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Abstract 

Remote sensing of plant species using airborne hyperspectral  

visible-shortwave infrared and thermal infrared imagery 

By 

Susan Kay Meerdink 

 

In California, natural vegetation is experiencing an increasing amount of stress due to 

prolonged droughts, wildfires, insect infestation, and disease. Remote sensing technologies 

provide a means for monitoring plant species presence and function temporally across 

landscapes. In this his dissertation, I used hyperspectral visible shortwave infrared (VSWIR), 

hyperspectral thermal (TIR), and hyperspectral VSWIR + broadband TIR imagery to derive 

key observations of plant species across a gradient of environmental conditions and time 

frames. In Chapter 2, I classified plant species using hyperspectral VSWIR imagery from 

2013 - 2015 spring, summer, and fall. Plant species maps had the highest classification 

accuracy using spectra from a single date (mean kappa 0.80 – 0.86). The inclusion of spectra 

from other dates decreased accuracy (mean kappa 0.78 - 0.83). Leave-one-out analysis 

emphasized the need to have spectra from the image date in the classification training, 

otherwise classification accuracy dropped significantly (mean kappa 0.31 – 0.73). In Chapter 

3, I used hyperspectral TIR imagery to determine the extent that high precision spectral 

emissivity and canopy temperature can be exploited for vegetation research at the canopy 

level. I found that plant species show distinct spectral separation at the leaf level, but 

separability among species is lost at the canopy level. However, species’ canopy 

temperatures exhibited different distributions among dates and species. Variability in canopy 



xiii 

 

temperatures was largely explained by LiDAR derived canopy structural attributes (e.g. 

canopy density) and the surrounding environment (e.g. presence of pavement). In Chapter 4, 

I used combined hyperspectral VSWIR and broadband TIR imagery to monitor plant stress 

during California’s 2013 – 2015 severe drought. The temperature condition index (TCI) was 

calculated to measure plant stress by using plant species’ surface minus air temperature 

distributions across dates. Plant stress was not evenly distributed across the landscape or time 

with lower elevation open shrub/meadows, showing the largest amount of stress in June 

2014, and August 2015 imagery. Plant stress spatial variability across the study area was 

related to a slope’s aspect with highly stressed plants located on south or south-southwest 

facing slopes. Overall, this dissertation quantifies the ability to temporally study plant species 

using hyperspectral VSWIR, hyperspectral TIR, and combined VSWIR+TIR imagery. This 

analysis supports a range of current and planned missions including Surface Biology and 

Geology (SBG), Environmental Mapping and Analysis Program (EnMAP), National 

Ecological Observatory Network (NEON), Hyperspectral Thermal Emission Spectrometer 

(HyTES), and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS). 
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1. Introduction 

Plant species’ responses to climate change are already clearly visible throughout the 

world’s ecosystems (Walther et al., 2002). For example, increasing air temperature and 

decreasing precipitation in Southern California have already caused distribution shifts in ten 

plant species (Kelly and Goulden, 2008). With changes already occurring, it has never been 

more critical to establish baseline conditions and the means for monitoring changes in 

species’ distributions in response to climate. Remote sensing technology allows for the 

investigation of ecological processes and systems across landscapes and temporal scales, but 

current spaceborne systems cannot detect the needed level of detail to determine the 

magnitude and direction of change (Cohen and Goward, 2004; Ustin et al., 2004).  

The NASA’s Hyperspectral Infrared Imager (HyspIRI) spaceborne mission1 would 

address a significant gap in our knowledge by providing comprehensive information on plant 

species composition, biochemistry, and temperature with global coverage (Lee et al., 2015). 

A unique feature of HyspIRI is the inclusion of two instruments that measure wavelengths in 

the combined range of 0.38 – 12 µm: an imaging spectrometer measuring the Visible Near 

Infrared/Shortwave Infrared spectrum (VSWIR) and a multi-spectral imager measuring the 

Thermal (TIR; Lee et al., 2015). Very little is known about the potential of combined 

VSWIR spectroscopy and broadband TIR for ecological research. However, integration of 

the VSWIR and TIR could allow researchers to utilize the strengths of each spectral region 

and answer research questions that cannot be answered with existing spaceborne sensors 

                                                 
1 The HyspIRI mission has transitioned to the Surface Biology and Geology (SBG) mission, but will 

be referred to as HyspIRI throughout the remainder of this dissertation. The HyspIRI mission explicitly includes 

simultaneous VSWIR and TIR observations, while the SBG mission may not. 
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(Ribeiro Da Luz and Crowley, 2007). In order to evaluate the potential of HyspIRI data for 

ecosystem monitoring at the plant species level across landscapes and seasonal extents, we 

first need to quantify the extent of plant species separation across each electromagnetic 

domain. 

HyspIRI’s hyperspectral VSWIR imager is able detect to subtle spectral shifts 

between species that are caused by differences in chemistry, physiology, and structure, thus 

making discrimination of plant species possible (Roberts et al., 2004). Plant species maps 

provide a baseline for monitoring ecosystem changes with specific applications for 

monitoring invasive species expansion (Dubula et al., 2016; Somers and Asner, 2012; 

Underwood et al., 2003), monitoring wildfire disturbance recovery (Riaño et al., 2002; 

Schwartz et al., 2015), and detecting the effect of pathogens on vegetation, such as insects 

(Guarín and Taylor, 2005; Lawrence and Labus, 2003; Tane et al., 2018a). While plant 

species discrimination has been successful for many ecosystems, current hyperspectral 

VSWIR imagers are limited to airborne platforms, resulting in plant species distributions for 

a single season and small spatial extent (Garcia and Ustin, 2001). Due to this limited data 

availability, our understanding of species discrimination over large temporal and spatial 

scales is restricted and is not representative of HyspIRI’s capabilities. Very few studies have 

temporally classified species over time, but regional studies have shown that seasonal and 

inter-annual changes in plant spectra can be important for separating some plant species 

(Dennison and Roberts, 2003; Dudley et al., 2015). However, these studies were restricted to 

a single year and a small geographic area which does not address the ability to classify 

species over multiple years. 
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Recent studies employing hyperspectral TIR emissivity have found that plant species 

are spectrally distinct using hyperspectral TIR emissivity, which could augment plant species 

discrimination (Ribeiro Da Luz and Crowley, 2010; Ullah et al., 2012a). Laboratory 

hyperspectral TIR measurements have demonstrated that separability of plant species 

increases with decreasing water content, suggesting that the inclusion of TIR imagery during 

seasonal senescence will improve species discrimination (Meerdink et al., 2016; Ullah et al., 

2012b). Previous studies demonstrate the successful application of TIR emissivities for the 

study of leaf characteristics (Arshad and Ali, 2018; Fabre et al., 2011; Neinavaz et al., 

2016b), but they include the caveat that these relationships may not translate to the canopy 

scale. To our knowledge, only one study has used airborne hyperspectral TIR imagery to 

discriminate plant species using airborne hyperspectral TIR imagery (Ribeiro Da Luz and 

Crowley, 2010). Due to the small number of sensors available, we have a limited 

understanding of plant species canopy spectral response in the TIR domain using 

hyperspectral measurements. Without knowledge of plant species response at fine spectral 

and spatial scale for TIR, it is difficult to fully understand broadband TIR measurements.  

Based on HyspIRI’s ability to measure the TIR, it is possible to obtain land surface 

temperature (LST), thus providing a way to monitor ecosystem function and health. Leaf 

temperature is important for many aspects of functional plant ecology as it influences 

transpiration, sensible heat flux, photosynthesis, and respiration (Leuzinger et al., 2010). 

Integrated over a canopy, vegetation temperature is strongly couple to atmospheric 

conditions, making it important for local and global climate (Leuzinger et al., 2010). 

Leuzinger and Körner (2007) found that rather than the mean canopy temperature, it is the 

fine-scale temperature distributions which determine heat and gas fluxes. These fine-scale 
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temperature distributions are the result of differences in species’ anatomical, physical, and 

biological traits (Leuzinger et al., 2010). In support of this finding, Roberts et al. (2015) 

found that plant species in Santa Barbara, California form unique clusters when comparing 

LST and the amount of green vegetation present. Large-scale canopy temperature can be 

estimated using current satellite infrared images, but the spatial resolution of such data is too 

coarse spatial resolution to account for differences between species (Soer, 1980). HyspIRI is 

the only mission that could decipher canopy temperature variations by species and increase 

our limited knowledge of how these relationships change both temporally and spatially. 

The overarching goal of my research is to evaluate the potential of HyspIRI data for 

ecosystem monitoring at the plant species level for larger spatial and seasonal extents. In this 

study, I will use hyperspectral VSWIR and TIR imagery separately for the purposes of plant 

species classification and then exploit synergies between the VSWIR and TIR to determine 

our ability to map plant species stress for a diverse set of ecosystems during a period of 

increasing water stress. In the second chapter, I use hyperspectral VSWIR imagery collected 

during the HyspIRI airborne campaign in the spring, summer, and fall seasons of 2013 – 

2015 to generate a plant species classification map that is temporally resistant. The third 

chapter uses hyperspectral TIR imagery over the Huntington Gardens to determine the extent 

to which plant species have significantly different spectral and temperature patterns. Lastly, 

the fourth chapter uses the combined VSWIR and TIR imagery available from the HyspIRI 

airborne dataset to examine plant species’ response through California’s 2013 – 2015 

drought. By developing these techniques and products, I will provide insight into ecosystem 

physiological functions through plant species’ variation in canopy temperature over time and 

over large areas. 
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In Chapter 2, I use hyperspectral VSWIR imagery to develop methods for classifying 

dominant plant species across annual and seasonal variation. I develop spectral libraries of 

species’ spectra from single and multiple dates to test the spectral similarity across 2013 – 

2015 during spring, summer, and fall. I also developed leave-one-out (LOO) spectral 

libraries to test the transferability of spectra across image dates. I used canonical discriminant 

analysis (CDA) as a dimensionality reduction technique followed by linear discriminant 

analysis (LDA) as a classifier. I then compare image date classifications produced with the 

different spectral libraries to evaluate the ability to classify plant species temporally using 

hyperspectral VSWIR imagery. 

In Chapter 3, I use hyperspectral TIR imagery to determine if high spectral resolution 

emissivity and fine spatial resolution LST can be exploited for plant species research at the 

canopy level. I quantify plant species separability in the TIR domain at leaf and canopy 

levels to determine the scalability of leaf measurements to the canopy using a simple physical 

scaling model. At fine spatial resolutions, plant species’ temperature variability is examined 

between dates and evaluated for significantly different distributions. In order to understand 

temperature distribution differences, variability is correlated with tree structural attributes 

and neighborhood characteristics derived from LiDAR.   

In Chapter 4, I use hyperspectral VSWIR with LST imagery to evaluate plant species’ 

temperature relations across seasons within drought impacted ecosystems. Using 158 images 

at 36 m spatial resolution across nine dates, I conduct a large-scale analysis of plant species’ 

annual and seasonal temperature variability throughout a prolonged drought. I developed a 

plant species specific Temperature Condition Index (TCI) that maps plant stress across the 
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landscape and identifies areas that experienced prolonged stress. Plant stress was correlated 

with topographic attributes to better understand the environment’s effect on plant stress. 
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2. Classifying California plant species temporally using airborne 

hyperspectral imagery  

 

Abstract 

Accurate knowledge of seasonal and inter-annual distributions of plant species is required 

for many research and management agendas that track ecosystem health. Airborne imaging 

spectroscopy data have been used successfully to map plant species, but often only in a single 

season or over a limited spatial extent due to data availability. NASA’s Hyperspectral 

Infrared Imager (HyspIRI) preparatory airborne campaign flew an imaging spectrometer 

during 2013- 2015, capturing a severe drought and thus providing the opportunity to evaluate 

species discrimination over an extreme range in environmental conditions. Here we evaluate 

the portability of image-based training data and accuracy of species discrimination. Imagery 

was acquired in the spring, summer, and fall seasons of 2013 - 2015 with the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS). Reference spectral libraries were 

developed with three sets of spectra: spectra from a single image date, combining spectra 

from multiple dates (by season, by year, and from all dates), and creating leave-one-out 

libraries (LOO) that pooled spectra from all dates but one. Canonical discriminant analysis 

(CDA) was used to reduce dimensionality of spectra, and classification was performed using 

linear discriminant analysis (LDA). When only spectra from the same image date were used, 

plant species were classified with a mean kappa accuracy ranging between 0.80 – 0.86 for the 

nine dates. Seasonal and annual spectral libraries had comparable accuracies with mean 

kappa 0.79 – 0.83 and 0.78 – 0.83, respectively. Seasonal libraries did perform slightly better 

than annual libraries for species because they better incorporated changes in spectra due to 
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phenology. Spectral libraries were not transferable across dates, with mean kappa accuracies 

dropping to 0.31 – 0.73 for LOO spectral libraries. These results emphasize that spectral 

libraries built from previously collected imagery may not be able to accurately map plant 

species over new images. Specifically, our results highlight the need to use reference spectra 

that adequately represent the biophysical status of the plant species within an image for 

accurate mapping. Our research provides relevant insight for advanced species-mapping 

techniques across large spatial and temporal scales using imagery from sensors like HyspIRI. 

2.1 Introduction 

Plant species maps provide a baseline for monitoring the world’s ecosystems, which 

are already responding to climate change (Walther et al., 2002). Globally, researchers have 

documented shifts in plant phenology that provide compelling evidence of species being 

influenced by environmental change (Cleland et al., 2007). For example, in Southern 

California, increasing air temperature and decreasing precipitation have already caused 

distribution shifts in ten widely distributed plant species (Kelly and Goulden, 2008). In order 

to quantify these changes, plant species maps are crucial for many applications, including 

monitoring invasive species expansion (Underwood et al., 2003), tracking wildfire 

disturbance recovery (Riaño et al., 2002), and detecting vegetation disturbances such as 

insect infestation (Lawrence and Labus, 2003; Tane et al., 2018a).  

There are many techniques for developing species maps, including ground-based 

approaches, but remote sensing technology allows for the investigation of ecological 

processes and systems on larger spatial and temporal scales. Imaging spectroscopy, or 

hyperspectral remote sensing, makes discrimination of plant species possible because the 

hundreds of narrow bands can be used to detect subtle spectral shifts between species that are 
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caused by differences in chemistry, physiology, and structure (Asner and Martin, 2008; 

Roberts et al., 2004). Using sensors such as the airborne visible/infrared imaging 

spectrometer (AVIRIS) or HYperspectral Digital Imagery Collection Experiment (HYDICE) 

sensor, plant species in diverse ecosystems have been classified successfully (Clark et al., 

2005; Martin et al., 1998; Roth et al., 2015b; van Aardt and Wynne, 2007). While these 

studies demonstrate the ability to classify plant species, until now most research has been 

temporally restricted to a single image date.  

Very few studies have addressed these temporal limitations due to the availability of 

airborne hyperspectral imagery. However, in order to capture ecosystem changes over time, 

it is necessary to develop remote sensing techniques that incorporate a plant’s annual and 

seasonal variability. Classification rules developed for a given date may not be applicable to 

other dates due to changes in species’ spectral response throughout the season and from year 

to year (Peñuelas and Filella, 1998). In regional studies, seasonal and inter-annual changes in 

plant spectra have been shown to be important for separating plant species during a drought 

and from invasive species (Burkholder et al., 2011; Dennison et al., 2003). Dudley et al. 

(2015) incorporated a single year’s phenology into species classifications and found that 

multi-temporal spectral libraries achieved similar overall classification accuracy compared to 

single-date libraries. However, Dudley et al. (2015) was restricted to a single year and a 

small geographic area which does not address the ability to classify species over multiple 

years.  

Plant species mapping research has been restricted to airborne platforms because 

current space-borne systems cannot generate the level of spectral detail needed to map 

species (Cohen & Goward, 2004; Ustin et al., 2004). Promising new sensor systems, such as 
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the proposed Hyperspectral Infrared Imager (HyspIRI) mission, would be able to quantify the 

plant species distributions and physiological functions required to address this need (Lee et 

al., 2015). The HyspIRI mission would provide hyperspectral imagery with global coverage 

of Earth’s ecosystems every 16 days, at 30 m spatial resolution, resulting in a significantly 

larger dataset with which to develop species maps through time. While the need for this 

instrumentation was identified in the 2017 decadal survey, no launch date has been 

announced (National Academies of Sciences and Medicine, 2018). 

To develop precursor datasets in advance of the HyspIRI mission, the National 

Aeronautics and Space Administration (NASA) flew airborne instruments starting in 2013. 

The goal of this three-year campaign was to demonstrate the range of important scientific 

applications that can be uniquely addressed with the HyspIRI mission (Lee et al., 2015). 

Flying over large swaths of California and capturing the worst drought on record for the 

state, this campaign has been leveraged by multiple studies (Bell et al., 2015; Coates et al., 

2015; He et al., 2015; Palacios et al., 2015; Tane et al., 2018b; Wang et al., 2015; Wetherley 

et al., 2017).  

Our study leverages this unique dataset collected during the HyspIRI airborne 

preparatory campaign to explore the capabilities of seasonal and annual plant species 

classification. Collecting reference spectra, for the purpose of classifying plant species, is 

time consuming and expensive, even more so for ecosystems with rugged terrain. Ideally, for 

efficient processing of future datasets, spectral libraries would incorporate temporal 

variability for the purpose of maintaining accuracy when applied to newly collected imagery 

or locations. Our study determines and quantifies the extent plants’ temporal spectra can be 

used to generate accurate plant species classification maps. To establish baseline 
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classification capabilities, we developed spectral libraries from a single image date to classify 

26 plant species and land cover classes. We then combined seasonal and annual spectra to 

evaluate our ability to map plant species with increased seasonal or annual spectral 

variability. Finally, we used leave-one-out libraries (LOO), that pooled spectra from all dates 

but one, to determine how transferable libraries are across image dates. Our overarching 

objective is to determine how effectively spectra collected from seasonal or annual imagery 

can be used to classify species over multiple years and over a 12980 km² area. Specifically, 

we asked the following questions: 

1. What is the capability of classifying California plant species between 2013 – 2015 

during the spring, summer, and fall? 

2. Can a multiple-date spectral library be used to map species annually and 

seasonally? 

3. How transferable are spectral libraries across dates for species classifications? 

2.2 Methods 

2.1 Study site and image acquisition 

Imagery was collected with the AVIRIS sensor as part of the HyspIRI Airborne 

Preparatory Campaign. AVIRIS measures 224 bands of radiance between 360 and 2500 nm 

with a full width at half-maximum of 10 nm (Green et al., 1998). The sensor was flown on 

the NASA ER-2 aircraft at an altitude of 20 km over six flightboxes in California to simulate 

future satellite imagery from HyspIRI (Lee et al., 2015). This study uses a spatial subset of 

imagery from the Santa Barbara flightbox, which includes ten of the eleven flightlines that 

were acquired with a 35º northeast-southwest orientation (Figure 2.1). These ten flightlines 

cover a diverse landscape that is approximately 12980 km². Coastal Santa Barbara county, 
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with its Mediterranean climate is captured along the southern portions of the flightlines. The 

elevation increases from sea level to a peak of 2,697 m with the imagery capturing the 

transition from shrubland to conifer forests located in the Los Padres National Forest. The 

campaign flew three times per year, thus capturing April, June, and November or August 

imagery during 2013, 2014, and 2015 (Table 2.1). Two flightlines were excluded and two 

replaced with another date due to technical errors when collecting the data, resulting in 88 

AVIRIS images used in our analysis.  

 

Figure 2.1. Santa Barbara flight box and the HyspIRI Airborne Preparatory campaign 

flightlines used in study.  
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Table 2.1. Dates and flightlines covered for the Santa Barbara flight box. The * symbol 

denotes deviations from other flightline dates. 

  

2.2 Image processing 

NASA’s Jet Propulsion Laboratory (JPL) provided 18 m spatial resolution HyspIRI-

like reflectance products simulated using AVIRIS imagery (Thompson et al., 2015). In order 

to use the AVIRIS dataset across flight dates, a series of additional preprocessing steps were 

required. The custom source code developed for this study and used to process AVIRIS 

imagery is available at https://github.com/susanmeerdink/AVIRIS-Image-Preprocessing. The 

preprocessing steps, described below, can be summarized as registration across dates, 

geolocation refinement, and relative radiometric normalization.  

Although initially geolocated by the JPL, the AVIRIS images exhibited significant 

systematic spatial misalignment at the scale of multiple pixels. Therefore, the first 

preprocessing step registered the images across dates to approach a subpixel level alignment 

required for multi-date studies. Because using manually selected control points rarely 

delivers subpixel accuracy and due to the large number of images needing to be registered, 

we applied an automated registration algorithm (Koltunov et al., 2012) that was successfully 

used in previous multi-temporal AVIRIS studies involving spectral unmixing (e.g. Khanna et 



14 

 

al., 2017, 2013; Tane et al., 2018a) and other change detection research (Koltunov et al., 

2016, 2009). This algorithm represents band-wise iterations of relative radiometric 

normalization between the reference and the source images, followed by a gradient-based 

video-sequence stabilization method (Irani, 2002) that estimates the unknown parameters of a 

chosen between-image motion model. Each image was visually inspected to determine which 

band and model (affine or shift) resulted in highest performing registration. In this process, 

one date of flightlines is used as a reference for all other dates. The 16 Apr 2014 flightlines 

were selected as the reference images for registration because all ten flightlines were 

available and no cloud cover was present.  

During the second step, the registered images were georeferenced to correct absolute 

georefencing error. The National Agriculture Imagery Program (NAIP) digital orthophotos 

acquired in the spring and fall of 2012 were utilized as a basemap for this process. The 

orthophotos were mosaicked and resampled to 18 m spatial resolution and then used to 

collect ground control points for the 16 Apr 2014 flightlines. Because all images were co-

registered in the previous step, the image coordinates for the control points in 16 Apr 2014 

flightlines were applied for all other image dates.  

The final processing step was a relative radiometric normalization on the image 

products. During 2013 – 2015, the HyspIRI simulated reflectance product was actively 

undergoing development which made it difficult to compare spectra across flight dates. To 

compensate for atmospheric artifacts and noise, a linear correction was developed for each 

date and applied to the corresponding images (Clark et al., 2002; Wetherley et al., 2018). 

This was done by creating a band-by-band ratio of reflectance values using an invariant 

target’s field and image spectra (Figure A.1). The roof of the United States Postal Service 
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distribution center in Goleta, CA was selected as the invariant target (Thompson et al., 2015). 

On 2 May 2014, spectra were collected on the roof using an Analytical Spectra Device Full 

Range spectrometer which covers the 0.3 – 2.5 µm range with a sampling interval of 1 nm 

(Analytical Spectra Devices, Inc., Boulder, CO USA). Image spectra were collected from 15 

– 20 pixels for each of the nine image dates. The invariant target fell on flightline 5 or 6, 

depending on flight date. This approach assumes that ground targets are temporally invariant 

and reflectance retrieval errors are systematic for all flightlines acquired on the same date. 

2.3 Reference data 

Reference data on the spatial distribution of dominant species and land cover types 

were collected both in the field and using AVIRIS and NAIP imagery. In the field, we used a 

composition estimation method where patches of dominant plant species and their relative 

composition were collected using a high-power spotting scope and laser range finder from 

remote vantage points (Meentemeyer et al., 2001). Patches having greater than 75% single 

species composition were recorded and digitized on the AVIRIS flightline. These patches 

were stored with location and metadata as polygons in a shapefile. Species consistently found 

growing in mixed patches were treated as a single class (e.g. ARCA-SALE and ATCA-

ERNA, Table 2.2). In this study, 700 references polygons were collected to cover new 

species and locations not previously covered in other studies. This was in addition to 

approximately 400 polygons collected previously (Roberts et al., 2015; Roth et al., 2015b). 

Reference polygons were used to extract spectra from imagery, and only pixels completely 

falling into a reference polygon were used to develop spectral libraries. The species codes, 

total number of polygons, and pixels for each class are shown in Table 2.2.  
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Table 2.2. Dominant classes mapped with corresponding abbreviations, polygon, and pixel 

counts. 

