
UC Davis
UC Davis Previously Published Works

Title
Scientific Workflows at Data Warp-Speed: Accelerated Data-Intensive Science Using
NERSC's Burst Buffer

Permalink
https://escholarship.org/uc/item/6rf0p933

Authors
Ovsyannikov, Andrey
Romanus, Melissa
Van Straalen, Brian
et al.

Publication Date
2016-11-01

DOI
10.1109/pdsw-discs.2016.005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rf0p933
https://escholarship.org/uc/item/6rf0p933#author
https://escholarship.org
http://www.cdlib.org/

Scientific Workflows at DataWarp-Speed:
Accelerated Data-Intensive Science using

NERSC’s Burst Buffer
Andrey Ovsyannikov∗, Melissa Romanus†, Brian Van Straalen∗, Gunther H. Weber∗‡ and David Trebotich∗

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720
†Rutgers University, Piscataway, NJ 08854
‡University of California, Davis, CA 95616

Abstract—Emerging exascale systems have the ability to ac-
celerate the time-to-discovery for scientific workflows. However,
as these workflows become more complex, their generated data
has grown at an unprecedented rate, making I/O constraints
challenging. To address this problem advanced memory hierar-
chies, such as burst buffers, have been proposed as interme-
diate layers between the compute nodes and the parallel file
system. In this paper, we utilize Cray DataWarp burst buffer
coupled with in-transit processing mechanisms, to demonstrate
the advantages of advanced memory hierarchies in preserving
traditional coupled scientific workflows. We consider in-transit
workflow which couples simulation of subsurface flows with on-
the-fly flow visualization. With respect to the proposed workflow,
we study the performance of the Cray DataWarp Burst Buffer
and provide a comparison with the Lustre parallel file system.

I. INTRODUCTION

Scientific workflows running at scale on high-performance
computing systems play a critical role in supporting mod-
ern scientific discovery. These workflows provide a way for
scientists to organize the various software and application
components required to simulate naturally-occurring phenom-
ena and to define the interactions between them. One such
critical interaction, i.e., the exchange of data between the
different components, has traditionally been achieved through
the writing and reading of files during workflow execution.
However, as simulated science systems continue to grow in
size and complexity, the rate at which computations can be
performed is becoming much faster than the rate at which files
can be read and written. As a result, it is widely suspected that
the file-based method of workflow data exchange will become
untenable on next generation high-performance systems [1],
[2].

Looking at hardware trends for these next-generation ma-
chines [3], one constraint that is common with today’s systems
is locality. Simulation codes will be severely hindered by
insufficient bandwidth and high latency to persistent storage
media. Performing data analytics in-situ, i.e., moving the
analytics close to where the data is generated, has been
proposed as a means of addressing these issues.

There are two primary ways of realizing in-situ workflows
on modern supercomputers, both of which have limitations.
In the first such way, data processing is incorporated with

the simulation to create a unified executable. This allows the
analytics component to access data generated by the simulation
by making function calls to their shared memory address
space. In-situ processing has garnered recent interest because it
provides a way for data-intensive workflows to achieve I/O ac-
celeration, which can reduce the overall end-to-end workflow
runtime dramatically. However, this approach assumes that a
file system does not provide sufficient performance and that
the only way to circumvent its limitations is to make drastic
changes that flatten the workflow into a single executable.

The second in-situ method attempts to relax the require-
ments of compiling a unified executable using data staging.
Data staging enables workflow coupling by using a subset of
compute nodes as dedicated I/O nodes. Current data staging
frameworks for in-situ programming that employ this approach
include PreDatA [4], DataStager [5], and DataSpaces [6].
Independently compiled applications can then use the memory
space on these nodes to store and exchange intermediate
workflow data.

However, there are drawbacks to this approach. First, the
frameworks above require users to integrate a data staging API
into their applications. Although the applications can still be
compiled independently, they do need to be recompiled with
the staging API integrated within them. Second, staging always
requires extra compute resources. Lastly, these solutions have
a limited scope of persistence and utilize one of the highest
commodity memory resources (on-node DRAM), and exascale
memory trends show that on-node DRAM is expected to
shrink.

