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Shaping bacterial gene expression by physiological and 
proteome allocation constraints

Matthew Scott1,*, Terence Hwa2,*

1Univerrsity of Waterloo, Department of Applied Mathematics, Waterloo, Canada

2UC San Diego, Department of Physics, La Jolla, USA

Abstract

Networks of molecular regulators are often the primary objects of focus in the study of gene 

regulation, with the machinery of protein synthesis tacitly relegated to the background. Shifting 

focus to the constraints imposed by the allocation of protein synthesis flux reveals surprising ways 

in which the actions of molecular regulators are shaped by physiological demands. Using carbon 

catabolite repression as a case-study, we describe how physiological constraints are sensed through 

metabolic fluxes, and how flux-controlled regulation gives rise to simple empirical relations 

between protein levels and the rate of cell growth.

Introduction

The mechanics of protein expression in bacteria follow straightforwardly from the Central 

Dogma of molecular biology: a gene designated for expression is transcribed into mRNAs 

by RNA polymerases and subsequently translated into proteins by ribosomes. Regulatory 

mechanisms modulating each step of this process, including transcriptional and post-

transcriptional control, have been studied in detail for numerous systems1–5. Yet, the Central 

Dogma is only one part of what it takes to determine the concentrations of proteins in living 

cells (Fig. 1A).

Protein concentrations are affected not only by their synthesis, degradation, and dilution, but 

also by the cytoplasmic volume. The bacterial cytosol is densely packed with proteins that 

catalyze biochemical reactions, anchor structural components, and regulate gene expression, 

as well as macromolecular machinery responsible for transcription and translation6. Keeping 

protein concentrations high is obviously an advantage as it increases all the metabolic fluxes 

for the same number of proteins per cell; however, overly crowded cytoplasm would slow 

down molecular diffusion and eventually limit key cellular processes7–9. Empirically, the 

biomass density is found to be approximately constant for several microorganisms grown 

under a variety of conditions6,10–13. This constraint is not related to cell size and may arise 
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from the homeostatic control of cytoplasmic water volume through intracellular osmolarity, 

as the biomass density changes primarily upon changes in external osmolarity13,14.

Because protein is the major component of biomass and the lengths of typical proteins 

are similar, the invariance of the biomass density implies an approximate constancy of the 

total cellular protein density (also referred to as concentration)15. (in Escherichia coli, 
the protein concentration seems to vary less than 10% (Refs.13,16)). This global constraint 

has a profound impact on the canonical notion of protein expression via the Central 

Dogma: Suppose the transcriptional activities of all genes are doubled and there is no post-

transcriptional regulation in play, then one would naively expect all protein concentrations 

to be doubled. But this is not possible given the protein density constraint. Instead, if the 

concentrations of certain proteins are to be upregulated, then the concentration of other 

proteins need to be reduced to keep the protein density approximately constant. This can be 

achieved by downregulating the synthesis of designated proteins; if not, then the cytoplasmic 

water volume can increase to implement the total density constraint, resulting in an effective 

reduction in the concentration of all other proteins.

Protein density (or concentration):

The buoyant density is growth-rate independent under isotonic conditions. A constant 

density constraint (biomass/cell volume) therefore implies a constant concentration 

constraint (biomass / cell water volume). The cellular volume has strong growth-rate 

dependence, consequently we do not use protein-number-per-cell as an abundance 

measure in this Review.

For growing cells, another important constraint is that the macromolecular machinery 

needed for RNA and protein synthesis are required at different concentrations under 

different growth conditions17–19. In good nutrient conditions supporting fast growth, cells 

must maintain a high concentration of ribosomes and related translational machinery to 

satisfy the demand for a high flux of protein synthesis (because the speed of peptide 

elongation does not vary strongly across growth conditions21). This, coupled with the 

protein density constraint, immediately imposes the requirement that the concentration of 

non-ribosomal proteins must be reduced in fast growth. As a result, a growing bacterium is 

faced with a fundamental engineering problem of balancing the need for protein synthesis 

machinery to fuel biomass growth and the need to maintain sufficient concentrations of 

enzymes to generate fluxes of amino acids, nucleotides and energy to fuel protein synthesis 

and cell growth.

The focus of this review will be on the model bacterium Escherichia coli, for which these 

constraints have been quantitatively characterized. Consider, for example, adjustments in 

the macromoleular composition of the cell when the growth rate is modulated by the 

carbon source, as illustrated by the schematic shown in Fig. 1. With good carbon sources 

such as glucose (Fig. 1B), E. coli doubles quickly, which requires high metabolic fluxes 

(thick arrows) mediated by high concentrations of ribosomes (in green) and enzymes for 

biosynthesis (in blue). Maintaining high concentrations requires high synthesis rates of these 

proteins (indicated by mRNA of like-color in the lower part of Fig. 1). In poor nutrient 
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conditions (Fig. 1C), the metabolic fluxes are reduced (thin arrows), with a consequent 

reduction in the concentrations of biosynthetic enzymes and ribosomes, and increased 

concentrations of catabolic proteins including transporters (in red).

The approximate constancy of protein density and the required allocation of macromolecular 

machinery for growing cells are two important examples of ‘physiological constraints’ 

that sculpt the outcome of direct regulatory interactions in the cell. In this review, we 

will describe several features of protein expression that appear surprising when viewed as 

a result of the Central Dogma modulated by regulators but become quite natural when 

viewed as consequences of these physiological constraints. Physiological constraints are 

meant as inviolable, operating independently of possible notions of optimality. In fact, as 

we detail below, the regulation that E. coli uses to satisfy these operating constraints can be 

sub-optimal in terms of, for example, growth-rate maximization.

Physiological constraint on protein synthesis

The constraints that exponential growth imposes on the protein synthetic machinery are 

revealed by tracking the cellular ribosome concentration22. The total cellular RNA is 

proportional to the number of ribosomes across growth conditions17, so total RNA-per-total 
protein-mass abundance is a convenient proxy for ribosome concentration22. Fig. 2A 

shows that for an exponentially growing culture, the RNA-protein ratio exhibits a simple 

linear correlation with the growth rate (solid black line), one of the “bacterial growth 

laws” known since 1960s23. This linear relation, also referred to as the ‘R-line’24, , was 

understood early on23,25: To grow twice as fast requires the cell to synthesize proteins 

twice as quickly. Under moderate-to-fast growth conditions where empirically the peptide 

elongation rate by the ribosome is nearly constant21, the only way to double the protein 

synthesis rate is by doubling the ribosome concentration23. Along with the R-line, the 

constancy of protein density imposes a complementary constraint: if the cell is to allocate 

more of its protein synthesis flux towards ribosomal proteins, then the synthesis (and 

hence concentrations) of some other proteins must decrease. Therein lies the fundamental 

constraint on protein synthesis. An illustrative case is provided by the growth dependence 

of the concentration of an unregulated protein (which provides the starting-point for 

analyzing the growth dependence of more complex regulatory motifs26). Fig. 2B uses the 

activity-per-total protein-mass of a reporter enzyme (β-galactosidase) as a proxy for its 

abundance in terms of reporter concentration. When growth rate is modulated by changes 

in the nutrient quality , the concentration of an unregulated protein exhibits the opposite 

growth-rate dependence from the ribosome concentration, decreasing as the growth rate 

increases22,27 (solid line, Fig 2B).

Per-total protein-mass abundance:

The concentration constraint (biomass/cell water volume) allows a direct conversion 

between the concentration ((number of a particular molecule)/(cell water volume)) and its 

abundance relative to total protein mass ((number of a particular molecule) /(total protein 

mass)) assuming that the biomass contains a fixed fraction of protein.
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R-line:

R-line: The positive correlation between the abundance of protein-synthetic machinery 

(chiefly ribosomes) and growth rate when growth rate is modulated by nutrient quality.