Species Code Polygons Pixels 

Adenostoma fasciculatum ADFA 75 2063 

Agricultural Residue AGRES 59 1359 

Artemisia californica and Salvia leucophylla ARCA-SALE 61 1702 

Arctostaphylos  spp. ARGL 53 1276 

Atriplex canescens and Ericameria nauseosa ATCA-ERNA 36 659 

Baccharis pilularis BAPI 19 323 

Brassica nigra BRNI 47 1357 

Ceanothus cuneatus CECU 24 462 

Ceanothus megacarpus CEME 55 1544 

Ceanothus spinosus CESP 31 867 

Citrus spp. CISP 30 628 

Eriogonum fasciculatum ERFA 30 989 

Eucalyptus spp. EUSP 44 1257 

Irrigated Grasses IRGR 35 538 

Juniperus californica JUCA 15 178 

Mediterranean Annual Grasses and Forbs MAGF 58 3075 

Persea Americana PEAM 60 2187 

Pinus jeffreyi PIJE 16 226 

Pinus monophylla PIMO 36 531 

Pinus sabiniana PISA 34 854 

Pseudotsuga menziesii PSMA 11 261 

Quercus agrifolia QUAG 42 1152 

Quercus berberidifolia QUBE 36 426 

Quercus douglasii QUDO 37 1115 

Rock ROCK 26 463 

Soil SOIL 40 835 

Umbellularia californica UMCA 27 817 

 

2.4 Library development, dimensionality reduction, and classification 

Altogether, 25 spectral libraries were developed and used to classify the nine image 

dates (Table 2.3). There were three categories of spectral libraries: single date, multiple date, 

and leave-one-out (LOO). There were nine single date spectral libraries that were developed 

using spectra from a single image date. There were seven multiple date spectral libraries in 

which three were developed from seasonal images, three were developed from yearly images, 

and one was developed from all images. The seasonal spectral libraries had spectra from a 
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season across the three years of image dates (e.g. Spr-All, Sum-All, Fall-All). The yearly 

spectral libraries also had spectra from three image dates that were restricted to a single year 

(e.g. 2013-All, 2014-All, 2015-All). The last multiple date library was the All-Dates library 

developed using all nine image dates. The last spectral library category, leave-one-out (LOO) 

cross validation spectral libraries, tested whether spectra from all other dates could accurately 

classify an image. In these libraries, one date was left out from the spectral library. Table 2.3 

specifies which image dates were used in the development of each spectral library.  

Table 2.3. Spectra from image dates used to develop spectral libraries. Note that fall 2013 

imagery was collected in November, while 2014 and 2015 fall dates were collected in 

August. 

 Library Name Spectra from Image Dates 

S
in
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-D
at

e
 

L
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Spr-2013 04/11/2013   

Sum-2013 06/06/2013   

Fall-2013 11/25/2013   

Spr-2014 04/16/2014   

Sum-2014 06/06/2014   

Fall-2014 08/29/2014   

Spr-2015 04/16/2015   

Sum-2015 06/02/2015   

Fall-2015 08/24/2015   

M
u

lt
ip

le
 D

at
e 

L
ib

ra
ri

es
 

Spr-All 04/11/2013 04/16/2014 04/16/2015 

Sum-All 06/06/2013 06/06/2014 06/02/2015 

Fall-All 11/25/2013 08/29/2014 08/24/2015 

2013-All 04/11/2013 06/06/2013 11/25/2013 

2014-All 04/16/2014 06/06/2014 08/29/2014 

2015-All 04/16/2015 06/02/2015 08/24/2015 

All-Dates All 9 image dates 

L
ea

v
e-

O
n

e-
O

u
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(L
O

O
) 

L
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es
 

LOO-Spr13 All dates except 04/11/2013 

LOO-Sum13 All dates except 06/06/2013 

LOO-Fall13 All dates except 11/25/2013 

LOO-Spr14 All dates except 04/16/2014 

LOO-Sum14 All dates except 06/06/2014 

LOO-Fall14 All dates except 08/29/2014 

LOO-Spr15 All dates except 04/16/2015 

LOO-Sum15 All dates except 06/02/2015 

LOO-Fall15 All dates except 08/24/2015 
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For each spectral library, data were split into training and validation (Figure 2.2). For 

each species, 70% of the reference polygons were randomly selected to be used in training. 

For each of those selected training polygons, a maximum of ten pixels were randomly 

selected until the total number of training pixels exceeded 350. This was implemented to 

create a balanced training dataset because not all species had the same number of polygons or 

pixels (Table 2.2; Roth et al., 2012). Random selection was repeated for 50 iterations. If a 

polygon fell on two flightlines, spectra from both flightlines were included. The multiple date 

and LOO libraries used the same training pixels as the single dates. This resulted in each date 

having an even number of spectra and larger libraries compared to single date libraries.  

Each spectral library underwent dimensionality reduction using canonical 

discriminant analysis (CDA), a technique that was previously found to achieve the best 

species-level separation for a library (Alonzo et al., 2013; Roth et al., 2015a, 2015b). CDA 

reduces the data by finding orthogonal components while deriving functions that maximize 

linear separation among groups (e.g., plant species; Klecka, 1980). The number of functions 

derived is equal to the number of groups minus one. CDA coefficients were calculated for the 

50 iterations of training pixels. These 50 coefficients were averaged and applied to the 

spectra for dimensionality reduction (Cruz-Castillo et al., 1994). The averaged CDA 

coefficients were applied to the validation spectra libraries. 

Linear discriminant analysis (LDA) was run using CDA-transformed spectra to 

classify plant species. LDA derives linear combinations of the canonical variables which best 

correlate with class membership (Fisher, 1936). LDA was trained using the same 50 

iterations to develop CDA coefficients. LDA was applied to the validation polygons, where 

the class was defined by the pixel majority of the polygon. If the class matched the validation 
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polygon plant identification, the polygon was considered correct. Class separability was 

evaluated using the kappa coefficient (Congalton, 1991), overall accuracy, and class-level 

producer's and user's accuracies. The kappa coefficients between classifications were 

evaluated for statistical significance using one-way analysis of variance (ANOVA). All 225 

classifications with overall and kappa accuracy can be found in Table A.1 – A.3.  

  

Figure 2.2. Pseudocode describing the process of splitting reference polygons into training 

and validation. 

2.3 Results 

2.3.1 Single Date Spectral Libraries 

Spectral libraries developed from a single image date were used to develop baseline 

capabilities for classifying the plant species in this study (Table 2.4). Overall, the 24 plant 

species in this study were successfully classified with high accuracies across dates and 

FOR each iteration 

 FOR each species 

  Randomly select 70% of polygons for training 

  Set number of training pixels to 0 

  FOR each polygon selected for training 

   IF polygon has more than 10 pixels 

    Randomly select 10 pixels in polygon 

   ELSE 

    Select all pixels in polygon 

   END 

   Add indices and number of training pixels selected 

   IF training pixel count is greater than 350 

    continue onto next species 

   END 

END 

END 

END 
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diverse ecosystem using single date spectral libraries. Single date spectral libraries 

classifying the corresponding image date, such as the Spr-2013 library applied to the Spring 

2013 imagery, resulted in the highest classification accuracies, ranging from 0.80 – 0.86 

kappa across the nine image dates. Single date libraries used to classify an unrelated image, 

such as the Spr-2013 library applied to the Summer 2013 imagery, performed poorly with all 

kappa accuracies below 0.5. Species spectra distributions were significantly different 

between image dates, which produced lower accuracies when classifying an image with a 

spectral library from different date.  

 

Table 2.4. Average classification kappa accuracy for each image date using single date 

spectral libraries. Averaged kappa accuracy is calculated from 50 iterations. Bold 

designates spectral libraries that contain image date spectra. Rows report the spectral 

library, while columns report image dates. 

 Image Date 

 
Spr  

2013 

Sum 

2013 

Fall  

2013 

Spr  

2014 

Sum 

2014 

Fall  

2014 

Spr  

2015 

Sum 

2015 

Fall  

2015 

Spr-2013 0.85 0.41 0.26 0.42 0.13 0.21 0.29 0.26 0.22 

Sum-2013 0.35 0.84 0.26 0.36 0.25 0.37 0.34 0.37 0.37 

Fall-2013 0.24 0.18 0.80 0.19 0.12 0.30 0.27 0.28 0.32 

Spr-2014 0.06 0.07 0.19 0.84 0.20 0.36 0.39 0.43 0.34 

Sum-2014 0.14 0.22 0.14 0.22 0.85 0.29 0.38 0.19 0.26 

Fall-2014 0.01 0.06 0.10 0.40 0.13 0.85 0.41 0.48 0.54 

Spr-2015 0.03 0.03 0.09 0.35 0.14 0.29 0.83 0.29 0.29 

Sum-2015 0.09 0.13 0.19 0.36 0.18 0.29 0.34 0.86 0.38 

Fall-2015 0.04 0.09 0.09 0.32 0.19 0.35 0.33 0.35 0.85 

 

For single date image classification, accuracies were not consistent across seasons or 

years (Figure 2.3). The 2013 and 2014 spring imagery had the highest classification accuracy 

(kappa mean of 0.84). These two image dates captured new seasonal leaf growth for many of 
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the species studied. The image classification of 2013 spring imagery shows the expected 

plant species distributions with conifer forests found northeast in the Los Padres National 

Forest and the southern edge containing the chaparral communities traditionally found in this 

region (Figure 2.4). The 2013 fall imagery had the lowest accuracy, but only marginally with 

a kappa mean of 0.80. However, the classification errors are visually apparent in the image 

compared to other dates, with conifers (PSMA and PIJE) having much lower accuracies 

(Figure 2.5). Classification of 2013 Fall imagery was difficult for two reasons: plants were 

fully senescent which reduces spectral separability, and the imagery was collected 

particularly late in the year (November) causing lighting geometry to adversely impact the 

plant species classification. The 2014 summer image deviated the most from expected plant 

species distributions despite having high accuracies with library classification (Figure 2.5). 

Flightline 2 (extreme western flightline) had the most pronounced cross track variation due to 

bidirectional reflectance distribution function (BRDF) effects. These effects are also present 

in other images, but less so due to a collection time closer to solar noon. Zoomed in portions 

of the classification show how distributions shift across images dates (Figure 2.6; Figure 2.7). 

The other image date classifications can be found in Figure A.2- A.10. 

Examining the user and producer’s accuracies for individual species shows marked 

differences between species and dates (Figure 2.8; Figure A.11 – A.14). Classification 

accuracy was not consistent across seasons and years for species with overall low accuracies, 

while species with high accuracies resulted in little variation across dates (Figure 2.9). For 

example, the seasonal differences and range of accuracies for JUCA and PIMO (the two 

species with the lowest accuracies) are much larger than for QUDO and ARCA-SALE (the 

two species with the highest accuracies). These four species and species-combinations 
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illustrate how canopy geometry and morphology influence species classification accuracies. 

While common on the landscape, JUCA grows dispersed with, at times, meters of bare 

substrate or grass between individuals. Evergreen trees, such as PIMO, have sparse canopies 

and therefore tend to have spectra that are highly influenced by substrate. On the other hand, 

ARCA-SALE form dense canopies of individuals with limited influence of substrate on the 

spectra. QUDO is a broadleaf tree with canopies larger than the 18 m spatial resolution, so 

pixel spectra are not influenced by any other species. Species that tend to grow interspersed 

with other species, such as ARGL, also have lower accuracies and are often confused in the 

classifier with their respective interspersed species, such as ADFA.  

 

Figure 2.4. Classification accuracy of all nine images using four different spectral libraries. 

Dots represent mean classification accuracy with the top and bottom of bars marking the 

maximum and minimum accuracies. Letters designate libraries that are significantly different 

for each date (p < 0.05).  
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Figure 2.5. Plant species classification of Spring 2013, Fall 2013, and Summer 2014 

imagery using the corresponding single date spectral library. Other image classifications 

can be found in Figures A.2 – A.10. 
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Figure 2.6. Plant species classifications zoomed in on a portion of the Santa Ynez Mountain 

foothills. Only species and classes present in this subset are included in the legend. 
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Figure 2.7. Plant species classifications zoomed in on a portion of the Los Padres National 

Forest. Only species and classes present in this subset are included in the legend. 
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Figure 2.8. Mean producer and user’s accuracies using different spectral libraries on the 

nine image dates. Classes missing from figure are AGRES, CISP, IRGR, MAGF, PEAM, 

ROCK, SOIL, and UMCA. All classes’ accuracies found in Figures A.11 – A.14. 
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Figure 2.9. Comparison of four classes’ user and producer accuracies across image dates 

using single date spectral libraries. JUCA and PIMO were the lowest performing and ARCA-

SALE and QUDO were the highest performing classes. Dots are mean accuracy with the top 

and bottom of bars marking the maximum and minimum accuracies seen across 50 

iterations. Letters designate dates that are significantly different (p < 0.05).  

2.3.2 Multiple Date Spectral Libraries 

In order to test our capability of classifying plant species across a time series, 

multiple-date spectral libraries were developed (Table 2.5). Image dates were classified 

satisfactorily if the spectral library contained spectra from that specific image date. For 

example, the Spring 2013 imagery was classified accurately with the Spr-All (0.83 mean 

kappa) and 2013-All (0.80 mean kappa) spectral libraries, but had low accuracies with Fall-

All (0.20 mean kappa) and 2015-All (0.09 mean kappa) spectral libraries. Seasonal and 

yearly differences in spectra made classification difficult when using spectral libraries 

derived exclusively from other image dates.  
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Table 2.5. Average classification kappa accuracy for each image date using multi-date 

spectral libraries. Averaged kappa accuracy is calculated from 50 iterations. Bold 

designates spectral libraries that contain image date spectra.  

 Image Date 

 
Spr  

2013 

Sum 

2013 

Fall  

2013 

Spr  

2014 

Sum 

2014 

Fall  

2014 

Spr  

2015 

Sum 

2015 

Fall  

2015 

Spr-All 0.83 0.62 0.36 0.82 0.27 0.38 0.79 0.55 0.42 

Sum-All 0.38 0.82 0.34 0.57 0.81 0.65 0.47 0.83 0.58 

Fall-All 0.20 0.51 0.79 0.37 0.16 0.80 0.41 0.52 0.79 

2013-All 0.80 0.79 0.78 0.30 0.14 0.36 0.42 0.30 0.35 

2014-All 0.28 0.42 0.31 0.83 0.81 0.80 0.58 0.64 0.66 

2015-All 0.09 0.10 0.17 0.59 0.20 0.52 0.82 0.83 0.81 

All-Dates 0.76 0.78 0.72 0.80 0.77 0.79 0.78 0.79 0.77 

 

For all image dates, the single date spectral library outperformed all non-inclusive 

multiple date libraries (Figure 2.4). However, the corresponding seasonal or yearly libraries 

were comparable to single-date kappa values. The inclusion of other seasonal and annual 

spectra dropped the accuracy by 0.01 – 0.06 kappa compared to single-date classification’s 

kappa. In general, the season-based spectral libraries (0.79 – 0.83 mean kappa) performed 

similar to year-based spectral libraries (0.78 – 0.83 mean kappa). The spectral library 

containing all image dates, performed consistently low across all nine dates. The inclusion of 

spectra from all nine dates with the All-Dates library dropped classification accuracy by 0.03 

– 0.10 kappa compared to the single date library. However, it is worth noting for Fall 2014 

and Spring 2015 imagery, the performance of the All-Dates spectral library was not 

significantly different than that of the seasonal library.  

Producer and user’s accuracies for individual species also decreased with the use of 

multiple-date spectral libraries (Figure 2.8). For seasonal libraries, approximately 58% of 
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species’ accuracies were negatively impacted compared to single date libraries with producer 

and user accuracies dropping by 3.8 and 4% on average. Yearly libraries had a similar 

response with 59% of species having lower accuracies, with user accuracy dropping by 4.1% 

and producer accuracy by 4% on average. Use of the All-Dates spectral library for 

classification increased the number of species negatively impacted to 67%. User accuracies 

dropped on average by 7.4% and producer accuracies by 7.7% compared to single date 

classifications. While a majority of species across dates were negatively impacted with the 

inclusion of additional spectra, others experienced an increase in classification accuracy 

using multiple-date libraries or were not significantly different. Approximately 25% of the 

species for seasonal and yearly libraries and 19% of the species for All-Dates library did not 

have significantly different accuracies compared to the single date spectral library. Figure 2.8 

shows an example of the variation described above for three species in two image dates. We 

did not find a single species across dates or an image date across species that consistently 

performed better or worse using multiple date spectral libraries.  

2.3.3 LOO Spectral Libraries 

In order to test the transferability of spectral libraries, we developed leave-one-out 

cross validation (LOO) spectral libraries to classify image dates (Table 2.6). Classification 

accuracies of images using these libraries were significantly lower than single date or 

multiple date spectral libraries. An image was not classified well unless spectra from that 

image was contained in the spectral library. The best performing LOO spectral library was 

the 2015 Summer imagery with a mean kappa of 0.73, but this was still significantly lower 

than single date or multiple date spectral libraries’ classification accuracies (mean kappa 

range from 0.78 – 0.86). The lowest performing was the 2014 Summer imagery with a mean 



30 

 

kappa of 0.31, demonstrating that spectra from this image date were the least similar to other 

dates.  

 

Table 2.6. Mean classification kappa accuracy for each image date using leave-one-out 

(LOO) spectral libraries. Mean kappa accuracy is calculated from 50 iterations. Bold 

designates spectral library that does not contain image date spectra.  

 Image Date 

 
Spr  

2013 

Sum 

2013 

Fall  

2013 

Spr  

2014 

Sum 

2014 

Fall  

2014 

Spr  

2015 

Sum 

2015 

Fall  

2015 

LOO-Spr13 0.47 0.78 0.74 0.79 0.77 0.79 0.78 0.79 0.77 

LOO-Sum13 0.78 0.61 0.73 0.79 0.78 0.78 0.78 0.79 0.77 

LOO-Fall13 0.78 0.79 0.44 0.80 0.79 0.79 0.79 0.81 0.78 

LOO-Spr14 0.77 0.78 0.73 0.67 0.77 0.80 0.79 0.79 0.77 

LOO-Sum14 0.77 0.78 0.73 0.80 0.31 0.79 0.78 0.79 0.77 

LOO-Fall14 0.77 0.78 0.73 0.79 0.77 0.59 0.78 0.79 0.76 

LOO-Spr15 0.77 0.78 0.74 0.80 0.78 0.79 0.61 0.79 0.77 

LOO-Sum15 0.76 0.78 0.73 0.80 0.78 0.79 0.78 0.73 0.76 

LOO-Fall15 0.77 0.78 0.74 0.80 0.78 0.79 0.78 0.79 0.64 

 

In general, the loss of classification accuracy was also true for individual plant 

species’ user and producer accuracies (Figure 2.8; Figure A.11 – A.14). Compared to the 

single date spectral libraries, approximately 73% of species across dates had lower 

classification accuracies using LOO spectral libraries. Only 10% of species did not have 

significantly different accuracies, but none had any that were improved compared to single 

date libraries. We found that Spring 2013 and Summer 2014 image classification suffered the 

most when using LOO spectral libraries. Spring 2015 imagery was the least impacted using 

LOO libraries, but was only marginally better than other image dates. While most species 

generally performed worse using LOO spectral libraries, the magnitude of loss depended on 

the image date and species. For example, for ARCA-SALE, a top performing species for 
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other libraries, the mean classification accuracy dropped by 40% from Spring 2013 to Fall 

2013 imagery using the LOO spectral libraries (Figure 2.10). However, for Summer 2015 

and Fall 2015 imagery the classification accuracies only differed by 5%.  

 

Figure 2.10. Comparison of three species’ producer and user accuracies for two image dates 

using five different spectral libraries. Horizontal black lines mark mean accuracy with the 

top and bottom of bars marking the maximum and minimum accuracies seen across 50 

iterations.  

2.4. Discussion 

2.4.1 Classifying plant species 

To establish baseline classification capabilities, we classified plant species using 

spectra from a single image date. We found that plant species can be classified across this 

diverse landscape with a mean kappa accuracy ranging from 0.78 – 0.84 over the nine image 
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dates. These results demonstrate that California species, often found in remote and rugged 

terrain, can be classified accurately using hyperspectral remote sensing. Additionally, this 

study was able to classify species with user and producer’s accuracies >75%, even though 

most represent less than ideal characteristics for remotely classifying. The species analyzed 

in this study were predominantly chaparral shrubs or conifers, for which many individuals 

are required to fill a single 18 m pixel. Many of these species grow in heterogeneous patches 

with individuals from other species influencing the spectrum. Some species in this study are 

dispersed on the landscape or do not form dense canopies, which introduces substrate 

influence into the spectrum. In contrast, classification studies focusing on broadleaf tree 

species often have a single individual that can fill an entire pixel, resulting in a spectrum 

composed of solely that individual. For example, Juniper californica (JUCA), a shrub with 

open canopies that do not fill an entire 18 m pixel, had a mean producer and user accuracy of 

79.4 and 63.9% for Spring 2013 imagery. While Quercus douglassii (QUDO) had a mean 

producer and user accuracy of 94.7 and 92.1% for Spring 2013 imagery because it is a 

broadleaf large canopy tree and filled the entire pixel. 

Other studies have also had success mapping plant species using a single date spectral 

library. In a subset of our study area, Roth et al. (2015) classified 23 dominant chaparral 

plant species with a 0.84 mean kappa accuracy, also using CDA-LDA as a classifier. Roberts 

et al. (2015) also classified 22 of the same classes as reported in this study with a kappa 

accuracy of 0.73 using Multiple Endmember Spectral Mixture Analysis (MESMA). In other 

ecosystems, a single date spectral library has been used to classify plant species with a range 

of success using different methodologies. For example, three southern pine species in North 

America were mapped with 83% accuracy (van Aardt and Wynne, 2007), eleven eastern 
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broadleaf tree species in North America were classified with 75% accuracy (Martin et al., 

1998), and seven tropical rainforest species were classified with 92% accuracy (Clark et al., 

2005). The results of this study complement the above mentioned studies and establish our 

capabilities for classifying plant species using airborne datasets. The next step in determining 

the possibility of classifying species with future hyperspectral satellites is evaluating our 

classification capabilities across time.  

2.4.2 Annual and seasonal classification of plant species 

We explored the potential for using a multi-temporal spectral library for classification 

that would be better suited for capturing the variability anticipated by the HyspIRI sensor. 

The seasonal and annual spectral libraries performed similar to single-date spectral library 

classifications with a slight decrease in accuracy. In general, seasonal libraries performed 

better than yearly libraries, demonstrating that matching phenology plays a dominant role in 

species classification. Including spectra from all nine image dates further decreased kappa 

classification by adding too much seasonal and annual spectral variability. In other 

disciplines, an increased amount of data results in more accurate or representative models 

whereas in vegetation remote sensing it does not. While species do exhibit unique spectral 

characteristics due to biochemical and structural composition, individuals can deviate from 

the normal, creating a distribution of potential spectra for a species (Asner and Martin, 2009). 

These distributions can overlap other species’ spectral distributions, particularly as the 

variability of seasonal and year-to-year changes in a species’ spectral response are added. In 

our study, that added variability ultimately reduced spectral separability between classes and 

confused the classifier.  
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Very few studies have explored plant species classification through seasons or years 

at the canopy scale. However, phenological patterns have been found to be important factors 

at the leaf level with hyperspectral measurements. In tropical forests, Hesketh and Sánchez-

Azofeifa (2012) found that classification of trees and lianas at the leaf level dropped from 

approximately 80% accuracy for a single season to 20% across seasons. Burkholder et al. 

(2011) found that the ability to separate invasive and native species at the leaf level peaked in 

July and August where optimum band selection shifted between each sampling period. When 

discriminating reed species, Fernandes et al. (2013) found that species are only spectrally 

distinct during the senescent period. These studies emphasize the importance of capturing 

species distributions as they change across seasons and years, not only in a single 

observation. 

Only four published studies have classified plant species across multiple dates. Using 

five water deficit image dates, Dennison and Roberts (2003) found that the amount of 

variation in non-photosynthetic materials increased confusion between species and ultimately 

decreased accuracy by 8–16%. Conversely, additional research found that the inclusion of 

monthly spectra increased detection by 0.11 – 0.29 kappa for invasive tree species in Hawaii 

using Earth Observing-1 Hyperion data (Somers and Asner, 2013, 2012). Dudley et al. 

(2015), using five image dates from a single year, found that seasonally-mixed spectral 

libraries achieved similar overall classification accuracies compared to single-date libraries, 

and in some cases, resulted in improved classification accuracies. While similar to our study, 

Dudley et al. (2015) had key differences including a smaller study area, finer spatial 

resolution (10.9 – 16.7 m), and imagery only from a single year. Our research expands the 

research to include a 12980 km² area, 18 m spatial resolution, and three years of imagery.  
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2.4.3 Transferability of plant species classification 

 The collection and processing of reference spectra is time consuming and expensive. 

Ideally, reference spectra that can be shared across geographies and dates would vastly 

improve the efficiency of remote sensing applications. Our analysis use LOO spectral 

libraries to test the transferability of spectral libraries. We found that classification accuracy 

dropped severely if spectra from the image date were not included in the spectral library. The 

LOO spectral libraries decreased mean kappa accuracy to 0.31 – 0.73 compared to the single 

date spectral library with a mean kappa of 0.80 – 0.86. The variability in classification 

accuracy across the 50 iterations also increased significantly compared to other libraries. For 

this study area and dates observed, we found that spectral libraries were not transferrable 

across dates. However, this might be due to the airborne dataset being acquired over 4 – 6 

hours with variable sun-sensor geometry and captured increasing drought conditions. Perhaps 

under similar conditions, such as soil moisture and lighting, spectral libraries would be 

transferrable across dates.  Additionally, the limited ability to transfer spectral libraries across 

dates is restricted to biotic materials. Abiotic materials, e.g. rocks, minerals, and urban 

materials, have shown to be portable across time because they are generally invariant (Herold 

et al., 2004; Herold and Roberts, 2005).  