For these reasons, we assert that the traditional software en-
gineering model still offers the greatest flexibility and requires
the least software changes, if the specific flaws of file system
performance can be mitigated. In this paper, we utilize a state-
of-the-art Cray DataWarp burst buffer as an intermediate layer
between compute nodes and a traditional parallel filesystem
(composed of HDDs) to show the potential benefits of in-
transit processing with advanced memory appliances to the
scientific community. The relevant scientific question then is
whether the Cray DataWarp burst buffer sufficiently amelio-
rates the lagging performance of traditional persistent storage
technology and whether we have sufficient control of the HPC

2016 1st Joint International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems

978-1-5090-5216-5/16 $31.00 © 2016 IEEE

DOI 10.1109/PDSW-DISCS.2016.5

1

resources to manage a realistic scientific workflow.
We propose an in-transit workflow which couples direct

numerical simulation with on-the-fly flow visualization. With
respect to proposed workflow, we study the performance of
the Cray DataWarp Burst Buffer and provide a comparison
with the Lustre parallel file system.

II. THE CRAY DATAWARP BURST BUFFER

We utilize a state-of-the-art Cray DataWarp burst buffer, as
part of the National Energy Research Scientific Computing
(NERSC) Center’s Cori Phase I system. Burst buffer provides
an additional layer of memory that sits in between the system
compute nodes and the underlying parallel file system. It was
created as a means of addressing the growing gap between
computation and I/O that many workflows and applications
currently experience on high-performance computing (HPC)
systems.

The current Cori Phase 1 system has 144 burst buffer
nodes. Each burst buffer node contains two 3.2 TB NAND
flash solid-state drives (SSDs), 64GB DRAM, and two 8-
core Intel Xeon processors. Burst buffer nodes are attached
directly to the Cray Aries network interconnect of the Cori
system. Detailed NERSC DataWarp Burst Buffer hardware
specification is given in [7].

In the Cray DataWarp burst buffer implementation, the
SSDs are exposed to applications as a file system. This offers
the application developer a variety of options for file I/O and
coordination. It also does not require code changes for file
reading and writing, except to change the path from Lustre to
the burst buffer. Consequently, HPC codebases that are already
integrated with high-volume data management tools, such as
HDF5 [8] or ADIOS [9], are also able to easily use the burst
buffer.

The access to burst buffer resources is managed via the
workload manager; on Cori, the installed scheduling system is
Slurm [10], which has been integrated with the Cray DataWarp
API. DataWarp resources are requested in a Slurm script using
the #DW directive. This directive can also be used to stage a
file from the PFS to the burst buffer or stage a file out from
the burst buffer to PFS. Both of the staging operations are
asynchronous and can occur multiple times within the batch
script. Slurm will execute stage-in operations prior to the job
start-up time. Users can request burst buffer reservations that
last for the length of a job or persist until the user releases it
or the enforced limit is reached.

Documented burst buffer use cases include check-
point/restart, staging (for pre-fetching or post-processing),
out-of-core, in-situ/in-transit analytics/vizualization, and I/O
acceleration [11]. This work builds upon the in-transit use case
and extends the concept further by illustrating the use of the
burst buffer for real time workflow coupling and exchange.
By utilizing the burst buffer as a medium for file exchange
between independently running programs, the applications can
asynchronously access data in the space as soon as it becomes
available.

III. A MOTIVATING USE CASE:
CARBON SEQUESTRATION & SHALE GAS EXTRACTION

The geologic subsurface constitutes the Nations primary
source of energy and also provides a vast amount of storage
space critical to a low-carbon and secure energy future. A
major theme regarding the efficiency and security of subsur-
face energy utilization is an advanced predictive capability for
the multiscale mechanical behavior and reactive multiphase
transport in nanoporous (very low permeability) rock layers
like shales. Such prediction is critical to unravel phenomena
associated with unconventional oil and gas extraction or to
ensure secure structural trapping of CO2 during early phases
of carbon storage.

Chombo-Crunch [12], [13] is a high performance subsurface
simulator used for modeling pore scale reactive transport pro-
cesses associated with carbon sequestration. It is a combination
of Chombo [14] based advection and diffusion solvers and the
multicomponent geochemistry module of CrunchFlow [15].
The code is ideal for modeling pore scale processes because
of the embedded boundary method which treats very complex
geometries created by heterogeneous porous media. This ap-
proach explicitly resolves reactive surface areas of minerals
as well as achieves high resolution in diffusive boundary
layers. The code has been validated by reactive transport
experiments [16] and scales to full machine capability [12],
[17]. It is also being applied to shale gas extraction, nuclear
waste repositories, and even battery electrodes.

