide substitution model27  
while accounting for among-site rate variation28, and assume 
an uncorrelated relaxed molecular clock with an underlying  
lognormal distribution29.

The second data set consists of 196 Ebola virus (EBOV) 
sequences originating from Sierra Leone, previously analysed 
in Hill and Baele14. Based on information obtained from a 
large-scale study of the West African Ebola virus outbreak in  
2013–201630, we set the cutoff for the skygrid to one year, and 
we estimate the log population size for each week for a total of 
52 log population size estimates. We partition the coding part 
of the data set according to codon position, and create a fourth 
data partition containing the aggregated intergenic region data30. 
For each of the four resulting partitions, we assume an HKY  
nucleotide substitution model27 while accounting for among-site 
rate variation28. We assume an uncorrelated relaxed molecular  
clock with an underlying lognormal distribution, which is shared 
across all partitions29.

The third and final data set consists of 300 coat protein gene 
sequences of rice yellow mottle virus (RYMV), sampled from  
East to West Africa over a 46-year period from 1966 to 201231. 
We set a skygrid cutoff value of 200 years, and we estimate the 
log population size for 100 time intervals. We assume an HKY 
nucleotide substitution model27 for the first and second codon  
positions combined, and another for the third codon position, 
and we assume among-site rate variation28 on each of these two 
partitions. Finally, we again assume an uncorrelated relaxed  
molecular clock with an underlying lognormal distribution29.

Analysis
All analyses were performed using BEAST 1.10.513, along with 
the high-performance BEAGLE 3.2.0 library15 for computational 
efficiency. Our central processing unit (CPU) analyses were  
performed on a single 18-core Intel Xeon 6140 Skylake  
processor running at a clock speed of 2.3 GHz. The Ebola 
data set, however, necessitates the use of a powerful graphical  
processing unit (GPU), and these analyses were hence per-
formed on an NVIDIA Tesla P100 SMX2 graphics card designed  
for scientific computing. The rabies and RYMV data sets were 
run for 50 million iterations, logging every 2,000 iterations,  
whereas the Ebola data set was run for 100 million iterations, 
also logging every 2,000 iterations. The posterior samples were  
used to construct a maximum clade credibility (MCC) tree 
for each data set using TreeAnnotator, discarding 10% of the  
samples except for the RYMV data set for which we discarded  
20% of the samples.

To directly compare the performance of the different transition 
kernels on estimating the parameters of the Bayesian skygrid 
model, we performed an initial analysis that focused solely on  
estimating the log population size and precision parameters. 
To this end, we fixed the phylogeny to the MCC tree and the  
non-skygrid parameters to their mean posterior estimates. All 
data sets were analysed in BEAST for 20,000 iterations, logging  
every two iterations.

We evaluated the performance of the different transition  
kernels by computing the effective sample size (ESS) for each  

parameter of interest using the coda package32 in CRAN R33. 
The ESS estimates the number of in-dependent draws from the 
posterior distribution that an MCMC sample is equivalent to 
by accounting for the autocorrelation in the sample34. Thus the  
ESS per unit time provides a measure of how efficiently a  
given transition kernel is sampling from the posterior distribu-
tion. We report the difference in ESS per unit time of the skygrid’s  
precision parameter, as well as the minimum and median  
ESS values of the log population size parameters.

Results
Inference on a fixed phylogeny
We first compare the performance of the different transition  
kernels when solely estimating the skygrid parameters, fixing 
the phylogeny to the MCC tree and all other parameters to their  
posterior mean estimates. For the rabies data set, Figure 1 
shows a pronounced improvement in performance of HMC over  
BUMCMC. HMC generates a 3.91-fold and 5.35-fold improve-
ment in median and minimum ESS per second over BUMCMC  
for the log population sizes, and a 1.90-fold improvement in  
ESS per second for the precision.