The scientific community has been developing databases of spectra to assist remote 

sensing applications. Most spectral libraries focus on leaf or canopy spectra collected with a 

handheld spectrometer, but a couple of libraries contain image-derived spectra. One of the 

most recently developed spectral libraries is the NASA-funded Ecosystem Spectral 

Information System (EcoSIS) spectral library that hosts spectra uploaded by researchers 

which are publicly available for download (https://ecosis.org/). From our research, it is 

https://ecosis.org/
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apparent that image derived spectra will likely not be transferrable to a new image date, 

meaning that existing spectral libraries will not yield accurate plant species classifications. 

Instead, we believe there is a need for starting a public geodatabase of reference polygons 

and locations of species and classes that can be used for any research application, sensor, or 

time period. The development of such a database would provide a validation and training 

dataset that can be used across all remote sensing platforms for any application. 

2.4.4 Opportunities when using airborne hyperspectral imagery 

While this study is a reasonable representation of the data that will be available with 

HyspIRI, there are some additional considerations to take into account, specifically including 

spatial resolution, georeferencing, and atmospheric correction. Currently, the proposed 

spatial resolution of HyspIRI is 30 m pixels, while this study used 18 m pixels. Spatial 

resolution has been found to affect classification accuracy and would need to be further 

investigated (Roth et al., 2015a; Schaaf et al., 2011). Furthermore, at the HyspIRI scale, 

spaceborne missions tend to deliver stable image geolocation at a subpixel level, which is not 

available with airborne passive remote sensing. To mitigate these differences, we made 

extensive efforts to reference AVIRIS images to known ground locations and also aligned the 

images between dates. However, geolocation errors are still present in the dataset due to 

residual misalignment. Finally, the reflectance retrieval algorithm was evolving as the 

campaign progressed, and influenced the stability in reflectance between images. We 

attempted to correct for spectral differences between dates and flightlines by using an 

invariant reflectance target, but some spectral differences that are caused by the reflectance 

retrieval, and not species phenology, may still exist. BRDF effects on imagery are a common 

issue with airborne platforms and were shown to greatly impact this and other studies using 
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this dataset, further exacerbated by multi-hour imaging campaigns required to cover each 

flight box (Tane et al., 2018a; Wetherley et al., 2017). In HyspIRI images spaced by 19 days, 

the fixed viewing geometry and rapid image acquisition will reduce BRDF differences within 

a scene and across dates, thus potentially improving classification accuracy compared to the 

HyspIRI-like airborne imagery.  

Identifying capabilities of mapping plant species presents opportunities for sensors 

currently or soon-to-be deployed in addition to HyspIRI. For example, scheduled to launch in 

2019, the Environmental Mapping and Analysis Program (EnMAP) mission sponsored by 

Germany is an imaging spectrometer that will provide measurements at 420 - 1000 nm and 

900 - 2450 nm (Stuffler et al., 2007). This mission would provide global coverage with a 

revisit time of 27 days, and would significantly increase hyperspectral data volume for 

temporal classification of species. In addition, the National Ecological Observatory Network 

(NEON) airborne mission flies an imaging spectrometer once a year over 47 terrestrial field 

sites (Kampe et al., 2010). Sponsored by the National Science Foundation, this program is 

expected to continue for 30 years which will yield the largest imaging spectroscopy dataset 

with continuous measurements for individual locations. The results of this study provide a 

link between existing research and future possibilities for classifying plant species across 

seasons over years using datasets such as HyspIRI, EnMAP, and NEON. 

2.5 Conclusion 

Our study quantifies the potential for classifying seasonal and yearly distributions of 

plant species, specifically for the HyspIRI sensor. We set out to answer three questions. First, 

we asked how accurately can plant species be classified across spring, summer, and fall in 

2013 – 2015 using single date spectral libraries. We found that the 24 species and land covers 
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in this study were classified with high accuracies across the nine dates (mean kappa 0.80 – 

0.86). Species with open canopies had the lowest user and producer accuracies because of the 

influence of substrate on spectra. Second, we explored the use of multiple date spectral 

libraries for classification to capture a broader range of phenological conditions that would 

be present in the repeat acquisitions of the HyspIRI mission. We found that the increased 

spectral variability due to changes in plant phenology and drought conditions, and perhaps 

the combined errors of various preprocessing steps that are unique to the airborne image data 

used, resulted in a loss of classification accuracy. However, accuracies were still comparable 

to single date libraries with seasonal libraries having a mean kappa 0.79 – 0.83 and annual 

libraries having a mean kappa 0.78 – 0.83. Finally, we asked how transferable vegetation 

spectral libraries are across dates using LOO spectral libraries. We found that LOO libraries 

resulted in a significant decrease in classification accuracy (mean kappa 0.31 – 0.73) and did 

not yield species maps that would be accurate enough for future research. However, this 

might not be true for satellite based measurements as it will have smaller range of sun-sensor 

geometries compared to the airborne dataset.  

Instead of developing image based vegetation spectral libraries, we recommend that 

the science community develop a geodatabase containing reference locations of species that 

can then be applied to any image or sensor. Such a database would allow researchers 

flexibility in addressing science questions. This flexibility is exceptionally important as 

temporal hyperspectral datasets grow exponentially with ongoing airborne campaigns and 

proposed spaceborne missions. The proposed HyspIRI mission would be uniquely poised to 

globally capture plant species distributions with a 19-day revisit time. Thus, it is important to 
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expedite development of robust multi-temporal species classification techniques capable of 

extracting new information from the temporal dimension of hyperspectral data.  
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3. Plant species’ spectral emissivity and temperature using the 

Hyperspectral Thermal Emission Spectrometer (HyTES) sensor 

 

Abstract 

The thermal domain (TIR; 2.5 – 15 µm) delivers unique measurements of plant 

characteristics that are not possible in other parts of the electromagnetic spectrum. However, 

these TIR measurements have largely been restricted to laboratory leaf level or coarse spatial 

resolutions due to the lack of suitable data from airborne and spaceborne instruments. The 

airborne Hyperspectral Thermal Emission Spectrometer (HyTES) provides an opportunity to 

retrieve high spectral resolution emissivity and land surface temperature (LST) that can be 

exploited for canopy level vegetation research. This study is a small-scale spatial resolution 

analysis of plant species’ emissivity and LST using HyTES imagery acquired in the 

Huntington Botanical Gardens on 2014 July 5 and 2016 Jan 1. Leaf and canopy emissivity 

variation was identified among 24 plant species and used to determine leaf to canopy scaling 

capabilities. HyTES LST patterns among species and dates were quantified and correlated to 

LiDAR derived tree canopy attributes. At the leaf scale, one third of the species showed 

distinct spectral separation from other species. However, at the canopy scale most species 

were not spectrally separable. A simple physical scaling model, using leaf inclination and 

leaf area index, did not accurately reproduce canopy emissivities; suggesting other variables 

are necessary for scaling such as blackbody cavity effects. LST data, derived from TIR 

measurements, showed that species exhibited significantly different distributions between 

dates and species. These distributions were largely explained by canopy structure (e.g. tree 

height and canopy density) and composition of neighboring pixels (e.g. presence of pavement 
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versus trees). While species do not exhibit unique emissivity signatures at the canopy, the 

LST variation among species provides a stronger understanding of LST variability in coarser 

resolution TIR imagery. This study represents the first look at vegetation characteristics 

using the NASA’s HyTES TIR sensor, opening the door for future remote sensing vegetation 

studies including the recently launched ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station (ECOSTRESS) mission. 

3.1 Introduction 

The thermal domain (TIR; 2.5 – 15 µm) affords two unique measurements of plant 

characteristics through emissivity and land surface temperature (LST) that are not possible 

using the visible-shortwave infrared spectrum (0.35 – 2.5 µm). These measurements are 

being used for vegetation research at multiple scales including the determination of leaf 

water content (Fabre et al., 2011; Ullah et al., 2012b), plant evaporation rates (Anderson and 

Kustas, 2008; Otkin et al., 2014), and large-scale drought monitoring (Kogan, 1995; Liu and 

Kogan, 1996). The increased availability of TIR sensors and technological advances have 

now made it increasingly possible to examine vegetation characteristics using emissivity and 

LST measurements. 

TIR emissivity signatures are unique from the visible-shortwave infrared because of 

how light interacts with the leaf. Due to the low energy of TIR wavelengths, leaves appear 

opaque because energy does not penetrate leaf surfaces (Gates and Tantraporn, 1952; 

Salisbury, 1986; Salisbury and Milton, 1988). Measured spectral emissivity for a leaf is the 

product of light interactions with the outer layers of the leaf (Elvidge, 1988; Salisbury, 1986; 

Wong and Blevin, 1967). In contrast, spectra in the visible-shortwave infrared domain are the 

product of light interactions with the internal leaf structure and biochemical components 
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because the high energy wavelengths of this domain can penetrate leaf surfaces (Curran, 

1989). Ribeiro da Luz (2006) conducted one of the first studies to investigate vegetation 

characteristics in the TIR and found that leaves display complex absorption features related 

to organic constituents of leaf surfaces. Since then, high spectral resolution TIR laboratory 

measurements have been leveraged to quantify leaf water content using a variety of methods 

(Arshad and Ali, 2018; Buitrago et al., 2016; Fabre et al., 2011; Meerdink et al., 2016; Ullah 

et al., 2014, 2013, 2012b). Other studies have leveraged this domain for plant species 

classification at the leaf level (Buitrago et al., 2018; Harrison et al., 2018; Ullah et al., 2012a) 

or leaf area index estimation (Neinavaz et al., 2016a). These studies demonstrate the 

successful application of TIR emissivities for the study of leaf characteristics, but with the 

caveat that these relationships may not translate to canopy scale and are only relevant for 

high spatial resolution sensors at the few meter scale.   

Ultimately, to address the broader science and remote sensing questions, it is 

necessary to scale these studies to the canopy. Ribeiro Da Luz and Crowley (2007) were the 

first ones to address this knowledge gap by making measurements at increasing distances 

from natural canopies with a field spectrometer. Other studies have also used high spectral 

resolution TIR imaging under controlled laboratory conditions to measure canopy changes 

due to water stress (Gerhards et al., 2016) and to develop a relationship with leaf area index 

(Neinavaz et al., 2016a). Ribeiro Da Luz and Crowley (2010) provide the only study, to our 

knowledge, that has used airborne hyperspectral TIR imagery to study plant characteristics. 

Using Spatially-Enhanced Broadband Array Spectrograph System (SEBASS; Hackwell et 

al., 1996) imagery, the research identified spectral differences between species located in the 
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State Arboretum of Virginia. TIR emissivity measurements at the canopy level have been 

few in number due to lack of sensors and low signal to noise ratios in the sensors available.  

TIR LST measurements are unique because of the relationship between plant 

temperatures and plants’ response to the environment. As plants close stomata to maintain 

their carbon-water balance, plant temperatures increase due to a decrease in 

evapotranspiration rates (Jones, 2014). This relationship has long been recognized in plant 

ecology and used as an indicator of plant water relations and stress (Calderón et al., 2013; 

Grant et al., 2007; Jackson et al., 1988; Jones and Leinonen, 2003). Leaf or field level LST 

measurements have been used for developing irrigation and crop health indices (Fuchs, 1990; 

Fuchs and Tanner, 1966; Jackson et al., 1981, 1977; Jones and Leinonen, 2003; Jones and 

Schofield, 2008), estimating stomatal conductance (Jones, 1999; Jones et al., 2002; Leinonen 

et al., 2006), calculating evapotranspiration rate (Anderson et al., 2008; Fisher et al., 2008), 

or measuring an evaporative stress index (Anderson et al., 2016; Otkin et al., 2014, 2013). 

Satellite level LST measurements have been used for global or regional drought monitoring ( 

Kogan, 1995; Liu and Kogan, 1996; Singh et al., 2003). 

While these studies have successfully used temperature as a proxy for plant water 

status, many other factors can influence a plant’s canopy temperature. Leuzinger and Körner 

(2007) found that leaf dimensions and stomatal conductance alone could not capture canopy 

temperatures, but that canopy architecture has a strong influence on canopy LSTs. 

Additionally, the presence or absence of key taxa or plant functional types influences the 

temperature distribution of a forest and an urban environment (Leuzinger et al., 2010; 

Leuzinger and Körner, 2007). In these studies, leaf type (broad vs. needle), leaf size (small 

vs. large), and substrate (grass vs. concrete) interacted to create unique temperature 
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distributions and sensitivity among tree species (Leuzinger et al., 2010, 2005; Leuzinger and 

Körner, 2007). Our understanding of plant LST patterns are especially limited at the canopy 

level, mainly due to the coarse spatial resolution of satellite measurements and the lack of 

plant structural variability available in agriculture field measurements. 

The Hyperspectral Thermal Emission Spectrometer (HyTES) is a recent sensor 

developed using new technologies from the National Aeronautics and Space Administration 

(NASA) Jet Propulsion Laboratory (JPL). This sensor presents a unique opportunity to study 

vegetation properties at the canopy level with a 2 m spatial resolution at a nominal flight 

altitude of 1 km. HyTES measures 256 radiance bands in the 7.5 – 12 µm spectral domain at 

17 nm spectral sampling (Hook et al., 2013). High spatial resolution (2 – 10 m) temperature 

and emissivity data are currently available to order from https://hytes.jpl.nasa.gov/order for 

science campaigns over the Southwestern USA and Hawaii from 2013 – 2018. Using a 

temperature emissivity separation algorithm developed by JPL, this sensor is able to retrieve 

surface temperatures with an error of <1 ºC and 186 emissivity bands in the TIR window 

region between 8-12 µm (Hook et al., 2013). This sensor has been used in a variety of 

research projects including methane/trace gas detection and quantitative retrievals (Hulley et 

al., 2016; Johnson et al., 2014; Kuai et al., 2016) and geological composition (Iqbal et al., 

2018; Kruse, 2015). High spectral resolution and fine spatial resolution TIR imagery has not 

been widely used for vegetation due to the lack of suitable measurements and the subtle 

features of plants (Ribeiro Da Luz and Crowley, 2010). However, the HyTES sensor presents 

an opportunity to examine canopy properties at these resolutions.  

The purpose of our study was to explore the possibility of using HyTES imagery for 

measuring plant species’ canopy characteristics. HyTES’s 186 TIR emissivity bands provide 

https://hytes.jpl.nasa.gov/order
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a unique opportunity to study patterns of TIR canopy signatures that were previously only 

possible with a limited number of sensors (e.g. SEBASS). The high accuracy LST retrievals 

at fine spatial resolutions allow for the examination of patterns across species and dates. We 

investigate drivers of LST variability using LiDAR derived canopy attributes. Specifically, 

we asked the following questions: 

1) What TIR spectral variation among plant species is present at the leaf scale? 

2) Using HyTES imagery, do plant species exhibit unique TIR emissivity signatures 

at the canopy scale? 

3) What are the leaf to canopy scaling capabilities for TIR emissivities?  

4) How do LST patterns vary among species, canopy attributes, and dates?  

3.2 Methods 

3.2.1 Study Site 

The Huntington Botanical Gardens, located in San Marino, CA, USA, is a 

collections-based research and educational institution established in 1919 (Figure 3.1). It 

covers approximately 48.6 hectares and contains about 15,000 documented plant varieties, 

most of which are tagged and identified. In order to best relate laboratory spectra to canopy 

spectra, plants with canopies having at least a 12-meter diameter were identified using a 

database provided by the Huntington Gardens, high-resolution imagery, and field assessment. 

Out of these species, 24 species with three or more individuals were selected (Table 3.1). 

Each selected individual identified had fresh leaf samples taken for laboratory measurements 

(see Section 3.2.2). Only tree canopies with a diameter larger than 12 meters were chosen for 

this analysis to ensure there were multiple pixels for each individual tree. The polygons of 

individual trees were used to extract emissivity and LST values from HyTES imagery (see 



46 

 

Section 3.2.3) and also LiDAR variables (see Section 3.2.6). Only pixels completely falling 

into a reference polygon were used to avoid the edge of tree canopies. The number of pixels 

differed between image sources due to different spatial resolutions. Table 3.1 lists the 24 

plant species sampled in this study with the number of pixels associated for each with 2014 

and 2016 imagery.  

 

Figure 3.1 HyTES imagery at 2m resolution (1,100 AGL flight altitude) from 2014 July 5 

showing emissivity and Land Surface Temperature (LST). Emissivity is displayed with bands 

10.1 µm as red, 9.2 µm as green, and 8.5 µm as blue. Other panels show the location of 

Huntington Gardens study area near Pasadena in San Marino, California, USA. 
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Table 3.1. Summary of plant species sampled in this study with associate sample sizes. 

Plant Species Acronym Common Name 
N for 

Nicolet 

N for 

HyTES 

2014 

N for 

HyTES 

2016 

Aloe arborescens ALAR Candelabra Aloe 3 23 24 

Bambusa beecheyana BABE Beechey Bamboo 6 35 44 

Bambusa tuldoides BATU Punting Pole Bamboo 3 42 44 

Brachychiton discolor BRDI Lacebark 3 52 58 

Brachychiton rupestris BRRU Queensland Bottle 3 37 53 

Caesalpinia cacalaco CACA Cascalote 3 20 30 

Cassia leptophylla CALE Golden Medallion 3 40 42 

Cedrus deodara CEDE Deodar Cedar 3 43 53 

Chorisia insignis CHIN White Silk Floss 3 34 36 

Chorisia speciosa CHSP Silk Floss 3 40 45 

Ficus columnaris FICO Moreton Bay Fig 3 32 38 

Ficus thonningii FITH Stranger Fig 3 46 53 

Jacaranda mimosifolia JAMI Jacaranda 3 30 34 

Lagerstroemia indica LAIN Crape Myrtle 3 47 55 

Magnolia grandiflora MAGR Southern Magnolia 3 39 46 

Melaleuca linariifolia MELI Snow-in-summer 3 38 42 

Peltophorum africanum PEAF Weeping Wattle 3 35 37 

Podocarpus gracilior POGR Fern Pine 3 57 65 

Quercus agrifolia QUAG Coast Live Oak 3 65 80 

Quercus ilex QUIL Holly Oak 3 31 40 

Quercus robur QURO English Oak 3 27 34 

Quercus suber QUSU Cork Oak 3 24 25 

Quercus virginiana QUVI Southern Live Oak 3 41 49 

Salix babylonica SABA Weeping Willow 3 45 53 

Tipuana tipu TITI Tipu 3 42 54 

 

3.2.2 Leaf Measurements 

Fresh leaf samples were harvested in the field, and spectral measurements conducted 

in the lab. Samples were collected on February 2, October 3, and October 6, 2016. Samples 

were collected from tree species using pole clippers and from shrub species using pruning 

shears. Multiple leaves were collected from individual plants, with leaves randomly selected 

from the highest accessible part of the canopy. For taller individuals this means that sampled 
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leaves received full sun for part of the day, whereas leaf samples from shorter individuals 

were collected from the top of the canopy in full sun exposure. The leaves were wrapped in 

damp paper towels and placed in polyethylene bags to be stored in a cooler at ~10 °C with a 

towel to prevent direct contact with ice. In order to preserve the integrity of the samples, 

spectra were measured at the NASA JPL within 48 hours of collection.  

Before spectral analysis, leaves were removed from polyethylene bags and excess 

moisture was wiped off. If a single leaf did not fill the lab spectrometer field of view, 

multiple leaves from the same individual were clustered while minimizing gap and overlap 

between leaves. Leaves were placed on aluminum foil to minimize background effects that 

may be present from gaps. A Nicolet 520FT-IR Spectrometer fitted with a Labsphere gold 

coated integrating sphere (model RSA N1 700D) was used to measure reflectance from 2.5 – 

15.4 μm (Thermo Electron Corp., Madison, WI, USA). This sensor uses a single EverGlo 

infrared light source that has a bulb temperature of 1140 °C to output constant radiation. To 

reduce the impact of moisture in the air on the spectra, dry air was sent into the external 

sphere. Gold was measured once every hour and used as a standard to calibrate the Nicolet 

spectrometer. Distilled water was used to check the calibration and accuracy of reflectance 

products. The Nicolet spectrometer has a sampling interval of 0.001 µm, and each spectrum 

was determined from 300 scans, which took approximately three minutes to collect. Each 

plant sample was an average of three spectra, which were collected in one of two ways. First, 

a single set of leaves was measured and rotated three times. Second, three sets of different 

leaves from the same individual were measured.  

Nicolet spectrometer spectra also underwent quality assurance through visual 

assessment and were averaged using code located at https://github.com/susanmeerdink/ASD-
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Nicolet-Spectra-Processing. Measurements were used to calculate emissivity by using 

Kirchhoff's Law (ε=1−R), which in turn, enables comparisons to be made between the 

laboratory spectral measurements and HyTES emissivity images. The uncertainty associated 

with the Nicolet FT-IR emissivities is 0.002 (0.2 %)  (Korb et al. 1999). Measurements were 

then convolved to HyTES bands using a Gaussian model with a 0.1 μm full width half max 

(FWHM) and HyTES band center wavelengths that ranged from 8.3 to 11.5 μm (Hook et al., 

2013). Examples of leaf emissivities resampled to HyTES wavelengths are shown in Figure 

3.2. All references to leaf emissivities in this paper are the resampled to HyTES wavelengths 

spectra. 

 

Figure 3.2 Emissivities of three select species from three sources: Leaf emissivities 

resampled from Nicolet spectrometer, canopy emissivity from July 2014 HyTES imagery, and 

canopy emissivity from January 2016 HyTES imagery. Colored areas designate the minimum 

and maximum emissivity observed. 
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3.2.3 Canopy Measurements  

HyTES is a hyperspectral airborne sensor that measures radiance across 256 bands in 

the 7.5 - 12 μm spectral range (Hook, Johnson, & Abrams, 2013). The HyTES sensor was 

flown on the Twin Otter plane on two dates: July 5, 2014 and January 25, 2016 (Figure 3.1). 

The HyTES sensor can be flown at various altitudes above the ground surface that provides 

the flexibility to obtain data at different spatial resolutions. The 2014 flightline was flown at 

17h42m UTC with a spatial resolution of 1.7 meters and the 2016 flightline was flown at 

22h36m UTC with a spatial resolution of 1.9 meters. Air temperatures during flights were 

31ºC and 22 ºC for July 2014 and January 2016, respectively. Examples of canopy 

emissivities from 2014 and 2016 are shown in Figure 3.2. Details of the HyTES L2 TES 

algorithm are available in an algorithm theoretical basis document (ATBD) and is available 

upon request. It should be noted that while HyTES has 256 bands, a surface emissivity 

cannot be retrieved from all of them since some bands are in regions with strong atmospheric 

absorption. 

3.2.4 Leaf to Canopy Scaling 

In order to evaluate the potential of scaling leaf emissivities to the canopy, a simple 

physical model was used to calculate apparent emissivities as adopted from Guoquan and 

Zhengzhi (1993). This model calculates apparent emissivity as a function of leaf emissivity, 

soil emissivity, leaf inclination, and leaf area index (LAI). The apparent emissivity (𝜀𝑐) of a 

vegetation canopy is determined using Kirchhoff’s Law: 

𝜀𝑐 = 1 − 𝐴 

Where the estimated canopy reflectance (A) and calculated as: 
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𝐴 = [(1 − √𝜀𝑙𝐾−1)(2√𝜀𝑙𝐾−1 +  𝜀𝑠 − 𝜀𝑠√𝜀𝑙)𝑒𝐿𝐴𝐼√𝜀𝑙𝐾 − (1 +

√𝜀𝑙𝐾−1)(−2√𝜀𝑙𝐾
−1 + 𝜀𝑠 + 𝜀𝑠√𝜀𝑙𝐾−1)𝑒−𝐿𝐴𝐼√𝜀𝑙𝐾] /𝑌 (1) 

This algorithm incorporates the influence of leaf inclination angle on apparent 

emissivity of a vegetation canopy by assuming a constant leaf angle: 

𝐾 = [1 + (1 −  𝜀𝑙)𝑐𝑜𝑠2𝜃𝑜]
1

2 (2) 

The extinction and backscattering coefficients for diffuse flux are incorporated as: 

𝑌 =  (1 + √𝜀𝑙𝐾
−1)(2√𝜀𝑙𝐾

−1 + 𝜀𝑠 − 𝜀𝑠√𝜀𝑙𝐾−1)𝑒𝐿𝐴𝐼√𝜀𝑙𝐾 − (1 +

√𝜀𝑙𝐾−1)(−2√𝜀𝑙𝐾
−1 + 𝜀𝑠 + 𝜀𝑠√𝜀𝑙𝐾−1)𝑒−𝐿𝐴𝐼√𝜀𝑙𝐾 (3) 

Where 𝜃𝑜 is the constant leaf inclination angle, LAI is the leaf area index, 𝜀𝑠 is the 

substrate soil emissivity, and 𝜀𝑙 is the leaf emissivity.  