Performing higher resolution simulations increases the num-
ber of variables and size of the data being shared by Chombo-
Crunch. The output files generated by Chombo-Crunch can
vary from several GB to several TB in size per time step.
In the traditional file-based execution of Chombo-Crunch
using Lustre, checkpoint and output data can only be written
approximately every 100 timesteps, because the I/O would
otherwise dominate the computing allocation or overrun the
PFS allocation. The result is simulation snapshots that are
highly refined spatially, but quite coarse temporally. In this
study, we explore turning the post-processing tempo to match
the time scale of simulation, resulting in 100x more plot files.

IV. DESIGN & IMPLEMENTATION

Figure 1 shows the Chombo-Crunch+VisIt workflow as it is
currently integrated with the burst buffer. The figure highlights
the utilization of the burst buffer as a coordination mechanism
between workflow components. In this section, we describe the
execution flow between these components.

The workflow begins with a user requesting compute and
burst buffer resources via Cori’s workload manager, Slurm.
The resource requests and job execution logic can be in a
single job script, as shown by Example Script 1. To further
exercise burst buffer capabilities, we perform a stage_in of
an HDF5 restart file generated by a previous run of Chombo-
Crunch. After submission, Slurm waits until a job is about to
become active in the queue and determines which compute
nodes it will allocate when the job reaches its expected
runtime. It then reserves the requested burst buffer space and

2

n timesteps

SW Output / Data Out

Input
Config

VISUALIZATION
VisIt

Input Data / Program Flow

Burst Buffer

1/
10

 ts

Img File
.png

LEGEND
Software File

user
config via

python
script

MAIN SIMULATION
Chombo-Crunch

.chk
.plt

1/
10

0 t
s

O(100) GB
.chk

PFS
Lustre

per tim
e step

1+ per .plt file

Chkpt Manager
Detects Large .chk

Issues asynch stage out

DataWarp SW
Stage Out

‘frame’ for movie

may be >1 movie

Multiple
.png Files

Movie Encoder
Wait for N .pngs, encode,

place result in DRAM, at end,
concatenate movies

Intermediate
.ts Movies

Local DRAM

Final
Movie
.mp4

DataWarp SW

Stage Out

Fig. 1: Chombo-Crunch and VisIt Integrated Burst Buffer
Workflow Diagram

uses the DataWarp API to stage the file into the burst buffer,
thereby moving it closer to the execution. Once the job starts,
Chombo-Crunch reads the restart file from the burst buffer over
the high-speed network instead of the parallel file system.

The simulation writes checkpoint files at a user-specified
interval. In the figure, this interval is once every ten timesteps.
Writing a checkpoint every timestep would cause the simula-
tion to spend too much time in I/O as opposed to actual calcu-
lation. At longer intervals (also user-defined), Chombo-Crunch
writes a large checkpoint file with more extensive information.
In order to allow the simulation to progress sooner, it writes
its checkpoint file directly to the burst buffer. In the current
implementation, an asynchronous DataWarp stage_out call
is made by the simulation immediately following the file close
operation. The simulation returns to processing right away,
while the DataWarp service is responsible for moving the file
to the slower, hard disk–based layer.

The plot file is generated once per time step. The user’s
python script tells the VisIt compute engine what data is
relevant for generating visual information. In this workflow,
the python script actively loops to check for the presence of a
new plot file in the burst buffer working directory. As soon as
it sees this plot file, it begins operating on the data, according
to the user specifications. The output written back to the burst
buffer is a PNG file that represents one movie frame. Note
that VisIt can potentially output more than one PNG per time
step if more than one variable is of interest.

Example Script 1: Slurm batch script with implementation of Chombo-Crunch and VisIt
Integrated Workflow.