Figure 2 and Figure 3 show the performance improvements  
brought about by HMC over BUMCMC for the EBOV and  
RYMV data sets, respectively. For the Ebola data set, HMC  
yields a 1.41-fold performance increase in median ESS per 
second for the log population sizes and a 5.47-fold increase  
for the precision over BUCMC, but the latter offers a 1.08-
fold improvement in minimum ESS per second over the former.  
Finally, for the RYMV data set, compared to BUMCMC the  
HMC transition kernel yields a 2.05-fold and 2.77-fold rela-
tive speedup in ESS per second in terms of the median and  
minimum ESS per second of the log population sizes respec-
tively, while generating a 3.67-fold relative speedup in ESS  
per second for the precision. In conclusion, when focusing solely 
on estimation of the skygrid’s parameters on a fixed phylogeny,  
HMC consistently reports substantial performance increases 
in estimating these parameters, with the magnitude of these  
improvements being dependent on the specific data set and the  
balance between the number of population sizes and the number  
of taxa available in the data set.

Joint inference
The improvements under HMC that we observe in analyses 
that solely infer skygrid parameters are mirrored in more  
comprehensive analyses that jointly infer the phylogeny and all  
other model parameters, which constitutes the most common 
use case for this model. Figure 4 shows a substantial  
performance increase in ESS per minute of HMC over BUM-
CMC for the rabies data set. Employing HMC results in a  
3.38-fold and 1.51-fold relative speedup in the median and  
minimum ESS per minute, respectively – over BUCMC for the  
log population sizes and a 3.99-fold speedup for the precision.

For the EBOV data set, Figure 5 also shows a clear perform-
ance benefit of the HMC transition kernel over BUCMC,  
reporting a 1.48-fold and 1.35-fold speedup in median and 
minimum ESS per minute for the log population sizes and a  
1.56-fold speedup for the precision. For the RYMV data set, 
the performance improvements of HMC over BUMCMC are 
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Figure 1. Rabies data set - fixed tree analysis. Bars correspond to the estimated effective sample size (ESS) per second averaged across 
five independent replicates for all log population size parameters, using the block-updating Markov chain Monte Carlo (BUMCMC) and 
Hamiltonian Monte Carlo (HMC) transition kernels. The height of each bar indicates the number of parameters that achieve the given ESS per 
second value. The HMC transition kernel improves upon the performance of the BUMCMC transition kernel by factors of 5.35 and 3.91 for the 
minimum and median ESS per second across all log population sizes.

Figure 2. Ebola virus data set - fixed tree analysis. Bars correspond to the estimated effective sample size (ESS) per second averaged 
across five independent replicates for all log population size parameters, using the blockupdating Markov chain Monte Carlo (BUMCMC) and 
Hamiltonian Monte Carlo (HMC) transition kernels. The height of each bar indicates the number of parameters that achieve the given ESS per 
second value. The HMC transition kernel improves upon the performance of the BUMCMC transition kernel by a factor of 1.41 for the median 
ESS per second but BUMCMC yields a 1.08-fold improvement over HMC for the minimum ESS per second.

more modest, with Figure 6 showing near-identical performance  
between HMC and BUMCMC. HMC yields a 1.07-fold speedup 
in terms of minimum ESS per hour over BUMCMC for the log 
population sizes, whereas BUMCMC in turn yields a 1.08-fold 
improvement in median ESS per hour over HMC. Estimation  
efficiency of the skygrid’s precision is however 1.45-fold faster 
using HMC compared to BUMCMC.

Discussion
Coalescent-based models that relate population dynamics to  
genealogical shapes are central to phylogenetic and phylodynamic 
inference. The increasing availability of large molecular sequence 
data sets is testing the limits of current Bayesian phylogenetic  

inference software, and estimation procedures that can scale  
efficiently are critically important. In statistics, HMC has  
emerged as one of the most powerful approaches in MCMC  
sampling, opening the door to more efficient exploration of  
high-dimensional distributions through accounting for the  
distribution’s geometric structure. Here, we have evaluated the  
utility of HMC for posterior inference for the skygrid coalescent 
model.

In analyses of rabies, Ebola virus, and RYMV data sets, we  
observe that HMC consistently outperforms the standard skygrid 
BUMCMC transition kernel in terms of more efficiently generating 
effectively independent samples of skygrid model parameters. 
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Figure 3. Rice yellow mottle virus data set - fixed tree analysis. Bars correspond to the estimated effective sample size (ESS) per 
second averaged across five independent replicates for all log population size parameters, using the block-updating Markov chain Monte 
Carlo (BUMCMC) and Hamiltonian Monte Carlo (HMC) transition kernels. The height of each bar indicates the number of log population 
size parameters that achieve the given ESS per second value. The HMC transition kernel improves upon the performance of the BUMCMC 
transition kernel by factors of 2.05 and 2.77 for the median and minimum ESS per second, respectively.