In our model calculations, resampled Nicolet spectra were used as leaf emissivities. 

For substrate soil emissivity, an Alfisol soil spectrum matching the soil type of the 

Huntington Gardens was selected from the ECOSTRESS spectral library, previously known 

as the ASTER spectral library (Baldridge et al., 2009; Meerdink et al., in prep). The soil 

spectrum was also resampled to HyTES wavelengths using the same method described in 

Section 2.2. LAI was not measured for these tree species, and a range of LAI values from 0.5 

to 3 were tested (Figure B.1).  

Leaf inclination angle distributions information for eight of the studied tree species 

(BRDI, BRRU, FICO, QUAG, QUIL, QURO, QUSU, SABA) were obtained either directly 

in the Huntington Gardens on December 9, 2012, or came from measurements carried in 

other locations including the University of California Botanical Garden, Berkeley, CA, USA 

(37.87° N, 122.24° W); the Botanical Gardens in Monaco (43.73° N, 7.424° E); Bergius 
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Botanical Garden, Stockholm, Sweden (59.37° N, 18.05° E); Castelporziano, Italy (41.71° N, 

12.38° E), Kaisaniemi, Finland (60.17° N, 24.95° E); and Montado, Portugal (38.11° N, 

8.576° W).  

The leaf inclination angles were measured using the leveled digital camera method 

introduced by Ryu et al. (2010). A series of images were taken of the tree crowns in windless 

conditions; the images were visually inspected for the presence of leaves with their surfaces 

oriented perpendicularly to the viewing direction of the digital camera and the leaf 

inclination angles were measured manually from such images (see Raabe et al. (2015) for 

details). Approximately 100 leaves were measured for each species – a sufficient amount to 

determine leaf angle distribution at the whole crown level (Pisek et al., 2013). 

3.2.5 Spectral Analysis 

Mann-Whitney U Test (MWU), also known as the Wilcoxon Test, was used to 

determine significant differences in species pairs because the distributions of emissivities 

were non-parametric. MWU is performed at each wavelength comparing species pairs, 

emissivities and is summarized in two ways: per wavelength and per species pair. For each 

wavelength, we report the total number of species pairs that were significantly different from 

a single species’ emissivity distribution. This identifies wavelengths where a species is 

significantly unique from the 23 other species analyzed. For each species pair, we report the 

total number of wavelengths that are significantly different. This identifies which species are 

more spectrally similar or dissimilar from each other. In addition, species separability was 

tested using spectral angle mapper (SAM) which calculates the spectral angle between two 

spectral vectors that have a common origin (Kruse et al., 1993). SAM measures differences 

in spectral shape across all wavelengths, while MWU measures differences in emissivity at a 
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single wavelength. The statistical difference in species LST distributions was analyzed using 

ANOVA.  

3.2.6 LiDAR Imagery 

Light Detection and Ranging (LiDAR) terrain data were collected over the 

Huntington Gardens in 2014 through the Los Angeles Region Imagery Acquisition 

Consortium (LARIAC4; LARIAC Product Guide 2006-07, 2006). The spatial resolution is 

10.2 cm with vertical accuracy of 27.7 cm at a 95% confidence level. Multiple LiDAR 

products were used to derived canopy structural attributes and properties (Table 3.2). 

Polygons of individual trees, described in Section 2.1, were used to extract tree height 

statistics, including mean, maximum, minimum, standard deviation, and range of heights. 

These polygons were also used to extract the total number of returns for a tree canopy and 

calculate tree canopy size. To determine a tree’s neighbors, the LARIAC4 land cover 

classification product was used. This product has an overall accuracy of 97.86% with seven 

land cover classes, including tree, grass/shrub, bare soil, water, buildings, roads/railroads, 

and other pavement. The water and building classes were not included because <2% of trees 

had these classes as neighbors. A 5-meter buffer around tree individuals was used to extract 

the surrounding land cover pixels to determine tree neighbors. Information derived from the 

LiDAR products was summarized for each individual and correlated with mean, maximum, 

and minimum canopy LSTs. 
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Table 3.2. Descriptive and statistical metrics extracted from the LiDAR data. 

 Variable Name Variable Description 
H

ei
g

h
t 

A
b
o

v
e 

G
ro

u
n
d
 

Mean Mean height above ground for a tree canopy 

Min Minimum height above ground for a tree canopy 

Max Maximum height above ground for a tree canopy 

Std Standard deviation of height above ground for a tree canopy 

Range Range of heights above ground for a tree canopy 

N
ei

g
h

b
o

rs
 

Other Trees Number of pixels classified as trees within 5m buffer of tree canopy 

Grass/Shrub 
Number of pixels classified as grass/shrub within 5m buffer of tree 

canopy 

Bare Soil 
Number of pixels classified as bare soil within 5m buffer of tree 

canopy 

Roads Number of pixels classified as roads within 5m buffer of tree canopy 

Other Pavement 
Number of pixels classified as other pavement within 5m buffer of 

tree canopy 

O
th

er
 Tree Size Tree canopy size (m2) 

Num. of Returns The total number of returns for a tree canopy 

 

3.3 Results 

3.3.1 Leaf emissivity 

Spectral angles identified separability between the plant species pairs for leaf 

emissivities based on spectral shape (Figure 3.3a). Among the most spectrally distinct were 

two species from the Bambusa family (BABE and BATU), which are known to have strong 

silica content expressed as a strong absorption feature. Other notable species that were 

distinct with spectral angles above 0.1 radians included QURO and FITH. However, most 

species pairs had relatively small spectral angles even at the leaf level demonstrating that 

spectral shapes between species are too similar for separability.  

While spectral angle determines separability based on spectral shape, Mann-Whitney-

U (MWU) tests determine separability based on the number of wavelengths containing 

significantly different emissivities. For MWU tests, the majority of species pairs had more 
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than 75% of wavelengths exhibit significantly different emissivities (Figure 3.4a). Among 

the most spectrally distinct species were CEDE, PEAF, POGR, and TITI. This analysis also 

can determine which species might be spectrally confused with each other. For example, 

POGR was spectrally distinct from most species, but not from PEAF and QUIL. Other 

species, such as ALAR and CEDE, were not spectrally distinct from most, but compared to a 

single species had > 75% significantly different wavelengths. 

Another aspect of MWU analysis is the ability to determine which wavelengths 

contain the largest discriminating power for plant species (Figure 3.5a; Figure B.2. – B.5). At 

the leaf level, the 24 species are categorized into three groups: a) species that were different 

spectrally from 8.3 – 11.5 µm; b) species that were spectrally different for a subset of 

wavelengths; or c) species that were not spectrally distinct. There were three species (CEDE, 

POGR, TITI) that were spectrally distinct from other species across the measured TIR 

spectrum. Eight species (BABE, BATU, BRRU, CALE, FICO, FITH, MAGR, and PEAF) 

had portions of their emissivities that were distinct from other species. For example, BABE 

was similar to 20% of the species pairs in the 4 – 6 µm range, but was similar to 80% of the 

species pairs between 8 – 10 µm. However, the majority of species fell into the final category 

where their emissivities were not spectrally distinct in the 2.5 – 11.5 µm range. These 

species, such as SABA and ALAR, had emissivities that were the least separable with only 

10 - 20% significant pairs.  
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Figure 3.3. The spectral angle between species for emissivities collected from (a) leaf, (b) 

leaf resampled to HyTES wavelengths, (c) canopy July 2014, and (d) canopy January 2016 

imagery. 
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Figure 3.4. The percent of wavelengths that are significant different (p < 0.05) between 

species pair for (a) leaf emissivity, (b) canopy July 2014 emissivity, and (c) canopy January 

2016 emissivity. 
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Figure 3.5. The percent of significantly different pairs at each wavelength identified by Mann 

Whitney U (MWU) tests for plant species emissivities from the (a) leaf, (b) canopy July 2014, 

and (c) canopy January 2016. For other species’ significant wavelengths, see Figure B.2 – 

B.5. 

3.3.2 Canopy emissivity  

Separability of species based on spectral shape was very low for both of the canopy 

emissivity dates compared to leaf emissivities (Figure 3.3b & c). Spectral angles showed that 

January 2016 canopy emissivities had slightly more separation between species, but 

separability was marginal. For both dates, spectral angles between species pairs were 

consistently low, with only a couple of species in 2016 (CALE and PEAF) showing more 

separability with higher spectral angles across dates. The smaller spectral angles observed for 
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canopy emissivities compared to leaf emissivities demonstrate that the spectral variability 

among species observed at the leaf scale did not translate to the canopy.  

Analyzing the number of wavelengths that were significantly different between 

species pairs reveals a similar pattern at the canopy level (Figure 3.4b & c). Compared to leaf 

spectra, both dates had a higher number of species pairs with only 0 –50% of wavelengths 

being significantly different. While leaf emissivities only had 129 pairs in this low 

distinguishability category, July 2014 had 170 pairs and January 2016 had 145 pairs 

emphasizing that many species became more spectrally similar when scaled to the canopy. 

This analysis also highlights seasonality differences when separating species spectrally. In 

general, canopy emissivities were more spectrally distinct in January 2016 than July 2014. 

Some species pairs, such as ALAR and TITI, remained spectrally distinct from each other 

over the two time periods while most experienced changes in separability strength. 

Similar to leaf emissivities, species exhibited different sets of influential wavelengths 

at the canopy level which shifted between the two image dates (Figure 3.5b & c). However, 

unlike leaf emissivities, no species were spectrally distinct for the entire 8.3 – 11.5 µm range. 

The majority of the 24 species for both dates were not spectrally distinct in any portion of the 

electromagnetic spectrum. There were nine species in July 2014 and five species in January 

2016 that were spectrally distinct in a subset of the measured TIR spectrum. These were not 

the same species for each date due to seasonality differences in emissivity. For example, TITI 

was spectrally distinct compared to other species from 10 – 11.5 µm in July 2014 while in 

January 2016 most of that spectrally separability was lost.  
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3.3.3 Comparison of leaf and canopy emissivities 

As previously mentioned, laboratory leaf emissivities were significantly different 

from canopy emissivities for most wavelengths of the 24 species in July 2014 and January 

2016 (Figure 3.6). In general, species’ emissivities at the leaf and canopy were least similar 

between 9.9 – 10.5 µm. Across 8.3 – 11.5 µm, at least 12 of the 24 species were significantly 

different between leaf and canopy emissivities. These 12 species had canopy attributes that 

are known to decrease the ability to retain leaf spectral information at the canopy. One of 

those species, TITI, commonly has an open canopy which will increase the influence of 

substrate in canopy emissivity. BABE has canopies composed of diverse leaf orientations 

which retain less spectral information due to multiple scattering that occurs in canopies. 

However, there were some species with canopy emissivities more similar to measured leaf 

emissivities. For example, CHIN and CHSP had 73% of wavelengths that were spectrally 

similar between the two levels. These two species were broadleaf planophile trees, which are 

able to retain leaf spectral information due to favorable geometries. Leaf emissivities for 

these species might be representative of canopy emissivities for portions of the TIR. 

However, for most species, leaf emissivities were not representative of canopy emissivities. 

Leaf level could not be directly translated to canopies without additional scaling algorithms.  
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Figure 3.6 Wavelengths that were significantly different between leaf emissivities and canopy 

emissivities from 2014 (left) and 2016 (right). Gray designates wavelengths at significance of 

p < 0.05 and black designates significance at p < 0.01. 

 

To scale leaf emissivities to the canopy, a simple physical model was used to 

calculate apparent emissivity for eight species (Figure 3.7). As leaf emissivities are scaled to 

the canopy, multiple scattering emissions fill in any spectral features and cause a general 

increase in canopy level emissivity similar to a graybody. Some species, such as SABA and 

QURO, retain spectral features, although features become subtler. Other species, such as 

BRRU and QUSU, became gray bodies with no spectral features. HyTES emissivities 

collected from July 2014 and January 2016 imagery have lower emissivity compared to 

modelled apparent emissivity and in many cases did not match the modelled spectrum shape. 
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A simple model using leaf area index (LAI), emissivities of leaf and soil, and leaf inclination 

angle is not sufficient for the calculation of canopy emissivities. 

 

Figure 3.7 Comparison of apparent emissivity (using LAI 3.0), leaf emissivity, and canopy 

emissivity from 2014 and 2016 HyTES imagery for eight selected species. 

 

3.3.4 Canopy LST 

Canopy LST distributions for species in July 2014 and January 2016 HyTES imagery 

were very different (Figure 3.8). As expected, due to warmer air conditions, July 2014 had a 

higher range of observed LSTs compared to January 2016. When comparing species 

distributions between the two dates 20 out of 24 species had significantly different 

distributions. Comparing species pairs, LST distributions also revealed significant 

differences between dates (Figure 3.9). In 2014, 48 more species pairs were significantly 

different compared to 2016 data. In 2014, five species (ALAR, FICO, FITH, MELI, PEAF) 
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were very distinct from the other nineteen species. In contrast, 2016 had only two species 

(CHSP and SABA) that were very distinct from the other species. Species with similar 

canopy architecture did not have significantly different LST distributions, such as two 

bamboo species (BABE and BATU) with uniform canopies and the two Ficus species (FICO 

and FITH) with closed dense canopies.  

 

Figure 3.8.  2014 and 2016 canopy LST distributions (canopy LST minus air temperature) 

for each species. Circles are median LSTs with the top and bottom of bars marking the 25th 

and 75th quartiles. Asterisks designates significant differences between 2014 and 2016 LST 

distributions (* p < 0.05, ** p < 0.01). 
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Figure 3.9. LST comparison between species pairs for 2014 (left) and 2016 (right) imagery. 

Black squares designate significant differences between species LST distributions (p < 0.05). 

 

Variables derived from the LiDAR dataset were found to correlate strongly with LST 

distributions in 2014 and 2016 (Figure 3.10). A tree’s neighbors within a 5 m radius were 

strongly correlated with the tree’s canopy LST. Specifically, the presence of pavement in the 

neighborhood resulted in higher canopy LSTs because of the sensible heat release from dark 

asphalt pavements. However, if the tree was surrounded by other trees the canopy LST was 

lower, presumably due to the increase in latent heat flux. In July 2014, increased presence of 

grass/shrub, bare soil, and roads as neighbors were correlated with higher canopy LSTs. 

However, this correlation was not present in January 2016, which was flown in cooler 

ambient temperatures. Tree height was found to be significantly negatively correlated with 

2014 and 2016 LSTs. As the only shrub in this study, ALAR’s LSTs were measured from 

multiple individuals that formed a large aloe patch on the side of a hill. Due to the 

architecture and height of these plants, ALAR had the highest LST for July 2014 compared 
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to other species. FICO, the tallest species in this study, experienced LST values that did not 

vary much from air temperatures on either date. 

Canopy density, as measured by the number of LiDAR returns, was also found to 

impact canopy LSTs, but more so in warm ambient air conditions. Dense, closed canopies 

(e.g. FICO, BABE, and BATU) had cooler LSTs and a smaller range of LST, even on the hot 

2014 July day. Low density canopies have a larger substrate influence and experienced 

higher LSTs, especially if the substrate was man-made and ambient conditions were warm. 

Species with open tree canopies had warmer LSTs and experienced a larger range of LSTs, 

mainly caused by the influence of the substrate below the canopy. For example, in January 

CHSP and CHIN species had dropped their leaves for the season exposing the substrate 

beneath. In July, CHSP and CHIN had a closed canopy and LST distributions were not 

significantly different from most species. 
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Figure 3.10. Correlations between 2014 and 2016 LST statistics (x-axis) and LiDAR derived 

variables (y-axis). Asterisks designate significant differences in correlations (* p < 0.05, ** 

p < 0.01). 

3.4 Discussion 

3.4.1 Plant species’ leaf emissivity variability 

In this study, we quantified the spectral separability of plant species’ leaf level 

emissivities. We found that leaf emissivities were unique for approximately one third of the 

24 plant species analyzed in this study. This remained true even when leaf emissivities were 
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resampled from over 177 wavelengths to HyTES’s 155 wavelengths between 8 – 11 µm. 

Thirty out of 276 species pairs were separable based on spectral shape, while 91 species pairs 

were separable based on the total number of wavelengths that were significantly different. 

Our results show that some plant species exhibit unique spectral features at the leaf level that 

distinguishes them spectrally. However, not all species in this study were spectrally unique. 

In contrast, other researchers have found that most of the species they studied are spectrally 

separable. Using 13 common garden species in the Netherlands, Ullah et al. (2012a) found 

that 76 out of 78 species pairs had significantly different Jefferies Matusita distances. In a 

direct comparison to the previous study, Rock et al. (2016) classified eight species with 92% 

overall accuracy but stipulated high signal-to-noise ratio was necessary. Another study 

successfully classified 19 species with a kappa of 0.94 (Buitrago et al., 2018). However, 

there are a few studies that also found confusion between species. In a study mirroring results 

similar to ours, Harrison et al. (2018) classified 26 tropical species and found most species 

were spectrally similar with the exception of five. Lastly, a study classified 32 species at the 

canopy with an overall accuracy of only 83%, but also found that leaf emissivities contained 

more spectral separability then the canopy (Ribeiro da Luz, 2006). 

When discussing the separability of plant species in the TIR, it is common to identify 

wavelengths that contain the most discriminating power. The largest discriminating power 

among species was found at the 2.5 – 8 µm wavelengths, which has been identified for 

containing key information for species discrimination or leaf trait retrieval (Buitrago 

Acevedo et al., 2017; Buitrago et al., 2018, 2016; Meerdink et al., 2016).  However, HyTES 

does not measure between 2.5 – 8 µm because this region is complicated due to the long 

wavelength edge of the solar radiation curve, strong water vapor absorption, and the short 
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wavelength edge of the terrestrial emittance curve (Gates et al., 1965). The range of 

emissivities retrieved from HyTES in the atmospheric window region (8 – 11 µm) did not 

contain as much spectral discrimination for species in our study. As in other studies, plant 

species tend to be featureless in this region with weaker absorption features (Elvidge, 1988). 

In the HyTES measured TIR spectrum, our study identified key wavelengths at 8.5, 10.04, 

and 11.2 µm, which are related to known features of water absorption and cellulose (Elvidge, 

1988). While we did not relate leaf emissivities to leaf traits, other studies suggest that leaf 

traits expressed in the TIR promote species identification at the leaf level and potentially at 

the canopy (Riberio da Luz and Crowley, 2010).  

3.4.2 Plant species’ canopy emissivity variability 

We found, for the same set of species, that canopy emissivity for July 2014 and 

January 2016 HyTES imagery does not contain the magnitude of separability among species 

as seen at the leaf level. No species showed clear separability based on spectral shape and 

only 29 and 54 out of 276 species pairs had more than 80% of wavelengths significantly 

different for July 2014 and January 2016, respectively. When determining influential 

wavelengths for species discrimination, ten out of 24 species had regions of the TIR that 

were significantly different. Species had more variability within species than between which 

easily confused species discrimination. Although images were collected in different seasons 

and years, the canopy emissivities showed limited variation for evergreen species.  

Very few studies have examined canopy spectral emissivity, mainly due to the lack of 

data at desired spectral and spatial resolutions. In controlled laboratory settings, canopy 

emissivities have been found to be significantly different for four species and that increases 

in LAI correspond to increases in emissivity (Neinavaz et al., 2016a). Also in laboratory 
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settings, stress studies have found that increasing water stress causes emissivity to increase 

due to blackbody cavity effects (Buitrago et al., 2016; Gerhards et al., 2016). While these 

studies demonstrate opportunities for canopy emissivity, they have been restricted to fine 

spatial resolution imagery collected in controlled settings. Only one study, to our knowledge, 

has examined canopy emissivity characteristics collected using airborne imagery. Ribeiro Da 

Luz and Crowley (2010) successfully classified approximately 25 species using 1 m spatial 

resolution imagery from the SEBASS sensor. However, this was only half of the species 

studied, with the remainder not being spectrally separable.  

3.4.2 Scaling emissivities from leaf to canopy 

We scaled leaf emissivities using a simple physical model to determine if the 

inclusion of leaf area index, emissivities of leaf and soil, and leaf normal inclination angle 

would result in representative canopy emissivities. We found that the calculated apparent 

emissivities were not representative of canopy emissivities even with compensating for LAI 

and inclination angle. This may be related to the fact that the leaf inclination angles were 

partly measured in different locations and at different times compared to the emissivity 

measurements. It has been previously shown that, depending on the species, leaf inclination 

angles can vary strongly with season and exposure to light (Raabe et al., 2015). Direct 

measurements from the same site and for the same date with the airborne observations would 

be more reliable and might provide a more accurate representation of the canopy structure. 

It is not surprising that canopy emissivities do not reflect the same spectral features as 

leaf emissivities, because the same problem presents itself in other regions of the 

electromagnetic spectrum. In the visible-shortwave infrared spectrum, leaf spectra deviate 

from canopy spectra due to the influence of canopy structure, the presence of non-
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photosynthetic vegetation, background substrate, and multiple scattering within the canopy 

(Asner and Martin, 2008; Ollinger, 2011; Roberts et al., 2004; Verhoef, 1984). In the TIR 

domain, scaling is complicated due to several factors that weaken already subtle plant 

features including canopy voids, leaf angle, canopy structure, and errors in temperature 

emissivity separation (Ribeiro Da Luz and Crowley, 2010, 2007; Salisbury, 1986). Ribeiro 

Da Luz and Crowley (2007) confirmed the complication of scaling when taking 

measurements from a field of view of 6.4 cm to 44 cm and experienced progressive 

attenuation of the spectral emissivity features.  Ribeiro Da Luz and Crowley (2010) found 

that canopy geometry and composition including leaf morphology, leaf disposition (e.g. 

planophile or erectophile), canopy closure, and size of canopy were the largest controlling 

factors. Radiative transfer models could be used to account for the scattering and absorption 

of radiation inside canopies when scaling (Francois et al., 1997; Jacob et al., 2017; Olioso, 

1995; Snyder and Wan, 1998; Verhoef et al., 2007). These models incorporate additional 

variables including directional gap fraction, angular cavity effect coefficients, and better 

incorporation of soil contribution. Without the use of radiative transfer models, relationships 

developed using leaf emissivities will not be directly translatable to the canopy for future 

airborne or spaceborne missions. 

3.4.3 Land surface temperature (LST) pattern among species 

Finally, temperature patterns across species were significantly different between the 

July 2014 and January 2016 HyTES imagery, corresponding to ambient air temperatures that 

were 31 ºC and 22 ºC respectively. In the warmer ambient air conditions experienced in July 

2014 imagery, species’ LST distributions were found to be significantly different in 129 out 

of 276 species pairs. In cooler ambient air conditions, only 81 species pairs were significantly 
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different. Other studies have also found species-specific differences in LST distributions. For 

example, Leuzinger et al. (2010) found that small leafed trees were cooler than large leaf 

trees while Meier and Scherer (2012) showed that deciduous trees had higher LST variation 

in the canopy compared to conifers. Urban tree canopy LSTs depend on species-specific 

properties and the location of the tree (Leuzinger and Körner, 2007; Meier and Scherer, 

2012). 

We found that LST distributions were highly correlated with a tree’s neighboring 

pixel land cover type. Other trees and pavement as neighbors had the highest influence on 

canopy LSTs. This corresponds to a study that found that substrate can impact the tree 

temperature where grass is cooler than a sealed surface like asphalt or concrete (Kjelgren and 

Montague, 1998; Leuzinger et al., 2010; Montague and Kjelgren, 2004). In our study, the 

added complexity of a tree’s architecture and tree height were negatively correlated with 

LST. In our study site and a mixed deciduous forest in NW Switzerland, open canopies 

exhibited mean canopy leaf temperatures close to air temperature and dense canopies 

exhibited warmer than air temperatures (Leuzinger and Körner, 2007).  

3.4.4 Considerations  

This study explored the application of HyTES imagery for plant species’ emissivity 

and LST research. Our findings expose the limitations to be considered for future research. In 

this study, leaf samples were not collected at the same time as the imagery, so differences 

between leaf and canopy might be related to phenology differences. The stability of leaf 

emissivities over the season and years has not been studied, so it cannot be said how 

influential phenology is on emissivity. Additionally, we had a small sample size for leaf 

measurements due to time constraints and the number of individuals available in the 
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Huntington Gardens. A more comprehensive and systematic sampling is required to fully 

study the scaling of leaf emissivities to canopies, including the measurement of tree 

characteristics such as leaf area index. Additionally, errors may be present in canopy 

emissivity and LST products. These products are calculated through an iterative Temperature 

Emissivity Separation (TES) algorithm developed by NASA JPL, which has been adapted to 

HyTES’s 256 radiance bands. However, due to the relatively new deployment of this sensor, 

the algorithm is undergoing refinement to improve atmospheric correction accuracy, 

especially as new applications are presented that require emissivity retrievals with high 

accuracy.   