#!/bin/bash
#SBATCH --nodes=1040
#DW jobdw capacity=200TiB access_mode=striped type=scratch
#DW stage_in type=file source=/pfs/restart.hdf5 destination

=$DW_JOB_STRIPED/restart.hdf5

Load required modules
module load visit

ScratchDir="$SLURM_SUBMIT_DIR/_output.$SLURM_JOBID"
BurstBufferDir="${DW_JOB_STRIPED}"
mkdir $ScratchDir
stripe_large $ScratchDir
NumTimeSteps=2000
RestartFileName="restart.hdf5"
ProgName="chombocrunch3d.Linux.64.CC.ftn.OPTHIGH.MPI.PETSC.

ex"
ProgArgs=chombocrunch.inputs
ProgArgs="$ProgArgs check_file=${BurstBufferDir}check

plot_file=${BurstBufferDir}plot pfs_path_to_checkpoint=
${ScratchDir}/check restart_file=${BurstBufferDir}${
RestartFileName} max_step=$NumTimeSteps"

Launch Chombo-Crunch
srun -N 1024 -n 32768 $ProgName $ProgArgs &
Launch VisIt
visit -l srun -nn 16 -np 512 -cli -nowin -s VisIt.py &
Launch Encoder
./encoder.sh -pngpath $BurstBufferDir -endts $NumTimeSteps
wait

Stage-out movie file from Burst Buffer
#DW stage_out type=file source=$DW_JOB_STRIPED/movie.mp4

destination=/pfs/movie.mp4

The movie encoder waits until a certain number of PNG
files is present in the burst buffer working directory and then
encodes those files into a temporary .mp4 or .ts (transport
stream) file. These files are written to the local DRAM where
the encoder is running, since ffmpeg will utilize them again
in the concatenate step.

This process continues until Chombo-Crunch has com-
pleted the objective for the current simulation. The simulation
executable exits, and VisIt operates on the final plot file.
The movie encoder sees the final PNG file, encodes it, and
performs a concatenation of all of the intermediate movies.
The final movie is then written back into the burst buffer and
staged out to the PFS.

A. Modifications Required

The previous Chombo-Crunch+VisIt workflow, like many
other scientific workflows, was based on a series of sequential
stages (viz. one component would run from start to finish
before the next component could begin). The exchange of
data between the simulation and visualization occurred via
files written to and read from the PFS. After the visualization
stage was complete, the PNG frames were remotely transferred
to the scientist’s personal computer for offline encoding.

Since the burst buffer is also exposed as a file system, no
modifications were required to the workflow communication
method (i.e., via files). The simple act of integrating the
burst buffer into the workflow provided improved read/write
performance, due to the flash-based NVRAM technology.
Additionally, communication between compute nodes and the

3

burst buffer over high-speed InfiniBand connections enabled
faster ingestion and expulsion of data by component applica-
tions.

However, the transition from a sequential, stage-based work-
flow to a dynamic, asynchronous one created a new set of
challenges. Previously, synchronization during runtime was
not important, since all of the files were present at the
beginning of a stage. However, in the modified workflow, the
existence of a new file did not necessarily indicate that it
was done being written to. To address this issue, Chombo-
Crunch was modified to write data to a temporary file during
the writing process and only change the file name after the
write was finished. This exploits a very important feature of
a POSIX-compliant file abstraction: rename is atomic [18].
Thus, VisIt could rely on the existence of a specific file name
as a trigger to begin reading data. The atomicity of rename
is one reliable notification mechanism that has a chance of
being portable.

Another important consideration in the modified workflow
was the rate at which Chombo-Crunch generated plot files
compared to the rate at which VisIt could process them.
If the Chombo-Crunch rate was much faster than the VisIt
processing rate, the overlap of the two components would not
result in a significant reduction in the end-to-end runtime. The
experiments in this paper were carefully chosen such that VisIt
was able to process the plot files at a faster rate. Although
this accounts for load balancing in the workflow execution, the
manual aspect, which utilized pre-existing expertise of the do-
main scientists and visualization experts, is not ideal. If VisIt is
evaluating many variables and trying to write several different
PNGs per plot file, it is likely to be slower. This motivates the
need for autonomous load balancing and management of I/O
for coupled workflow components. If a component (e.g., VisIt)
becomes overwhelmed, the execution of the main simulation
(e.g.,Chombo-Crunch) could be stopped until it is able to catch
up. Alternatively, the ability to dynamically adjust the number
of instances for the slower component or the opportunity to
adjust the way that the cores for the job are allocated can
also provide a means of load balancing. The autonomous load
balancing is the subject of ongoing work and it is not presented
in this paper.