Unregulated protein:

Protein expression not subject to any transcriptional or post-transcriptional regulation.

Nutrient quality:

The exponential growth rate can be modulated by changing the carbon source, nitrogen 

source or enriching the medium with amino acids and nucleotides.

Experimentally, there are a variety of methods to investigate the coupling between growth 

rate and ribosome concentration. Early studies used changes in nutrient quality to modulate 

growth23,28; other modes of growth-rate modulation include physical methods (e.g., changes 

in temperature28,29, or osmolarity9), biochemical methods (e.g., using sub-inhibitory levels 

of antibiotics22), and genetic methods (e.g., auxotrophy28, or via expression of toxic30 

or unnecessary proteins22). Sub-lethal levels of translation-inhibiting antibiotics provide 

a particularly illuminating method of growth modulation. In contrast to nutrient-limited 

growth with unperturbed translational elongation rate, ribosome-targeting antibiotics probe 

an ‘orthogonal’ scenario: translation-limited growth with nutrient quality held fixed. 

Under conditions of translational inhibition, the ribosome concentration exhibits a strong 

(near-linear) negative correlation with growth rate. As with nutrient-modulated growth, 

the concentration of unregulated proteins exhibits the opposite growth-rate dependence 

from that of the ribosomes (dashed lines, Figs. 2A, 2B). Translation-inhibited growth 

highlights the fundamental constraint on protein synthesis: whatever growth dependence 

is observed in the ribosomal concentration, the opposite growth dependence is observed 

in the concentration of an unregulated protein. The near-perfect anticorrelation between 

the two solid and two dashed lines in Figs. 2A, 2B suggests a linear constraint operating 

between ribosomal protein concentration and the concentration of all other proteins in 

the cell. The bulk of non-ribosomal proteins are devoted to metabolic enzymes. Below, 

we consider carbon-catabolite repression to illustrate the dramatic effect that the protein-

synthesis constraint can have on shaping the regulation of metabolic gene expression.

Effect of the protein-synthesis constraint on carbon catabolite repression

Metabolic proteins are responsible for assimilating environmental nutrients to fuel biomass 

growth. Core metabolic tasks, including catabolism and anabolism, must be coordinated 

to ensure balanced growth31. Carbon catabolite repression (CCR) refers to reduction 

in the expression of carbon catabolic proteins during steady-state growth on a good 

carbon source compared to a poor one32. The phenomenon of choosing a distinct carbon 

substrate for consumption in media with multiple carbon substrates, sometimes referred 
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to interchangeably with catabolite repression33,34, will be discussed further below in the 

context of hierarchical carbon utilization.

Carbon catabolic proteins:

Proteins responsible for the transport and break-down of extracellular carbon sources. 

Operationally, these are genes regulated by cAMP-Crp.

Early studies of CCR focused on the chemical origin of the substrate for the apparent 

suppression of specific catabolic enzymes in the presence of glucose35 (Box 1). Later, 

CCR came to be understood as a manifestation of a more general strategy whereby 

the accumulation of a group of intermediate metabolites produced by carbon catabolism 

(‘catabolites’) signal a flux-mismatch between carbon catabolism and consumption of these 

catabolites by anabolism32. Beyond catabolic proteins that are directly induced by their 

cognate substrate, in E. coli a large fraction of the proteome is coregulated to respond 

to changes in carbon availability even though many of these proteins carry no flux under 

these conditions19. Cyclic adenosine monophosphate (cAMP) antagonizes CCR36,37; with 

the subsequent discovery of the cAMP receptor protein (Crp) and its role in activating the 

expression of induced carbon-catabolic gene expression38, the direct regulatory mechanism 

responsible for catabolite repression in E. coli was resolved.

Yet the physiological trigger of cAMP synthesis was never settled conclusively, and 

seemingly anomalous results kept the case from being closed: It has been long 

established that the synthesis of cAMP is inhibited by glucose transport40, via the 

the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS)41–44; 

however, growth on PTS-independent carbohydrates, as well as limitations in nitrogen or 

phosphorous, also affected the cAMP pool and consequently the degree of CCR45–49. These 

anomalies, and subsequent work52,53, brought into question the unique role of cAMP-Crp in 

the modulation of carbon catabolic protein expression50, and began an unsuccessful search 

for additional regulators51.

Growth on single carbon sources

By attending to the carbon flux carried by catabolism and anabolism, in addition to 

constraints on protein synthesis, it becomes possible to disentangle the regulation-centric 

view of CCR from intrinsic protein-synthesis constraints on gene expression. Recent work 

supports the view that CCR acts primarily to coordinate metabolic flux, and identifies 

ketoacids as the metabolic node responsible for conveying a flux-mismatch between 

catabolism and anabolism24.

Similar to the protein-synthesis constraints on ribosomal and non-ribosomal proteins (Figs. 

2A, 2B), the protein-synthesis constraints on catabolism and anabolism are characterized 

by independently varying carbon and nitrogen flux, then observing how the cell adjusts 

the concentration of flux-carrying enzymes. The balance between carbon catabolic flux 

and anabolic flux can be shifted in several ways. Early studies focused on varying the 

composition of the growth medium39,52 and using amino-acid auxotrophs51,53; more recent 

work uses inducible promoters to dial the expression of key metabolic enzymes. Figure 
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3 shows a concrete example from You et al.24, who dialed the expression of lactose 

permease to modulate carbon (lactose) influx in lactose minimal media, and dialed the 

expression of glutamate dehydrogenase (GDH) to modulate anabolic flux via limiting amino 

acid synthesis (Fig. 3A, dashed boxes). A proxy for the concentration of carbon catabolic 

proteins is (IPTG-induced) β-galactosidase (Fig. 3B), whereas a proxy for the concentration 

of anabolic proteins is glutamine synthetase (Fig 3C).

Under conditions of lactose limitation, the concentration of β-galactosidase exhibits a 

negative correlation with growth rate, and a zero-expression intercept at a specific growth 

rate of λC ≈ 1.2 /h (Fig. 3B, red solid line; contrast with the zero-expression limit of 

an unregulated protein, which is at approximately 2.2 /h as shown in Box 1B). The same 

growth-dependent behavior in the concentration of carbon-catabolic proteins is produced 

when growth rate is modulated by changes in the carbon source (see Box 1A). Other forms 

of carbon limitation (e.g., titration of glycerol uptake) exhibit an identical response, and so 

we will refer to the negative correlation between the concentration of β-galactosidase and 

the growth rate as the ‘carbon catabolism-limited response’ of the carbon catabolic genes. 

This negative linear correlation of carbon catabolic gene expression is synonymous with 

carbon catabolic repression, and has been referred to as the ‘C-line’24.

C-line:

The negative correlation between catabolic enzyme expression and growth rate in 

minimal media when growth rate is modulated by carbon source.

The expression of the anabolic enzymes, using the reporter glutamine synthetase (GS, 

glnA) as a proxy, exhibits a clear anti-correlation with those of the carbon catabolic proteins. 

Under conditions of anabolic limitation, the concentration of anabolic proteins exhibit a 

negative linear correlation with growth rate (Fig. 3C, blue dashed line), whereas the carbon 

catabolic proteins exhibit a positive linear correlation with growth rate, passing through 

the origin (Fig. 3B, red dashed line). Under conditions of carbon catabolic limitation, 

the concentration of anabolic proteins exhibit positive linear correlation with growth rate, 

passing through the origin (Fig. 3C, blue solid line). Subsequently, carbon catabolism-

limited and anabolism-limited response of the reporter enzymes was validated by proteomics 

measurements for a large number of catabolic and anabolic enzymes19,27. The ribosomal 

concentration (which is proportional to the RNA/protein ratio under both carbon-catabolic 

and anabolic limitation) exhibits a positive linear correlation with growth rate (Fig. 3D) 

irrespective of growth limitation by catabolism or anabolism.