While our study found that species classification using TIR is difficult at the canopy 

level, this study does present opportunities for a mission recently deployed. In June 2018, the 

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 

was launched with the primary goal of measuring plant temperatures in order to understand 

how much water plants need and how they respond to stress. The sensor was installed on the 

International Space Station providing data with a 38-m in-track by 69-m cross-track spatial 

resolution, five spectral bands in the 8 – 12.5 μm range, and a predicted temperature 

sensitivity of ≤0.1 K (Lee et al., 2015). This study directly supports future ECOSTRESS 

research questions for vegetation emissivity and LST. For example, the ECOSTRESS 

mission will be delivering an evapotranspiration product for the continental USA and over 

key biomes around the world. A key assumption of the evapotranspiration models requires 

that vegetation emissivity does not vary by species. This analysis gives insight into the 

amount of error introduced into models that calculate evapotranspiration.  
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3.5 Conclusions 

The development of NASA’s HyTES hyperspectral thermal sensor has opened up the 

possibility of using high spectral resolution emissivity and fine spatial resolution LST for 

vegetation research. In this study we set out to answer four questions. First, we asked if plant 

species were spectrally separable using leaf level emissivities. We found that 20 out of 24 

plant species were spectrally separable through spectral shape or the number of wavelengths 

containing significantly different emissivities. Second, we asked if this species variability 

extended to canopy emissivities collected from July 2014 and January 2016 HyTES imagery. 

We found that plant species lost most of the spectral separability seen at the leaf level when 

scaled to canopy emissivities. Third, we asked what were the capabilities of scaling leaf 

emissivities to canopy emissivities to support relationships developed at leaf levels. We 

found that using a simple scaling algorithm that incorporates LAI, leaf inclination, and soil 

emissivity does not accurately scale leaf emissivities to the canopy. Finally, we asked what 

LST patterns do plant species exhibit across dates and how does the variability relate to 

canopy attributes. We found that species’ canopy LSTs displayed unique distributions across 

dates and among species. Many of these distributions could be explained by canopy 

geometry, with tree density and height playing key roles. Additionally, species canopy 

temperatures were highly influenced by a tree’s surrounding environment, with neighboring 

trees creating cooler LST and pavement creating warmer LST conditions.  

Our study fills in knowledge gaps in the TIR domain for both emissivity and LST. 

Previously, only one study has examined plant species using high spectral resolution airborne 

TIR imagery. Our results demonstrate that only a few spectrally distinct species in the 

Huntington Gardens were separable at the canopy and that leaf level relationships derived 
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empirically in the lab will not directly translate to the canopy. Most of the unique spectral 

characteristics measured in laboratory conditions are not retained at the canopy due to 

multiple scattering which involves emission, reflection, and absorption. However, the HyTES 

fine spatial resolution LST imagery has provided a deeper understanding of LST variability 

across plant species which exhibit different canopy attributes. LST is primarily used to 

measure plant stress, but we found that plant species still exhibit variability in temperature 

distributions even in ideal water conditions.  

With the launch of the ECOSTRESS mission and continued image collection of 

HyTES, more TIR imagery will become available to the scientific community. This study 

begins to explore the application of such a dataset for the purposes of vegetation research, 

specifically how much variability there is among plant species. As research expands in the 

TIR domain, our understanding of plants’ variability in TIR spectral signatures and LST will 

become increasingly important. Advancing this research for vegetation canopies may enable 

new types of remote sensing observations that are distinct from other portions of the 

electromagnetic spectrum.  
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4. Monitoring water stress of Southern California plant species during the 

2013 – 2015 drought 

 

Abstract 

From 2012 to 2015, California experienced the most severe drought conditions since 

1895 causing natural vegetation throughout the state to become water stressed. With many 

areas in California being inaccessible and extremely rugged terrain, remote sensing provides 

a means for monitoring plant stress across a large landscape. Airborne hyperspectral and 

thermal imaging captured the drought in the spring, summer, and fall of 2013 – 2015 across 

11,640 km2 of Southern California. This study provides a large scale analysis of plant 

species’ annual and seasonal temperature variability throughout a prolonged drought. We 

developed a species specific Temperature Condition Index (TCI) that maps plant stress 

across the landscape and identifies areas that experienced prolonged water stress. Lastly, in 

order to better understand the environment’s effect on plant stress we relate topographic 

attributes to plant stress. Overall, 68 – 82% of species pairs exhibited significantly different 

temperature distributions across the nine dates. Plant stress was not evenly distributed across 

the landscape or time with lower elevation open shrub/meadows, June 2014, and August 

2015 imagery capturing the largest amount of stress. Highly stressed plants were correlated 

with south or south-southwest facing slopes, while other topographic attributes were weakly 

correlated with TCI. Our results show that by using thermal and hyperspectral measurements 

we can monitor plant stress temporally and across ecoregions. This work supports improved 

monitoring of natural landscapes especially for areas prone to continued drought and high 

risk of wildfires.  
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4.1 Introduction 

From 2012 to 2015, California experienced conditions that resulted in the most severe 

drought over the past 1200 years (Griffin and Anchukaitis, 2014). During this time, the 

state’s 12-month accumulated precipitation was less than 34% of average, resulting in the 

hottest and driest on annual period record since 1895 (Mann and Gleick, 2015; Swain et al., 

2014). The resulting water shortage lead to a wide range of impacts on natural systems 

including tree mortality (Young et al., 2017), bark beetle infestation (Guarín and Taylor, 

2005; Tane et al., 2018a), and canopy water content loss (Asner et al., 2016). Extreme events, 

such as this drought, are projected to become more frequent and intense with the 

advancement of climate change (Mann and Gleick, 2015; Mastrandrea et al., 2011; 

Mastrandrea and Luers, 2012). Developing and perfecting the ability to monitor plant water 

stress on a regional scale will be necessary not only for vegetation management through a 

drought but also for planning and preparation got drought related impacts such as wildfires.  

Many parts of California are extremely remote and have rugged terrain making it 

difficult to access and monitor through field efforts. Remote sensing technologies enable the 

monitoring of natural landscapes that are not normally accessible. The technology most 

commonly used for the purpose of monitoring plant water stress is thermal remote sensing, 

specifically using land surface temperature (Ts) as it has been long recognized as an indicator 

for plant water availability (Gates, 1968). This is due to the relationship between leaf-air 

temperature differential and leaf conductance (Jones, 2014). Stomata are sensitive to plant 

water status and respond by minimizing imposed changes in the balance between water 

supply and evaporative demand. With decreasing leaf or soil water potential, stomata will 

close thus decreasing the amount of transpiration occurring which causes leaf temperatures to 
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rise. The availability of handheld infrared thermometers allowed for the first coupling of 

plant conductance and temperatures instead of leaf measurements with embedded 

temperature probes (Monteith and Szeicz, 1962; Tanner, 1963). With the increasing 

availability of sensors, monitoring water stress using temperature has become possible at 

multiple scales but has been most commonly executed at field and regional scales.  

At the plot level, researchers working on agriculture applications have been utilizing 

the relationship between plant temperature and water stress for five decades to improve 

irrigation techniques and increase crop yields. This focus has resulted in the development of 

various indexes still commonly used today including the Crop Water Stress Index (CWSI; 

Idso et al., 1981; Jackson et al., 1981), Degrees Above Non-Stressed Canopy (DANS; 

Taghvaeian et al., 2014), and the ratio of canopy temperature to non-stress crop (Tc ratio; 

Bausch et al., 2011). These indices have been successfully used to manage irrigation 

practices (Thomson et al., 2012), but generally require in-situ meteorological data or 

previously derived stress baselines. Additionally, because they have been developed for 

agricultural fields, the studies predominately use handheld infrared thermal radiometers or 

unmanned aerial vehicles (UAVs) with mounted infrared thermal imaging to collect data 

(Costa et al., 2013). Due to these prerequisites, these methodologies cannot be easily scaled 

for natural landscapes that are inaccessible and cover thousands of kilometers.  

To monitor vegetation stress at larger scales, researchers quantify stress using 

temperature calculated from spaceborne sensors such as the Advanced Very High Resolution 

Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), or 

the Landsat Thematic Enhanced Thematic Mapper (ETM+). The use of these sensors has 

resulted in the development of temperature based indices for monitoring drought such as the 
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Temperature Condition Index (TCI; Kogan, 1995; Kogan, 1997) and indices based on a 

combination of temperature and vegetation index such as the Vegetation Temperature 

Condition (VTC; Wan et al., 2004), the Vegetation Health Index (VHI; Kogan, 1997; Kogan 

et al., 2004), and the Drought Severity Index (DSI; Bayarjargal et al., 2006). These indices 

have been used to monitor and capture plant water stress during droughts in many places 

including India (Bhuiyan et al., 2006; Singh et al., 2003; Sruthi and Aslam, 2015), the United 

States (Felix N. Kogan, 1995; Wan et al., 2004), and Mongolia (Bayarjargal et al., 2006; 

Karnieli et al., 2006; Kogan et al., 2004). With spatial resolutions of 1 km or larger, these 

studies generally focus on global or large regional patterns of plant stress due to drought. 

These methodologies would provide a broader overview of plant stress during California’s 

2012-2015 drought, but would not give a detailed enough prospective for county-level 

management of vegetation.  

A NASA Hyperspectral Infrared Imager (HyspIRI) airborne campaign captured 

Southern California’s extreme drought conditions during 2013 – 2015 spring, summer, and 

fall (Lee et al., 2015). This campaign flew two instruments collecting a unique dataset of 

hyperspectral and thermal imagery at 18 and 36 m spatial resolution, respectively. This 

dataset provides an opportunity to examine natural vegetation plant stress across nine dates at 

a finer spatial resolution than possible with satellite-based sensors. In this study, we 

leveraged this dataset to analyze plant species’ stress during the California’s recent drought 

across 11,640 km2 of Southern California. We subtracted surface temperature from air 

temperature (Ts-Ta) to construct plant species temperature and stress response annually and 

seasonally. We developed a species-specific temperature condition index (TCI) for 

monitoring plant stress using a plant species classification developed from the hyperspectral 
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imagery and scaled species temperature responses to the study area.  We produced a map of 

vegetation plant stress variability across nine dates and investigated explanatory variables of 

plant stress. Specifically, we ask the following questions: 

1. How do plant species surface temperature (Ts) and surface temperature minus air 

temperature (Ts-Ta) vary over spring, summer, and fall seasons with an increasing 

drought signal from 2013 - 2015?  

2. What spatial and temporal patterns of plant stress are present across the 

landscape?  

3. Is variability in plant stress spatial distributions explained by topographic 

attributes?  

4.2 Methods 

4.2.1 Study area 

The study area includes 11,640 km² of natural vegetation in Southern California 

comprising seven ecoregion subsections (Figure 4.1). The majority of this area falls into the 

Los Padres National Forest (LPNF), while the remainder is privately owned land or 

urbanized. The elevation increases from sea level to a peak of 2,697 m with the imagery 

capturing the transition from chaparral shrubland to conifer forests located in the LPNF. The 

entire study area experiences a Mediterranean climate characterized by wet, cool winters and 

dry, hot summers. Annual precipitation for the area ranges from 250 to 1000 mm with 95% 

falling between November and March (Davis and Michaelsen, 1995; Diamond et al., 2013). 

However, during the time period studied (2013 – 2015) this area experienced an extreme 

drought (Griffin and Anchukaitis, 2014; Swain et al., 2014). Figure 4.2 shows the daily 

precipitation for 2013 – 2015 at three stations: Santa Barbara Airport (elevation 2.7 m), 
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Gibraltar Dam (elevation 475 m), and Pine Mountain Club (elevation 1834 m). Locations of 

these three stations are shown in Figure 4.1. 

This area is also characterized by frequent wildfires that have been increasing in 

severity (Davis and Michaelsen, 1995; Moritz, 1997; Syphard et al., 2011). The LPNF has 

been actively suppressing wildfires since the 1900s, but suppression efforts became more 

effective after 1950 due to the use of large air tankers (Davis and Michaelsen, 1995). Even 

with fire suppression, the time since last fire is under 10 years for a large portion of the 

LPNF although many areas have not burned in 75 or more years (Figure 4.3). The California 

Department of Forestry and Fire Protection (CalFire) develops fire hazard severity maps, 

which designates zones with varying degrees of fire hazard based on factors such as fuel, 

slope, and fire weather. These zones represent the likelihood that an area will burn over a 30 

– 50 year period. Based on these zones, the majority of the study area falls into a very high 

fire hazard severity zone (Figure 4.3).  
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Figure 4.1. The flightlines (white) and ecoregions (yellow-green) in the Santa Barbara flight 

box used from the HyspIRI Airborne Preparatory campaign.  
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Figure 4.2. Daily precipitation (blue) from January 2013 to January 2016 for three weather 

stations in the study area. Locations of the three stations are shown in Figure 1. Red lines 

designate flight dates: 2013 Apr 11, 2013 June 6, 2013 Nov 23, 2014 Apr 16, 2014 June 6, 

2014 Aug 29, 2015 Apr 16, 2015 June 2, and 2015 Aug 24. 
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Figure 4.3. The fire hazard severity rating determined by CalFire (top) and the time since 

last fire provided by United States Forest Service (bottom) for study area. Time since last fire 

was last updated December 2017.  



84 

 

4.2.2 Remotely sensed data 

Remotely sensed imagery of the study area was collected with the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER Airborne Simulator 

(MASTER) sensor as part of the NASA Hyperspectral Infrared Imager (HyspIRI) Airborne 

Preparatory Campaign (Green et al., 1998; Hook et al., 2001). These sensors were flown 

simultaneously on the NASA ER-2 aircraft at an altitude of 20 km over six flight boxes in 

California to simulate future satellite imagery from HyspIRI (Lee et al., 2015). This study 

uses a spatial subset of imagery from the Santa Barbara flight box that includes nine of the 

eleven flightlines that were acquired with a 35º northeast-southwest orientation (Figure 4.1). 

Imagery was collected on 2013 Apr 11; 2013 June 6; 2013 Nov 23; 2014 Apr 16; 2014 June 

6; 2014 Aug 29; 2015 Apr 16; 2015 June 2; and 2015 Aug 24. Some flightlines were 

excluded or replaced due to technical errors when collecting the data, resulting in 79 AVIRIS 

and 79 MASTER images being used in the analysis presented here. NASA’s Jet Propulsion 

Laboratory (JPL) provided HyspIRI-like AVIRIS and MASTER products. For AVIRIS, this 

entails HyspIRI simulated reflectance products measuring 224 bands between 0.38 and 2.5 

µm with a 18 m spatial resolution (Thompson et al., 2015). For MASTER, the product was 

delivered with five emissivity bands and a land surface temperature (Ts) band at a 36 m 

spatial resolution (Gillespie et al., 1998; Hook et al., 2001; Hulley and Hook, 2011). The Ts 

retrievals have an overall accuracy ≤ 0.33 K and a noise equivalent differential temperature 

(NEdT) ranging from 0.15 – 0.74 K per band (Wetherley et al., 2018).  

In order to use AVIRIS and MASTER datasets together across flight dates, a series of 

additional preprocessing steps were required. AVIRIS products underwent additional pre-

processing steps detailed in Meerdink et al. (in prep). MASTER images were georeferenced 
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to correct locational errors of the entire multi-temporal image sequences. Acquired in the 

spring and fall of 2012, the National Agriculture Imagery Program (NAIP) digital 

orthophotos were used as a reference source for the world coordinates. These orthophotos 

were mosaicked and resampled to 36 m spatial resolution for MASTER and then used to 

collect ground control points. After pre-processing of AVIRIS and MASTER images was 

completed, the AVIRIS and MASTER images were layered into a single file. With an 

AVIRIS swath width of ~12km and MASTER swath width of ~40 km, any spatial areas that 

were not covered by both sensors were removed. The majority of clouds were manually 

masked out, but cirrus clouds still remain in some flightlines. 

4.2.3 Plant Species Information 

Reference data on the spatial distribution of dominant species and land cover types were 

collected both in the field and using AVIRIS and NAIP imagery and are detailed in Meerdink 

et al. (in prep) (Table 4.1). Reference polygons were used to extract Ts and topographic 

attributes from imagery and only pixels completely falling into a reference polygon were 

used to develop spectral libraries. Some species used in the aforementioned research were not 

included in this work due the coarser spatial resolution of MASTER imagery reducing the 

number of samples. Some species are consistently found growing in mixed patches and were 

treated as a single class (e.g. ARCA-SALE and ATCA-ERNA). The plant species 

classification was developed using the classifications derived in Meerdink et al. (in prep). 

This paper uses the plant species classifications from Spring 2013, Summer 2013, Spring 

2014, Spring 2015, and Summer 2015 imagery developed using spectral libraries from the 

same image date. These image dates were selected because overall classification accuracies 

were above 0.8 kappa and all flightlines were available. To develop a single plant species 
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classification map, the classification value mode for each pixel was determined using the five 

dates. To match MASTER spatial resolution, this classification map was resampled to 36 m 

spatial resolution using the mode for pixels to be aggregated. 

 

Table 4.1. Classes and plant species used in study with corresponding abbreviation and plant 

functional type. 

Species Code Leaf Duration Leaf Form Plant Form 

Adenostoma fasciculatum ADFA Evergreen Needleleaf Shrub 

Agricultural Residue AGRES Annual N/A Herb 

Artemisia californica and  

Salvia leucophylla 

ARCA-

SALE 

Deciduous and 

Deciduous 

Needleleaf and 

Broadleaf 
Shrub 

Arctostaphylos  spp. ARGL Evergreen Broadleaf Shrub 

Atriplex canescens and 

Ericameria nauseosa 

ATCA-

ERNA 

Deciduous and 

Deciduous 

Broadleaf and 

Broadleaf 
Shrub 

Baccharis pilularis BAPI Evergreen Broadleaf Shrub 

Brassica nigra BRNI Annual N/A Herb 

Ceanothus cuneatus CECU Evergreen Broadleaf Shrub 

Ceanothus megacarpus CEME Evergreen Broadleaf Shrub 

Ceanothus spinosus CESP Evergreen Broadleaf Shrub 

Citrus spp. CISP Evergreen Broadleaf Tree 

Eucalyptus spp. EUSP Evergreen Broadleaf Tree 

Irrigated Grasses IRGR Annual N/A Herb 

Juniperus californica JUCA Evergreen Needleleaf Tree 

Mediterranean Annual  

Grasses and Forbs 
MAGF Annual N/A Herb 

Persea Americana PEAM Evergreen Broadleaf Tree 

Pinus jeffreyi PIJE Evergreen Needleleaf Tree 

Pinus monophylla PIMO Evergreen Needleleaf Tree 

Pinus sabiniana PISA Evergreen Needleleaf Tree 

Pseudotsuga menziesii PSMA Evergreen Needleleaf Tree 

Quercus agrifolia QUAG Evergreen Broadleaf Tree 

Quercus berberidifolia QUBE Evergreen Broadleaf Tree 

Quercus douglasii QUDO Deciduous Broadleaf Tree 

Umbellularia californica UMCA Evergreen Broadleaf Tree 

4.2.4 Temperature Products  

It is common in the literature to use Ts-Ta as a proxy for plant stress (Moran et al., 

1994; Vidal et al., 1994; Vidal and Devaux-Ros, 1995). In order to develop a land surface 
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temperature minus air temperature (Ts-Ta) product, it was necessary to estimate air 

temperature within a 15-minute window for each image pixel. AVIRIS Level 1B products 

generated by JPL include an image with each pixel’s observation time. This observation time 

image was resized to 36 m spatial resolution and georeferenced. Air temperature was 

obtained from 800 weather stations available through the National Oceanic and Atmospheric 

Administration (NOAA) Meteorological Assimilation Data Ingest System (MADIS). Air 

temperature for the nine flight dates was binned into 15 minute intervals between the hours 

of 16:00 and 21:00 UTC, which corresponds to the range of flight times seen in observation 

time imagery. The station point data were interpolated using topographically informed 

interpolation in order to exploit the relationship between air temperature and elevation by 

using the environmental lapse rate (Willmott and Matsuura, 1995). Obtained through the 

NOAA Earth System Research Laboratory (ESRL), the environmental lapse rate for the 

image date was calculated using radiosonde data from the Vanderburg Air force base.  The 

environmental lapse rate for the nine dates varied between 2.42 X 10-3 ºC m-1 and 3.81 X 10-3 

ºC m-1. The estimated sea level air temperature at each station i was estimated from 

 𝑠𝑇𝑖 =  𝑇𝑖 +  𝛤𝑧𝑖 (4) 

where Γ is the environmental lapse rate for the image date,  𝑧𝑖 is the elevation at station i 

obtained the station data, and  𝑠𝑇𝑖 is the estimated air temperature at sea level for station i. 

Using the estimated sea level air temperature, simple kriging with spherical variograms was 

used to generate an air temperature image for each time-step and date. Every pixel’s 

collection time was matched to the closest air temperature time step and the corresponding 

estimated sea level air temperature. Air temperature at each pixel was estimated using 

elevation from the National Elevation Dataset (NED) according to 



88 

 

 𝑠𝑇𝑖 =  𝑇𝑖 −  𝛤𝑧𝑗 (5) 

where 𝑧𝑗 is the NED elevation at pixel j. The estimated air temperature for each pixel was 

then subtracted from MASTER’s Ts product to generate a Ts-Ta image. An example of the 

surface temperature, air temperature, and Ts-Ta image for 2015 June 2 is shown in Figure 4.4. 

 

Figure 4.4. A geographic subset from the 2015 June 2 date of surface temperature derived 

from MASTER imagery, estimated air temperature using station data, and the surface minus 

air temperature (Ts-Ta) product. 

The Temperature Condition Index (TCI) has been used successfully to monitor 

drought-related vegetation stress in India, Mongolia, United States, and globally (Bayarjargal 

et al., 2006; Bhuiyan et al., 2006; F. N. Kogan, 1995; Kogan, 1997; Sholihah et al., 2016; 
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Singh et al., 2003). This index was originally developed for the Advanced Very High 

Resolution Radiometer (AVHRR) and uses brightness temperature from 1985 - 1993. We 

altered the index for MASTER imagery over nine image dates. TCI was calculated for each 

species as: 

𝑇𝐶𝐼 = 1 − 
(𝑇𝑚𝑎𝑥 −𝑇)

(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
 (3) 

Where 𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛 are the maximum and minimum Ts-Ta value over the nine image dates 

for each species and T is the Ts-Ta for each pixel. Given this equation, the highest stress case 

is TCI = 1 and the lowest stress case is TCI = 0. This date and species specific TCI value was 

applied to the plant species classification image, resulting in a TCI distribution image with 

nine bands corresponding to each image date. The statistical difference in plant species Ts 

and TCI distributions were analyzed using ANOVA. 

4.2.5 Topographic Calculations 

In order to determine which topographic attributes are associated with stressed plants, 

nine topographic attributes were calculated for correlation analysis with TCI distributions 

(Table 4.2). The National Elevation Dataset (NED), assembled by the United States 

Geological Survey (USGS), is a ~10m spatial resolution raster product that was used to 

calculate the topographic attributes. The NED was used to calculate elevation in meters, 

slope in percent, and aspect in degrees. The elevation product was used to calculate the 

terrain ruggedness index (TRI) which provides a quantitative measure of topographic 

heterogeneity (Riley et al., 1999). For each pixel, the TRI value is calculated by the sum 

change in elevation between a grid cell and its eight neighbor pixels. The elevation and slope 

product was used to calculate the topographic wetness index (TWI) which is commonly used 

to quantify topographic control on hydrological processes (Beven and Kirkby, 1979). Using 
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ArcGIS, a flow direction raster was calculated using elevation. The flow direction raster was 

then used to calculated flow accumulation raster which finds the upslope contributing area 

for each pixel. TWI was then calculated using the flow accumulation and slope raster, 

adjusted by spatial resolution. 