This iteration of the workflow also incorporated the
DataWarp API into the Chombo-Crunch code, as a means of
staging out files in lieu of a checkpoint manager. However,
this created a dependency between the simulation and the
specific DataWarp implementation of the burst buffer. Once
the logic is pulled out of the simulation and put into a
separate checkpoint manager code, it will enable the complete
workflow to be ported to other emerging burst buffer and deep
memory hierarchy architectures with minimal changes.

V. EXPERIMENTAL RESULTS

To assess the performance of the in-transit workflow utiliz-
ing DataWarp, we conducted a set of numerical simulations
of chemically reactive fluid flows in complex porous media
geometries. The first example is a “packed cylinder” problem

[12], [13], [16], which represents a calcite dissolution process
in a cylinder packed by random set of spheres. This particular
benchmark has been used for Chombo-Crunch weak scaling
study [17], and we will use it an an I/O bandwidth study
in the present work. In addition to synthetic geometries as
in the packed cylinder case, we perform direct simulation
from microtomography image data. The second case study is
a reactive flow in a fractured dolomite [19]. The simulations
have been performed on NERSC Cori Phase I system with
Intel HaswellTM processors (two 2.3 GHz 16-core processors
per each node). Table I summarizes the details of considered
case studies.

TABLE I: A collection of case studies for in-transit workflow.

Benchmark # of grid cells # of cores

Chombo-Crunch VisIt

Packed cylinder 2563 − 10243 512-32768 32-512
Dolomite 384× 160× 768 512 64

A. Bandwidth scaling study

For weak scaling analysis, we perform 7 different simula-
tions for packed cylinder problem. To keep the total number of
grid cells per processing element constant, we consider various
domain sizes by changing the cylinder aspect ratio from 1:1
to 4:1 and increasing total number of grid cells from 2563 to
10243. The total number of cores for weak scaling study is in a
range from 512 to 32768 cores. From the I/O perspective, this
results to plot file size varying from 7 GiB to 472 GiB and
checkpoint file size - from 6 GiB to 385 GiB. More details
about settings of weak scaling benchmark can be found in
[17].

Table II shows the results of the scaling study for 512
to 32768 MPI tasks for I/O to Burst Buffer and provides a
comparison with I/O performance results of Lustre file system.
The number of compute nodes to Burst Buffer nodes is fixed
at 16:1. The number of Burst Buffer nodes is increasing from
1 to 64 for and number of compute nodes is increasing from
16 (512 cores) to 1024 (32768 cores), respectively. Results
for Lustre file system have been obtained with total number
of Object Storage Targets (OSTs) of 72 and a stripe size
of 1 MiB in all cases which was found to give an optimal
performance for current application. As it is seen from the
table the Burst Buffer results are significantly better than
its Lustre counterparts in all considered weak scaling test
runs. Figure 2 shows that good scalability for bandwidth
has been achieved both for Lustre and Burst Buffer. As
it is seen, the I/O bandwidth for Burst Buffer significantly
outperforms bandwidth for the Lustre file system: the achieved
improvement varies from 2.84x to 5.73x depending on file
size.

B. Full in-transit workflow: Simulations from image data

The next experiment is aimed at assessing the full in-
transit workflow shown in Figure 1. For this purpose, Chombo-
Crunch production example has been used and it is a reactive

4

3.99x

2.84x

3.06x

2.89x

3.52x

4.07x

5.73x

b
a
n
d
w

id
th

 (
G

iB
/s

)

number of MPI ranks

number of Burst Buffer nodes

Lustre

Burst Buffer

 0.5

 1

 2

 4

 8

 16

 32

 64

 512 1024 2048 4096 8192 16384 32768

 1 2 4 8 16 32 64

Fig. 2: I/O bandwidth weak scaling study. Shows I/O per-
formance between Burst Buffer and Lustre with increasing
number of processes writing data to a shared HDF5 plot file.