Figure 4. Rabies data set analysis using the skygrid coalescent model on a central processing unit (CPU). Bars correspond to the 
estimated effective sample size (ESS) per second averaged across five independent replicates for all log population size parameters and the 
precision parameter, using the block-updating Markov chain Monte Carlo (BUMCMC) and Hamiltonian Monte Carlo (HMC) transition kernels. 
The height of each bar indicates the number of skygrid parameters that achieve the given ESS per minute value. The HMC transition kernel 
improves upon the performance of the BUMCMC transition kernel by factors of 3.38 and 1.51 for the median and minimum ESS per minute, 
respectively, while a 3.99-fold improvement for the precision was generated.

For some data sets and model parameters, HMC is over five  
times as efficient as BUMCMC. Such gains in efficiency are  
especially valuable considering the increasingly important role 
that phylodynamic inference methods have assumed in real-time 
analysis of outbreak dynamics35. Advances in portable genomic  
sequencing capabilities have enabled sequencing during  
outbreaks in close to real-time36, and phylodynamic inferences 
can potentially inform outbreak response efforts by public health  
apparatuses, provided that such inferences are made available in a 
timely manner.

Further performance improvements for the proposed HMC  
transition kernel may be achieved by replacing the standard  
choice of I with a more informative matrix M, which is equiva-
lent to preconditioning the posterior distribution by transforming 
the parameters φ. Girolami and Calderhead37 suggest the negative  
Hessian as an alternative that better accounts for the target  
distribution’s underlying geometry. However, such an approach 
is computationally prohibitive, necessitating numerical integra-
tors that require several iterations of calculating and inverting  
the mass matrix at each step. Recently, however, Ji et al.24  

Page 8 of 17

Wellcome Open Research 2020, 5:53 Last updated: 01 SEP 2020



Figure 5. Ebola virus data set analysis using the skygrid coalescent model on a graphical processing unit (GPU). Bars correspond 
to the estimated effective sample size (ESS) per second averaged across five independent replicates for all log population size parameters 
and the precision parameter, using the block-updating Markov chain Monte Carlo (BUMCMC) and Hamiltonian Monte Carlo (HMC) transition 
kernels. The height of each bar indicates the number of skygrid parameters that achieve the given ESS per minute value. The HMC transition 
kernel improves upon the performance of the BUMCMC transition kernel by factors of 1.48 and 1.35 for the median and minimum ESS per 
minute, and a factor of 1.56 for the precision.

Figure 6. Rice yellow mottle virus data set analysis using the skygrid coalescent model on a central processing unit (CPU). Bars 
correspond to the estimated effective sample size (ESS) per hour averaged across five independent replicates for all log population size 
parameters and the precision parameter, using the block-updating Markov chain Monte Carlo (BUMCMC) and Hamiltonian Monte Carlo 
(HMC) transition kernels. The height of each bar indicates the number of skygrid parameters that achieve the given ESS per hour value. The 
HMC transition kernel improves upon the performance of the BUMCMC transition kernel by factors of 1.07 and 1.45 for the minimum ESS per 
hour of the log population sizes and the precision, respectively. In turn, BUMCMC yield a 1.08-fold improvement over HMC for the median 
ESS per hour of the log population sizes.

put forth a method to adaptively tune the mass matrix to estimate 
the expected Hessian averaged over the posterior distribution  
and avoid excessive computational burden. Extending the HMC 
approach for the skygrid model by tuning the mass matrix is the 
subject of future work.

The performance improvements that we see under HMC are  
also very encouraging in the context of further development  
and use of HMC methods in Bayesian phylogenetics and  

phylodynamics. It is particularly notable that a standard HMC 
implementation outperforms the BUMCMC transition kernel 
that was specifically designed for GMRF models and relied on 
and exploited many aspects of the skygrid model structure. In 
that regard, the performance improvements reported here are not  
directly comparable to those in the work of Ji et al.24, who  
reported massive performance gains when comparing HMC 
transition kernels to simple univariate transition kernels. This  
illustrates the power of HMC and its potential for allowing  
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statisticians to avoid developing estimation procedures that, 
while efficient, may only apply to a narrow range of models. 
Extensions to standard HMC that seek to improve sampling  
efficiency by better accounting for the posterior distribution’s  
geometric structure21,37,38 and optimizing path lengths  
for numerical solutions of Hamiltonian dynamics39,40 offer 
further improvements and illustrate the need for continued  
development.