While elevation and slope were used directly in the correlation, aspect was not 

because it is expressed as circular degrees clockwise from 0º to 360º, thus is difficult to 

quantitatively compare. Instead, three attributes were calculated from aspect imagery: north 

to south slope orientation (N-S; Cooper, 1998), west to east slope orientation (W-E; Cooper, 

1998), north-northeast to south-southwest orientation (NNE-SSW; Roberts and Cooper, 

1989). Values of N-S and W-E range from -1 to 1 and represent the extent to which a slope 

faces north (N-S = 1), south (N-S = -1), east (W-E = 1), or west (W-E = -1). NNE-SSW 

represents the extent to which a slope faces the typically cooler and wetter north-northeast 

orientation (NNE-SSW = -1) versus the hotter and dryer south-southwest orientation (NNE-

SSW = 1). It has been argued that aspect should not be considered without taking into 

account the interactions with slope (Stage, 1976). To account for this interaction, three 

additional attributes were calculated from aspect and slope imagery: cosine transformation 

(N-S A+S; Stage, 1976), sine transformation (W-E A+S; Stage, 1976), and cosine 

transformation adjusted for aspect (NNE-SSW A+S). Positive values of W-E A+S are 

associated with east facing slopes and negative values with west facing slopes. For N-S A+S, 

positive values are north facing slopes with negative values for south facing slopes. N-S A+S 

and W-E A+S will have a zero value for pixels on flat ground, but pixels on steep ground 

will have high weights for the sine and cosine of aspect. The last slope and aspect attribute is 

a combination of cosine transformation and the NNE-SSW aspect attribute. The aspect was 
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adjusted for north-northeast to south-southwest orientation and then the cosine 

transformation was applied. This results in positive values being associated with north-

northeast facing slopes and negative values south-southwest facing slopes. 

 

Table 4.2. Topographic attributes extracted from the National Elevation Dataset. α is aspect 

in radians and θ is percent slope. For TRI, xij is the elevation of each neighbor cell to cell 

x00. For TWI, As is the specific catchment area and β is the slope. For more details, see 

Section 4.2.6. 

Metric Full Name Formula References 

Elevation Elevation (m)   

Slope Slope (%)   

N-S North–south slope orientation cos 𝛼 (Cooper, 1998) 

W-E West–east slope orientation sin 𝛼 (Cooper, 1998) 

NNE-SSW 
North–northeast – south–southwest 

orientation 
cos(𝛼 − 30) 

(Roberts and Cooper, 

1989) 

N-S A+S Cosine Transformation 𝜃 ∗  cos 𝛼 (Stage, 1976) 

W-E A+S Sine Transformation 𝜃 ∗  sin 𝛼 (Stage, 1976) 

NNE-SSW 

A+S 

Cosine Transformation with  

north–northeast – south–southwest 

orientation 

𝜃 ∗  cos(𝛼 − 30) (Stage, 1976) 

TRI Terrain Ruggedness Index  [∑((𝑥𝑖𝑗 − 𝑥00)2)]

1
2
 (Riley et al., 1999) 

TWI Topographic Wetness Index ln (
𝐴𝑠

tan 𝛽
) 

(Beven and Kirkby, 

1979) 

 

4.3 Results 

4.3.1 Temperature Measures 

Species exhibited significantly different Ts distributions across seasons and among 

species (Figure 4.5). The majority of plant species pairs (59%) were significantly different 

for seven to nine of the image dates. Only BRNI and ADFA exhibited Ts distributions across 

all nine dates that were not significantly different. The November 2013 image date showed 
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the smallest number of significantly different species pairs with 60.9%. The April 2014 

image date showed the highest number of significantly different species pairs with 77.5%. 

Species pairs that did not have significantly different temperature distributions tended to 

share the same leaf duration: evergreen, deciduous, and annual. While species pairs that were 

significantly different tended to have different structure (herb vs. shrub vs. tree) and slightly 

less importantly leaf shape (needleleaf vs. broadleaf).  

The seasonal and species patterns expressed in Ts are accentuated for Ts-Ta and TCI. 

Figure 4.6 shows mean seasonal Ts, Ts-Ta, and TCI values for the three coolest and warmest 

plant species across the nine image dates. The three warmest plant species are JUCA, 

MAGF, and ATCA-ERNA with Ts around 45ºC while the three coolest plant species are 

PIJE, CESP, and UMCA with Ts around 30ºC. CESP and UMCA, two of the coolest species, 

are generally found in close proximity of the ocean on mesic north facing slopes, while PIJE 

grows at high elevations (>2000 m). The warmest species grow in exposed warm locations 

that do not experience the cooling effect of the ocean due to distance. There are also 

consistent seasonal and annual patterns across all species. For example, the November 2013 

imagery was consistently cooler than any other date captured due to the very late seasonal 

collection date.  

The differences between these species become more pronounced when the air 

temperature is taken into account, with the warmest species having Ts-Ta temperatures 

around 20ºC, while the coolest species exhibit Ts-Ta around 5ºC. When air temperature is 

considered it becomes apparent that plant species are experiencing less transpiration in June 

compared to August due to larger deviations in air temperature. While June consistently 

displays larger Ts-Ta, April and August dates do not show a consistent pattern across species. 
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In the case of JUCA, August dates show less stress compared to April dates while UMCA 

experiences the opposite. In addition to being warmer, JUCA, MAGF, and ATCA-ERNA 

also experience a larger range of Ts-Ta throughout the year compared to the coolest species. 

 

Figure 4.5. The number of significantly different land surface temperature (Ts) distributions 

across nine image dates. 

Developed using Ts-Ta, perhaps unsurprisingly the mean seasonal TCI values display 

similar patterns to Ts-Ta. Scaled from least amount of stress (0) to most amount of stress (1), 

this index shows how a particular date compares to the minimum and maximum amount of 



94 

 

stress across all dates. The minimum Ts-Ta to calculate TCI for each species was found in the 

November 2013 imagery for the majority of species, while the maximum Ts-Ta was found for 

most species in the June 2013 and June 2014 imagery. In general, April TCI values were 

much more consistent across years for a species compared to summer or fall imagery. For all 

species, the November 2013 imagery showed plants the least stressed, while June dates for 

all years showed the largest amount of stress.  

 

Figure 4.6. Seasonal mean land surface temperature (Ts), Ts-Ta, and Temperature Condition 

Index (TCI) values for three coolest (PIJE, CESP, and UMCA) and three warmest (JUCA, 

MAGF, and ATCA-ERNA) plant species.  

4.3.2 Temperature Condition Index (TCI) Spatial Distribution 

TCI distributions fluctuated across seasons, years, and flightlines (Figure 4.7). 

Seasonally, June image dates have the highest TCI values and April image dates have the 

lowest. The November 2013 date had the lowest TCI values of all nine dates, which is due to 

later image collection. After three years of severe drought, the 2015 images had more 

stressed vegetation compared to 2013 and 2014. The distribution of TCI values across a 
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single date show flightline edges, which is due to the fact that airborne imagery was collected 

over a four-hour period. This range of collection times captures changes in sun angle and also 

diurnal patterns in plant temperatures. 

TCI distributions were not equally distributed across the landscape and were highly 

dependent on the ecoregion. The Santa Ynez – Sulphur Mountain ecoregion, which has the 

closest proximity to the ocean, had generally less stressed vegetation compared to other 

ecoregions. The San Emigdio Mountain ecoregion, a high-elevation conifer forest, also had 

consistently low TCI plants across seasons and years. The Caliente Range – Cuyama Valley 

ecoregion, the farthest ecoregion from the ocean, had consistently higher TCI values and 

more stressed plants across all nine image dates. The largest ecoregion in the study area was 

the San Rafael – Topatopa Mountains which experienced the largest range in TCI values and 

plant stress levels. Consistently the central portion to western half of the ecoregion had more 

stressed plants compared to the eastern half. The central region of the San Rafael – Topatopa 

Mountains, an extremely remote and rugged area, shows elevated TCI values for all dates 

compared to other regions.  

The majority of TCI pixel values fell between 0.25 – 0.75 across the nine dates 

(Figure 4.8). The highest TCI values (0.75 – 1.00), which indicate high stress, are found in 

the June 2014 and August 2015 image dates. Compared to other dates and particularly fall 

dates, August 2015 had elevated TCI values with the majority of pixels falling into the 0.50 – 

0.75 range. Out of all nine dates captured, June 2014 experienced the most stress with 

approximately 75% of pixels having TCI values from 0.50 – 1.00. June 2014 also had the 

highest daily maximum air temperature experienced out of all nine dates. November 2013 

experienced the lowest stress with 92% of pixels having 0.00 – 0.50 TCI values. This is also 
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captured the frequency in which a pixel had a TCI greater than 0.75 (Figure 4.9 top) and 

greater than 0.5 (Figure 4.9 bottom) highlighting geographic areas that have been perpetually 

stressed. Approximately 1.25% of pixels had 7 to 9 dates with TCI values greater than 0.75, 

but this number jumps to 29.4% with TCI values greater than 0.50. The majority of 

highlighted stressed areas are located within the Los Padres National Forest. The exceptions 

are stressed areas in the Santa Ynez Valleys and Hills and Caliente Range – Cuyama Valley 

ecoregions which are owned mostly by private individuals.  

 

Figure 4.7. Temperature condition index (TCI) for nine image dates with ecoregion’s 

boundaries are shown in black. 
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Figure 4.8. For each of the nine dates, percent of pixels falling into the four categories of 

temperature condition index (TCI) ranges. 



98 

 

 

Figure 4.9. The number of image dates a pixel exceeded a temperature condition index (TCI) 

value of 0.75 (top) and 0.50 (bottom). 
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4.3.3 Topographic effects 

In an attempt to explain why particular areas were more or less stressed, TCI was 

correlated with collection time and topographic attributes that vary across a landscape 

(Figure 4.10). Out of the nine topographic attributes calculated, the attributes with the 

strongest correlation to TCI values were related to N-S and NNE-SSW facing slopes. A south 

or south-southwest facing slope is associated with high stress plants. The interaction between 

slope and aspect, as measured with A+S attributes, was not more strongly correlated than 

aspect alone showing that the relationship between stress and topographic attributes is mainly 

driven by aspect. For aspect attributes, the August 2015 date represents a unique departure 

from other dates collected. The W-E attribute was positively correlated with TCI, while the 

NNE-SSW attribute lost correlation strength showing that east facing slopes were strongly 

correlated with high stress plants more than south-southwest facing slopes.  

The other terrain attributes did not have strong correlations with distributions of TCI, 

but the correlations were found to be significant. Slope was found generally to have a 

negative correlation, so that steeper slopes experience lower stress. The TWI had a weak 

positive relationship with stress showing that areas with higher catchment have more stress. 

However, this is probably more attributable to the fact that high TWI values are associated 

with low slopes which has a stronger correlation with TCI. The terrain ruggedness index 

(TRI) had a weak correlation with TCI values, except for November 2013 where there was a 

strong negative correlation associating high ruggedness with low stress. The strongest 

correlation between elevation and TCI was found for the April 2014 and June 2014 dates 

where higher elevation was associated with higher stress. In addition to topographic 

attributes, we correlated a pixel’s collection time with the resulting TCI value. The image 
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collection time had a strong negative correlation with temperature variation on June 2013 and 

2015 where later (~22 UTC or 3 pm PST) collection times resulted in lower stress. Image 

collection time had a strong positive correlation with TCI on August 2014 where later 

collection times resulted in higher stress. However, on this date collection times ended earlier 

in the day around 20 UTC or 1 pm PST.  

 



101 

 

Figure 4.10. Correlations of topographic attributes and temperature condition index (TCI). 

Asterisk (*) denotes significance at p < 0.05. 

4.4 Discussion 

4.4.1 Patterns of plant species seasonal temperature distributions 

In order to understand how plant species are responding to drought conditions, we 

characterize dominant species temperature distributions. This produced an assessment of how 

species Ts and Ts-Ta varies annually throughout a prolonged drought and across seasons. 

These species have evolved adaptations that are common in a Mediterranean climate where 

precipitation is the limiting growth factor (Meentemeyer et al., 2001) and summer drought 

can result in 2 -11 months of water deficit (Pavlik, 1991). Within this study area are two 

ecoregion provinces: 1) chaparral forest/shrub and 2) open woodland, shrub, coniferous 

forest/meadow. These ecoregion provinces have different plant communities that have 

different adaptations for surviving prolonged periods of water stress, which we see reflected 

in the temperature distributions across dates.  

The chaparral forest and shrub province covers the Santa Ynez-Sulphur Mountains 

and Santa Ynez Valleys and Hills sub-regions (Figure 4.1). These provinces had consistently 

lower TCI distributions across the nine dates. Chaparral plant species are adapted to 

withstand xylem cavitation and mechanical stresses that occur during the annual rainless 

period (Jacobsen et al., 2007). In fact, chaparral species have key physiological adaptions 

that maximize the capture and utilization of water and light which evolved as resistance to 

cavitation, thick evergreen leaves, and root to shoot ratios (Jacobsen et al., 2007; Kummerow 

et al., 1977; Meentemeyer et al., 2001). These adaptions translate into lower plant 

temperatures and less stress over the dates observed. In general, chaparral species, such as 
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CESP, had the lowest Ts-Ta distributions. While all chaparral species have heightened 

resistance, species do vary in their extent to withstand extended dry conditions by having 

different biomechanical properties such as stem mechanical strength, root depth, fiber 

properties, and post-fire regeneration (Canadell et al., 1996; Jacobsen et al., 2007). These 

biomechanical differences among species have been found to be expressed in canopy 

temperature in deciduous tree forests (Scherrer et al., 2011). For these chaparral species, the 

biomechanical differences translate into significantly different temperature distributions. For 

example, two chaparral shrubs, Baccharis pilularis (BAPI) and Adenostoma fasciculatum 

(ADFA) have a rooting depth maximum of 3.2 and 7.6 m respectively (Canadell et al., 1996; 

Hellmers et al., 1955). BAPI experienced mean Ts-Ta values greater than 15ºC for three 

dates, while ADFA did not have any mean Ts-Ta values exceeding 13ºC. A greater rooting 

depth allows plants to access deeper water and allows them to keep stomata open, reducing 

plant temperatures and extending growth into the dry season (Gardner, 1983). 

The open woodland, shrub, coniferous forest/meadow province covers the San 

Rafael-Topatopa Mountains, Interior Santa Lucia Range, Northern Transverse Ranges, 

Caliente Range-Cuyama Valley, and San Emigdio Mountains sub-regions (Figure 4.). This 

province has a large elevation gradient ranging from 800m to 2700m and is not in close 

proximity to the ocean. Due to this large elevation gradient, species at elevations < 1400 m 

exhibit very different adaptations to water and heat stress than species in the chaparral forest 

and shrub province. The three species with the largest Ts-Ta difference (MAGF, ATCA-

ERNA, JUCA) belong to this province at lower elevations. For Mediterranean annual grasses 

and forbs (MAGF), the start and end of the growing season is completely dictated by rainfall 

patterns (Bartolome et al., 2007; Xu and Baldocchi, 2004), with peak biomass generally 
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occurring during late spring when most of the available soil moisture has been used (George 

et al., 2001). By late summer, MAFG appears highly stressed according to the TCI but has 

actually fully senesced and is no longer transpiring. For annual species, such as MAGF and 

BRNI, the TCI index is misleading because it is unable to determine when a plant has 

actually died instead of being water stressed. As a halophyte, Atriplex canescens (ATCA) 

uses the saline soils in this area to lower leaf area and growth rate, which decreases the rate at 

which soil water is depleted, ultimately increasing the longevity of plants (Flowers and Yeo, 

1986; Glenn and Brown, 1998). Juniperus californica (JUCA) is found on semi-arid leeward 

slopes with open crowns (Minnich, 2007) and belongs to a genus that is considered among 

the most resistant in the world to water-stress induced xylem cavitation (Maherali et al., 

2004; Willson et al., 2008).  

Found in elevations greater than 1400m, the open woodland, shrub, coniferous 

forest/meadow province also has one of the species that experienced minimal differences in 

Ts-Ta, Pinus jeffreyi (PIJE). Restricted to high elevations to achieve preferred growing 

conditions, this species is deeply rooted allowing for the species to access bedrock water 

throughout the growing season (Hubbert et al., 2001; Rose et al., 2003). Access to a reliable 

water supply has been linked to relatively high values and small fluctuations of predawn 

xylem pressure potential which results in PIJE being considered one of the most drought 

tolerant conifers (Delucia et al., 1988; Delucia and Schlesinger, 1991). PIJE did not 

experience prolonged periods of stress in this study area or time frame, but in other regions 

of Southern California this species’ response to climatic factors has been a concern. In the 

San Bernardino mountains, leeward south-facing slopes of PIJE stands have been 

experiencing mass mortality that is likely due to climate forcing (Minnich et al., 1995). 
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Additionally, in the adjacent Santa Rosa mountain range, PIJE distributions increased in 

elevation by 28 m from 1977 to 2007 due to climate shifts (Kelly and Goulden, 2008). While 

conifers such as PIJE are drought tolerant, species such as JUCA are able to outcompete 

conifers by maintaining high maximum leaf conductance at very low soil water potentials 

which can strongly deplete soil water to a depth of 2 m (Delucia et al., 1988). 

4.4.2 Mapping plant stress 

Using imagery collected over California’s 2013 – 2015 drought, we developed a 

temperature condition index (TCI) to capture plant species water stress across the landscape. 

Approximately 30% of the study area experienced high stress for seven to nine of the dates 

observed. Our analysis showed that June 2014 and August 2015 contained the highest 

amount of stress based on TCI values. In this region it would be expected that plant would 

experience more stress in August compared to June increase water deprivation. However, 

TCI is only a snapshot of a plant’s current stress and leaf temperatures are highly influenced 

by the environmental conditions of that day (Gates, 1968; Jones, 2014). It is not a direct 

indication of repeated or cumulative stress.  For example, 2014 August 29 and 2015 August 

24 had similar daily maximum air temperatures around 26ºC, but 2014 had higher wind 

speeds (13 m/s vs. 3.6 m/s; NOAA MADIS). Although plant temperature and environmental 

conditions have complex feedbacks, laboratory experiments found that leaf temperatures 

decrease with increasing wind speeds and at the plant this may result in a decrease of water 

usage (Gates, 1968). So while the August dates had similar air temperatures and probably 

similar water availability, plants in the 2014 date experienced less stress then 2015 due to 

different wind speeds on that particular day measured. 
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Not only does plant stress increase a plant’s susceptibility to insects and disease 

(Jackson, 1986; Schoeneweiss, 1975), but repeated water stress on plants has been linked to 

an increase in fire risk for the landscape (Dennison et al., 2003; Maselli et al., 2003; 

Verbesselt et al., 2007). Plant stress alone is not an indication of fire risk for an area because 

of the complex interaction of human, ecological, and climatic factors (Vidal et al., 1994). 

However, this area is already prone to wildfires with many areas having a time since last fire 

of less than 10 years (Figure 2; Moritz, 1997). Additionally, the frequency and size of fires 

has been increasing in the Los Padres National Forest (Moritz, 1997; Syphard et al., 2011). In 

our analysis, June 2014 and August 2015 dates showed the highest amount of stress across 

the landscape. Since June to September is the maximum fire danger period for this area, 

higher vegetation dryness due to water stress becomes a major predisposing factor for fire 

occurrence (Maselli et al., 2003).  

Due to the increased fire risk in Mediterranean ecosystems (Fernandez-manso et al., 

2016; Moritz, 1997; Mouillot et al., 2002; Vidal et al., 1994) and the predicted increase in 

wildfires due to climate change (Mastrandrea and Luers, 2012; Moriondo et al., 2006; 

Scholze et al., 2006), there has been a strong effort to predict the occurrence of wildfires. The 

statistical relationship between stress indices similar to TCI and fire frequency has been 

experimentally confirmed by several works. Maselli et al. (2003) found using NOAA 

Advanced Very High Resolution Radiometer (AVHRR) imagery that Normalized Difference 

Vegetation Index (NDVI) decreases in Mediterranean areas were linked to increased 

probability of fire occurrence during summer months. Using the Landsat imagery and an 

index based on the combination of vegetation index and Ts-Ta, researchers successfully 

located areas where fire risk was high and predicted fire events (Vidal and Devaux-Ros, 
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1995). Plant stress indices, such as TCI, may provide opportunities for parameterizing 

climate models or fire weather monitoring.  

4.4.3 Effects of topography on plant stress 

Topography, such as aspect, slope, and elevation, are useful surrogates for the spatial 

and temporal distributions of factors such as solar radiation and precipitation (Stage and 

Salas, 2007). This is especially true in Southern California where ecosystems are water-

limited (Meentemeyer et al., 2001). The amount of solar radiation and precipitation an area 

receives during the year controls plant distributions, composition, and richness (Somers et al., 

2015). Due to these relationships, we correlated topographic attributes to distributions of TCI 

across dates to assess the strength of their relationship to varying amounts of stress.  

In our study, aspect was found to be highly correlated with plant stress which strongly 

impacts the amount of solar radiation a surface receives (Jones, 2014; Nunez, 1980). 

Ultimately the amount of solar radiation a surface receives impacts soil temperatures (Jones, 

2014). In the northern hemisphere, south-southwest facing slopes receive more solar 

radiation compared to north-northeast facing slopes (Dubayah and Rich, 1995; Nunez, 1980). 

In agreement with this study, other studies have found that stressed plants were largely 

associated with south-southwest facing slopes (Guarín and Taylor, 2005; Paz-Kagan et al., 

2017; Stephenson, 1998). In southern California, this association becomes more pronounced 

during the spring and summer due to a larger difference in energy balance and potential 

evapotranspiration between north and south facing slopes (Miller and Poole, 1983). In our 

analysis, April and June dates expressed a stronger correlation between TCI and N-S values. 

Plants located on south facing exposures are not only more stressed, but are also most 

susceptible to fire due to an increased likelihood of ignition caused by lower soil moisture 
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content and when burned experience the highest burn severity (Ireland and Petropoulos, 

2015). North facing exposures, in addition to being less stressed, also recover faster when 

burned due to more favorable moisture conditions (Ireland and Petropoulos, 2015).  

While aspect was found to have the strongest correlation with plant stress, 

expressions of aspect that incorporate interactions with slope also had strong correlations. 

These topographic attributes capture the effect aspect has on the amount of solar radiation a 

surface receives with increased slopes (Jones, 2014; Stage, 1976). In the literature, slope 

steepness displays diverse patterns since steep slopes may be related to high runoff and 

shallower slopes are related to low runoff and poor water drainage (Bennett et al., 2015; 

Guarín and Taylor, 2005). Additionally, for steeper slopes the slight advantage of a decrease 

in incoming solar radiation is likely offset by decreasing soil depth (Stage, 1976). Southwest 

and west facing aspect with shallow slopes were found to have high tree mortality in 

southern Sierra Nevada (Paz-Kagan et al., 2017). While another study in the Sierra Nevada 

found that the density of dead trees was higher on north slopes compared to south slopes 

(Guarín and Taylor, 2005).  

4.4.4 Considerations when using airborne thermal imagery 

An unavoidable characteristic of using large airborne thermal datasets is the temporal 

variation in image collection. Throughout the day, a plant’s rate of evaporation and 

transpiration varies (Jones, 1999; Jones and Leinonen, 2003; Jones and Schofield, 2008). It is 

more efficient for a plant to restrict periods of open stomata and rapid photosynthesis to those 

times when potential evaporation is low, particularly in the morning, and close stomata 

during mid-day/afternoon which will improve water use efficiency (Jones, 2014). As stomata 

close and evaporation rates decrease to conserve water, a plant’s temperature increases 
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(Jones and Leinonen, 2003; Jones and Schofield, 2008). Because of this relationship, diurnal 

patterns of plant temperatures and the difference in plant temperatures and air temperature 

are not static throughout the day. Plants are rarely at air temperature and are often warmer 

than the air during the day and cooler at night (Tanner, 1963). This is captured in diurnal 

patterns of latent heat flux with an increase throughout the morning and a peak around mid-

day (Anderson et al., 1984; Verma et al., 1989, 1986). In our analysis, we captured this 

diurnal pattern in plant temperatures and found the timing of pixel collection was correlated 

with Ts and, ultimately, plant stress measured with TCI. Since flightlines were not all 

collected at the same time, patterns of plant stress captured with TCI will include hourly 

variability in transpiration rates. 

In our analysis, we restricted our analysis to natural vegetation and assumed that 

vegetation or plant species compose an entire 36 m pixel. However, when using coarser 

resolution thermal imagery, Ts has been shown to be highly influenced by sub-pixel materials 

(Coates et al., 2015; Wetherley et al., 2018). The presence of soil, rock, or manmade surfaces 

can be a key source in Ts variability due to material properties such as albedo, thermal 

conductivity, moisture content, and structure (Oke, 1988). Variability within a plant species’ 

temperature has been found to be linked to the percent of green vegetation present in a pixel 

(Coates et al., 2015; Roberts et al., 2015). The Vegetation Condition Index (VCI) and 

Vegetation Temperature Condition (VTC) incorporate percent green vegetation fractional 

cover by using Normalized Difference Vegetation Index (NDVI) in addition to temperature 

(Kogan, 1997; Singh et al., 2003; Wan et al., 2004). While NDVI has been shown to be 

strongly correlated with percent green vegetation, it does not directly determine the sub-pixel 

materials or amounts (Carlson and Riziley, 1997; Jiang et al., 2006; Montandon and Small, 
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2008). Instead future works should include incorporating percent green vegetation by using a 

spectral mixture analysis (Settle and Drake, 1993). 