Anabolic enzymes:

Enzymes responsible for biosynthesis, including amino acid and nucleotide synthesis.

Using the protein mass fraction ϕi of an individual protein as a measure of cellular 

abundance (which we adopt henceforth) provides several advantages over concentration. 

First, in exponential growth the protein mass fraction of a given protein is equal to the 

fraction of ribosomes actively translating that particular protein (thereby manifesting the 
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macromolecular machinery constraint; see Box 2). Second, all protein fractions must sum to 

one, thereby conveniently enforcing the constant-protein-density constraint.

Protein mass fraction:

The total number of a particular protein is proportional to its protein mass. Using the per-

total protein-mass abundance defined above, the protein mass fraction ((protein mass of a 

particular protein)/(total protein mass)) is therefore a direct measure of concentration.

Using a series of growth perturbations and protein mass spectrometry, Hui et al.27 found 

that individual proteins could be grouped together into a small number of sectors sharing a 

common response to growth rate change (Fig. 3E) (this was confirmed in a recent large-scale 

study by Mori et al.19). The cellular abundance of each individual protein is expressed 

as a protein mass fraction ϕi composed of a growth-independent (basal) component 

ϕi
0

and a growth-dependent component Δϕi(λ), where λ denotes the exponential growth rate,

ϕi = ϕi
0 + Δϕi(λ) .

With the proteome partitioned into proteome sectors, it becomes clear that if proteins 

in one sector increase in mass fraction, then other sectors must decrease to accommodate 

the change (Fig. 3E, small panels). Thus, the combination of constraints on total protein 

synthesis flux and on total cellular protein concentration leads to a constraint on the 

composition of individual protein concentrations as represented by the pie chart (Fig. 3E), 

which we call the ‘proteome allocation constraint.’

Proteome:

The set of all expressed proteins in a given growth condition.

Proteome sectors:

Subsets of the proteome that exhibits similar growth-rate dependence under various 

growth conditions.

Irrespective of the method of growth perturbation, all of the growth-dependent protein 

sectors exhibit a linear dependence on growth rate, and enzymes with correlated expression 

are found to largely share common functionalities (e.g. protein synthesis, carbon catabolism, 

amino acid biosynthesis)27. This behavior is rationalized by assuming that the flux carried 

by enzymes in that sector is proportional to the sum of the growth-dependent fractions of 

those enzymes27,61,

ΔΦα = ∑
i ⊂ α

Δϕi,

enzymes in sector α

flux through enzymes
contained in proteome  = καΔΦα(λ)
sector α
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where κα is a growth-rate independent factor characterizing the effective catalytic constant 

for the coarse-grained activity of that sector. It is important to note that although all proteins 

within a given sector α are co-expressed, not all proteins in that sector may be carrying flux 

in any particular growth condition19. The proteomic data of Hui et al.27, which support the 

hypothesis that the enzyme-catalyzed reaction flux is proportional to the growth-dependent 

protein mass fraction ΔΦα, provides a quantitative, empirical framework for coupling flux-

balance analysis with proteome allocation constraints62.

Assuming a flux balance between carbon catabolism and anabolism, as required by 

exponential growth, the linearity of the growth-dependent response of each metabolic 

sector implies that the flux is proportional to the growth-dependent protein fractions. 

Denoting the growth-dependent mass fraction of carbon-catabolic proteins by ΔΦC and the 

growth-dependent mass fraction of anabolic proteins by ΔΦA, the flux balance constraint is 

expressed succinctly as,

κCΔΦC = κAΔΦA

where κC and κA are proportionality constants that quantify the overall catalytic efficiency 

of each sector. Beyond the linearity of the response, the second striking feature of the 

data shown in Figs. 3B, 3C is the anti-correlation between the catabolic and anabolic 

protein sectors, implying a second proteome allocation constraint operating in addition to the 

overarching constraint illustrated in Fig. 2.

Altogether, the data suggest a hierarchical scheme of proteome allocation – first, the amino 

acid demands of protein synthesis determine the allocation of the growth-dependent sectors 

of the proteome between ribosomal proteins (setting amino acid consumption flux) and 

metabolic proteins (setting the amino acid supply flux; see Fig. 2)63. Within the metabolic 

proteins, a second balance is struck between carbon catabolism and anabolism.

Coordination of flux-balance and proteome allocation constraints

The proteome allocation constraints lead to simple, linear dependence of the protein mass 

fractions on the steady-state growth rate. Yet the constraints themselves reveal little about 

the underlying regulation responsible for this apparent simplicity. Much is known about the 

molecular regulators that control expression of these large proteome sectors, ppGpp64 in the 

case of the ribosomal proteins and cAMP-Crp41 in the case of carbon catabolic proteins. 

Here we discuss these signaling pathways in the context of proteome-allocation constraints 

and flux-balance.

The ribosomal protein mass fraction (denoted by ΦR in Fig. 4) is set by the flux of ribosome 

biogenesis, which is inhibited by ppGpp through the synthesis of ribosomal RNA67. The 

synthesis rate of ppGpp itself responds negatively to the rate of translational elongation69, 

with translation rate acting as an integrated sensor of the availability of all 20 amino 

acids. An accumulation of the amino acid pools relieves repression of ribosomal RNA 

transcription, leading to feedforward activation of ribosome synthesis. Subsequently, the 

increased rate of amino acid consumption reduces amino acid accumulation (Fig. 4, green 
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box). In this way, the amino acid pools serve to balance protein synthesis and amino acid 

biosynthesis fluxes.

lux balance between carbon catabolism and biosynthesis is maintained by the regulatory 

complex cAMP-Crp which activates the expression of carbon-catabolic genes38, whose 

abundance is denoted by ΦC in Fig. 4. The readout of a flux-mismatch appears to be the 

ketoacid pool (e.g. α-ketoglutarate, pyruvate and oxaloacetate), with a build-up of ketoacids 

attenuating the synthesis of cAMP24. Consequently, an increase in the ketoacid pools 

produces an effective feedback inhibition of the carbon-catabolic genes via downregulation 

of the activator cAMP-Crp (Fig. 4, red box). Less is known about the regulation of 

biosynthesis enzymes, whose abundance is denoted by ΦA in Fig. 4. The abundance of 

biosynthetic enzymes is reduced under carbon-limited growth19,24,27; this could arise from 

end-product inhibition mediated by the pool of individual amino acids and/or tRNAs68 (red 

line), inhibition due to the lack of carbon precursors24,65,70 (green dotted arrow), or passive 

effects of global regulation71 (red dotted line).

Despite divergent molecular mechanisms for achieving flux balance, there are two key 

regulatory motifs that allow E. coli to use the concentration of a signaling molecule to sense 

and control flux (Box 3). A persistent feature of the proteome fractions is the linear growth-

rate dependence under various modes of growth limitation. Flux-based regulation provides 

a mechanism to generate a linear relation between the flux and the enzyme concentration. 

Consider, for example, the feed-forward scheme illustrated in Box 2, figure part a. If the 

concentration of an active enzyme Z is directly proportional to the concentration [S] of 

a signaling molecule S; that is, [Z] = c[S], and if the flux through the enzyme Z has a 

Michaelis–Menten dependence on the signalling molecule S; that is, ν = kcat[Z][S]/(KS + 

[S]), then a linear relation between flux and the total enzyme concentration is obtained over 

a range of fluxes (as long as the flux is not too small), with

Z = a v + b,

where 

a ≈ kcat 
−1

is the slope and b ∝ c KS is the flux-independent offset. This relation would readily give 

rise to a linear dependence of the enzyme concentration on the growth rate λ, because many 

metabolic fluxes are proportional to the growth rate78.