TABLE II: I/O bandwidth weak scaling study. Shows I/O
performance with increasing number of processes writing data
to a HDF5 plot file. The ratio of number of compute nodes to
Burst Buffer nodes is fixed at 16:1.

cores File Size [GiB] Write time [sec] Bandwidth [GiB/sec]

Lustre BB Lustre BB

512 7.37 16.72 4.19 0.44 1.76
1024 14.75 17.08 6.03 0.86 2.44
2048 29.5 19.17 6.26 1.54 4.71
4096 59 19.70 6.83 2.99 8.64
8192 118 23.49 6.68 5.02 17.66

16384 236 28.06 6.89 8.41 34.25
32768 472 43.68 7.62 10.8 61.94

fluid flow in fractured dolomite [19]. In this case, the geometry
of porous media is obtained from microtomography image
data. We discretize a computational domain with 47M grid
cells and each cell size is 13 microns. 16 compute nodes with
512 cores are used by Chombo-Crunch, 2 nodes for VisIt,
and 1 extra core on the login node used by the encoder. This
simulation uses the Burst Buffer at full current capacity (144
nodes).

Table III shows the amount of I/O for two considered
case studies. The results are summarized for different I/O
intensities: (a) High intensity I/O pattern: checkpoint interval
is 10 timesteps, plot file every time step; (b) Medium intensity
I/O: checkpoint interval is 100 timesteps, plot file interval is
10 timesteps; (c) Low intensity I/O: checkpoint interval is 500
timesteps, plot file interval is 100 timesteps.

VI. CONCLUSION & FUTURE WORK

For workflows dominated by a primary computation and
several ancillary post-processing steps, a file-based workflow
augmented by NVRAM can make productive use of a large
Cray XC40 computing platform. We designed and deployed
a workflow using a bash batch script for the NERSC Cori

Fig. 3: Snapshots from in-transit visualization of the reactive
flow in the fractured dolomite. This simulation has been
performed on NERSC Cori Phase I system using 16 compute
nodes (512 cores) for Chombo-Crunch, 2 compute nodes (64
cores) for VisIt and 144 Burst Buffer nodes for I/O.

TABLE III: Details on compute and I/O time for 2 case studies.
Three I/O patterns have been considered: (a) High intensity I/O
pattern: checkpoint interval is 10 timesteps, plot file interval is
1 timestep; (b) Medium intensity I/O: checkpoint interval is 100
timesteps, plot file interval is 10 timesteps; (c) Low intensity
I/O: checkpoint interval is 500 timesteps, plot file interval is 100
timesteps.

Dolomite problem Packed cylinder

Lustre BB Lustre BB

of timesteps 20000 4000
plot file size 7.46 GiB 118 GiB
checkpoint size 6.12 GiB 96.2 GiB
compute time per ts 9.87 s 12.19 s
checkpoint write time 47.28 s 1.47 s 49.49 s 6.85 s
plot file write time 14.45 s 0.62 s 23.49 s 1.43 s
I/O time, pattern (a) 66% 13.8% 73.5% 17.1%
I/O time, pattern (b) 16.3% 0.77% 21.8% 2.00%
I/O time, pattern (c) 2.36% 0.126% 3.16% 0.27%

computing platform. The performance boost of an NVRAM
file-system does not need to be dramatic to make it effective.
The obtained results showed that the burst buffer provided
a definite I/O improvement to the Chombo-Crunch+VisIt
workflow and successfully reduced the overall end-to-end
run time. Closing a factor of 10 in latency and bandwidth
was sufficient to allow Chombo-Crunch to move to every-
timestep post-processing while only changing roughly 20 lines
of source code in Chombo. Neither Chombo-Crunch nor VisIt
required any change to their scalable computing designs or
build process. For post-processing that is embarrassing parallel
(like movie frame generation), there is an easy path to exascale
post-processing by launching as many VisIt parallel compute
engines as is needed to keep the buffer capacity in check.

Moving forward, we plan to develop the supervisor capa-
bilities needed to augment our simple bash script workflow to
manage system variability and start work on designing signal-
ing designs suitable for HPC platforms to enable more robust
and reactive workflows within the Slurm batch management
system.

5

VII. ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. DOE under Contract No. DE-AC02-05CH11231. This
manuscript has been authored at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 with
the U.S. Department of Energy. The U.S. Government retains,
and the publisher, by accepting the article for publication, ac-
knowledges that the U.S. Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or repro-
duce the published form of this manuscript, or allow others
to do so, for U.S. Government purposes. The Department of
Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Simulation data in Figure 3 is based upon synchrotron
microtomography imagery acquired by Jonathan Ajo-Franklin
and Marco Voltolini at the Advanced Light Source, Beamline
8.3.2, which is supported by the Office of Science, Office of
Basic Energy Sciences, of the U.S. DOE under contract DE-
AC02-05CH11231.

REFERENCES

[1] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In-situ processing
and visualization for ultrascale simulations,” Journal of Physics:
Conference Series, vol. 78, no. 1, p. 012043, 2007. [Online]. Available:
http://stacks.iop.org/1742-6596/78/i=1/a=012043

[2] A. Kageyama and T. Yamada, “An approach to exascale visualization:
Interactive viewing of in-situ visualization,” Computer Physics Commu-
nications, vol. 185, no. 1, pp. 79–85, 2014.

[3] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[4] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA -
preparatory data analytics on peta-scale machines,” in Proc. of 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’10), April 2010.

[5] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,” in
Proc. 18th International Symposium on High Performance Distributed
Computing (HPDC’09), 2009.

[6] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows,” in Proc.
of 19th International Symposium on High Performance and Distributed
Computing (HPDC’10), June 2010.

[7] W. Bhimji, D. Bard, D. Paul, M. Romanus, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. Lockwood, V. Tsulaia, S. Byna, S. Farrell,
C. Daley, V. Beckner, B. V. Straalen, D. Trebotich, C. Tull, G. Weber,
N. Wright, K. Antypas, and Prabhat, “Accelerating science with the
NERSC Burst Buffer Early User Program,” Cray User Group Meeting,
2016.

[8] The HDF Group. (2000-2010) Hierarchical data format version 5.
[Online]. Available: http://www.hdfgroup.org/HDF5

[9] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, Metadata
Rich IO Methods for Portable High Performance IO,” in Proc. 23th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’09), May 2009.

[10] M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Simple linux
utility for resource management,” in In Lecture Notes in Computer Sci-
ence: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer-Verlag, 2002, pp. 44–60.

[11] M. Romanus, R. B. Ross, and M. Parashar, “Challenges and
considerations for utilizing burst buffers in high-performance
computing,” CoRR, vol. abs/1509.05492, 2015. [Online]. Available:
http://arxiv.org/abs/1509.05492

[12] D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel, and S. Chaopeng,
“High-resolution simulation of pore-scale reactive transport processes
associated with carbon sequestration,” Computing in Science & Engi-
neering, vol. 16, no. 6, pp. 22–31, 2014.

[13] S. Molins, D. Trebotich, C. I. Steefel, and C. Shen, “An investigation
of the effect of pore scale flow on average geochemical reaction rates
using direct numerical simulation,” Water Resour. Res., vol. 48, no. 3,
pp. 43–82, 2012.

[14] M. Adams, P. Colella, D. T. Graves, J. Johnson, N. Keen, T. J. Ligocki,
D. F. Martin, P. McCorquodale, D. Modiano, P. Schwartz, T. Sternberg,
and B. V. Straalen, Chombo Software Package for AMR Applications,
Design Document. Lawrence Berkeley National Laboratory Technical
Report LBNL-6616E.

[15] C. I. Steefel, CrunchFlow Users Manual. Lawrence Berkeley National
Laboratory, 2008.

[16] S. Molins, D. Trebotich, L. Yang, J. B. Ajo-Franklin, T. J. Ligocki,
C. Shen, and C. Steefel, “Pore-scale controls on calcite dissolution rates
from flow-through laboratory and numerical experiments,” Environmen-
tal Science and Technology, 2014.

[17] D. Trebotich and D. Graves, “An adaptive finite volume method for
the incompressible Navier–Stokes equations in complex geometries,”
Communications in Applied Mathematics and Computational Science,
vol. 10, no. 1, pp. 43–82, 2015.

[18] B. Pollak, “Portable operating system interface (posix)-part 1x: Real-
time distributed systems communication application program interface
(api),” IEEE Standard P, vol. 1003.

[19] J. B. Ajo-Franklin, M. Voltolini, S. Molins, and L. Yang, “Coupled
processes in a fractured reactive system: A dolomite dissolution study
with relevance to gcs caprock integrity,” Caprock Integrity in Geological
Carbon Storage, Submitted December 2015. In review.

6