The data used in this study is a precursor to the future Hyperspectral Infrared Imager 

(HyspIRI) mission, as it was identified in the 2017 decadal survey (National Academies of 

Sciences and Medicine, 2018). The HyspIRI mission would provide hyperspectral and 

thermal imagery with global coverage of Earth’s ecosystems every 16 days (Lee et al., 2015). 

Additionally, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) was launched in June 2018 with the primary goal of measuring plant 

temperatures in order to understand how much water plants need and how they respond to 

stress. The sensor was installed on the International Space Station (ISS) providing data with a 

38-m in-track by 69-m cross-track spatial resolution and a predicted temperature sensitivity 

of ≤0.1 K (Lee et al., 2015). Our dataset only captures a snapshot of plant stress which is 

highly influenced by the environmental characteristics of that day and does not capture 

continued and prolonged stress throughout a year. The HyspIRI revisit time would allow 

researchers to monitor yearly trends of plant stress while accounting for the daily variability 

seen in plants’ Ts. With the unique orbit of the ISS, composite ECOSTRESS data can be used 

to develop patterns of daily changes Ts and evapotranspiration rates. These unprecedented 

datasets would allow for the continuous monitoring of plant stress at the species level, which 

can ultimately become a tool for managing natural vegetation across generally inaccessible 

areas or preparing and protecting communities from wildfires.  

4.5 Conclusion 

In this study, we answered three questions surrounding plant species during the 

extreme Southern California drought that ranged from 2012 – 2015. First, we asked whether 
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plant species exhibit significantly different temperature distributions across nine dates in 

2013 - 2015. We found that 68 – 82% of species pairs were significantly different among 

each other across spring, summer, and fall imagery. Species pairs with different structures 

(herb vs. shrub vs. tree) resulted in the largest temperature distribution differences. Second, 

we asked how is plant stress distributed across that landscape during the extreme drought. 

Using plant species classification maps derived from hyperspectral data, we found that stress 

was not evenly distributed across the landscape. Open shrub/meadow ecoregion provinces 

had larger Ts-Ta distributions compared to chaparral ecoregion provinces, which are 

generally located within closer proximity to the ocean. The June 2014 and August 2015 

imagery contained the largest amount of stress across the landscape. Finally, we asked if 

topographic attributes were associated with patterns of high stress. We found that south and 

south-southwest facing slopes had the strongest correlation with high stress TCI values 

across all nine dates, while other topographic attributes were not strongly correlated to plant 

stress.  

Together these findings suggest that we can use hyperspectral and land surface 

temperature data to monitor plant species’ response to drought conditions across the 

landscape. During 2012 – 2015, California experienced an extreme drought in which the 

implications are still forthcoming. This research captured the spatial and temporal patterns of 

plant stress in Southern California, which can be used to help manage and monitor natural 

vegetation that is generally inaccessible and remote. Continuing to develop and refine 

methods for evaluating temporal patterns of plant species’ stress is a necessary step towards a 

deeper, quantitative understanding of the functioning natural environment.  
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5. Conclusion 

5.1 Summary of Research 

Based on these results, synergies between hyperspectral VSWIR and TIR imagery 

can be used to extract crucial information about temporal and spatial distributions of plant 

species and stress. In Chapter 2, I found that hyperspectral VSWIR imagery could be used to 

discriminate plant species accurately across annual and phenological changes. Overall, 

classification accuracy was affected by a species’ temporal spectral variability. Spectral 

libraries of single dates performed better than multiple date libraries, likely because they 

decreased within-class variance by reducing phenological variability that occurs across time. 

Spectral libraries that did not contain spectra from the classified image performed poorly, 

which indicates the limited applicability of transferring existing spectral libraries to future 

work. This research advances techniques for monitoring species across large spatial and 

temporal scales using proposed sensors like HyspIRI and ultimately supports many research 

agendas that are tracking ecosystem health and changes as a result of climate. 

In Chapter 3, I found that hyperspectral TIR imagery could not be used to 

discriminate plant species at the canopy level, but species’ canopy temperatures did exhibit 

significantly different distributions. Using laboratory leaf measurements, I found that 

approximately one third of the species showed distinct spectral separation from other species. 

However, at the canopy scale most species were not spectrally separable. A simple physical 

scaling model, using leaf inclination and leaf area index, did not accurately reproduce canopy 

emissivities, suggesting other variables are necessary for scaling leaf measurements to the 

canopy. While emissivity measurements do not appear to be useful for plant species research, 

the canopy temperature retrieved from the TIR imagery do show promise for future 
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vegetation research. We found that species canopy LSTs displayed unique distributions 

across dates and among species. Many of these distributions could be explained by canopy 

geometry with tree density and height playing key roles. Additionally, species canopy 

temperatures were highly influenced by a tree’s surrounding environment with neighboring 

trees creating cooler LST and pavement creating warmer LST conditions. This study 

represents the first look at vegetation characteristics using NASA’s HyTES TIR sensor, 

opening the door for future remote sensing vegetation studies including the recently launched 

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 

mission. 

In Chapter 4, I found the combined use of hyperspectral VSWIR and surface 

temperature imagery can be used to monitor plant species’ stress throughout California’s 

2013 – 2015 drought. Using the fused imagery, the temperature condition index (TCI) was 

calculated to measure plant stress by using plant species’ surface minus air temperature 

distributions across dates. Overall, 68 – 82% of species pairs exhibited significantly different 

temperature distributions across the nine dates of imagery covering the drought. Plant stress 

was not evenly distributed across the landscape or time with lower elevation open 

shrub/meadows and June imagery capturing the largest amount of stress. Highly stressed 

plants were correlated with south or south-southwest facing slopes, while other topographic 

attributes were weakly correlated with TCI. Our results show that by using thermal and 

hyperspectral measurements we can monitor plant stress temporally and across ecoregions. 

This work supports improved monitoring of natural landscapes, with emphasis on areas 

prone to continued drought and high risk of wildfires. 
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5.2 Ongoing research and future directions 

The results of this dissertation can be immediately employed in a variety of ongoing 

and planned science missions including Surface Biology and Geology (SBG), Environmental 

Mapping and Analysis Program (EnMAP), National Ecological Observatory Network 

(NEON), Hyperspectral Thermal Emission Spectrometer (HyTES), and ECOsystem 

Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). There is 

considerable room for growth in plant species characterization using either hyperspectral 

VSWIR imagery, hyperspectral TIR imagery, or fused hyperspectral VSWIR and broadband 

TIR imagery.  

In Chapter 2, we successfully used hyperspectral VSWIR imagery to classify plant 

species across nine dates. However, we only used one classification method and there are 

many other types of classifiers available. In particular, future research should include 

classifiers that are capable of handling non-gaussian data due to the nature of VSWIR 

vegetation signatures. These classifiers could include support vector machine (SVM; Colgan 

et al., 2012; Jones et al., 2010) or generative adversarial networks (Han et al., 2017; He et al., 

2017). Additionally, our research found that spectral libraries are not portable across dates. 

Future research needs to be directed towards handling large temporal hyperspectral datasets 

so that comparisons across years and seasons would be feasible. Perhaps under similar 

conditions, such as soil moisture and lighting, spectral libraries would be transferrable across 

dates.  Another way to handle temporal classification is to move away from the use of 

spectral libraries and instead rely on reference polygons. We believe there is a need for 

starting a public geodatabase of reference polygons and locations of species and classes that 

can be used for any research application, sensor, or time period. The development of such a 
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database would provide a validation and training dataset that can be used across all remote 

sensing platforms for any application. 

Chapter 3 demonstrated the abilities of the HyTES sensor for characterizing plant 

species. To our knowledge, our work is only the second study to examine plant species’ high 

spectral resolution emissivities using airborne imagery (Ribeiro Da Luz and Crowley, 2010). 

Most hyperspectral TIR research is restricted to the leaf level and currently relationships 

developed using leaf emissivities will not be directly translatable to the canopy for future 

airborne or spaceborne missions (Ribeiro Da Luz and Crowley, 2007). Future research 

should explore the use of radiative transfer models to scale leaf level measurements to 

canopy level in the TIR domain (Francois et al., 1997; Jacob et al., 2017; Olioso, 1995; 

Snyder and Wan, 1998; Verhoef et al., 2007). In our research, we found the species exhibit 

unique temperature distributions that are linked to canopy structure and surrounding 

attributes. However, it is necessary to have a thorough examination of the seasonality and 

magnitude of drivers for species’ canopy temperature, which would be of particular interest 

to urban tree planning and modelling (Leuzinger et al., 2010, 2005; Leuzinger and Körner, 

2007). 

In Chapter 4, we monitored plant stress across California’s severe 2013 – 2015 

drought. Variability within a plant species’ temperature has been found to be linked to the 

percent of green vegetation present in a pixel (Coates et al., 2015; Roberts et al., 2015). 

Future research should incorporate the percent of non-photosynthetic vegetation in pixels for 

a more robust characterization of drought patterns. For example, the Vegetation Condition 

Index (VCI) and Vegetation Temperature Condition (VTC) incorporate percent green 

vegetation fractional cover by using Normalized Difference Vegetation Index (NDVI) in 
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addition to temperature (Kogan, 1997; Singh et al., 2003; Wan et al., 2004). Instead of using 

a vegetation index to approximate percent green vegetation, AVIRIS imagery can be used 

with a spectral mixture analysis (SMA) to estimate composition (Roberts et al., 1998). This 

research was performed on a regional scale, but could be scaled globally with the launch of a 

spaceborne hyperspectral sensor. The proposed SBG satellite mission would be equipped to 

discern the plant species distributions and physiological functions. Combined with existing 

platforms that measure canopy temperatures, such as ECOSTRESS, this research could be 

scaled to monitor drought conditions globally.  

Based on these results, I conclude that the combined use of hyperspectral VSWIR and 

TIR imagery can produce unique insights into plant species’ temporal and spatial variability 

over a period of increasing water stress. Research indicates that only 30 years of warmer 

temperatures has already affected the phenology, distribution, range, dynamics, and 

composition of plant species (Walther et al., 2002). Furthermore, predictions of future 

climate change are highly variable which exacerbates our uncertainty about future 

trajectories for ecosystems. Due to these pressing changes, it is important to develop 

techniques that utilize spaceborne platforms to quantify and characterize ecosystems at the 

plant species level (Ustin, 2013). Generating maps of plant species using a global imaging 

spectrometer and multi-spectral TIR sensor gains the scientific community knowledge of 

composition and spatial extent of dominant plant species within an ecosystem. This 

information is necessary for many research agendas that are tracking ecosystem health and 

changes (Lawrence and Labus, 2003; Riaño et al., 2002; Tane et al., 2018a; Underwood et 

al., 2003). Furthermore, greater understanding of the spatial and temporal variability of 

canopy temperature will increase our knowledge of vegetation energy balance and functions. 
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Analysis of canopy temperature will aid global ecosystem modeling efforts by decreasing 

uncertainties of model inputs (Goodenough et al., 2006; Schimel et al., 2014). Fusing 

hyperspectral VSWIR and TIR imagery together will improve efforts to monitor ecosystems 

at large spatial and temporal scales and ultimately contribute to our understanding of how 

climate change is affecting the world’s ecosystems.  
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A. Appendix: Supplementary materials for Chapter 2: Classifying 

California plant species temporally using airborne hyperspectral imagery 

 

Figure A.1. Spectral correction factors applied to imagery for radiometric normalization.  
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Figure A.2. Plant species classification using single date spectral library for 2013 spring 

imagery. 
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Figure A.3. Plant species classification using single date spectral library for 2013 summer 

imagery. 
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Figure A.4. Plant species classification using single date spectral library for 2013 fall 

imagery. 
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Figure A.5. Plant species classification using single date spectral library for 2014 spring 

imagery. 
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Figure A.6. Plant species classification using single date spectral library for 2014 summer 

imagery. 



123 

 

 

Figure A.7. Plant species classification using single date spectral library for 2014 fall 

imagery. 



124 

 

 

Figure A.8. Plant species classification using single date spectral library for 2015 spring 

imagery. 
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Figure A.9. Plant species classification using single date spectral library for 2015 summer 

imagery. 
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Figure A.10. Plant species classification using single date spectral library for 2015 fall 

imagery. 
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Table A.1. Single date spectral library classification with minimum, mean, maximum overall 

and kappa classification accuracy calculated from 50 iterations. 

Library 

Name 

Image 

Date 

Overall Kappa 

Min Mean Max Min Mean Max 

S
p
r-

2
0
1
3
 S

in
g
le

 D
at

e 

Spr 2013 83.64 85.08 86.49 0.83 0.84 0.86 

Sum 2013 33.44 37.90 43.67 0.31 0.35 0.41 

Fall 2013 23.44 26.23 28.31 0.20 0.23 0.25 

Spr 2014 36.99 40.17 45.52 0.35 0.38 0.43 

Sum 2014 16.48 19.46 22.55 0.14 0.17 0.20 

Fall 2014 23.49 26.58 29.19 0.21 0.24 0.26 

Spr 2015 32.08 36.79 40.24 0.30 0.34 0.38 

Sum 2015 28.88 33.36 38.60 0.26 0.30 0.35 

Fall 2015 16.72 20.51 23.94 0.15 0.19 0.22 

S
u
m

-2
0
1
3
 S

in
g
le

 D
at

e 

Spr 2013 29.82 33.08 36.06 0.27 0.30 0.34 

Sum 2013 80.13 81.79 83.51 0.79 0.81 0.83 

Fall 2013 23.67 26.13 28.00 0.21 0.23 0.25 

Spr 2014 24.04 29.52 34.30 0.22 0.28 0.32 

Sum 2014 25.22 27.31 29.84 0.23 0.25 0.27 

Fall 2014 25.19 29.72 34.64 0.23 0.27 0.32 

Spr 2015 35.61 38.94 43.36 0.33 0.37 0.41 

Sum 2015 28.83 33.47 38.50 0.26 0.31 0.36 

Fall 2015 21.37 26.37 31.92 0.19 0.24 0.30 

F
al

l-
2
0
1
3
 S

in
g
le

 D
at

e 

Spr 2013 20.13 22.79 26.25 0.17 0.20 0.23 

Sum 2013 22.13 26.60 30.10 0.19 0.24 0.27 

Fall 2013 76.90 79.15 80.75 0.76 0.78 0.80 

Spr 2014 15.49 18.17 22.61 0.13 0.15 0.20 

Sum 2014 12.62 16.54 21.60 0.09 0.14 0.19 

Fall 2014 32.54 37.49 43.04 0.29 0.34 0.40 

Spr 2015 15.88 21.83 27.81 0.13 0.19 0.25 

Sum 2015 21.51 26.57 31.68 0.18 0.24 0.29 

Fall 2015 26.61 32.16 38.70 0.23 0.29 0.36 

S
p
r-

2
0
1
4
 S

in
g
le

 D
at

e 

Spr 2013 7.17 9.24 13.02 0.04 0.06 0.10 

Sum 2013 8.41 10.38 13.58 0.05 0.06 0.09 

Fall 2013 18.92 21.88 25.06 0.16 0.19 0.22 

Spr 2014 83.41 84.93 87.13 0.83 0.84 0.87 

Sum 2014 20.63 24.28 28.22 0.18 0.22 0.26 

Fall 2014 33.55 36.00 39.02 0.31 0.34 0.37 

Spr 2015 37.72 40.74 43.89 0.35 0.38 0.42 

Sum 2015 42.60 45.30 47.82 0.40 0.43 0.46 
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Fall 2015 33.37 39.27 42.38 0.31 0.37 0.40 

S
u
m

-2
0
1
4
 S

in
g
le

 D
at

e 

Spr 2013 18.59 22.01 24.75 0.16 0.19 0.22 

Sum 2013 17.94 22.75 27.31 0.14 0.19 0.24 

Fall 2013 16.39 18.16 19.61 0.13 0.15 0.16 

Spr 2014 24.73 29.84 33.26 0.21 0.26 0.30 

Sum 2014 81.97 83.75 85.31 0.81 0.83 0.85 

Fall 2014 28.79 34.67 39.57 0.25 0.31 0.36 

Spr 2015 32.49 36.08 39.65 0.29 0.33 0.37 

Sum 2015 21.13 24.77 27.90 0.17 0.21 0.24 

Fall 2015 33.08 36.82 39.39 0.29 0.33 0.36 

F
al

l-
2
0
1
4
 S

in
g
le

 D
at

e 

Spr 2013 0.87 1.52 3.27 0.00 0.01 0.02 

Sum 2013 3.15 4.00 5.67 0.02 0.03 0.04 

Fall 2013 7.93 9.92 11.90 0.06 0.08 0.10 

Spr 2014 33.48 37.28 42.56 0.31 0.35 0.41 

Sum 2014 5.70 7.46 10.21 0.04 0.06 0.09 

Fall 2014 82.09 84.02 85.33 0.81 0.83 0.85 

Spr 2015 30.14 35.52 41.19 0.28 0.34 0.39 

Sum 2015 28.91 38.86 47.00 0.27 0.37 0.45 

Fall 2015 43.65 49.25 55.76 0.41 0.47 0.54 

S
p
r-

2
0
1
5
 S

in
g
le

 D
at

e 

Spr 2013 3.50 5.51 6.75 0.02 0.04 0.05 

Sum 2013 7.10 10.13 12.98 0.06 0.08 0.11 

Fall 2013 7.58 9.08 11.21 0.05 0.07 0.09 

Spr 2014 35.13 39.20 43.41 0.33 0.37 0.41 

Sum 2014 13.19 15.93 19.44 0.10 0.13 0.17 

Fall 2014 27.91 30.15 32.90 0.25 0.28 0.30 

Spr 2015 80.02 81.70 83.50 0.79 0.81 0.83 

Sum 2015 28.46 34.14 38.38 0.26 0.32 0.36 

Fall 2015 26.41 31.18 35.31 0.24 0.29 0.33 

S
u
m

-2
0
1
5
 S

in
g
le

 D
at

e 

Spr 2013 6.75 8.23 11.27 0.04 0.06 0.09 

Sum 2013 16.85 19.69 23.91 0.14 0.17 0.21 

Fall 2013 18.89 21.07 25.00 0.16 0.18 0.22 

Spr 2014 35.24 41.82 49.02 0.33 0.40 0.47 

Sum 2014 11.41 13.85 16.87 0.10 0.12 0.15 

Fall 2014 24.29 31.88 39.98 0.21 0.29 0.36 

Spr 2015 29.51 35.61 42.07 0.27 0.33 0.39 

Sum 2015 82.97 84.15 85.59 0.82 0.83 0.85 

Fall 2015 28.96 37.33 41.55 0.27 0.35 0.39 

F
al

l-
2
0
1
5
 

S
in

g
le

 D
at

e 

Spr 2013 7.43 13.21 20.07 0.05 0.11 0.17 

Sum 2013 11.99 17.52 22.39 0.09 0.14 0.20 

Fall 2013 12.53 15.52 18.98 0.09 0.12 0.16 

Spr 2014 34.80 37.60 41.62 0.33 0.36 0.40 

Sum 2014 17.08 23.11 27.80 0.15 0.20 0.25 
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Fall 2014 34.59 37.91 43.48 0.32 0.35 0.41 

Spr 2015 28.10 32.51 36.32 0.26 0.30 0.34 

Sum 2015 44.82 47.91 51.30 0.42 0.46 0.49 

Fall 2015 82.08 83.34 84.65 0.81 0.83 0.84 

 

Table A.2. Multiple date spectral library classification with minimum, mean, maximum 

overall and kappa classification accuracy calculated from 50 iterations. 

Library 

Name 

Image 

Date 

Overall Kappa 

Min Mean Max Min Mean Max 

S
p
r-

A
ll

 

Spr 2013 80.26 81.45 82.48 0.79 0.81 0.82 

Sum 2013 57.73 59.78 62.12 0.56 0.58 0.60 

Fall 2013 33.05 35.49 37.74 0.30 0.33 0.35 

Spr 2014 81.39 82.62 84.13 0.81 0.82 0.83 

Sum 2014 29.16 30.74 32.88 0.27 0.28 0.30 

Fall 2014 36.36 38.98 43.21 0.34 0.37 0.41 

Spr 2015 76.25 78.12 79.52 0.75 0.77 0.79 

Sum 2015 51.86 54.21 58.11 0.50 0.52 0.56 

Fall 2015 36.43 40.16 44.19 0.34 0.38 0.42 

S
u
m

-A
ll

 

Spr 2013 37.73 40.35 42.27 0.36 0.38 0.40 

Sum 2013 78.35 80.25 81.60 0.77 0.79 0.81 

Fall 2013 30.52 33.27 35.29 0.28 0.30 0.33 

Spr 2014 51.97 53.85 55.83 0.50 0.52 0.54 

Sum 2014 79.54 80.98 82.67 0.79 0.80 0.82 

Fall 2014 61.24 63.58 65.72 0.59 0.62 0.64 

Spr 2015 47.47 50.16 53.08 0.45 0.48 0.51 

Sum 2015 79.96 81.23 82.34 0.79 0.80 0.82 

Fall 2015 54.14 56.48 59.65 0.52 0.54 0.58 

F
al

l-
A

ll
 

Spr 2013 15.02 16.30 17.30 0.13 0.14 0.15 

Sum 2013 31.31 35.45 38.75 0.29 0.33 0.36 

Fall 2013 75.89 77.41 78.92 0.75 0.76 0.78 

Spr 2014 27.47 31.96 35.44 0.25 0.30 0.33 

Sum 2014 15.35 16.84 20.05 0.13 0.15 0.18 

Fall 2014 75.98 77.68 78.94 0.75 0.77 0.78 

Spr 2015 31.71 36.47 40.81 0.29 0.34 0.39 

Sum 2015 45.40 48.89 51.10 0.43 0.47 0.49 

Fall 2015 76.43 77.85 79.61 0.75 0.77 0.79 

2
0
1
3

-

A
ll

 Spr 2013 76.50 78.10 79.72 0.75 0.77 0.79 

Sum 2013 72.92 75.13 77.09 0.72 0.74 0.76 

Fall 2013 74.03 75.30 76.56 0.73 0.74 0.75 
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Spr 2014 28.45 30.78 34.21 0.27 0.29 0.32 

Sum 2014 13.38 15.08 18.23 0.12 0.13 0.16 

Fall 2014 33.12 35.81 39.32 0.30 0.33 0.36 

Spr 2015 41.75 43.10 44.91 0.39 0.41 0.42 

Sum 2015 31.66 33.90 36.06 0.29 0.31 0.33 

Fall 2015 34.97 38.20 41.54 0.32 0.36 0.39 

2
0
1
4
-A

ll
 

Spr 2013 27.64 29.73 31.60 0.25 0.27 0.28 

Sum 2013 36.53 38.84 41.81 0.33 0.36 0.39 

Fall 2013 25.27 29.22 31.00 0.23 0.27 0.29 

Spr 2014 81.54 83.02 84.26 0.81 0.82 0.84 

Sum 2014 78.44 80.32 82.00 0.77 0.79 0.81 

Fall 2014 76.20 78.21 79.72 0.75 0.77 0.79 

Spr 2015 55.37 57.71 60.02 0.53 0.56 0.58 

Sum 2015 62.12 63.91 65.57 0.60 0.62 0.64 

Fall 2015 61.00 63.15 65.80 0.59 0.61 0.64 

2
0
1
5

-A
ll

 

Spr 2013 11.51 12.98 15.92 0.10 0.11 0.14 

Sum 2013 12.43 18.37 23.03 0.10 0.16 0.20 

Fall 2013 19.54 21.75 24.91 0.17 0.19 0.22 

Spr 2014 58.08 59.84 61.65 0.56 0.58 0.60 

Sum 2014 19.88 22.84 27.04 0.18 0.21 0.25 

Fall 2014 54.05 56.24 58.33 0.52 0.54 0.56 

Spr 2015 78.49 80.30 82.41 0.77 0.79 0.82 

Sum 2015 79.74 81.33 82.49 0.79 0.80 0.82 

Fall 2015 78.11 79.58 81.07 0.77 0.79 0.80 

A
ll

-D
at

es
 

Spr 2013 74.46 76.09 78.20 0.73 0.75 0.77 

Sum 2013 73.39 76.14 77.39 0.72 0.75 0.76 

Fall 2013 70.77 72.40 74.91 0.69 0.71 0.74 

Spr 2014 78.32 79.75 81.02 0.77 0.79 0.80 

Sum 2014 74.46 76.00 77.41 0.73 0.75 0.76 

Fall 2014 76.09 77.45 79.04 0.75 0.76 0.78 

Spr 2015 76.81 78.23 79.45 0.76 0.77 0.78 

Sum 2015 76.53 78.22 79.54 0.75 0.77 0.79 

Fall 2015 73.09 74.50 76.34 0.72 0.73 0.75 
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Table A.3. Leave one out (LOO) spectral library classification with minimum, mean, 

maximum overall and kappa classification accuracy calculated from 50 iterations.  