The simplest way to realize this regulatory scheme is for the signaling molecule S be 

the substrate of the enzyme Z, or the substrate of another reaction in the same linear 

pathway as Z (and hence sharing the same flux). The latter has been demonstrated explicitly 

for the glycolytic enzyme PykF72 (Box 3C), for which the linear dependence between 

flux and enzyme abundance is expected to hold so long as the enzyme is biased to 

operate in the regime of excess substrate [S] ≥ KS (such is the case for many metabolic 

enzymes61,79). A more elaborate implementation of this regulatory scheme is known for 

ribosome biogenesis (Box 2, figure part e). In this case, the charged tRNAs are the substrates 

of the ribosomes8,80, and ppGpp is the signal that integrates the different substrates. An 

effective Michaelis–Menten relation between the substrates and the flux, assumed in past 
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phenomenological studies8,21,80,81, is shown to be regulated molecularly by ppGpp via its 

response to translational elongation rate on the one hand and its regulation of rRNA and 

tRNA on the other69.

Under conditions of severe growth-limitation, the linear relation generated by the simple 

scheme above would break down; however, the relation between the ribosome concentration 

and growth rate in E. coli is still found to be approximately linear when grown in very poor 

carbon sources21 or carbon-limited chemostat82. The maintenance of this linear relation has 

recently been suggested69 to involve the additional regulation of the translational activity of 

the ribosome, by employing ribosome hibernating factors to make the majority of ribosomes 

inactive at very slow growth83. In nitrogen-limited growth82, by contrast, it appears that 

tRNA charging (primarily glutamine) becomes rate-limiting, whereas in phosphate-limited 

growth82, the decreased synthesis of nucleic acid itself reduces ribosome abundance. How 

N- and P- limitations lead to their corresponding ribosome abundances is not understood at 

the same quantitative level as carbon limitation.

The right column of Box 3 shows a similar regulatory motif implemented by a feedback 

circuit (Box 3B). Qualitatively this regulatory motif is established for a broad range of 

metabolic systems including amino acid biosynthesis (Box 3D) and catabolite repression 

(Box 3F), although the details of how the catabolite repression circuit senses flux and leads 

to the C-line (Fig. 3B) have yet to be quantitatively established.

Growth on multiple carbon sources

Microbes exhibit preferential utilization when presented with several substitutable carbon 

sources33. While this was demonstrated by Monod in the context of kinetic growth 

transitions84, the phenomenon of preferential nutrient usage can be elucidated quantitatively 

in steady-state growth85,86. For E. coli, it was observed that most pairs of glycolytic carbon 

sources are hierarchically utilized, whereas pairs of gluconeogenic carbon sources are 

simultaneously utilized, as are combinations of the two types85. The observed substrate 

utilization pattern has been rationalized in terms of the proteome cost involved in the 

conversion between glycolytic and gluconeogenic substrates87, or more generally in terms of 

‘elementary growth modes’88; see Okano et al.89 for a recent review.

Hierarchically utilized carbon sources:

In a mixture of carbon sources, these are carbon sources that are metabolized one-at-a-

time.

Simultaneously utilized carbon sources:

In a mixture of carbon sources, these are carbon sources that are metabolized con-

currently.

For those combinations that are simultaneously utilized, the uptake rate of each substrate 

is generally not equal: it is reduced in the presence of a co-utilized substrate, yet the 
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steady-state growth rates on two substrates exceed that on either substrate alone. The 

same inverse linear relation between carbon catabolic enzyme expression and growth rate 

(‘C-line’) is observed for growth on various combinations of co-utilized carbon substrates, 

with the same intercept, λC=1.2 h-1 (Fig. 3B)85. The common intercept λC implies that 

although the growth rate on multiple substrates increases with respect to a single substrate, 

there is a ‘speed limit’ imposed at λC. The co-utilization phenomenon can be accounted 

for quantitatively using the same flux-matching scheme as in the single-carbon case (now 

allowing for carbon influx from multiple sources). The resulting model can predict, using 

only carbon-limited speed limit λC, the growth rate on multiple substrates based on growth 

rates on individual substrates85.

For the combinations of substrates that give rise to hierarchical usage, the preferred substrate 

is usually the one with a higher single-substrate growth rate. This preferred utilization can 

be converted to simultaneous utilization if the uptake rate of the preferred substrate is 

reduced below the uptake rate of the other substrate86, indicating that the onset of preferred 

utilization is again controlled by a flux-controlled regulation scheme. Detailed analysis86 

identified the involvement of cAMP-Crp together with another substrate-specific regulator.

Growth transition kinetics

For controlling the kinetics of growth transitions, the cell needs to monitor its own state 

of growth which involves thousands of reactions. Which molecular species should the cell 

monitor to diagnose its own state of protein synthesis? A useful strategy, both for the 

scientists studying bacterial response and for the bacterium managing its own growth, is to 

capture key kinetic variables that reflect the coarse-grained dynamics of the cell69,90.

The feedback/feedforward control schemes mediated by cAMP-Crp and ppGpp outlined in 

the previous sections (and shown schematically in Fig. 4) exhibit a common flux-controlled 

regulatory motif (Box 3). In both cases, flux-mismatch is measured by the accumulation 

of signaling molecules (α-ketoacids in the case of CCR, and amino acids in the case 

of ribosome biogenesis). The result of accumulation of the signaling molecule is a 

reduction of the supply flux along with a simultaneous increase of the consumption flux. A 

transformative effect of the cAMP and ppGpp signaling pathways is for the cell to condense, 

or coarse-grain, the large variety of individual metabolites (e.g., the different species of 

ketoacids for cAMP signaling24 and the different amino acid/tRNA species for ppGpp 

signaling69) onto the concentrations of just two molecular species, cAMP and ppGpp (Box 

3E,F). In this way, the metabolites no longer participate directly in downstream regulation, 

but rather participate through their signaling molecules.

This qualitative coarse-graining picture does not, however, lend itself immediately to 

quantitative prediction because it remains largely unknown how cAMP and ppGpp 

synthesis/turnover respond to changes in the large number of metabolites they monitor. 

In the work of Erickson et al.60, a simple coarse-grained framework was developed so that 

quantitative predictions of kinetic transitions (e.g., variations of the classic diauxic shift) 

can be made based on the gross topology of cAMP/ppGpp signaling (Box 3EF) and their 

effect on proteome allocation in the steady state (i.e., the C-line and the R-line in Fig. 

3B and D), without the need to know any details of the signaling pathways. Instead of 
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describing the complex regulatory interactions that link the concentrations of ketoacids and 

amino acids to cAMP and ppGpp signaling which control the expression of carbon-catabolic 

and ribosomal protein mass (Fig. 5, MC and MR), the authors postulated60 that the flux-

controlled regulation is driven by the translational activity σ, defined as the ratio between 

the protein synthesis flux, JR, and the ribosomal protein mass, MR. Growth kinetics are then 

determined by a simple dynamic loop involving the effect of the present allocation of the 

proteome (MC and MR) on translational activity, and the effect of translational activity on 

future allocation of MC and MR, via the regulatory functions χC and χR (Fig. 5). The form 

of the regulation functions, which are implemented by the signaling molecules cAMP and 

ppGpp and not known quantitatively, was bypassed in their treatment by using the relation 

between the regulatory functions χC,R and the translational activity σ in the steady state 

(easily obtained via empirical steady state correlations), and by assuming that the same 

relation determines the regulation function in the kinetic regime, where translational activity 

itself changes in time60.

The mechanistic justification of Erickson et al.’s treatment of using translational activity 

to drive the regulation of ribosome biogenesis χR has since been substantiated through the 

discovery that the ppGpp pool responds directly to the peptide elongation rate69: Because 

the translational activity σ so-defined is a product of the peptide elongation rate and the 

fraction of active ribosomes. and the ppGpp pool regulates the active ribosome fraction67,69, 

it follows that the translational activity σ is uniquely dependent on the ppGpp pool and 

acts as its proxy. In light of the relation between ppGpp and translational activity, we can 

understand the tremendous degree of ‘dimensional reduction’ performed in Erickson et al.’s 

work, where the kinetics of bacterial growth transitions are determined by a few parameters 

despite the formal involvement of a large number of variables and parameters (metabolite 

concentrations and kinetic constants characterizing each reaction), as a consequence of 

coarse-graining by the cell itself, where ppGpp senses the availability of all the amino acids 

and tRNAs by simply sensing the rate of peptide elongation69,90.