Data availability
Underlying data
Zenodo: GuyBaele/skygrid_hmc_data: First release of  
BEAST XML files for skygrid+HMC. https://doi.org/10.5281/ 
zenodo.371540841

This project contains the following underlying data:
•     �Rabies dataset BEAST 1.10.5 XML files using both  

BUMCMC and HMC transition kernels

•     �Ebola dataset BEAST 1.10.5 XML files using both  
BUMCMC and HMC transition kernels

•     �RYMV dataset BEAST 1.10.5 XML files using both  
BUMCMC and HMC transition kernels

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

The rabies virus sequences were originally published by Biek 
et al.26, DOI: https://doi.org/10.1073/pnas.0700741104. The  
Ebola virus sequences were originally published by Dudas  
et al.30, DOI: https://doi.org/10.1038/nature22040, and the 
subset analysed here was created in Hill and Baele14, DOI:  
https://doi.org/10.1093/molbev/msz172. The rice yellow mottle 
virus sequences were originally published by Trovão et al.31, DOI: 
https://doi.org/10.1093/ve/vev016.
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Baele et al. introduce a Hamiltonian Markov Chain Operator to more efficiently explore non-
parametric effective population size dynamics in BEAST. While not completely novel, this presents 
a useful addition to users of BEAST. The paper is overall well written and particularly the 
comparison of ESS per second on fixed trees nicely shows the advantages of using an HMC 
operator. The comparison when jointly inferring the trees alongside the Ne dynamics are a bit less 
convincing. I would suggest to add some test about what is limiting convergence in this scenario 
and to compare the performance of the HMC operator to the adaptive multivariate gaussian 
operator implemented by some of the same authors. Also, the convergence criteria should 
probably be changed (at least for the joint inferences). 
  
Major comments:

5 runs are too few to compare ESS values across runs. Especially, to put an actual number 
on the fold increase of ESS values between the different operators. I would also argue that 
the ESS for a log Ne is not the most important ESS and would instead use the ESS of the 
posterior probabilities, in particular for the joint inferences. I would assume that the last 
few time intervals of the skygrid are often essentially sampling from the prior. So, by 
comparing ESS values of individual log Ne’s, at least partly, the comparison is in how good 
the two operators are in sampling from the prior. There should also be some comparison of 
variance of ESS between runs to compare how reliable the fold increases are. 
 

○

The major limitation of joint analyses with the phylogenetic trees are typically the tree 
inference themselves. Operations on the trees are often also substantially more 
computationally expensive, while operations on the Ne’s are fairly cheap (recomputing tree 
likelihoods is more expensive than recomputing the coalescent probability). This, in turn, 
would suggest that the weights of inefficient operators on the Ne trajectories could simply 
be increased without leading to a lot of extra computation time. I would suggest adding an 
experiment where the weights of the Ne operators are increased and ESS per unit of time 
are compared again. 
 

○

 
Page 12 of 17

Wellcome Open Research 2020, 5:53 Last updated: 01 SEP 2020

https://doi.org/10.21956/wellcomeopenres.17296.r39859
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2927-1002


I’ve used the adaptive multivariate gaussian operator by Beale et al. for skyline type 
analyses. This one additionally provides the advantage of “learning” the correlation 
structure with other parameters (e.g. the clock rate). Is there any advantage of using the 
HMC approach instead of using the adaptive multivariate gaussian operator?

○

Minor comments:
“In a Bayesian framework, coalescent models function ….” (Long and heavy sentence). 
 

○

“the skygrid can incorporate data from multiple unlinked genetic loci” same is true for EBSP. 
 

○

“For the rabies data set, Figure 1 shows a pronounced improvement” would replace 
“pronounced”.