Library Name 
Image 

Date 

Overall Kappa 

Min Mean Max Min Mean Max 

L
O

O
-S

p
r1

3
 

Spr 2013 44.64 46.22 48.64 0.42 0.44 0.46 

Sum 2013 73.71 75.48 76.73 0.72 0.74 0.76 

Fall 2013 70.86 72.82 74.88 0.69 0.72 0.74 

Spr 2014 77.79 79.11 80.80 0.77 0.78 0.80 

Sum 2014 74.85 76.02 77.68 0.74 0.75 0.77 

Fall 2014 75.77 77.24 78.79 0.75 0.76 0.78 

Spr 2015 75.38 76.78 78.13 0.74 0.76 0.77 

Sum 2015 75.67 77.44 78.79 0.75 0.76 0.78 

Fall 2015 73.72 74.97 76.44 0.73 0.74 0.75 

L
O

O
-S

u
m

1
3
 

 

Spr 2013 76.55 77.65 79.61 0.75 0.77 0.79 

Sum 2013 56.97 59.77 61.63 0.55 0.58 0.60 

Fall 2013 70.90 72.49 75.74 0.70 0.71 0.75 

Spr 2014 78.23 79.81 81.10 0.77 0.79 0.80 

Sum 2014 74.46 76.10 77.90 0.73 0.75 0.77 

Fall 2014 75.13 76.91 78.14 0.74 0.76 0.77 

Spr 2015 76.73 78.30 79.84 0.76 0.77 0.79 

Sum 2015 77.51 78.77 80.09 0.76 0.78 0.79 

Fall 2015 73.74 75.12 76.38 0.73 0.74 0.75 

L
O

O
-F

al
l1

3
 

Spr 2013 75.77 76.89 78.03 0.75 0.76 0.77 

Sum 2013 73.39 75.86 77.00 0.72 0.75 0.76 

Fall 2013 41.06 43.78 46.41 0.39 0.42 0.44 

Spr 2014 77.92 79.94 81.87 0.77 0.79 0.81 

Sum 2014 75.88 77.30 78.74 0.75 0.76 0.78 

Fall 2014 75.43 76.59 77.93 0.74 0.76 0.77 

Spr 2015 75.63 77.57 79.03 0.74 0.76 0.78 

Sum 2015 76.53 78.62 80.20 0.75 0.78 0.79 

Fall 2015 73.95 75.53 78.08 0.73 0.74 0.77 

L
O

O
-S

p
r1

4
 

Spr 2013 74.46 75.78 76.94 0.73 0.75 0.76 

Sum 2013 74.14 76.74 78.59 0.73 0.76 0.78 

Fall 2013 72.39 73.69 75.49 0.71 0.72 0.74 

Spr 2014 61.51 63.59 65.72 0.60 0.62 0.64 

Sum 2014 74.73 76.47 77.67 0.74 0.75 0.77 

Fall 2014 76.09 77.58 78.42 0.75 0.77 0.77 
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Spr 2015 77.21 78.59 80.04 0.76 0.78 0.79 

Sum 2015 77.28 78.65 79.76 0.76 0.78 0.79 

Fall 2015 73.30 74.57 76.12 0.72 0.73 0.75 

L
O

O
-S

u
m

1
4
 

Spr 2013 75.90 77.13 78.32 0.75 0.76 0.77 

Sum 2013 73.18 75.90 77.48 0.72 0.75 0.76 

Fall 2013 72.34 73.54 75.74 0.71 0.72 0.75 

Spr 2014 78.56 80.15 81.57 0.78 0.79 0.81 

Sum 2014 30.98 33.54 35.00 0.29 0.31 0.33 

Fall 2014 75.77 77.46 78.35 0.75 0.76 0.77 

Spr 2015 76.84 78.06 78.91 0.76 0.77 0.78 

Sum 2015 77.06 78.21 79.87 0.76 0.77 0.79 

Fall 2015 73.62 74.62 75.68 0.72 0.73 0.75 

L
O

O
-F

al
l1

4
 

Spr 2013 75.90 77.29 78.35 0.75 0.76 0.77 

Sum 2013 73.39 76.08 77.62 0.72 0.75 0.77 

Fall 2013 72.01 73.59 75.12 0.71 0.72 0.74 

Spr 2014 78.88 80.07 81.88 0.78 0.79 0.81 

Sum 2014 74.82 76.37 77.78 0.74 0.75 0.77 

Fall 2014 57.73 59.38 61.50 0.56 0.58 0.60 

Spr 2015 77.14 78.30 80.07 0.76 0.77 0.79 

Sum 2015 76.74 78.28 79.61 0.76 0.77 0.79 

Fall 2015 72.88 74.40 76.00 0.72 0.73 0.75 

L
O

O
-S

p
r1

5
 

Spr 2013 75.54 77.00 77.89 0.74 0.76 0.77 

Sum 2013 73.82 75.99 77.83 0.73 0.75 0.77 

Fall 2013 71.89 73.92 76.19 0.71 0.73 0.75 

Spr 2014 79.10 80.17 82.01 0.78 0.79 0.81 

Sum 2014 74.91 76.51 77.94 0.74 0.75 0.77 

Fall 2014 75.40 76.91 78.28 0.74 0.76 0.77 

Spr 2015 55.37 58.39 61.06 0.53 0.56 0.59 

Sum 2015 76.15 77.43 79.54 0.75 0.76 0.79 

Fall 2015 73.15 74.37 75.79 0.72 0.73 0.75 

L
O

O
-S

u
m

1
5
 

Spr 2013 75.08 76.25 77.45 0.74 0.75 0.76 

Sum 2013 73.50 76.29 77.61 0.72 0.75 0.77 

Fall 2013 71.14 72.75 74.88 0.70 0.71 0.74 

Spr 2014 78.90 80.15 81.58 0.78 0.79 0.81 

Sum 2014 75.83 77.21 78.79 0.75 0.76 0.78 

Fall 2014 75.51 77.43 78.52 0.74 0.76 0.78 

Spr 2015 76.15 77.60 78.84 0.75 0.77 0.78 

Sum 2015 69.41 71.27 72.76 0.68 0.70 0.72 

Fall 2015 72.98 74.46 75.60 0.72 0.73 0.74 

L
O

O
-

F
al

l1
5

 Spr 2013 75.05 76.51 77.67 0.74 0.75 0.77 

Sum 2013 74.03 75.80 77.62 0.73 0.75 0.77 

Fall 2013 70.89 72.62 75.49 0.70 0.71 0.74 
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Spr 2014 78.23 79.74 81.79 0.77 0.79 0.81 

Sum 2014 74.34 76.23 77.58 0.73 0.75 0.77 

Fall 2014 75.19 76.94 78.12 0.74 0.76 0.77 

Spr 2015 75.96 77.69 79.40 0.75 0.77 0.78 

Sum 2015 76.87 78.47 79.87 0.76 0.77 0.79 

Fall 2015 57.76 59.03 61.45 0.56 0.57 0.60 
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B. Appendix: Supplementary material for Chapter 3: Plant species’ 

spectral emissivity and temperature using the Hyperspectral Thermal 

Emission Spectrometer (HyTES) sensor 

 

Figure B.1. Changes in estimated apparent emissivity with changes in Leaf Area Index (LAI).  
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Figure B.2. Using Mann-Whitney-U tests, the number of significantly different pairs at each 

wavelength were identified for each plant species using leaf emissivities. 
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Figure B.3. Using Mann-Whitney-U tests, the number of significantly different pairs at each 

wavelength were identified for each plant species using leaf emissivities that have been 

resampled to HyTES wavelengths. 
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Figure B.4. Using Mann-Whitney-U tests, the number of significantly different pairs at each 

wavelength were identified for each plant species using canopy emissivities collected from 

HyTES 2014 imagery. 
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Figure B.5. Using Mann-Whitney-U tests, the number of significantly different pairs at each 

wavelength were identified for each plant species using canopy emissivities collected from 

HyTES 2016 imagery. 

  



143 

 

C. Appendix: ASD FieldSpec 4 Protocol 

This protocol is meant to help a user to run an ASD FieldSpec4 specifically, but many 

features and practices can be applied to other models. This is not meant to replace the 

FieldSpec4 User Manual or the RS3 User Manual. Please refer to these manuals for more 

information. You can find documentation for all ASD products (including all versions of 

spectrometers and RS3 software) here: http://support.asdi.com/Document/Documents.aspx 

 

C.1 Instrument Overview 

This is a simplified version of the FieldSpec 4 instrument overview. For more information, 

refer to the FieldSpec 4 User Manual pages 2 – 3.  

 

http://support.asdi.com/Document/Documents.aspx
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C.2 Setting up the Instrument 

Page numbers referenced in this section are from the FieldSpec4 User Manual pages 5 - 6. 

1) Provide power to the ASD. There are two ways of providing power to your ASD: 

a) Plugging into an electrical outlet (when using the ASD for indoor or lab work) 

i) Connect the power cable to the back of the instrument and screw into the port.  

ii) Plug power cord into three pronged electrical outlet. 

b) Plugging into an external battery (when using the ASD for outdoor or portable work) 

i) Connect battery power cable to the back of the instrument and screw into the port. 

ii) Attached battery power cable to battery. 

iii) Notes about the batteries and uses: 

(1) Only use the Nickel-Metal Hydride batteries that came with the ASD. 

(2) Expected battery life is ~4 hours. Always charge the second battery to have as 

a backup in case. 

(3) Instrument will stop collecting spectra when battery drains to about 10 Volts. 

(4) The backpack has two pouches to hold batteries. However, the battery in use 

should be on the opposite side of the fiber optic cable. 

(5) The RS3 Software will indicate the power status of the battery (found in the 

bottom left corner of the main window next to the connection status. 

c) To have the best results, ‘warm-up’ the ASD by plugging in the instrument and 

turning it on for at least 30 minutes (ASD suggests only 15 minutes, but in my 

experience that hasn’t been enough time). If the surrounding environment is cooler, 

allow for a longer warm up period. Hint: I will plug in the ASD using Method A for 
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an hour before heading into the field. Then I will switch to battery power as I pack up 

for field work. 

 

2) Set up connection between the ASD and computer. Connect the Ethernet cable to the 

computer’s Ethernet port and to the back of the instrument. This cable is sensitive and 

can be harmed easily – so be careful. If you are having connection issues, try unplugging 

and re-plugging in the Ethernet cable. 

3) Connect power to the computer. Obviously if you are in the field you will be using your 

laptop battery power. Make sure to fully charge your laptop before entering the field. You 

might want to be a backup battery for your laptop or a way to charge the laptop on the go.  

4) Insert fiber optic cable into the pistol grip.  

a) Insert the fiber optic cable through the strain relief spring.  

b) Insert the fiber optic cable all the way through the pistol grip until it clicks. Make sure 

the fiber optic cable tip is fully seated into the nose of the pistol grip. 
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c) There is a screw on the top of the pistol grip that you can tighten to hold the fiber 

optic cable. However, you should NOT have to do this. In my experience if you are 

having to adjust this screw, your pistol grip is probably broken. Do not adjust the 

factory set screw at bottom.  

  

5) Turn on the instrument and computer (make sure you’ve warmed up the instrument).  

a) When turning on the computer, make sure any programs that will drain the battery are 

closed. This includes Bluetooth and wireless connections, unless you are using these 

features in the field when collecting. 

6) Open RS3 program on the computer. There will be two programs called RS3:  

a) RS3 High Contrast: Use this program if you will be in direct sunlight (outdoor 

collections) as it maximizes the contrast between items for easy viewing.  
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b) RS3: Use this program if you are collecting indoors or if you are hooked up to an 

electrical outlet. 

 

c) Both programs perform the same. The only difference is the GUI screen viewing 

capabilities.  
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7) If using an optional light source, turn it on. You will only use this light source if you are 

working indoors.  

C.3 Setting up the White Reference Panel 

Before you can collect spectra, you must optimize and set up a white reference. The white 

reference is an extremely important part of collecting spectra. The white reference used for 

calibrating an ASD is a Spectralon® panel. Spectralon Reflectance Material gives the highest 

diffuse reflectance of any known material or coating over the UV-VIS-NIR region of the 

spectrum. This is used to tell the ASD what a 100% reflectant surface looks like under 

current lighting conditions. This panel or disk is quite fragile and VERY expensive, so 

handle it with care. Any dents, dirt, or debris will affect the spectrum, so try to keep it as 

clean as possible by wiping it with a very soft cloth. Over time, the spectralon will get dirty 

enough that it needs a thorough cleaning. There is a special process for cleaning the 

spectralon panel, so make sure to do your homework before cleaning the surface. 

 

These following instructions are based on fieldwork. For indoor measuring, all you would 

need to do is place spectralon on sampling surface. 
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1) Attach spectralon panel to tri-pod. There should be a screw opening on one side of the 

spectralon panel. Make sure it is very secure so there is no chance of the panel falling off 

and getting damaged. 

2) Adjust the tri-pod to about a height of 80 cm. Make sure to mark down the height of the 

standard for bookkeeping purposes.  

3) Level the spectralon panel using a level bubble. It’s important that the spectralon panel is 

level to ensure correct reflectance.  

4) Turn on RS3 and set up program for collection following steps 1 and 2. At step 3 of 

setting up RS3, you will need to continue with these steps. 

5) Hold the pistol grip with the fiber optic about 24 cm away from the panel. Hold the pistol 

grip as far away from you as possible, because you can impact the spectrum being 

measured. 

6) Optimize and collect white reference using RS3. For more information, refer to Setting up 

RS3 section.  
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C.4 Setting up RS3 

1) When opening RS3, the program will automatically detect the connection with the ASD. 

In the lower right corner of the program there will be a circle that depicts the status of the 

connection. Nothing in the program will work if the ASD is not connected. 

2) Open Control > Save Spectrum.  

a) Update the path name to where you want the spectra to be saved. 

b) Choose a base name that will be used for each spectrum file. I like to include study 

area and date of collection. The program will add numbers to the end of the base 

name for each spectrum collected. 

c) Choose the starting spectrum number. At the beginning of a collection start with 000. 

If the program or instrument freezes or crashes, you can edit which spectrum to 

restart with here. 

d) Choose the number of files to save with each collection. When you hit SAVE, how 

many files do you want saved at a time? It really depends on the user’s preference. I 

save 5 files each time I hit save.  

e) Choose the interval between saves. This is the amount of time the program sets 

between collection of the number of files you designated above. I set this to 00:00:00, 

but if you want a delay between saving the number of files (to allow the spectra to be 

more temporally different) you can increase this value. Be warned if you are having 

highly variable atmospheric conditions you will not want a delay between collections. 

f) Click OK when completed. 
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3) With the white reference panel set up and the fiber optic cable pointed at the panel, hit the 

Opt or optimize button to optimize the instrument. This button calibrates the instrument 

to the current lighting conditions.  

a) The optimization is complete when the Spectrum Avg progress bar resumes. The 

program will also say in the bottom right corner “Optimization Complete” 

b) The graph will have a spectrum similar to the figure below with the y axis in raw DN 

or raw Digital Numbers. 
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4) When optimization is complete, click WR or the white reference button to collect a white 

reference. The collection of the white reference is telling the ASD that this panel is a 

100% reflectant target so that it can be used to calculate reflectance for other surfaces.  

a) HINT: I like to save the white reference spectrum for future analysis. This is a ‘just in 

case’ step, but can come in handy if spectra need to be future processed or if you are 

interested in the atmospheric conditions at the time of collection.  

b) A white reference is only useful when collecting reflectance data. Do not do this step 

if you are collecting radiance data. 

c) The white reference is complete when the Spectrum Avg progress bar resumes. The 

program will flip through the steps of the white referencing in the bottom right corner 

until it says “White Reference Complete”. 



153 

 

d) The graph should have a flat line at 100% or 1 depending on your scale. The y-axis 

will have changed to reflectance. There might be features (like the graph below) with 

spikes around 1400 and 1800 nm that are highly variable. These are due to water 

absorption in the atmosphere and cannot be avoided even in perfect sunny cloudless 

conditions. If you are measuring indoors these water absorption features should not 

be pronounced or their magnitude much smaller. 

 

5) When you have optimized and collected a white reference, point the end of the fiber optic 

cable at the sample of interest and hold it there until the spectrum average collection is 

complete.  

6) Hit the space bar on the computer to start saving your spectra. Collect multiple spectra for 

a sample. In the end you will be visually inspecting your spectra and averaging among 

the selected spectra.  

a) HINT: I generally save 5 files each time I press the space bar and repeat 5 times for a 

total of 25 spectra collected for each sample.  
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b) If you have a delicate sample (some leaves) and you are measuring indoors with a 

light source, you may not be able to collect that many spectra. The heat load on the 

sample will quickly change the composition of the sample.  

c) The number shown on the Spectrum Save progress is the NEXT file number that will 

be saved. NOT the file that you just saved. 

7) When done collecting samples, simply close the program. Your files will be saved in the 

directory you specified in Step 2.  

C.5 Sampling Tips and Tricks 

C.5.1 Field of View 

 The field of view determines the size of the data collection area. When collecting 

data, be sure that the sample or reference panel is the only object within the field of 

view. 

 Fore Optics: There are multiple fore optics that you can attach to the fiber optic that 

control the field of view. In most cases, the bare fiber (no additional fore optic) will 

be used for sample collection. The bare fiber provides a 25˚ field of view. There are 

other fore optics that can decrease the field of view to as little as 1˚.  

 Calculating Field of View: As a general rule when using the bare fiber, the diameter 

of the field of view is equal to half the distance the fiber optic cable is from the 

sample. For example, if the cable is four feet from the sample, the field of view is 

about two feet wide. See figure below: 
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 Measuring Height: ALWAYS makes sure to measure the height (if using a tripod) 

or know approximately at what height you are holding the fiber optic. This is the only 

way to figure out field of view which is useful for your analysis. 

C.5.2 When to Collect Spectra 

Weather Conditions:  

 FYI: This only applies for outdoor collections. 

 The atmosphere highly impacts the quality of spectra collected when doing fieldwork. 

With increasing amounts of water vapor in the air, reflectance in the water vapor 

regions 1400 and 1800 nm can widen and deepen making retrieval impossible. 

 The best conditions for measuring spectra is a completely sunny cloud free day. Any 

amount of clouds can impact your collection and most especially the wispy ones.  
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 Best conditions are not usually possible, especially for most places in the world. The 

key to minimize the amount of clouds in the sky and clouds near the sun. NEVER 

measure spectra when a cloud is obscuring the sun.  

Timing:  

 Solar Noon: The amount of solar radiation that reaches the earth’s surface controls 

the quality of spectra and accuracy. Solar noon is when the sun is at its highest 

elevation in the sky which results in the largest amount of solar radiation to reach the 

earth’s surface. Solar noon is not at 12pm, but changes which the seasons as the earth 

rotates around the sun. You will need to look up solar noon for the study area and 

time of year.  

 HINT: I like to use the NOAA Solar Calculator located here: 

http://www.esrl.noaa.gov/gmd/grad/solcalc/ 

 Winter: During the winter the solar angle is very low, making it more difficult to get 

quality spectra due to the lower amounts of solar radiation. This causes your time 

window to be smaller than during the summer. General rule: measure spectra +/- 2 

hours of solar noon.  

 Summer: This is the best season to collect spectra because of high solar angles. A 

higher solar angle means solar radiation has less atmosphere to go through resulting 

in more solar radiation at the earth’s surface. General rule: measure spectra +/- 3 

hours of solar noon.  

C.5.3 Optimization and White Reference 

 How often should I re-optimize and collect a white reference? You will need to 

optimize and collect a white reference fairly often as you collect spectra to ensure that 
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you are collecting the highest quality. If in doubt, optimize and collect white 

reference. I optimize and collect a white reference at every new plot when I’m 

collecting in the field, mainly due to changing atmospheric conditions and changing 

locations by 10 m. However, optimization and collecting a white reference is time 

consuming so you will have to work to find a balance between quality and time.  

 How do I know if I should optimize and collect a white reference? Before 

collecting a new sample, you should always place your fiber optic over the white 

reference panel to check on your calibration. When you’ve just optimized and white 

referenced your instrument, the reflectance of the white reflectance panel should be at 

100% for all wavelengths. The one caveat where this might not be true is the water 

absorption regions. If the white reflectance panel spectra drifts away from 100% more 

than 2-3% you should re-optimize and collect a new white reference. Remember any 

deviation from the 100% white reflectance panel spectra will translate into sample 

error.  

 Reasons for re-optimization: 

o If illumination conditions change substantially, such as cloud cover, sun 

position, moving to another location, you should re-optimize and collect a 

white reference.   

o Sometimes the lighting conditions will saturate the instrument and the 

optimization will no longer be valid. Your reflectance of the white reference 

panel will be over 100% and more likely the instrument/program will give off 

a warning sound. 
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o As the sensor warms up and collects spectra the optimization will drift, 

meaning it will no longer have a 100% reflectance when over the white 

reference panel. You will have to optimize and collect a white reference more 

at the beginning as the sensor is warming up. 

C.6 How to Collect Spectra  

C.6.1 Indoors (Lab) 

a) Pros: Collecting spectra indoors provides the most controlled atmosphere. Water 

absorption features in the spectra will be at a minimum. The equipment is set up once 

and is not moved around throughout sample collection. Sampling is not restricted to 

plus or minus a few hours around solar noon, because an external light source is set 

up.  

b) Cons: However, the downside is many surfaces cannot be transported into the lab 

(whole trees, roofs, etc.). In addition, if you measure fresh samples such as leaves you 

need to collect and process them within 48 hours.  

c) Setup: In the setup show below, the light source is angled at 23˚ and is 23 cm away 

from sample platform. The pistol grip holding the fiber optic is angled at 27˚ and is 5 

cm away from sample platform. You will want to place your sample on a black <5% 

reflectant background to reduce the background effect on your sampling. Black 

surfaces are NOT created equal – most will not work as a background surface. 

Measure the reflectance of your background surface to understand how much it might 

affect the reflectance of your sample.  
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C.6.2 Outdoors (fieldwork) 

d) Pros: You are portable and can move around somewhat easily. You look like a ghost 

buster. ASD assumes this is the way you will collect spectra in field and has 

developed accessories to help. 

e) Cons: You cannot bend over or move things around very well, so you will need an 

assistant to help you set up the reflectance panel. It is a very heavy set up which you 

will have to haul around for the entire sampling collection. Climbing up ladders to get 
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canopy spectra of shrubs or small trees can be dangerous with this on your back – I 

do not suggest! Instead set ASD on ground as in tri-pod method. 

f) Setup:  

i) Use the backpack provided by ASD and clip the instrument into the middle of the 

backpack (as shown in image).  

 

ii) Feed battery cable from battery pouch under the cross strap to the power port. 
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iii) Attach laptop carrier to the plastic connectors on the shoulder straps of the 

backpack.  

 

iv) Place laptop onto carrier, hook up the computer to the instrument, and you are 

ready to go! 

C.7 Where to Collect Spectra 

Researchers have measured spectra of many surfaces with the only limitation being can you 

get an ASD in position. However, there are some general guidelines you should follow or 

keep in mind when choosing sampling locations. 
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1) Do not sample too close to buildings or trees. Light bounces off surfaces onto other 

surfaces (ones that you might be interested in sampling). You will find that the 

spectra you are collecting having building or tree spectral features.  

2) Avoid shadows as much as possible. They decrease your overall reflectance and can 

result in inaccurate spectra.  

3) Do not measure with highly variable atmospheric conditions – aka clouds. Clouds of 

all types will impact your collection more than anything else! 

4) You can impact the spectrum collected too! If you hold the fiber optic too close to 

your body when collecting, reflectance off yourself can impact the sample collection.  
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C.8 Typical Spectra 

Remember, each surface you measure will be completely different from what is shown 

below. Use the below example spectra as a gauge to determine if you are measuring 

correctly.  

C.8.1 GV, NPV, and Soil 

Note that spectra shown below were collected in a laboratory setting. If collected outside 

there will be water vapor lines present. 
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C.8.2 Spectralon or White Reference 

Notice on this plot that the 1.4, 1.8, and 2.4 µm regions deviate from 100% reflectance 

significantly. This is due to water vapor absorption, which makes retrievals in these spectral 

ranges impossible.  
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C.9 Example Data Collection Sheet 

Date: ____________________________  Technician(s): 

____________________________ 

Sky Conditions: 

________________________________________________________________ 

Location/Study Site: __________________________ Solar Noon: 

________________________ 

File Base Name(s): 

______________________________________________________________  

Folder Containing Files: 

_________________________________________________________ 

*Remember: Record the time when Optimization/White Reference is completed  

Time Surface or Transect Start File End File Notes 
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