We note that a similar understanding of the connection between translational activity and 

the regulation of catabolic protein synthesis assumed in Erickson et al. is currently still 

lacking. It does not mean mechanistically that ppGpp activates the catabolic sector. The 

catabolic sector is clearly regulated via cAMP-Crp, and cAMP synthesis is affected by 

the ketoacid pools24. We hypothesize that a coarse-graining scheme similar to that which 

relates the amino acids to ppGpp (via the peptide elongation rate69) relates the ketoacids to 

cAMP. However, because the ketoacids and amino acids are reversibly connected through 

trans-amination70,91, a relation exists between the cAMP and ppGpp pools when growth is 

limited by carbon influx (as during diauxic shifts), leading to a connection between catabolic 

allocation χC and translational activity σ exploited by Erickson et al.

Under these key assumptions, the dynamics of a nutrient-shift are fully specified with the 

only additional information being the steady-state growth rate in the pre- and post-shift 

medium (λi and λf, respectively). Furthermore, both nutrient down-shifts and nutrient up-

shifts are accommodated within the same framework (distinguished only by whether λi is 

larger or smaller than λf).
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The simplest nutrient shift is achieved by exhausting one of the simultaneously utilized 

carbon sources. In that case, all requisite enzymes and transporters are present throughout, 

and their cellular mass abundances are known from the pre-shift steady-state. Figs. 5B, 5C 

show the predictability of this flux-controlled kinetic model on the adaptation dynamics of 

the instantaneous growth rate for an exemplary up- and down-shift; similar predictability is 

observed in the dynamics of proteome remodeling60. An unexpected feature of the growth-

shift kinetics for simultaneously utilized carbon sources is that, despite the expression of all 

the required processing enzymes and cognate transporters prior to the shift, it takes several 

hours to reach the post-shift steady-state. The success of the theoretical framework (Figs. 

5B, 5C, solid lines) suggests several contributions of the proteome-allocation constraints on 

the prolonged adaptation timescale. First, flux-controlled regulation leads to coordinated 

response of large sectors of the proteome. Induction of a single operon is very rapid 

but remodelling the proteome following a nutrient shift requires altering the degree of 

expression of hundreds of genes (e.g., carbon-catabolic genes that comprise up to 30% of 

the proteome for a switch to poor-carbon conditions) and greatly extends the adaptation 

time. Second, beyond adjusting synthesis rates, the cell must remove proteins that are 

‘over-expressed’ with respect to the post-shift growth condition. The inherent stability of 

most bacterial proteins means that a decrease in mass fraction must be achieved by dilution 

through cell doubling. For a down-shift, this involves replacing a fraction of the ribosomal 

protein and anabolic proteins by carbon-catabolic proteins, and vice versa for an up-shift. 

Depending upon the nature of shifts, additional internal metabolic bottlenecks may further 

lengthen the adaptation time92,93.

The model of flux-controlled regulation described for shifts between simultaneously-utilized 

substrates can be readily adapted to describe diauxic growth between hierarchically utilized 

substrates. Fig. 5D is an example of hierarchical utilization between glucose and lactose. 

In this case, glucose and lactose support almost identical steady-state growth rates; yet 

glucose in the medium results in a near-complete repression of the lactose catabolic 

genes. Although hierarchical utilization requires additional regulatory mechanisms (in this 

case, ‘inducer exclusion’94,95), it appears that cAMP-Crp continues to be the primary flux-

sensor86. The kinetics of hierarchical utilization of glucose and lactose can be accurately 

described by invoking a single fitting parameter that specifies the time at which the lac 

operon is de-repressed, reflecting a threshold in glucose influx below which lactose starts 

to be taken up86. Thereafter, as with the simple nutrient shifts, the kinetics of hierarchical 

utilization conform to what is predicted from the coarse-grained model (Fig. 5D). Much 

faster transition times can be attained if the synthesis of growth-limiting enzymes are 

prioritized93,96. In the canonical shift from glucose to lactose (both of which support 

doubling times of about 40 minutes), at full-induction the lac proteins occupy approximately 

1–2% of the protein content of the cell. A targeted response to the shift would be expected 

to take less than a minute (1–2% of 40 minutes), and empirically can be achieved in less 

than two minutes97. Instead, it appears that E. coli adopts the versatile, generalist strategy of 

flux-controlled regulation which, though independent of the details of how metabolic flux is 

generated, nevertheless carries with it the burden of global proteome remodelling, extending 

the adaptation time. Instead of upregulating the required 1–2% of the catabolic proteins 

needed to respond to a carbon downshift, the cell upregulates the entire sector of catabolic 
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proteins, most of which carry no flux19,93. This surprising behavior possibly reflects the lack 

of dedicated sensors/regulators to detect the instantaneous nutrient landscape and ‘compute’ 

the optimal cause of action98. It is also possible that in natural environment, the remaining 

nutrients is distributed across a variety of different types, rather than in one type as usually 

done in diauxic shift studies84.

Diauxic growth:

Multiple stages of exponential growth as carbon sources are preferentially utilized. The 

time to switch between carbon sources can take several hours.

Concluding remarks

The bacterial cell can be viewed in (at least) two different ways: as a membrane-enclosed 

auto-catalytic loop of ribosomes synthesizing ribosomes (along with the necessary metabolic 

enzymes fueling the substrates needed for the ribosomes to do their work), or, alternatively, 

as a finely-tuned collection of metabolic enzymes orchestrated by a chemical soup 

of signaling molecules designed to transform external nutrients into a replicating cell. 

Although both views are simultaneously accurate and useful, they constrain one another22, 

and irrespective of whether the object of focus is protein synthesis or metabolism, 

the physiological constraints operating in the background unavoidably sculpts the gene 

expression landscape and consequently shape the behavior of the system.

In this review, we focused on the correlation between ribosomal protein abundance and 

growth rate (R-line, Figs. 2A, 3D) which imposes complementary regulation on the 

expression of all other non-ribosomal proteins. Among these, the expression of carbon 

catabolic proteins exhibits further strong correlation with growth rate (C-line, Box 1 and 

Fig. 3B), a phenomenon synonymous with carbon catabolite repression. Together, these 

proteome-allocation constraints were captured by a phenomenological model of bacterial 

growth that quantitatively predicts the dynamics of growth transitions among carbon sources 

without adjustable parameters.

Underlying the growth-dependent proteome-allocation constraints are nested loops of flux-

controlled regulation responsible for coordinating the flux through large sectors of the 

proteome (Fig. 4 and Box 3). Flux-sensing regulatory motifs are particularly useful in 

mediating the interface between large networks because they are not sensitive to the details 

of how the flux is generated, providing a generalized strategy that can accommodate 

metabolic innovation without adjudicating on a case-by-case basis. The plug-and-play 

functionality of flux-controlled regulation has the benefit of not being tailored to any 

single growth environment, but of course this generality may suffer from occasional non-

optimal response under exotic growth conditions98,99. Nevertheless, the success of the 

phenomenological approach in the study of carbon catabolite repression points to the 

importance of proteome allocation constraints and flux-controlled regulation in studies of 

gene expression.
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A number of recent theoretical studies100–102 have suggested that existing observations on 

bacterial proteome allocation (including the R-line and C-line), support the notion that the 

proteome is optimally allocated to maximize the growth rate. Closer quantitative inspection 

of the existing data necessitates a broader definition of optimality that can accommodate 

the substantial non-flux-carrying protein sectors (both the growth-rate independent proteome 

sector61, and the growth-dependent catabolic proteins that carry no flux19,93).