○
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Shiwei Lan   
Arizona State University, Tempe, AZ, USA 

The submitted manuscript, Hamiltonian Monte Carlo sampling to estimate past population dynamics 
using the skygrid coalescent model in a Bayesian phylogenetics framework, applies Hamiltonian 
Monte Carlo (HMC) to estimate population dynamics for coalescent model in Bayesian 
phylogenetics. 
While it is an important research question in the field and the paper provides interesting 
applications, it overlaps existing work thus affects its originality. 
Gaussian approximation to HMC is not something new and has been extensively explored by, e.g. 
the following papers:

Split Hamiltonian Monte Carlo (2014)1○

Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models 
(2014)2

○

An efficient Bayesian inference framework for coalescent-based nonparametric 
phylodynamics (2015)3

○

Though not mentioned by the submitted paper, it shares substantial similarity with 3, which 
details and optimizes the splitting strategy to the almost same model. The only thing different is 
that the submitted work includes genealogies in the inference which is not present in 3.  
3 does a thorough study in this topic by comparing split HMC with many popular MCMC 
algorithms including MALA, adaptive MALA, elliptic slice sampler, and Bayesian Skyride as well. 
 
The paper has the following issues. 
 ('L' stands for line, and 'P' stands for page, negative number -XX means 'the last but XX'.) 
 
Major issues:

For all numeric experiments, how do their posterior estimates compare? It is not all about 
ESS per unit time. If the computationally light-weighted algorithm introduces more bias, or 
converges slowly, then we need to think of the trade off between efficiency and accuracy. 
 

○

Can you compare your method to other algorithms than BUMCMC? 
 

○

What does the blue-grey color stand for in the figures? It is not in the legend or explained. 
 

○

Did you repeat your experiment to reduce the sampling error? 
 

○

I am curious why collecting millions of samples? I understand that the estimate needs 
sufficient samples to reduce variance, but what is the computational cost? 
 

○

Minor issues:
P14L22 (below equation (1)): What is MRCA? Similarly HKY? Please consider giving the full 
name when you mention them for the first time. 
 

○

P5L-12 (below equation (17)): Could you please change the symbol $f$ in $\tau^*=\tau^{(n)} 
f$ -- it is very easy to confuse with the function $f$ as in equation (16) right above. 
 

○

P5L7: What is $\beta$ in $\phi=(\gamma,\tau,\beta)$? Do you mean $g$? ○
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The majority of Bayesian inference problems in phylogenetics are not analytically tractable. This 
means we must use the MCMC stochastic algorithm to obtain samples from the posterior 
distribution. The most widely used flavour of MCMC in phylogenetics is the Metropolis-Hastings 
sampler, which shows random walk behaviour and produces MCMC chains with high 
autocorrelation and high rejection rates, specially in problems with large number of parameters. 
The Hamiltonian Monte Carlo (HMC) sampler uses physics simulations to generate efficient MCMC 
proposals. In the HMC method, a particle is shot across the transformed posterior surface and the 
laws of physics are used to calculate the trajectory of the particle. The posterior is transformed in 
such a way that the particle becomes trapped in regions of high probability. Furthermore, by 
pushing the particle far enough, we ensure the particle lands far from its starting position. Thus, 
the HMC sampler tends to generate MCMC chains with high acceptance rates and low 
autocorrelation, making the sampler very efficient. 
 
In phylogenetics, HMC has been used to estimate amino acid substitution matrices (Zhao et al. 
2016)1, to explore tree space (Dinh et al. 2017)2 and to explore proposal efficiency in a two-species 
problem (Thawornwattana et al. 2018)3. Recently, preprints have appeared suggesting further 
applications (Ji et al. 2019; Bastide et al. 2020)4,5. Here, Baele et al. extend the application of HMC 
to sampling population parameters from the coalescent process in phylogenies. 
 
This is a well thought out, novel application of HMC to phylogenetics. Baele et al. show that the 
new HMC sampler outperforms their previous BUCMC approach by roughly 2-5x when tested on 
several virus datasets. That is, HMC will generate effective sample sizes (ESS) for the coalescent 
parameters in up to less than one-fifth of the time required by the previous sampler (depending 
on the dataset). These are very impressive improvements, particularly given that phylogenomic 
analysis on large datasets can take several days to compute. But even more importantly, it 
appears that further improvements to the new HMC sampler can still be achieved: The authors 
used the identity matrix as the mass matrix of the particle. As they acknowledge, different choices 
for the mass matrix should be explored. In my experience, a well fine-tuned mass matrix can 
provide dramatic improvements on the efficiency of HMC samplers. 
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