Future outlook

Although the proteome allocation constraints discussed in this review provide a quantitative 

framework for predicting the interdependence between the growth rate and gene expression, 

many open questions remain and the applicability of this approach beyond Escherichia coli 
is largely unexplored.

To coordinate ribosome allocation and proteome allocation constraints with growth rate 

change requires a mechanism to sense the growth rate. In E. coli, ppGpp plays that 

role69,103. The alarmone ppGpp exerts its regulatory effect primarily through modulation 

of transcription64,77. In other species, what are the molecular signals that sense growth-rate 

change, and transform this information into the appropriate proteome allocation? The best-

characterized physiological constraints have come from nutrient-limited growth – either 

balanced exponential growth, or transitions between balanced growth states. What about 

growth under stress, where the growth-limiting factor is not any nutrient component, but 

other environmental parameters such as temperature, pH, osmolarity, etc.? Quite a lot 

of information is available on regulatory factors operating under these conditions104–106. 

However, little is known at the quantitative level regarding the physiological constraints 

imposed by these environmental factors, nor about their effects on growth reduction. Our 

focus on proteome allocation constraints has not touched upon changes in cell size. The 

broader question of how cell size homeostasis and DNA replication107 is coordinated with 

proteome partitioning and protein-synthesis constraints remains unknown. Current ideas are 

centered around the accumulation of some protein(s) for initiating cell division12,107–109.

What about non-growing or stationary conditions? Is it similar to a very slowly 

growing state110, or fundamentally different? How do physiological constraints affect gene 

expression by cells in stationary phase111? What about survival through the stationary 

phase112? Recent work on the effect of pre-shift growth conditions on survival113 provides a 

rare example of physiological study of stationary cells but much work is left to be done.

The coordination of ribosome abundance with growth rate64, and carbon catabolic 

repression33,34 are ubiquitous responses in bacteria. Are the protein-synthesis constraints 

active in other organisms the same as those found in E. coli, and if so, are these 

constraints responding to similar flux-matching signals? Certainly the molecular details 

are different among distant species. In the model firmicute Bacillus subtilis, for example, 

guanosine (penta)tetraphosphate ((p)ppGpp) appears to modulate ribosomal RNA operon 

activity indirectly, by lowering the concentration of GTP rather than by direct binding 

to the RNA polymerase as in E. coli114. Furthermore, carbon catabolite repression in B. 
subtilis is achieved by transcriptional repression, rather than via cAMP-Crp activation of 

the catabolic promoters33,34. Despite these differences in implementation, are the resulting 
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control structures responding to similar cues to generate a similar flux-balance among 

proteome sectors?

B. subtilis and E. coli are both capable of rapid growth – are similar proteome-allocation 

constraints operating in slowly-growing bacteria? Are proteome allocation constraints 

relevant in slow-growing species, or is the protein synthesis machinery no longer a 

growth-limiting resource under these conditions115? Although the proteins responsible 

for (p)ppGpp signaling and the regulation of ribosome biogenesis are largely conserved 

among bacteria116, there are varied molecular implementations depending upon whether 

the bacteria are copiotrophic or oligotrophic. Bacteria adapted to nutrient-rich environments 

(copiotrophs) tend to synthesize ppGpp in response to a number of individual starvation 

cues, exhibiting OR-logic combinatorial control; whereas bacteria adapted to chronic 

starvation (oligotrophs) tend to synthesize ppGpp in response to a combination of 

cues, typically in addition to amino acid starvation, exhibiting AND-logic combinatorial 

control117. Are proteome-allocation constraints (and other physiological constraints) 

likewise shaped by the bacterial lifestyle? Are they found in extremophiles and archaea? 

Quantifying physiological constraints in photosynthetic organisms is complicated by the 

additional degrees of freedom afforded to growth modulation via light intensity and 

duration. Nevertheless, it appears that simple empirical relationships exist, e.g. linking 

cellular glycogen to growth rate in cyanobacteria118.

Microorganisms continue to be an important vector for biomanufacturing and synthetic 

circuits design. Proteome allocation constraints impose a hard upper-limit on the mass 

fraction that can be occupied by heterologous protein12,22, irrespective of whether the 

protein is produced endogenously or via an orthogonal synthesis pathway119. Is it 

possible to engineer the host120 or the growth medium to increase the heterologous 

protein limit? Or, alternatively, are there suitable microorganisms that have a larger 

propensity for heterologous production? The implementation of synthetic genetic circuits 

is limited by a lack of predictability, largely due to unaccounted crosstalk between the 

host and the synthetic construct121,122 (or among different modules of the construct123). 

Including physiological constraints in mechanistic models of gene expression improves 

predictability122,124,125, particularly when the growth rate changes. Designing flux-

controlled regulation that couples the synthetic circuit to the host physiology could improve 

performance by ensuring flux-matching among modules.

Beyond bacteria and archaea, unicellular eukaryotes are subjected to far more complex 

protein-expression regulation and compartmentalization. Yet they exhibit apparent catabolite 

repression126 and other metabolic transitions such as overflow metabolism127 that are also 

manifested in bacteria. Work has been done quantifying some physiological constraints 

in Saccharomyces cerevisiae128–131, fungi132,133 and mammalian cell lines134, but for the 

most part, eukaryotic organisms, particularly higher eukaryotes, remain under-investigated. 

Generally, much less is known quantitatively about issues specific to eukaryotes, e.g., 

the role of protein turnover and secretion on proteome allocation135,136. The existence 

of a constraint on biomass density and hence protein concentration is another unknown. 

Indeed, even defining the intracellular protein concentration is nontrivial in eukaryotes due 

to the existence of many intracellular compartments, in particular, vacuoles which can 
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take up substantial intracellular volume but do not directly affect the cytosolic protein 

concentration135,137.

Turning to communities of interacting microorganisms, can we define meta-physiological 

constraints? These may be particularly straightforward to define in model ecosystems 

comprised of a few species138–140. As a simple example, in a two species Lotka-Volterra-

type system where both the densities of the predator and prey oscillate, the ribosome 

abundance in the predator is expected to oscillate with the predator growth rate, whereas 

in the prey, the ribosome abundance is expected to exhibit no time dependence (since the 

density change of the prey is due to changes in predation, not growth). Can empirical 

correlations of this kind be used to trace putative predator-prey interactions in environmental 

samples?

Finally, the proteome-allocation constraints we have focused on in this review operate on 

the scale of days; how do the characterizations of these constraints change over evolutionary 

timescales? One of the outstanding mysteries surrounding physiological constraints in E. 
coli is the significant allocation of the proteome to non-flux carrying genes19,93. Does this 

strategy arise from a tradeoff between optimizing current need against a contingency for 

future uncertainty? If so, then how is the magnitude of the non-flux carrying proteome 

determined? Recent work predicting the emergence of antibiotic resistance141 suggests 

that physiological constraints persist over short adaptation periods. Is it possible to use 

coarse-grained phenomenological parameters to infer underlying physiological changes 

during other evolutionary adaptation scenarios? Will this provide a wider outlook than a 

regulator-centric view? Although simple to state, and often simple to quantify, proteome 

allocation constraints have far-ranging implications for how we understand gene regulation 

in microorganisms.
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Box 1:

The glucose effect and carbon catabolite repression

‘Carbon catabolite repression’ (CCR) was coined by Magasanik32 to replace what had 

previously been referred to as the ‘glucose effect,’ whereby the presence of glucose in 

the growth medium was seen to correlate with a reduction in the synthesis of catabolic 

enzymes responsible for breaking down carbon substrates other than glucose. Data by 

Mandelstam39 illustrates the phenomenon: Carbon sources (such as glucose) that support 

rapid growth result in lower catabolic enzyme expression as compared to carbon sources 

(such as lactate) that support slower growth. A scatter plot of the data (A) shows a 

striking negative linear correlation between the activity of β-galactosidase (Plac-lacZ) 

and the growth rate; see also red symbols in (B) for β-galactosidase in a wildtype E. coli 
strain fully induced by IPTG.

Regulation by cAMP-Crp is necessary to produce the distinct growth dependence of 

carbon catabolic gene expression. If the Crp binding site in the lac promoter in scrambled 

(B, PlacΔOCRP green symbols), then the growth dependence of the expressed gene 

reverts to the canonical unregulated growth dependence (B, PLtet-O1 blue symbols; 

compare with the solid line in Fig. 2B). To facilitate comparison, the activities in panel B 

were scaled so that a linear fit through the data intercepts the vertical axis at 1. Data in 

panel A is from Mandelstam39; data in panel B is from Figs. 1A (red), S10A (green) and 

S10B (blue) of You et al.24.

Scott and Hwa Page 25

Nat Rev Microbiol. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2:

Equivalence between ribosome allocation and proteome mass fraction

During balanced growth, the allocation of shared macromolecular machinery provides 

a characteristic profile of the cell physiology. Because the lengths of most proteins are 

similar, the protein mass fraction gives approximately the protein number fraction; the 

latter is approximately proportional to the cellular concentration of that protein because 

the total protein content per-cell-volume is approximately constant (see text). Using the 

estimate of 19 ±1 × 10−8 mg of total protein per μm3 of cell volume12,16 and a typical 

protein length of 250 amino acids16,19 (with an average molecular weight of 108 Daltons 

per amino acid), a protein mass fraction of 1% in E. coli corresponds to a number density 

of 4.2 ± 0.3×104/μm3 (see, also, the estimate of 3.4×104/μm3 by Milo15).

In the absence of substantial proteolysis and secretion55–57, the mass Mi of a given 

protein accumulates exponentially at rate λ, with the synthesis proportional to the total 

protein synthesis rate JR and the fraction χi of translating ribosomes dedicated to that 

protein. Summing over all expressed proteins,

The total protein mass MP is the sum of all the constituent protein masses, M1 + M2 + … 

= MP, and the fraction of translating ribosomes sums to one: χ1 + χ2 + … = 1. Dividing 

each individual protein accumulation equation by the sum,

χiJR
JR

= λMi
λMP

χi = Mi
MP

= ϕi
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i.e., the steady-state fraction of ribosomes χi dedicated to translating a particular protein 

is identical to the protein mass fraction ϕi of that protein. This mathematical result 

has been exploited to yield accurate estimates of absolute abundances (in terms of the 

protein mass fraction ϕi) of stable proteins using the dedicated ribosome fraction obtained 

from ribosome profiling58,59. Note that even for stable proteins, the dedicated ribosome 

fraction χi is generally different from the proteome fraction outside of steady-state; see 

Erickson et al.60 and Fig. 5 in the main text.
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Box 3:

Implementation of flux-controlled regulation

Flux-controlled regulation shares common features (see the figure, parts A and B):

• The abundance of a metabolite pool m is affected by the pathway-flux ν 
modulated by an enzyme Z.

• The activity of the enzyme Z uniquely determines the pathway-flux ν.

• A signaling molecule s determines the activity of the enzyme Z.

• The concentration of the signalling molecule s responds to the metabolite 

pool m to provide stable feedback.

Here we describe implementations of the core motifs. (C) Kochanowski et al.72 have 

characterized a glycolytic flux sensor73. The metabolite fbp is an allosteric activator of 

the downstream enzyme PykF. The flux ν through the pathway consumes, and hence 

depletes, fbp (thick red arrow), but the activation of PykF by fbp (green regulatory 

link) ensures flux-balance. End-product inhibition is another common flux-responsive 

regulatory strategy. In the histidine biosynthesis pathway (D), histidine (his) is an 

allosteric inhibitor of the upstream enzyme HisG74. If the flux of histidine synthesis 

(thick green arrow) does not balance the incorporation into protein synthesis, negative 

feedback (red regulatory link) acts to restore the balance. In panels C and D, the 

metabolite pool acts as its own signalling molecule. If the flux depends upon a spectrum 

of metabolites, then a signaling metabolite s is necessary to integrate their combined 

effect on the pathway-flux as is the case in the regulation of protein synthesis (E) and 

carbon catabolic protein expression (F). Ribosomes convert charged tRNA (tRNA⋆) to 

proteins (E, thick red arrow). The regulatory link67 from the charged tRNA to ribosome 

abundance involves a signaling molecule75, ppGpp, which detects the shortage of any 

one of the charged tRNAs by monitoring the ribosome elongation rate69. The double-

negative regulation results in an overall positive connection between charged tRNA 

and ribosome abundance (green regulatory links). Ketoacid pools (ka) report on total 

carbon flux ν (F, thick green arrow), and are supplied by the carbon catabolic enzymes 

denoted by the transporter T. The ketoacids inhibit the synthesis of cAMP24, which 

activates the expression of many catabolic enzymes38, resulting in an overall negative 

connection between ketoacid pools and catabolic enzyme abundance (red regulatory 

links). Signalling molecules such as ppGpp76,77 and cAMP31,41 are global physiological 

signals that are used to regulate numerous other operons (grey arrows), effectively 

coupling the expression of many distal genes to the pathway-flux ν, driving coherent 

global changes observed in proteome dynamics.
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Figure 1: Physiological constraints on gene expression
a. Protein expression in bacteria follow straightforwardly from the central dogma of 

molecular biology: a gene designated for expression is transcribed into mRNAs by RNA 

polymerases and subsequently translated into proteins by ribosomes. Protein expression is 

constrained by direct regulation and physiological constraints arising from cell growth. b,c. 

The external carbon source (diamonds) is imported and processed to metabolic pre-cursors 

(purple squares) via catabolic proteins (here represented by the red transporters), then 

converted into amino acids (purple circles) via anabolic enzymes (blue pentagons), and 

further assimilated into peptides via ribosomes (green ovals). The curly lines in the lower 

part of each panel denote the mRNAs, with color corresponding to each protein type. 

In a good carbon source (b), rapid exponential growth necessitates high metabolic fluxes 

(thick arrows). This requires a large concentration of ribosomes and anabolic enzymes; 

the concentration of catabolic proteins must be small to satisfy the constraint on total 

protein density. To maintain this proteome composition, more ribosomes must be allocated 

to synthesize ribosomes and anabolic enzymes than catabolic proteins, represented by a 
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larger fraction of ribosomes translating the ribosomal and anabolic enzyme mRNAs. In 

a poor carbon source (c), the growth rate, and hence the metabolic fluxes, are greatly 

reduced (thin arrows). The demand for anabolic enzymes and ribosomes is reduced, and 

their concentrations are therefore reduced; whereas the concentration of catabolic proteins is 

increased to increase the carbon influx. This altered proteome composition is maintained by 

a larger fraction of ribosomes translating the catabolic enzyme mRNAs. The constraint on 

protein density is illustrated by having the same number of proteins (red, blue and green) in 

panels b and c.
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Figure 2: Growth-dependence of ribosomal and non-ribosomal proteins.
Escherichia coli cells are cultured to grow exponentially at different growth rates by using 

different nutrients (colored symbols along the solid black lines) or by applying various 

sub-lethal concentrations of translation-inhibiting antibiotics for a given nutrient (dashed 

lines, μM chloramphenicol shown inside the circles). Panel a shows that the RNA:total 

protein ratio, which is proportional to the ribosome concentration, exhibits approximate 

linear dependence on the growth rate: the dependence is positive when changing nutrient 

quality (solid line) and negative when changing antibiotic concentration (dashed line). 

Panel b shows that the concentration of an unregulated protein (pTetO1 driving lacZ (β-

galactosidase) expression, using the activity:total protein ratio as a proxy) also exhibits 

approximate linear dependence on the growth rate, but in the opposite directions from that 

of the RNA:protein ratio shown in a. Comparing both panels, the strong anti-correlation 

between the concentration of ribosomes and the concentration of a constitutive protein 

suggests a linear constraint (like a see-saw) operating between them. The data are taken 

from Figs 2A and 2C of Scott et al.22.
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Figure 3: Modulation of carbon and nitrogen flux reveals protein-synthesis constraints on 
catabolic and anabolic proteins.
a. In a minimal growth medium without externally supplied amino acids, the bacterium 

must synthesize amino acids via amination of carbon precursors (ketoacids)54. These 

precursors are supplied through the carbon-catabolic enzymes, glycolysis, the tricarboxylic 

acid (TCA) cycle, and various biosynthesis pathways. To minimize substrate-specific 

effects, carbon influx was modulated by titrating the expression of the uptake system 

(lactose permease for growth on lactose24) or by changing the carbon source in minimal 

medium. The nitrogen flux was modulated by titrating glutamate dehydrogenase (GDH) in 

a glutamine oxoglutarate aminotransferase (GOGAT)-deleted background24, or by titrating 

GOGAT in a GDH-deleted background27. The flux-control points are denoted by dashed 

boxes. b–d. Proxies for the carbon-catabolic and anabolic protein concentrations are β-
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galactosidase activity (lacZ; panel b) and glutamine synthetase activity (glnA; panel c), 

respectively. These proxies quantitatively capture the behavior of many other catabolic 

and anabolic proteins, as validated by later proteomic work15,27. Carbon-catabolic and 

anabolic enzyme concentrations exhibit obvious anti-correlation and near-linear growth 

dependence under various growth perturbations, whereas the ribosomal proteins exhibit 

a positive linear correlation with growth rate irrespective of the metabolic limitation 

that is used (RNA:protein ratio; panel d. The red line in panel b is sometimes called 

the ‘C-line’24, and can be taken as a defining feature of carbon catabolite repression 

(Box 1). Carbon flux was modulated by a change in carbon source (filled circles), or 

by titrating lactose permease (filled triangles); nitrogen flux was modulated by titrating 

GDH in a GOGAT-deleted background (open diamonds). e. The correlations among the 

abundances of catabolic, anabolic and ribosomal proteins can be understood quantitatively if 

abundance is measured in units of protein mass fraction. The constancy of protein density 

and the allocation constraint on the protein synthetic machinery are both captured by a 

coarse-grained partitioning of the proteome. For simplicity, only four sectors are shown: 

growth-rate dependent ribosomal (and ribosome-affiliated) (green), biosynthetic/anabolic 

(blue) and catabolic (red) sectors, along with their associated growth-rate independent basal 

expression (pale sectors), and a growth-rate independent sector (gray)27. The near-linear 

response of the growth-dependent sectors is rationalized by invoking a simple flux balance: 

external nutrients are converted to carbon precursors by the catabolic proteins (red arrows) 

and converted into amino acid precursors (purple circles) by the biosynthetic proteins 

(blue arrow), at a rate matched with amino acid consumption by protein synthesis (green 

arrow). Catabolic limitation leads to increased expression of catabolic proteins (top left), 

whereas anabolic limitation leads to increased expression of anabolic proteins (bottom left). 

Rightmost figures from Figs. 1A, 1C, 1D of You et al.24.
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Figure 4: Coordination of catabolic and anabolic flux via cAMP–Crp signaling.
Two notable features of the growth dependence in the various protein fractions in Figs. 

3b–d are the near-linear response and the strong anti-correlation. The linearity can be 

rationalized by assuming that the flux mediated by each sector is proportional to protein 

mass61, where the proportionality constants κi are a measure of the catalytic efficiency 

of each sector. The anti-correlation suggests the existence of complementary regulation 

to enforce the proteome-allocation constraints. The direct regulatory interactions are well-

characterized (solid lines). Accumulation of α-ketoacids results in down-regulation of 

carbon-catabolic proteins (ΔΦC) by decreasing the activity of the global activator cyclic 

adenosine monophosphate (cAMP)–cAMP receptor protein (Crp) negative feedback loop 

indicated in the red box)65. Accumulation of amino acids leads to upregulation of ribosomal 

proteins (ΔΦR) by decreasing the level of the alarmone ppGpp which represses ribosome 

biogenesis (positive feedforward loop indicated in the green box)66,67. The biosynthetic 

proteins (ΔΦA) are directly regulated by end-product inhibition via individual amino acids68 

(red solid arrow). In addition to these direct mechanisms, proteome-allocation constraints 

necessitate anti-correlated, complementary regulation (complementary regulation is denoted 

by the dotted lines).
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Figure 5: Flux-controlled regulation and proteome remodeling during growth transitions.
a. The steady-state growth-dependence of the various protein fractions enables quantitative 

characterization of the kinetics of growth transitions. The schematic network shown in Fig. 

4 can be further simplified to emphasize the main (direct) regulatory loops. The α-ketoacids 

and amino acids are collected into a pool of ‘precursors’ that affect the magnitude of a 

single coarse-grained variable, the ribosome’s translational activity σ. The carbon uptake 

flux JC is proportional to the carbon-catabolic protein mass MC. It is matched to the 

protein synthesis flux JR, which is proportional to the ribosomal protein mass MR. The 

ratio of the flux JR and the mass MR defines the translational activity σ = JR/MR, which 

is the central dynamical variable regulating the expression of carbon-catabolic proteins 

(MC, via cyclic adenosine monophosphate (cAMP)–cAMP receptor protein (Crp)), and 

ribosomal proteins (MR, via guanosine tetraphosphate (ppGpp))60. These direct regulatory 

effects are implemented through two regulatory functions, χC(σ), the fraction of ribosomes 

Scott and Hwa Page 36

Nat Rev Microbiol. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



actively translating carbon-catabolic proteins, and χR(σ), the fraction of ribosomes actively 

translating ribosomal proteins. The quantitative form of the regulatory functions χC and 

χC are determined by the observed steady-state correlations of these quantities. In this 

way, the dynamic response of a bacterial culture to a shift in carbon substrate can be fully 

predicted by solving a single differential equation for the translational activity σ(t). From 

the solution, the dynamic remodeling of the proteome; that is, changes in the cellular mass 

of proteins for ribosomes (MR(t)), carbon catabolism (MC(t)), and anabolism (MA(t)); can 

be obtained by integrating the regulatory functions χC(σ(t)) and χC(σ(t)), with the anabolic 

protein mass MA(t) obtained from the constraint on total protein synthesis. For transitions 

between simultaneously-utilized carbon sources, the time course of growth kinetics and 

proteome remodeling can be predicted for both up-shifts and down-shifts, using only the 

above mentioned information on steady-state growth in the pre-shift and post-shift medium; 

see b and c for the relaxation of the instantaneous growth rate λ = d(lnM)/dt during 

two exemplary shifts (circles are data, solid black lines are predictions with no fitting 

parameters). Small modification of the same approach can also be used to capture the growth 

kinetics for shift between hierarchically utilized carbon sources. d Shown are the result 

of the classic diauxie between glucose and lactose, whereby a single fitting parameter is 

introduced to set the time point of the lac operon activation after glucose depletion. Dashed 

lines denote the final growth rate on the second substrate. Data from Figs. 1B, 1G and 3B of 

Erickson et al.60.

Scott and Hwa Page 37

Nat Rev Microbiol. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Physiological constraint on protein synthesis
	Effect of the protein-synthesis constraint on carbon catabolite repression
	Growth on single carbon sources
	Coordination of flux-balance and proteome allocation constraints
	Growth on multiple carbon sources
	Growth transition kinetics

	Concluding remarks
	Future outlook

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:



