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ABSTRACT OF THE DISSERTATION

General-Purpose Computing on Tensor Processors

by

Kuan-Chieh Hsu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Hung-Wei Tseng, Chairperson

Modern computer systems have become heterogeneous and consist of many emerging kinds

of hardware accelerators as Dennard Scaling discontinues. Also, such domain-specific hard-

ware accelerators fulfill the rapidly growing computing demands for applications includ-

ing artificial intelligence (AI) and machine learning (ML). Beyond conventional computer

components such as central processing units (CPUs) and memory, modern computers typi-

cally contain accelerators such as graphic processing units (GPUs), tensor processing units

(TPUs), and neural processing units (NPUs). Although accelerators have various program-

ming interfaces and execution models, a group of accelerators are tensor processors that

improve system performance for any problem that uses matrix or tensors as input and/or

outputs. Despite the differences among the microarchitectural designs of each, tensor pro-

cessors essentially are hardware accelerators that focus on providing efficient matrix-based

computation solutions.

In this dissertation, we envision a new programming paradigm that leverages ten-

sor processors for general-purpose computing beyond the original application domains for
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AI and ML. The framework should contain the following characteristics. First, the program-

ming interface design for a heterogeneous system with tensor processors must be simple,

easy to use, and can maintain great compatibility and portability across various systems.

Second, the execution model of the framework should intelligently explore and exploit op-

portunities by using the tensor processors that deliver better performance and extend the

spectrum of application domains. Finally, the framework solution must be cost-effective

and energy-efficient and be able to accommodate algorithm redesign and transformation

that support broader usages.

I proposed three research works in response to the envision. First, I proposed

GPTPU, an open-source, open-architecture framework that allows users to explore the

usage opportunity of tensor processors for general applications. Second, I proposed SHMT,

a new programming and execution model that enables simultaneous parallel processing

using heterogeneous processing units for the same function. Lastly, I proposed GSLD, a

matrix computing library accommodating either dense or sparse matrix inputs that more

intelligently uses dense matrix processors and scalar cores.
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Chapter 1

Introduction

The evolutionary cycle of computing in history consistently comes from special-

purpose accelerators to general-purpose processors. Central Processing Units (CPUs) were

originally specialized machines with limited functionality for computing a few equations.

In the ’80s, the Intel 8087 floating-point coprocessors (FPU) [128] was one of the famous

examples that was a separated floating point processing unit; Nowadays, floating pointing

computations are already part of the functionality of the Arithmetic Logic Units (ALUs)

in a general-purpose CPU. Similarly, Graphic Processing Units (GPUs) were originally

accelerators for rendering 3-D graphics specifically. Today, GPUs are often referred to as

general-purpose GPUs (GPGPUs) for most scenarios, including the famous usage of training

or inferencing artificial intelligence (AI) and machine learning (ML) models.

Due to the rapid growth of computing demands of AI and ML workloads, emerging

AI/ML accelerators focus on accelerating critical computational demands or computing

kernels to facilitate the development of the AI revolution. Although these accelerators may

1
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Figure 1.1: Architecture design of tensor processors (Google’s TPU as an example).

have various microarchitectures or system component designs, they are tensor processors

as they are essentially efficient matrix multiply processing units. Famous examples include

Tensor Cores (TCs) [123, 122], Tensor Processing Units (TPUs) [81, 80, 78], and Neural

Processing Units (NPUs) [11, 42, 184].

Characteristics of tensor processors

Figure 1.1 illustrates a high-level architecture overview of Google’s TPU as a

representative tensor processor. The matrix multiply units (MXU) is the core unit of

TPU. MXU is a common design of tensor processors that can efficiently perform matrix

multiply computation, serving the main purpose of accelerating AI/ML workloads with

massive matrix-based computing kernels. The on-chip memory buffer can hold intermediate

results of computation serving as inputs to the MXU. One critical characteristic of tensor

processors is that the design purpose is to address any problem that uses tensors as inputs

2



and/or outputs. Beyond the CPU’s capability of computing any pairs of numbers and

GPTPU’s capability of computing any pairs of vectors, we believe that tensor processors will

eventually be capable of computing any pairs of tensors or matrices. Table 1.1 summarizes

other characteristics of some commercial AI/ML accelerators.

However, the existing challenges limit the applicability of tensor processors to-

ward general-purpose computing. We summarize these challenges including: (1) approx-

imate result, (2) limited operator set, (3) lack of toolchain support, and (4) sub-optimal

performance.

3
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Figure 1.2: FMAs in NVIDIA Tensor Cores [107]

Approximate result

Many existing tensor processors can deliver high performance for AI/ML work-

loads in exchange for incorporating low-precision computing outputs. Figure 1.2 depicts

the low-precision aspect of the Fused-Multiply-Add (FMA) operations design of NVIDIA’s

Tensor Cores [107]. The half-precision input design requires data type conversion of the

intermediate result from a previous layer of operation and also contributes to the approx-

imate results of the computing task. Although AI/ML tasks tend to be able to tolerate

approximate results in many ways such as classification, this characteristic will become a

challenge for other computing tasks for general-purpose computing.

Limited operator set

Tensor processors do not necessarily provide enough operator support for com-

posing general applications. To facilitate high-performance computation for AI/ML work-

loads, tensor processors usually only need to provide an essential set of operators, and it

typically includes convolution, matrix multiplication, polling, and activation functions, etc.

However, this feature limits the application domains of tensor processors toward general-

5
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Figure 1.3: A sub-optimal performance case

purpose computing. Ultimately, the goal of general-purpose computing on tensor processors

should require sufficient operator support that allows the combination or transformation of

arbitrary programs. For example, the existing programming interface of NVIDIA’s Tensor

Cores only exposes wmma::mma sync(); as the core API. Although there are already some

research works [42, 67, 30, 69, 82, 104, 39, 198] focused on expanding the applicability of

tensor processors for certain tasks or application domains, this limitation is still challenging

during the development of general-purpose computing on tensor processors.

Lack of toolchain support

The existing toolchains mainly focus on developing efficient support for AI/ML

applications. Defining proper programming language with compiler support and providing

comprehensive runtime support for general computing is challenging. For example, the

toolchain support for Edge TPUs centers around ML models. The existing software stack

requires file transformation from TensorFlow to the TFLite format and the usage of an

ML-oriented C++ backend runtime system.

6



Sub-optimal performance

Lastly, even if all the aforementioned challenges are properly addressed, a potential

general solution still needs to address the sub-optimal performance issue. Either with

more operator set support or comprehensive operation combination or transformation, the

composition of a new algorithm may overlook the impact on performance leveraging AI/ML-

oriented operators when an intuitive methodology is chosen. For example, Figure 1.3 shows

the performance comparison between using the FullyConnected operator as an intuitive

option to implement GEMM and using the Conv2D operator that requires more complex

transformation. Although both can achieve the same functionality, the former suffers from

sub-optimal performance when the latter was not discovered. More details of this example

can be found in Chapter 2 and Section 2.7.1.

This dissertation describes and evaluates all the aspects discussed above for general-

purpose computing on tensor processors. Chapter 2 - 4 are organized in the conference

paper format: each chapter consists of its introduction, background, problem statements,

proposed framework or solution, implementation, methodology, results, related works, and

conclusion sections. The organization of this dissertation is as follows.

Chapter 2 presents GPTPU: general-purposed tensor processing units, which is an

open-architecture framework that enables the opportunity of general-programming leverag-

ing tensor processors.

Chapter 3 presents SHMT: simultaneous and heterogeneous multithreading, a new

programming and execution model that allows concurrent execution of heterogeneous ac-

celerators for the same function for better utilizing the processing power within computers.

7



Chapter 4 presents GSLD: a sparse matrix computing library that extends the

applicability of dense tensor processors for sparse matrix computation by leveraging the

”globally sparse, locally dense” insights.

Chapter 5 concludes this dissertation.

8



Chapter 2

GPTPU: Accelerating Applications

using Edge Tensor Processing

Units

Neural network (NN) accelerators have been integrated into a wide-spectrum of

computer systems to accommodate the rapidly growing demands for artificial intelligence

(AI) and machine learning (ML) applications. NN accelerators share the idea of providing

native hardware support for operations on multidimensional tensor data. Therefore, NN ac-

celerators are theoretically tensor processors that can improve system performance for any

problem that uses tensors as inputs/outputs. Unfortunately, commercially available NN

accelerators only expose computation capabilities through AI/ML-specific interfaces. Fur-

thermore, NN accelerators reveal very few hardware design details, so applications cannot

easily leverage the tensor operations NN accelerators provide.

9



This paper introduces General-Purpose Computing on Tensor Processing Units

(GPTPU), an open-source, open-architecture framework that allows the developer and

research communities to discover opportunities that NN accelerators enable for applica-

tions. GPTPU includes a powerful programming interface with efficient runtime system-

level support—similar to that of CUDA/OpenCL in GPGPU computing—to bridge the gap

between application demands and mismatched hardware/software interfaces.

We built GPTPU machine uses Edge Tensor Processing Units (Edge TPUs), which

are widely available and representative of many commercial NN accelerators. We identified

several novel use cases and revisited the algorithms. By leveraging the underlying Edge

TPUs to perform tensor-algorithm-based compute kernels, our results reveal that GPTPU

can achieve a 2.46× speedup over high-end CPUs and reduce energy consumption by 40%.

2.1 Introduction

The demand for AI and ML applications has exploded in recent years and the

increase in AI/ML workloads has led to significant research advances in neural network

(NN) accelerators, including Google’s Edge Tensor Processing Units (Edge TPUs) [52] and

Apple’s Neural Engines [10] that are already presented as auxiliary hardware components in

commodity systems. These NN accelerators’ power/energy efficiency is orders-of-magnitude

better than that of conventional vector processors (e.g., Graphics Processing Units [GPUs])

for the same workloads. Despite the differences among microarchitectures, most NN accel-

erators are essentially matrix processors that use tensors/matrices as inputs and outputs,

and provide operators that facilitate NN computations.
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Two decades ago, graphics processing units (GPUs) were just domain-specific ac-

celerators used for shading and rendering. But intensive research into high-performance al-

gorithms, architectures, systems, and compilers [144, 168, 47, 94, 112, 181, 145, 14, 186, 73]

and the availability of frameworks like CUDA [121] and OpenCL [85], have revolutionized

GPUs and transformed them into high-performance, general-purpose vector processors. We

expect a similar revolution to take place with NN accelerators—a revolution that will create

general-purpose matrix processors for a broader spectrum of applications. However, democ-

ratizing these NN accelerators for non-AI/ML workloads will require the system framework

and the programmer to tackle the following issues:

(1) The microarchitectures and instructions of NN accelerators are optimized for

NN workloads, instead of general matrix/tensor algebra. These auxiliary NN accelerators

focus on latency per inference, but not yet on delivering computation throughput compa-

rable to GPUs. Naively mapping conventional matrix/tensor algorithms to AI/ML oper-

ations will lead to sub-optimal performance. (2) Because many AI/ML applications are

error tolerant, NN accelerators typically trade accuracy for area/energy-efficiency; when

such a trade-off produces undesirable results, additional mechanisms are needed to make

adjustments. (3) The programming interfaces of existing NN accelerators are specialized

for developling AI/ML applications. Existing frameworks expose very few details about the

hardware/software interfaces of NN accelerators, so programmers are unable to customize

computation and the application can suffer from significant performance overhead due to

adjusting the parameters/data bound to the supported ML models. (4) Tensor algorithms

are traditionally time-consuming, so programmers have tailored compute kernels in favor
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of scalar/vector processing. Such tailoring makes applications unable to take advantage of

tensor operators without revisiting algorithms.

This paper bridges the gap between general-purpose programmability and domain-

specific NN accelerators by presenting a full-stack system architecture that enables General-

Purpose Computing on Edge TPUs (GPTPU). GPTPU tackles all the aforementioned chal-

lenges through providing a programming interface, a runtime system, compiler and libraries.

With the system this paper proposes, programmers will be able to explore the enormous

potential of the matrix processing model inherent in Edge TPU, a commercially available

accelerator that can be part of a system-on-module (SOM) or be easily attached to vari-

ous forms of computer systems. A commercialized Edge TPU can inference ML models at

4 TOPS (tera operations per second) with only 2 W of power consumption. The design

that GPTPU demonstrates can also work for NN accelerators sharing similar architectures.

GPTPU provides a programming framework, including an Edge TPU-specific

C/C++ extension, OpenCtpu and a runtime system. GPTPU offloads programmers from

directly interacting with the accelerator’s hardware to focus on the design of tensor-based

algorithms for applications. OpenCtpu achieves more programming flexibility than exist-

ing domain-specific interfaces by exposing high-level tensor/matrix algebra operators (e.g.,

matrix multiplication) and low-level accelerator operators (e.g., convolution and matrix

multiplication-accumulation) to the programmer, so programmers can design arbitrary ten-

sor algorithms or customize operators that cannot be easily achieved using domain-specific

languages.
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The core of the GPTPU runtime system is our proposed Tensorizer, a module

that dynamically evaluates input data and transforms data into ML models that the un-

derlying Edge TPUs or other NN accelerators can efficiently perform inference operations

on. Tensorizer handles quantization and calibration of input datasets and computation re-

sults, thereby minimizing the impact of limited precision on NN accelerators. The GPTPU

runtime also schedules computation tasks and distributes prepared data to available NN

accelerators in a manner that minimizes the data movement overhead.

Despite the Edge TPU’s promising energy efficiency and recently open-sourced

C++ API, documentation is vague regarding the Edge TPU’s hardware/software interface

and architecture. This lack of detail complicates the design of systems that fully exploit the

Edge TPU’s capabilities. To develop GPTPU, we measured the performance of available

Edge TPU operators, reverse-engineered the Edge TPU hardware/software interface for

data exchanges, and analyzed the Edge TPU architecture. We applied our understanding

of the Edge TPU to optimize the backend runtime system for efficient task creation and

data transformation. We then built a prototype GPTPU system with 8 Edge TPUs to allow

concurrent GPTPU task execution.

We demonstrate the potential of the GPTPU system by modifying several key

applications for financial computing, linear algebra, physics simulations and graph analyt-

ics. By revisiting the algorithms at the heart of these applications and using OpenCtpu, we

show that GPTPU can simplify compute kernels; GPTPU preserves the nature of the appli-

cation’s tensor/matrix inputs and avoids explicit decompositions of datasets and algorithms

into vector or scalar data. When used with the GPTPU-integrated applications, our proto-
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type GPTPU system exhibits a 2.46× speedup and 40% reduction in energy consumption

relative to modern CPUs.

By introducing the GPTPU system architecture, this paper makes the following

contributions: (1) The paper introduces a novel full-stack system architecture to efficiently

support general-purpose programming on Edge NN accelerators. (2) The paper charac-

terizes the capabilities and previously unidentified architectural details of an inferencing

hardware so that future research may exploit and optimize the GPTPU concept. (3) The

paper proposes and implements Tensorizer to demonstrate the mechanism of dynamically

and transparently mapping operators to NN models and Edge TPU instructions that lead

to efficient use of underlying NN accelerators. (4) The paper demonstrates algorithm design

for non-NN applications on NN accelerators by revisiting application algorithms to wisely

use available accelerator instructions.

2.2 Background

This section briefly highlights TPU architectures and introduces alternative NN

accelerators where GPTPU can potentially work.

2.2.1 TPU architecture

As most NN applications take matrix/tensor inputs and iteratively update param-

eters/weights from previous outcomes, the TPU microarchitecture accelerates NN tasks for

modern ML applications by creating a systolic array that performs operations on the units

of matrices/tensors. For inferencing tasks, the TPU treats one of the input matrices as the
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trained model and the other as the samples to predict or classify. Taking matrices/tensors as

the default inputs and outputs makes the TPU architecture and its corresponding execution

model fundamentally different from conventional CPU/GPU architectures that compute on

scalar/vector data pairs. TPUs also incorporate large on-chip memory to hold the inter-

mediate results that later iterations reuse. Unlike conventional processors, TPUs do not

contain on-chip instruction caches but simply use a CISC-style instruction-set architecture

and rely on the host program to issue instructions through the system interconnect. And

whereas conventional processors aim for precise computation results, TPU matrix units

only support operations on a limited level of precision that is sufficient to satisfy the de-

mands of modern ML applications while significantly reducing both TPU costs and energy

requirements.

2.2.2 Edge TPU

This paper uses Edge TPUs, the trimmed-down versions of the Google Cloud

TPU to build our system. Compared with Cloud versions, Edge TPUs contain smaller data

memory (i.e., 8 MB).

The documented peak TOPS of Edge TPU is 4 TOPS under a 2 W TDP, while

Cloud TPUs can achieve up to 90 TOPS under a 250 W TDP.

Although Google Cloud TPUs offer higher performance, we chose the Edge TPUs

for the following reasons: (1) The Edge TPU hardware is publicly available, whereas Cloud

TPU hardware is available exclusively through Google services; our use of Edge TPUs

will therefore allow the developer and research communities to easily replicate, utilize,

and optimize the system that this paper describes. (2) The current version of the Edge
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Figure 2.1: The custom-built quad-EdgeTPU PCIe card

TPU software framework has a partially open-sourced C++ backend that enables language

front-end and runtime-system customization, whereas the Google Cloud TPU only provides

a TensorFlow front-end without the backend source code. (3) Each Edge TPU offers better

performance per watt than Cloud TPUs (i.e., 2 TOPS/W v.s. 0.36 TOPS/W) with just

2 W of power consumption and costs as little as USD 29, making a platform like GPTPU

applicable to a broader range of computer systems than would be possible with the Google

Cloud TPU alone.

2.3 Characterizing Edge TPUs

To directly measure the characteristics of Edge TPUs and determine their perfor-

mance numbers, we built a customized machine with Edge TPUs attached. This section

describes the architecture of our GPTPU testbed and reports the key performance char-

acteristics of Edge TPUs that serve as the basis for our GPTPU system and application

designs.
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2.3.1 The prototype Edge TPU accelerated machine

The TPU architecture relies heavily on the CPU to distribute instructions, so

our custom-built GPTPU hardware prototype aims at minimizing communication latency

while efficiently using the limited system-interconnect bandwidth. To achieve this goal, the

GPTPU prototype machine uses Edge TPUs in PCIe M.2 form factors; the Edge TPUs

are attached directly to the PCIe system interconnect to allow lower latency and better

bandwidth compared to other Edge TPU interconnect options, such as USB 3.0.
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Each M.2 Edge TPU is designed to occupy only a single PCIe 2.0 lane, whereas

most expansion slots that physically connect to the processor use multiple lanes. To ef-

ficiently use the precious PCIe lanes from the processor and the limited expansion slots,

Figure 2.1 shows our custom-built quad-EdgeTPU PCIe expansion cards using QNAP QM2-

4P-384A [137]. Each quad-EdgeTPU PCIe card contains 4×M.2 Edge TPUs with M.2 slots

connected to a PCIe switch. The PCIe switch evenly divides the PCIe lanes (attached to

each expansion slot) to four Edge TPUs and makes all Edge TPUs available to the host

processor.

The current GPTPU hardware prototype contains an AMD Ryzen 3700X CPU

with a Matisse microarchitecture that can reach a max-boost clock speed of 4.4 GHz with

32 MB LLC and 24× PCIe lanes available to all peripherals. Excluding the expansion slots

used for essential peripheral devices, our hardware prototype can host 8× M.2 Edge TPUs,

and each Edge TPU connects to the processor with just one hop (i.e., the PCIe switch) in

the middle. The machine also contains 64 GB DDR4 main memory and an NVMe SSD. In

addition to the hardware specifications, the prototype machine runs Ubuntu Linux 16.04

with kernel version 4.15.

2.3.2 Characterizing Edge TPU instructions

Due to the long interconnect latency and the absence of instruction caches on Edge

TPUs, coped with the variable number of cycles and different types of input/output data

resulting from the available CISC instructions, the GPTPU library, runtime system, and

applications must use Edge TPU instructions wisely to achieve the best performance. The

released Edge TPU performance numbers are available only in TOPS (tera operations per
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second) and IPS (inferences per second). However, neither TOPS nor IPS provides sufficient

insight for general-purpose software design because (1) TOPS or IPS is highly task specific,

and (2) IPS is only representative for inferencing but not for other workloads [161].

We therefore use the RPS (results per second) as an additional metric to assess the

benefits of each available Edge TPU operator/instruction. We define RPS as the amount

of final result values an Edge TPU can generate within a second. We measure the OPS,

RPS, and data-exchange rate of each tensor arithmetic instruction as follows: First, we

begin timing the program and send the input datasets with size s to the target Edge TPU.

Second, we issue and execute the same operator 10,000 times and measure the end-to-end

latency (t1) as well as the total number of result values (r1) generated since the timer

started. Third, we repeat the first and second step, but this time we execute the operator

20,000 times with the same input to get the end-to-end latency (t2) and the total number of

generated result values (r2). Finally, we calculate the OPS of instructions/operators using

Equation 2.1, their RPSs using Equation 2.2, and the data-exchange rate using Equation 2.5.

OPSoperation =
10, 000

t2 − t1
(2.1)

RPSoperation =
r2 − r1
t2 − t1

(2.2)

Data-Exchange Rate =
s

t1 − (t2 − t1)
(2.3)

Table 2.1 lists the RPS and the OPS of each Edge TPU instruction. The results

lead to three observations on Edge TPUs. (1) Conv2D (convolution) achieves a very high
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RPS given the high amount of operations required in equivalent CPU/GPU implementa-

tions, a hint that Edge TPU optimizes its microarchitecture for this instruction, (2) the OPS

and RPS vary significantly for different types of instructions, and (3) the OPS and RPS are

not strongly correlated because output varies; for example, instructions like sub generate

outputs with the same dimensions as their inputs, but instructions like FullyConnected

only produce vectors.

Our measurements also show that data-exchange performance does not vary among

different types of instructions, but simply correlates with data size; transmitting 1 MB of

data to an Edge TPU takes around 6 ms, while transmitting 8 MB of data that com-

pletely fill the on-chip memory takes 48 ms. The latency of copying data between the host

main memory and Edge TPU’s on-chip memory is significantly longer than any Edge TPU

instruction.

2.3.3 Characterizing Edge TPU data and model formats

Edge TPU instructions ordinarily take two types of data inputs: (1) a tensor

used for input datasets to be inferenced and (2) a model that the TFLite framework must

generate and compile. Both types of inputs must be quantized before the host program

sends them to the Edge TPU for computation. As GPTPU needs to use both types of

inputs to achieve general-purpose computing, the GPTPU runtime library must translate

one of the instruction inputs as a model for the Edge TPU.

The current Edge TPU toolchain only allows the user to generate models by in-

voking the Edge TPU compiler in the Python-based TFLite. With TFLite, translating a

2K × 2K matrix into a model takes 2.7 seconds on our testbed. This latency does not create
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issues for inferencing tasks in ML applications, as inferencing tasks tend to reuse the same

model for continuously changing inputs, and the overhead of creating models is amortized

as input datasets scale. However, such amortization does not stand for many applications

outside the ML realm. Unfortunately, neither the Edge TPU compiler code nor the Edge

TPU model encoding has been released, so we have been unable to optimize the Edge TPU

model-creation overhead.

To compensate for this lack of information, we reverse-engineered the Edge TPU

model formats by creating models with different inputs, dimensions, and value ranges. We

examined the models generated with the different inputs, and we identified the following

key characteristics that allowed us to optimize the GPTPU runtime-system Edge TPU

model-input instructions: (1) Models embed a 120-byte general header that allows TPUs

to recognize the model-format version. The last 4 bytes of the header contain an unsigned

integer describing the size of the data section. (2) Following the header, the data section

contains binary-encoded 8-bit integers stored in row-major order. If the raw data values

exceed the scope of 8-bit integers or are non-integers, the values must be scaled to fit in the

8-bit integer range. (3) A metadata section following the data section describes the data-

section dimensions in terms of rows and columns. The metadata section also contains the

scaling factor (f), a floating-point number that the compiler uses to rescale raw data into

8-bit integers; that is, an 8-bit integer value in the data section is calculated by multiplying

its raw value by f . (4) The model encodes all values using little endian.

In addition to making the above observations, we determined that data dimensions

do not necessarily reflect the dimensions of raw data inputs. The Edge TPU compiler adds
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C/C++ program code with OpenCtpu extensions

GPTPU
Runtime

Host Program Binary

Accelerator 
Driver/Modules

Edge TPUs Storage/
Periphrals Accelerators

GPTPU System/API Library Standard Library Libraries for other 
accelerators (e.g. 

GPUs)

Edge TPU Kernel Modules/Drivers

Accelerator 
Runtime (e.g., 

CUDA/OpenCL)

OpenCtpu-compatible compiler

Kernel Modules/
Drivers

System 
Interconnect

Hardware 
Accelerators 
& Periphrals

Host System 
(Using CPU/

DRAM)
Tensorizer

Figure 2.2: The GPTPU system overview

zero padding to unused elements (depending on the instructions) to reflect the hardware

microarchitecture. Taking the most optimized instruction in Edge TPU architecture as

an example, the Edge TPU compiler reshapes all input data into 128×128 sub-matrices.

This implies that the Edge TPU’s matrix unit is designed for computing on 128×128×8-bit

matrices, in contrast to the Cloud TPU matrix unit, which is designed for 256×256×8-bit

matrices.

2.4 Overview of the GPTPU System

Using insights learned from Section 2.3, this paper presents the system stack of the

GPTPU framework that Figure 2.2 shows. GPTPU maintains the original heterogeneous-
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computing system stack and extends the programming-language front end. GPTPU also

provides a system library that can trigger the runtime system to (1) transform data, (2)

schedule instructions for the underlying TPU hardware, (3) communicate with the TPU

hardware, and (4) use the TPU hardware to accomplish computation tasks.

OpenCtpu serves as the programming-language front end for GPTPU. A program-

mer can use OpenCtpu to create a host program that describes TPU tasks and coordinates

the use of heterogeneous computing resources and data exchanges in the system. A compiler

supporting the OpenCtpu extensions will generate machine binaries compatible with the

host CPU architecture and will generate code that transfers control to the GPTPU runtime

system.

The GPTPU runtime system coordinates available TPU hardware. The runtime

system schedules TPU operations from programmer-defined TPU tasks and prepares the

inputs/outputs for TPU operations. Task scheduling and data preparation are left to the

runtime system because doing so allows the GPTPU system to (1) adapt to changes in the

underlying hardware without the need for reprogramming, (2) flexibly utilize underlying

hardware resources, and (3) unburden the programmer of hardware-limitation details (e.g.,

data precision).

The following sections describe the design of the OpenCtpu programming-language

front end (Section 2.5), the GPTPU runtime system (Section 2.6), and optimized opera-

tors/library function/applications (Section 2.7).
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2.5 OpenCtpu—The GPTPU programming interface

OpenCtpu is a C/C++ extension for general-purpose programming with GPTPU.

OpenCtpu shares similarities with popular GPU programming models like CUDA [121] and

OpenCL [85] in that OpenCtpu (1) places the control of application flow and device usage

on the CPU-based host, (2) leverages virtual memory abstraction so that applications can

specify data locations, (3) requires the programmer to explicitly manage data buffers for

TPUs, and (4) provides functions that enable programmers to describe computation tasks

for computation on TPUs.

A programmer can use OpenCtpu API functions and the C/C++ standard library

to compose a TPU-accelerated program (see Table 2.2 for a list of representative OpenCtpu

API functions). To create tasks for TPUs with the OpenCtpu API functions, a program

needs to have the following: (1) kernel functions that describe the desired computation

for TPUs, (2) input/output data buffers/structures for TPU kernels, and (3) enqueuing

kernel functions and their inputs/outputs as tasks (OpenCtpu is similar to OpenCL in this

respect). In the OpenCtpu programming model, all TPU operations within a task (i.e.,

an instance of a TPU kernel function) will perform in serial, but tasks can perform out of

order in parallel. Therefore, the programmer may need to invoke synchronized primitives

to ensure execution order and task completion.

To use Edge TPU operators in the kernel function, OpenCtpu provides an API

function openctpu invoke operator. As the runtime system handles the precision, the

programmer simply needs to specify the desired quantization method. In addition to
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#include <stdio.h>
#include <stdlib.h>
#include <gptpu.h>

// The TPU kernel
void *kernel(openctpu_buffer *matrix_a, 
                 openctpu_buffer *matrix_b, 
                 openctpu_buffer *matrix_c)
{
    // invoke the TPU operator
    openctpu_invoke_operator(conv2D, SCALE, matrix_a, \ 
                                            matrix_b, matrix_c);
    return 0;
}

int main(int argc, char **argv)
{
    float *a, *b, *c; // pointers for raw data
    openctpu_dimension *matrix_a_d, *matrix_b_d, *matrix_c_d;
    openctpu_buffer * tensor_a, * tensor_a, * tensor_a;
    int size; // size of each dimension

    // skip: data I/O and memory allocation/initialization

    // describe a 2-D tensor (matrix) object for a    
    matrix_a_d = openctpu_alloc_dimension(2, size, size); 
    // describe a 2-D tensor (matrix) object for b
    matrix_b_d = openctpu_alloc_dimension(2, size, size);
    // describe a 2-D tensor (matrix) object for c
    matrix_c_d = openctpu_alloc_dimension(2, size, size);

    // create/fill the tensor a from the raw data
    tensor_a = openctpu_create_buffer(matrix_a_d, a);
    // create/fill the tensor b from the raw data
    tensor_b = openctpu_create_buffer(matrix_b_d, b);
    // create/fill the tensor c from the raw data
    tensor_c = openctpu_create_buffer(matrix_c_d, c);

    // enqueue the matrix_mul TPU kernel
    openctpu_enqueue(kernel, tensor_a, tensor_b, tensor_c);
    // synchronize/wait for all TPU kernels to complete
    openctpu_sync();

    // skip: the rest of the program
    return 0;
}

Figure 2.3: An OpenCtpu code sample
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Figure 2.4: An overview of GPTPU’s runtime system.

openctpu invoke operator that directly invoke Edge TPU instructions, OpenCtpu also

implemented optimized overloaded operators on tensor data (e.g., matrix-add [+], matrix-

sub [-], matrix-multiply [*]) to perform pair-wise matrix addition, subtraction and multi-

plication to further simplify programming.

The current OpenCtpu design brings several benefits to the GPTPU system. First,

OpenCtpu gives the runtime system the flexibility to schedule and execute parallel tasks

and to control the data movements associated with each task. Second, OpenCtpu avoids

hardware complexity related to managing data consistency/coherency; OpenCtpu does this

by leaving data management to software, as with GPGPU programming models. Third,

OpenCtpu is designed to be complementary to existing heterogeneous computing platforms

(we have verified that CUDA/OpenCL are compatible with our OpenCtpu extensions when

run in the same program). We expect that CUDA/OpenCL can easily integrate our pro-

posed extensions into their programming interface. The purpose of OpenCtpu simply serves

as a transition for developers to easily exploit Edge TPU features and rethink/rewrite al-

gorithms for applications, rather than replacing any existing heterogeneous programming

standard.
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Figure 3.4 shows an OpenCtpu code sample. The code contains a kernel function

that uses the conv2D operator. Before creating a task instance from the kernel, the code

must prepare two tensors, a and b, as inputs and another tensor, c, as the output. To de-

scribe the dimensionalities of these tensors, the program must call openctpu alloc dimension

to create openctpu dimension data structures for each tensor. The program can then

make calls to openctpu create buffer, which contains the openctpu dimensions val-

ues created for a and b, the pointers to the raw data for a and b, and the reserved

data buffer for the product, c. To perform the conv2D operation, the program calls the

openctpu invoke operator function, specifying SCALE as the quantization method for in-

put/output data, a and b as the inputs, and c as the output for the Edge TPU operator

(currently a one-to-one mapping to a fixed set of Edge TPU/CPU instructions). The kernel

function returns when the operator is complete.

2.6 The GPTPU library and runtime system

The GPTPU runtime system receives tasks from the OpenCtpu front end, dy-

namically schedules tasks, and transforms input/output datasets for tasks. This section

describes the design of the GPTPU runtime system.

2.6.1 Task scheduling

The GPTPU runtime task-scheduling policy is a dataflow-based algorithm on a

front-end task operation queue (OPQ) and a back-end instruction queue (IQ) as Figure 2.4

highlights. An OPQ entry contains a task identification, the requested TPU operation, the
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input and output locations, and parameters like the quantization method. An IQ entry

contains similar items and also the actual underlying TPU instruction.

GPTPU gradually fills the OPQ during the execution of the user application.

When the program calls the openctpu enqueue function, the GPTPU runtime system

initiates a new task ID for the invoked kernel function. The runtime system then exe-

cutes the code designated by the function pointer using the set of parameters from the

openctpu enqueue call. The above process ends when openctpu invoke operator is called

to request the involvement of a TPU operator/instruction.

The openctpu invoke operator function triggers the runtime system to create

an OPQ entry with the task ID created from the current kernel function. The GPTPU

runtime system then fills the rest of the queue entry with information passed to the

openctpu invoke operator function. As the current OpenCtpu design serializes opera-

tors from a single kernel-function instance, kernel-function execution will be blocked until

the operation finishes and each task has one operator from the openctpu invoke o perator

function in the OPQ. Since OpenCtpu allows all tasks to execute in parallel, the GPTPU

runtime system can issue entries in the OPQ to Tensorizer without considering their original

order.

After Tensorizer optimizes, reshapes and transforms data and operations into in-

structions, Tensorizer divides a task into instructions in the IQ. The runtime system then

schedules to the same Edge TPU if they share the same input, quantization flags, and

the same task ID, but have different output locations—a scheduling approach that reduces

movement overhead and the number of data transformations required. For other instruc-
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tions, the GPTPU runtime system will use a first-come-first-serve policy to assign them to

available Edge TPUs.

2.6.2 Tensorizer

Tensorizer is responsible for dynamic optimizations at the task level. Tensorizer

transforms and optimizes programmer-requested operations into instructions, input tensors

and models that enable efficient use of Edge TPUs.

Upon receiving a task from OPQ, Tensorizer first partitions the programmer-

requested operation into Edge TPU instructions into sub-problems where each instruction

works on its optimal data/model shapes using insights from Section 2.3.2. Tensorizer trans-

forms the input data to minimize loss of accuracy due to the 8-bit precision of TPU matrix

units for each Edge TPU operator.

Mapping operators into instructions

As OpenCtpu hides the hardware details from the programmer, programmer’s

tasks are agnostic to the granularity of inputs that optimize Edge TPU instructions. Ten-

sorizer tackles this performance issue by dynamically partitioning these tasks into Edge TPU

instructions working on their optimal data sizes/shapes (e.g., 128×128 matrices in most

arithmetic instructions). As Edge TPU supports limited numbers of instructions/operators,

we creates a set of rules that guides Tensorizer in rewriting tasks.

For pair-wise operators that calculate on pairs of values from both input matrices,

including add, sub and mul or element-wise operators that calculate on each value of an input

matrix, including tanh and relu the rule is straightforward. Tensorizer simply needs to first
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divide the input data into tensors and models that contain sub-matrices with the optimal

shape. Then, Tensorizer rewrites the operator into a set of Edge TPU instructions where

each works on a sub-matrix or a pair of sub-matrices locating at the corresponding positions

in the original inputs and collects the results in the corresponding memory locations.

For matrix-wise operators, including mean and max, Tensorizer still divides the in-

put into sub-matrices with optimal shapes (i.e., both instructions favor 64×64 sub-matrices)

and uses instructions to work on each sub-matrix. However, Tensorizer will additionally

generate CPU code to aggregate the received values from results of instructions to produce

the final outcome. An alternative approach is to create another sets of Edge TPU instruc-

tions and making the received values an input tensor/model to iteratively use Edge TPU to

produce the result. Tensorizer does not take this approach as (1) the first round of executing

mean or max instruction already shrinks the values to aggregate by a factor of 4096, and (2)

the latency of moving data in the currently system architecture is significantly longer than

aggregating results with CPU code.

For arithmetic operators, including FullyConnected and conv2D, Tensorizer ap-

plies mechanisms similar to the blocking algorithm for matrix multiplications [37] in rewrit-

ing tasks. If each input matrix is partitioned into P ×Q sub-matrices, The resulting code

will contain Edge TPU instructions that perform P×Q FullyConnected or conv2D instruc-

tions and CPU code that aggregates results into the final outcome. The CPU code only

needs to add received values that requires very short latency to execute on modern proces-

sors. In addition, as CPU registers are wider than Edge TPU’s data precision, aggregating

results on CPU will allow the platform to reduce precision loss in results.
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After rewriting operations into actual machine/accelerator code, Tensorizer will

obtain the mapping between an input value and its location in the transformed tensor/model.

Data transformation

To minimize the inaccuracy of computation, Tensorizer carefully rescales values

into fixed-point numbers and fill numbers into models or inference data arrays that Edge

TPUs can accept. GPTPU determines the scaling factor for input datasets using (1) the

sequence of operators, (2) the number of operators, and (3) the range of input data. As

the data size of each Edge TPU instruction and the sequence of operators are known at

runtime, the GPTPU system can estimate the number of logical arithmetic operations

(num logical operations) that the instructions will generate. By discovering the maximum

value (max) and the minimum (min) value of the dataset, the runtime system can estimate

the range of output values and derive the model/tensor scaling factor. The general rule of

the scaling factor S of an operator is

S =
1

max(|outputmax|, |outputmin|)
(2.4)

where outputmax is the expected maximum output value and outputmin is the expected mini-

mum output value. For most datasets, sampling is efficient enough in large datasets as previ-

ous work indicates that small subset of input data is representative for the whole dataset [93].

As GPTPU calculates S using the maximum absolute value of outputs, GPTPU prevents

the case of overflow.
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GPTPU applies different formulas for different types of operators. If the input

data is a pair of N ×N matrix, GPTPU estimates the scaling factor for each conv2D and

FullyConnected, as:

S =
1

|max−min|2 ×N
(2.5)

For pair wise add and sub, GPTPU uses:

S =
1

2× |max−min|
(2.6)

as the scaling factor. For pair wise mul, GPTPU uses:

S =
1

|max−min|2
(2.7)

as the scaling factor, and for other operators, GPTPU calculates the scaling factor as:

S =
1

|max−min|
(2.8)

For example, consider a request that performs matrix multiplication and then

pairwisely add another matrix on N ×N matrices with data ranging from 0 to n− 1. The

maximum output value in the resulting matrix will be 2×N×(n−1)2. The runtime system

can choose 1
2×N(n−1)2 as the scaling factor.

The overhead of Tensorizer

Using the information we gained from reverse-engineering the Edge TPU model

format as described in Section 2.3.3, we implemented the proposed Tensorizer to dynam-

ically create models from arbitrary input data. The C-based Tensorizer can bring the

latency of generating a model from a 2K×2K matrix down to 1.8 ms—a 1500× speedup
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over the original Python-based Edge TPU TFLite compiler and shorter than the latency of

data transfer. The GPTPU runtime system thus can overlap Edge TPU matrix-input data

movements with Tensorizer to reduce the total latency of executing Edge TPU instructions

from tasks.

2.7 Optimizing applications for GPTPU

Mapping a problem into a GPTPU application requires inputs/outputs to be trans-

formed into tensors that Edge TPUs can operate on. Although many applications use data

in tensor form, the Edge TPU instructions are optimized for NN workloads, meaning that

naively applying the default tensor operators may not improve performance. Tensorizer

helps to optimize performance in the task level, but using the most efficient operator for a

task still requires programmer’s optimization. This section describes GPTPU application

design and optimization using matrix multiplication as an example.

2.7.1 General Matrix Multiply (GEMM)

To demonstrate the importance of designing algorithms to wisely use Edge TPU

instructions, we explain the design of an efficient GEMM on Edge TPUs, a fundamental

linear-algebra tool for matrices. GEMM takes two 2-dimensional tensors (matrices) as

inputs and produces a single 2-dimensional tensor as output. We can calculate each element

in the result matrix, C, obtained from a set of pairwise multiplications and accumulations

from an M ×N matrix, A, and an N ×K matrix, B.
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GEMM and the FullyConnected operator

The Edge TPU FullyConnected instruction offers an intuitive way to implement

GPTPU GEMM, as the operator essentially produces a matrix-vector product.

A program can select either matrix A or matrix B and iterate through a column or

row of the other matrix to produce the result, and matrix multiplication will be performed

via the M or K FullyConnected operators.

The conv2D operator/instruction

Edge TPU’s conv2D instruction can also perform multiplications and accumu-

lations but in different orientations to derive the result. In conventional architectures,

programmers implement convolutions by performing scalar-scalar or vector-vector multi-

plications and accumulations for higher efficiency. However, Table 2.1 shows that the

RPS of convolution (i.e., conv2D) is 25× the RPS of matrix-vector multplications (i.e.

FullyConnected) on Edge TPUs. Inspired by this observation, we therefore explore the

implementation by changing the layout of input data and using conv2D to perform ex-

actly the same number of multiplications and accumulations on the set of input numbers

to leverage the high RPS of conv2D for a more efficient GEMM implementation.

The conv2D instruction takes one of its inputs as the kernel, multiplies each kernel

element with an input element mapping to the corresponding location, and accumulates the

result as an output element. Each conv2D instruction can produce a result matrix that has

the same size as the non-kernel input.
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Figure 2.5: The conv2D as implemented with stride

For an M × N input matrix, A, and an L × L kernel, B′, each element in the

conv2D M ×N output matrix, C, is:

Ci,j =

L∑
q=0

L∑
p=0

Ai+p,j+q ·B′p,q(∀ 0 ≤ i < M, 0 ≤ j < N) (2.9)

Targeting AI/ML workloads that are error tolerant (and so permit approxima-

tions), the Edge TPU conv2D instruction allows a programmer to assign a stride value

(sx, sy) that treats inputs as groups of sx × sy sub-matrices and produces a corresponding

result value for them.

Figure 2.5 illustrates the concept of conv2D with stride. We select (3, 3) as our

stride, restricting conv2D to 9 numbers in a group; the conv2D operator only produces a
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value for every 3 row/column elements in the abstracted outcome, as in Figure 2.5(c), from

the source matrix, as in Figure 2.5(a), using the kernel in Figure 2.5(b). The final output

of conv2D is a condensed matrix, as in Figure 2.5(d).

GPTPU uses conv2D and its striding feature to implement an efficient GEMM

algorithm. The algorithm starts by reshaping both inputs that transform each row in the

chosen source matrix into a sub-matrix whose size is determined by the selected stride

(sx, sy). Ordinarily, both sx and sy are the round-up of the square root of the column

dimension in the source matrix. The other input matrix serves as a list of kernels, where

each kernel of size sx × sy contains a column from that matrix. When creating the kernels,

the GPTPU GEMM algorithm fills the kernel elements to match the desired element-wise

multiplications for GEMM. In other words, for a matrix with N columns and K rows, the

resulting kernel matrix will contain N kernels where each kernel contains d
√
Ke × d

√
Ke

elements. That being said, the resulting kernel matrix still contains exactly the same or

similar amount of elements (i.e., N×(d
√
Ke)2 v.s. N×K) as the original input matrix. After

transforming both inputs, conv2D iterates through all sub-matrices over each kernel with the

selected stride and generates output identical to that of conventional matrix multiplication.

FullyConnected and conv2D together

Figure 2.6 shows the performance of GPTPU GEMM kernel implementations us-

ing FullyConnected and conv2D compared to the CPU baseline using OpenBLAS [192].

The conv2D implementation reveals a strong performance gain (a 2.06× speedup in the

4K×4K microbenchmark) over the CPU baseline. In contrast, the GPTPU GEMM im-
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Figure 2.6: Speedup of GEMM GPTPU implementations using FullyConnected and

conv2D, relative to the baseline CPU OpenBLAS implementations.

plementation cannot beat the CPU baseline without conv2D (i.e., when GEMM only uses

FullyConnected).

Though the GPTPU GEMM algorithm incurs additional data-transformation over-

head, GPTPU’s conv2D-based GEMM significantly outperforms the conventional vector-

product-based algorithm by 43× on our GPTPU platform. This is because the Edge TPU

architecture highly optimizes conv2D and the favorable RPS of conv2D compensates for the

additional overhead.

Since GEMM is a widely used, fundamental linear-algebra tool for matrices, GPTPU

makes the core GEMM algorithm available as an optimized library function, tpuGemm, that

GPTPU applications can invoke—just as CUDA invokes the cuBLAS GEMM implementa-

tion via the cublasGemm function [119].

2.7.2 Other applications

As with GEMM, our goal for all GPTPU applications is to utilize instructions

with the highest RPS. We now summarize how we extended the GPTPU GEMM approach

to other applications whose workloads we evaluate in the latter part of this paper.
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PageRank

The PageRank algorithm [126] is a representative graph application. PageRank

takes an adjacency matrix representing a graph as input. Both the baseline and the GPTPU

implementations use the classic power method that iteratively performs matrix-vector mul-

tiplications. In contrast to CPU/GPU PageRank implementations that perform pairwise

or vector-wise multiplications, the GPTPU PageRank implementation simply uses one

FullyConnected instruction for each adjacency-matrix multiplication with a single vector.

HotSpot3D

HotSpot3D is a thermal-simulation tool for estimating the temperature of a chip

made with 3D-stacking. The main algorithm gradually and iteratively updates each point

on the chip, which is represented as a matrix with a weighted average of the point’s closest

neighbors in 8 different directions. The HotSpot3D algorithm can naturally map to conv2d

with a 3×3 kernel without striding.

LU Decomposition (LUD)

LUD factors a matrix into a lower triangular matrix (L) and an upper triangular

matrix (U) such that L × U yields the original matrix. Our GPTPU LUD implementa-

tion uses the recursive algorithm [28] via crop, FullyConnected, and conv2D to partition

matrices and perform appropriate operations on different combinations of the partitioned

matrices.
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Gaussian elimination (Gaussian)

Like LUD, Gaussian is a method for solving a system of linear equations. Gaussian

combines row swaps, the scalar multiplication of rows, and row additions until the lower left-

hand triangular matrix contains only zeroes. For Gaussian, GPTPU uses mul to perform

each row reduction.

Backpropagation (Backprop)

Backprop is foundational to NN supervised learning. We implemented a plain-

vanilla version of Backprop to demonstrate the ML/AI-generalizable nature of GPTPU.

For a feedforward NN, the GPTPU Backprop uses (1) multiple layers of FullyConnected

and sigmoid activation functions in ReLu, (2) add for the actual backpropagation, and (3)

tpuGEMM to derive weights for the delta matrix.

Black–Scholes (BlackScholes)

BlackScholes is a financial model for estimating the market price of stock options.

GPTPU uses a ninth-degree polynomial function [3] with the FullyConnected instruction

to compute the cumulative normal distribution function.

2.8 Experimental methodology

2.8.1 The system platform

We use exactly the same prototype machine described in Section 2.3 for all exper-

iments performed with GPTPU.
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Input Data Baseline
Benchmark Matrices Size Category Implementation

Backprop 1×8K×8K 512MB Pattern Recognition [22, 62]
BlackScholes 1×256M×9 9GB Finance [183]
Gaussian 1×4K×4K 64MB Linear Algebra [22, 62]
GEMM 2×16K×16K 1GB Linear Algebra [192, 119, 32]
HotSpot3D 8×8K×8K 2GB Physics Simulation [22, 62]
LUD 1×4K×4K 64MB Linear Algebra [22, 62]
PageRank 1×32K×32K 4GB Graph [19]

Table 2.3: The input dataset sizes for the GPTPU benchmark applications

When performing experiments for baseline applications, we removed the TPUs

from the machine.

For each application, we measured the end-to-end latency. We also measure the

total system power using a Watts Up meter. When calculating energy consumption, we

aggregate the total system power throughout the application execution time. On average,

each active Edge TPU adds only 0.9 W to 1.4 W of power consumption, while a loaded

AMD Matisse core in the GPTPU hardware prototype consumes from 6.5 W to 12.5 W.

As GPTPU still relies on the CPU for the runtime system and data transformation, both

CPUs and Edge TPUs can be active when running applications. The idle power of the

experimental platform is 40 W, including the southbridge chip on the motherboard, NVMe-

based storage devices as well as other peripherals connected to the system.

2.8.2 The baseline application implementations

For each application described in Sections 2.7, we compared our GPTPU imple-

mentations with (1) optimized CPU/GPU implementations from benchmark suites [22, 183]

or (2) widely-used distributions [192, 119, 19]. Table 2.3 lists the input datasets and the
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baseline implementations for each application we used in our experiments. We only select

a subset of applictions from these benchmark suites because these are all applications that

(a) preserve the form of matrix inputs and (b) can map their core algorithms to reasonable

matrix operations. We do not expect GPTPU and Edge TPUs to be effective for applica-

tions that can only exploit vector arithmetics since Edge TPU’s architecture is specialized

for matrix operations. We also use Facebook’s GEMM (FBGEMM) [32] for approximate

computing on GEMM.

2.9 Results

This section describes the speedup, energy consumption, and accuracy observed for

GPTPU when running different applications. Compared to modern CPU-based platforms

running optimized code, GPTPU exhibits improved performance and significantly reduced

energy needs. In addition, the GPTPU GEMM implementation yields more reliable results

in approximation than a low-precision matrix-multiplication library run on a CPU.

2.9.1 Single core performance: GPTPU vs. CPU

Figure 3.6 summarizes the speedup, energy consumption, and energy-delay of

GPTPU-based applications. We used a single Edge TPU and a single CPU core to com-

pare execution of workloads in our baseline tests to compare the per-core raw hardware

capabilities.

Figure 3.6(a) compares end-to-end latency. The GPTPU system is, on average,

2.46× faster than the CPU. For Backprop, the speedup is 4.08× (not surprising given that
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Figure 2.7: The application (a) speedup, (b) energy consumption, and energy-delay prod-

ucts for a single Edge TPU, relative to the baseline CPU implementations
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the Edge TPU was originally designed for applications like Backprop). Excluding Backprop,

the average speedup is still 2.19×. HotSpot3D actually experiences the least speedup with

GPTPU. This is because GPTPU’s HotSpot3D uses very small kernels and large inputs

accompany each iteration, the data-movement overhead dominates end-to-end application

latency. However, even under this scenario, GPTPU can still speed up the performance of

HotSpot3D by 1.14×.

Figure 3.6(b) shows the relative energy consumption and energy-delay products

for GPTPU applications vs. their CPU baseline implementations. GPTPU consumes only

5% of the active energy and only 51% of the idle energy that a CPU consumes (an energy

savings of 45%), and even the worst-performing GPTPU benchmark still saves 3% overall

system energy. For energy-delay products, which take both latency and energy consumption

into consideration, applications run with GPTPU enjoy a 67% reduction over the baseline

CPU. Excluding the top-performing Backprop, GPTPU still achieves an 40% energy savings

and a 62% energy-delay improvement.

GPTPU sacrifices accuracy—but only to a limited degree. Table 2.4 measured

the mean absolute percentage error (MAPE) and the root mean square error (RMSE)

between the GPTPU and CPU application implementations using the default dataset from

the benchmark and our randomly generated datasets with various ranges of values in their

inputs. The MAPE is always less than 1% across all applications, regardless their ranges

of input values. The average MAPE is 0.26%–0.33%. The largest RMSE we measured was

an acceptable 0.98%. In some cases, the GPTPU results in higher error rates in compute

on default datasets than on synthetic inputs with larger data ranges. This is because the
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−27 ≤ −215 ≤ −231 ≤
Benchmark default x < 27 x < 215 x < 231

Backprop 0.12% 0.17% 0.10% 0.11%
Blackscholes 0.18% 0.18% 0.18% 0.18%
Gaussian 0.00% 0.00% 0.00% 0.00%
GEMM 0.89% 0.90% 0.90% 0.90%
HotSpot 0.50% 0.49% 0.46% 0.46%
LUD 0.00% 0.00% 0.00% 0.00%
PageRank 0.61% 0.73% 0.73% 0.73%

Average 0.33% 0.35% 0.34% 0.34%
(a)

−27 ≤ −215 ≤ −231 ≤
Benchmark default x < 27 x < 215 x < 231

Backprop 0.14% 0.17% 0.12% 0.12%
Blackscholes 0.33% 0.33% 0.33% 0.33%
Gaussian 0.00% 0.00% 0.00% 0.00%
GEMM 0.98% 0.91% 0.91% 0.91%
HotSpot 0.64% 0.64% 0.59% 0.59%
LUD 0.00% 0.00% 0.00% 0.00%
PageRank 0.41% 0.91% 0.91% 0.91%

Average 0.41% 0.42% 0.41% 0.41%
(b)

Table 2.4: The (a) MAPEs and (b) RMSEs for GPTPU applications
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Range of Values 0–2 0–4 0–8 0–16 0–32 0–64 0–128

Speedup over FBGEMM 1.26 1.27 1.28 1.22 1.28 1.27 1.28

RMSE
FBGEMM 0.00 0.00 0.00 0.00 0.47 0.87 0.97

TPUGEMM 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Table 2.5: The speedup and RMSE for GPTPU’s GEMM library function relative to

FBGEMM

input values of synthetic datasets are typically normally distributed but the real, default

datasets are not always normally distributed.

2.9.2 GPTPU-GEMM vs. 8-bit CPU GEMM

GPTPU allows single–Edge TPU performance to surpass single-CPU-core perfor-

mance. That being said, the Edge TPU uses low-precision data types, whereas the baseline

CPU implementations do not. To account for this difference when using approximate com-

puting with the CPU cores, we compared the GPTPU implementation running with the

state-of-the-art FBGEMM low-precision CPU matrix-multiplication library that intensively

uses the latest AVX instructions to support 8-bit operations [32]. We did not include other

workloads in this part as other workloads do not have implementations optimized for 8-bit

CPU operations.

Table 2.5 shows the results for GPTPU’s GEMM vs. FBGEMM using 1024×1024

matrices with positive integers and maximum input values ranging from 2 to 128 (we chose

this data size only to accommodate FBGEMM’s limitations). As Figure ??(a) shows,

GPTPU-GEMM consistently outperforms FBGEMM on high-performance CPU cores with

1.22× to 1.28× across all configurations. However, when the maximum matrix-entry value
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exceeds 16, FBGEMM’s RMSE is poor as Table 2.5 presents, reaching 47% when the largest

value within the dataset is 32. Furthermore, the FBGEMM RMSE goes as high as 97%,

meaning that most result values are not convincing when the largest value is 128. In

contrast, GPTPU-GEMM’s RMSE is always less than 1% (0.82% when maximum value is

128). This is because FB’s GEMM targets at error-tolerant ML applications but does not

handle overflow cases. However, the performance evaluation indicates that even if the CPU

baseline uses 8-bit operations, GPTPU-GEMM is faster.

2.9.3 Parallel processing with multiple Edge TPUs

The GPTPU runtime system uses a task queue that allows multiple Edge TPUs

to process tasks in parallel. Even without programmer’s explicit partitioning of tasks,

Tensorizer also automatically generates parallel tasks from the user code. Figure 2.8(a)

shows the speedup of adding more Edge TPUs into our system, without modifying the

user code, compared with the single-core CPU baseline. With 8 Edge TPUs that consume

similar active power as a single RyZen core, GPTPU achieves an average 13.86× speedup.

In constrast, the 8-core, OpenMP-based CPU implementations can only achieve 2.70×

speedup over the baseline. Figure 2.8(b) further shows log-scale performance with up to

8 Edge TPUs running GPTPU tasks, compared with single Edge TPU. The linear plots

reveal good performance scaling for 6 out of 7 applications when the GPTPU runtime system

executes tasks in parallel. The only exception is LUD, which already partitions matrices

into four sub-matrices for computation using matrix-wise operators, making it difficult for

Tensorizer to scale the performance in only one of the four partitions.
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Figure 2.8: Performance scaling for multiple Edge TPUs
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Cost Power Con. Comment

Single Edge TPU USD 24.99 2 W
RTX 2080 USD 699.66 215 W Now USD 1399
Jetson Nano USD 123.99 10 W
8× Edge TPU USD 159.96 16 W Using 4× dual Edge TPU modules

Table 2.6: The cost and power consumption of hardware accelerators that we compared in

this work

2.9.4 Comparison with GPUs

Because an increasing number of workloads leverage GPU parallelism, we com-

pared the GPTPU to NVIDIA’s high-end Turing-architecture-based GTX 2080 and NVIDIA’s

embedded Jetson Nano platform. Table 2.6 lists the cost and power consumption of evalu-

ated GPUs along with Edge TPUs. Due to the limitation of Jetson Nano’s available memory

capacity, we have to scale down the input datasets of Blackscholes, Gaussian, GEMM, LUD

and PageRank by 25% to 50% to not crash the GPU kernel. Figure 2.9(a) compares the

performance for the RTX 2080 and Jetson Nano, using a single Ryzen 3700X CPU core as

the baseline, for Rodinia benchmark applications and GEMM using cuBLAS. We enabled

RTX-2080’s 16-bit ALUs for Gaussian, HotSpot3D, Backprop and Tensor Cores in 8-bit

mode for GEMM. The GTX 2080 GPU is 364× faster than a CPU core and 69× faster

than the Edge TPU. The embedded GPU on Jetson Nano is still 15× faster than a CPU

core and 2.30× faster than an Edge TPU on average. However, with 8× Edge TPUs, the

GPTPU can outperform the CPU core by 3.65× and Jetson Nano by 2.48×.

Figure 2.9(b) compares the energy consumption of evaluated platforms. Including

idle energy, the 8×-Edge TPU system is the most energy-efficient as the platform can save
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Figure 2.9: The relative (a) performance and (b) energy for GPTPU with 1× and 8× Edge

TPUs vs. the GTX 2080 GPU and Jetson Nano
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energy by 40% from the CPU baseline but achieve reasonable speedup. In constrast, the

GTX 2080 platform consumes 9% more energy than the CPU baseline. Even though the

idle power of the Jetson nano development kit is simply 0.5 W, Jetson nano is still more

energy-consuming than GTX 2080 due to the limited speedup.

If we only consider the active power consumption to exclude the factor of various

idle power in different system settings, the GTX 2080 consumes 14× the energy of 1× Edge

TPU on average, due to the GPU’s 195× average active power consumption compared

with the Edge TPU, translating to 4.96× worse energy-delay than the baseline. Jetson

Nano consumes 23.55× more energy than 1× Edge TPU, making the energy-delay of nano

15.54× worse than 1× Edge TPU. 8×-Edge TPU system consumes just 75% more active

energy than 1× Edge TPU, even though the active power consumption is almost 8× of a

single Edge TPU. With 8× Edge TPUs, GPTPU offers even better energy-delay (i.e., 46%

lower) than the baseline. This result shows that GPTPU offers better energy-efficiency than

the current GPU-based solution on embedded/edge platforms.

2.10 Related work

Neural processing units (NPUs) [42, 184] work by using pre-trained models that

predicts the outcome of code blocks and map the user program to these models. The

GPTPU-based approach is fundamentally different from approaches that rely on the ac-

celeration of approximate programs via NPU in three important ways: (1) GPTPU can

accelerate any user-defined algorithm by mapping tensor/matrix operations to supported

operators, whereas NPUs can only accelerate a limited set of algorithms that match previ-
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ously trained NN models. (2) GPTPU can leverage the Edge TPU microarchitecture and

NN hardware to implement exact tensor/matrix operations for applications, whereas NPUs

use NNs to produce approximate results for applications. (3) GPTPU can achieve the de-

sired level of precision by iteratively computing on different portions of raw input numbers,

whereas NPUs are always limited by the approximate outcomes of NN models.

ASICs can be used like TPUs to accelerate NN applications, as can existing fine-

tuned architecture components. Industry data centers [20, 58, 135] take advantage of het-

erogeneous hardware components by using different processors and reconfigurable hardware

for different ML tasks. EFLOPS [36], Richins et. al. [142], and FlexTensor [194] optimize

algorithms and task allocations for network traffic in data-center-scale edge computing or

single-server computing to reduce infrastructure costs. Language frameworks like Approx-

HPVM [147] and ApproxTuner [148] further helps programmer to estimate and optimize

the loss of accruacy in ML workloads. The GPTPU framework is orthogonal to the afore-

mentioned research because GPTPU is compatible with existing heterogeneous computing

platforms; Edge TPUs can function as complementary hardware accelerators within the

system. Ultimately, emerging tensor-processing hardware will inspire the development of

related algorithms and associated software [27, 64, 30]. We have seen work extending the

application of TPUs to medical image processing [105]. We expect GPTPU can further

facilitate this trend. GPTPU can exist in parallel to such future research and potentially

extend newly developed algorithms to work in additional application domains.

This paper does not focus on sparse matrices, as many NN accelerators implicitly

optimize for sparse matrices. Examples include SCNN [129], SparTen [50], Sparch [191],
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Scalpel [185], SIGMA [136], Cambricon-X [189], Bit-Tactical [33], Bit-Pragmatic [2], Out-

erSPACE [127], Laconic [149], Bit Fusion [150], Sparse Tensor Core [196], PermDNN [34],

Park et al. [130], Song et al. [156], and Rhu et al. [141].

2.11 Conclusion

This paper presents GPTPU to bridge the gap between NN accelerators and

general-purpose programming. By reverse engineering the commercially available, low-

profile NN accelerator, the Google Edge TPU, to uncover important architectural char-

acteristics and the data-exchange protocol, we implement an efficient runtime system, in-

cluding Tensorizer that dynamically optimizes data layout and instructions, as the GPTPU

platform’s backend. Using the GPTPU platform and the derived performance numbers, we

re-designed the algorithms for a set of important, non-AI/ML related applications. The

prototype GPTPU system exhibits a 2.46× speedup over modern high-end CPUs with 40%

energy reduction. Though single Edge TPU performance is not yet competitive with high-

end GPUs, but the strong scalability of multiple Edge TPUs reveals the potential of future

extensions of this line of accelerators. As the demand of ML applications keep growing,

we expect manufacturers to keep advancing the microarchitecture of ML accelerators for

higher performance and energy-efficiency. GPTPU thus represents an important explo-

ration of general-purpose computing on NN accelerators and is complementary to existing

work. The insights presented in this paper will also help extend the range of NN accelerator

applications as well as guiding the algorithm design and code optimization for future NN

accelerators.
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Chapter 3

SHMT: Simultaneous and

Heterogenous Multithreading

The landscape of modern computers is undoubtedly heterogeneous, as all com-

puting platforms integrate multiple types of processing units and hardware accelerators.

However, the entrenched programming models focus on using only the most efficient pro-

cessing units for each code region, underutilizing the processing power within heterogeneous

computers.

This paper simultaneous and heterogenous multithreading (SHMT), a program-

ming and execution model that enables opportunities for “real” parallel processing using

heterogeneous processing units. In contrast to conventional models, SHMT can utilize het-

erogeneous types of processing units concurrently for the same code region. Furthermore,

SHMT presents an abstraction and a runtime system to facilitate parallel execution. More

importantly, SHMT needs to additionally address the heterogeneity in data precision that
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Figure 3.1: The execution model of (a) conventional heterogeneous computers (b) conven-

tional heterogeneous computers with software pipelining, and (c) SHMT.

various processing units support to ensure the quality of the result.

This paper implements and evaluates SHMT on an embedded system platform

with a GPU and an Edge TPU. SHMT achieves up to 1.95× speedup and 51.0% energy

reduction compared to GPU baseline.

3.1 Introduction

The integration of graphics processing units (GPUs) and hardware accelerators for

artificial intelligence (AI) and machine learning (ML) or Digital Signal Processing (DSPs)

brings heterogeneous computing models into all types of modern computers, ranging from

wearable devices, mobile phones, and personal computers to data center servers. Famous,

commercialized examples include Tensor Cores (TCs)[123, 122] or Ray Tracing Cores (RT

Cores)[18] on NVIDIA GPUs, Tensor Processing Units (TPUs) on Google Cloud servers [81,
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80, 78], Neural Engines on Apple’s iPhones [11], Edge Tensor Processing Units (Edge TPUs)

on Google Pixel Phones. Through implementing more efficient architectures processing

models for target applications domains, heterogeneous computing resources help address the

issue that general-purpose CPUs alone can not afford the desired performance for modern

workloads, including artificial intelligence (AI), machine learning (ML), reality, or gaming

applications.

Recent research projects have proved that many co-processors and hardware ac-

celerators can perform the same functions at similar orders of magnitude [65, 30, 69, 104,

103, 67, 95, 39, 42], despite their differences in processing models and design agendas.

Theoretically, the system can simultaneously use these heterogeneous processors to maxi-

mize throughputs and minimize latency and energy consumption. However, conventional

programming frameworks, including domain-specific languages, can only delegate a code

region exclusively to one kind of processor, leaving other computing resources idle without

contributing to the current function [1, 121, 85].

This paper presents SHMT, simultaneous and heterogeneous multithreading, to

evaluate the performance and tackle the challenges of simultaneously using heterogeneous

computing resources of a heterogeneous computer system. Unlike conventional program-

ming and execution models that focus on using the most efficient computing resources and

exploiting homogeneous parallelism within the identified type of computing resources for

each function, SHMT can break up the computation from the same function to multiple

types of computing resources and exploits heterogeneous types of parallelism in the mean-

time.
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Figure 3.1 illustrates the advantage of SHMT against the conventional execution

model. Figure 3.1 assumes a program containing five primary functions, A to E, and five

computing resources, including CPUs, GPUs, and three accelerators. Figure 3.1(a) presents

the execution flow in conventional programming models that delegate the function to the

most efficient processing units. Though conventional models can exploit parallelism within

the same type of processors, conventional models still let other resources idle or make no

progress to the current program. The program seems to use multiple types of hardware

concurrently through programming techniques like software pipelining. Figure 3.1(b) as-

sumes the program can progress with partial results and pipeline the execution of different

functions on different hardware units. However, as each function takes a different amount of

time to generate partial results, the imbalance of execution can still lead to waste. SHMT,

as Figure 3.1(c) depicts, allows function B to use GPUs and other accelerators. As a result,

SHMT can significantly improve hardware utilization and lead to better end-to-end latency

and energy consumption.

Enabling SHMT is challenging in the following aspects. First, as heterogeneous

computing resources use diverse programming models (e.g., vector processing in GPUs and

matrix processing in Tensor Cores), SHMT must present some mechanism that can describe

and divide equivalent operations and data on different computing resources. Second, unlike

traditional programming systems that delegate each code region to one type of hardware,

SHMT must be able to coordinate the execution on heterogeneous hardware efficiently.

Finally, as various hardware units deliver results at different levels of quality, SHMT must

assure the outcome without incurring significant overhead.
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The SHMT framework proposed three components to address the challenges above.

First, SHMT promotes a set of virtual operations (VOPs) and High-Level Operations

(HLOPs) as an intermediate between programming languages and hardware instructions/operations

to facilitate task matching and distribution. Second, SHMT presents a runtime system

that dynamically adjusts the workloads on various hardware units to maximize hardware

efficiency while allowing flexibility in scheduling policies. Finally, SHMT presents a low-

overhead scheduling policy that considers both results and performance.

This paper develops the proposed SHMT framework on an embedded system plat-

form equipped with a multi-core ARM processor, an NVIDIA GPU, and an Edge TPU.

SHMT achieves up to 3.92× speedup and 2.07× on average. With our proposed quality

assurance mechanisms, SHMT still achieves 1.95× speedup on average. SHMT also reduces

energy consumption by 51%.

In presenting SHMT, this paper makes the following contributions.

• SHMT presents a new parallel programming and execution model that distinguishes

itself from prior work as SHMT uses heterogeneous hardware concurrently to accom-

plish parallel tasks from the same piece of code.

• SHMT evaluates and demonstrates the potential of leveraging hardware using hetero-

geneous programming models using a real system platform.

• SHMT presents an abstraction and mechanisms to coordinate concurrent execution

on heterogeneous hardware components.

• SHMT proposes a low-overhead mechanism and scheduling policy to ensure the quality

of results.
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3.2 Background and motivation

In modern heterogeneous computers, two technology trends make sense of SHMT:

first, the ubiquitous adoption of hardware accelerators. Second, the abilities of hardware

accelerators to applications beyond their original target domains. However, before SHMT,

no existing work tried to have multiple types of accelerators collaborate on the same code

region. This section describes the technology trends and the potential of SHMT.

3.2.1 Modern heterogeneous components

As Dennard scaling slows, the integration of domain-specific hardware accelerators

becomes universal. Most computer systems nowadays contain the following domain-specific

hardware accelerators.

Graphics processing unit (GPU) Despite the broad spectrum of applications, GPUs are

initially accelerators for computer graphics. The nature of pixel rendering algorithms makes

vector processing architecture using the single instruction multiple data (SIMD) paradigm

the best fit for the target domain. Modern GPU architectures natively support compu-

tation in single precision (FP32) but also provide half-precision (FP16) [62] for AI/ML

applications.

AI/ML accelerators AI/ML accelerators have become popular in all types of computer

systems to tackle the rapidly growing demand for AI/ML workloads and offer better energy

efficiency and offloading CPUs/GPUs for other workloads. As modern AI/ML models

intensively use matrix algebra, most AI/ML accelerators tailor their internal architectures

with circuits specialized for matrix operations. Google’s Edge TPUs, data center TPUs,
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and NVIDIA’s Tensor Cores [123, 122] are all hardware implementations of frequently used

matrix operations in AI/ML workloads.

Most AI/ML applications are error-tolerant. As a result, the hardware design can

further improve performance, power consumption, and area-efficiency through approximate

computing and reduce data precisions. The early version of Edge TPUs supports only

INT8 precision support and thus can deliver more compelling performance per Watt than

the data center TPUs (2 TOPS/W v.s 0.36 TOPS/W for Cloud TPUs). NVIDIA’s tensor

cores only natively support half-precision and Bfloat16 (BF16).

Other accelerators Computer systems have a long history of adopting digital signal pro-

cessors (DSPs) back in the 1970s. DSPs have again become popular as strong demands in

high-bandwidth communication, teleconferencing, media streaming, and creating visual and

audio inputs/outputs for AI/ML applications. The hardware logic may implement math-

ematical operations to support Fast Fourier transforms (FFTs) or finite impulse response

(FIR) filters. As image data contain three bands of 8-byte color descriptions, most image

DSPs only support computation in 24-bit [124, 8]. Google Visual Core’s Image Processing

Unit implements stencil operations in 16-bit. However, as many DSP applications have

strong connections with AI/ML applications and rely on similar mathematical functions,

SHMT can easily extend the support to DSPs. Ray Tracing is another emerging type of

accelerator that simulates the behavior of lights in the real world to fulfill the demand

for virtual reality and gaming applications. Modern ray-tracing cores implement logics for

bounding volume hierarchy (BVH) tree traversal [18].
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3.2.2 Generalization of domain-specific accelerators

Broadening the application of domain-specific accelerators has two different ap-

proaches. First, use the mathematical functions in DSAs to perform the equivalent oper-

ation in an out-of-domain application. The other approach is to reduce the out-of-domain

problem as a problem inside the accelerator’s target domain. This section will introduce

the recent advances in both directions on emerging hardware accelerators besides GPUs.

Using mathematical functions in DSAs

As most hardware accelerators are accelerators for key mathematical operators,

the programmer can change the program implementations to invoke an accelerator’s hard-

ware operations directly. This approach typically relies on support from appropriate hard-

ware/software interfaces and general-purpose programming frameworks. Examples include

CUDA and OpenCL, which promote general-purpose computing on GPUs (GPGPUs). In

the context of modern AI/ML accelerators, NVIDIA exposes the MMA instruction sup-

port in Tensor Cores through the wmma interface and cuBLAS library functions. Recent

research projects, including TCUSCAN [30], TCUDB [69], and RQTPU [65] demonstrate

the use of matrix multiplications on Tensor Cores to accelerate database query operations

like reduction, scan, and join. Besides AI/ML workloads, Google also demonstrates ma-

trix multiplication in TPUs to accelerate Fourier Transform [104, 39] and facilitate MRI

image reconstruction [103]. GPTPU [67] reverse-engineered the Edge TPU compiler and

built a tensor operator-based programming framework for Edge TPU to accelerate Rodinia

benchmark applications [22].
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Reducing the original problem to the accelerator’s target domain

The other approach to using domain-specific accelerators is to reduce the problem

as one in the accelerator’s target domain. In contrast to the method in Section 3.2.2,

this approach requires less programming language or ISA support in exposing the internal

hardware features to programmers.

Neural Processing Units (NPUs) [42, 5, 110, 101] follow this route to solve general-

purpose problems using NN accelerators. NPUs leverage universal the approximation the-

orem [29] in approximating any given problem/algorithm as an NN model, and thus the

process of solving the original problem becomes an instance of NN inference. In this paper,

we intensively used NPUs as our solutions for Edge TPU implementations, as imple-

menting the concept of NPUs can make more efficient use of AI/ML accelerator hardware.

RTNN [198] also follows the same direction but with RT Cores as the target domain-specific

accelerator. RTNN formulates the tree-based neighbor search algorithms on the BVH tree,

thus enabling the BVH traversal function on RT Cores.

3.2.3 Potential and challenges of SHMT

With existing efforts of general-purpose computing on hardware accelerators, mul-

tiple types of accelerators can perform the same function with compelling performance.

Figure 3.2 compares the performance of running the core kernel function in ten applica-

tions using their NPU implementations on Edge TPU against their state-of-the-art GPU

implementations on the GPU of Jetson Nano. If we offload all kernels to Edge TPU, the

performance is 5% slower than GPUs on average. The average theoretical speedup from
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Figure 3.2: The potential speedup of SHMT (and Edge TPU) relative to GPU-only imple-

mentation
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conventional approaches that delegate kernels to the best-performing accelerator is 1.37×.

Using the performance number we gathered from running experiments using GPUs or Edge

TPUs, we derived the theoretical performance gain of SHMT and presented the numbers

in Figure 3.2. By carefully finding the optimal planning of using GPUs and Edge TPU

simultaneously to share the computation from the same application kernel and ignoring all

data exchange/transformation overhead, the average speedup is 3.14×.

However, a system must tackle the following challenges to enable the simultane-

ous use of multiple types of hardware accelerators in accomplishing the computation for a

compute kernel. First, as each hardware accelerator has its unique programming interface

and execution model, without appropriate system supports, the programmer needs to figure

out the equivalent set of operations on various accelerators and manually create multiple

threads that map each partition of computation to different hardware and handle the data

exchange/synchronization. Second, as the microarchitecture and execution model of each

hardware accelerator differs, the relative performance ratio and data exchange overhead

among hardware accelerators change as data sizes or system dynamics change. Therefore,

even if the programmer can partition computation to simultaneous threads working on

different data partitions, the resulting program is not always optimal for the underlying

hardware or cannot guarantee speedup. Finally, unlike homogeneous hardware components

that accept data in the same representation and deliver the result with the same accuracy,

heterogeneous hardware components accept data and deliver results in different formats and

accuracies. As a result, carelessly using heterogeneous hardware components simultaneously

can lead to unwanted execution results.
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3.3 SHMT

In response to the challenges of supporting SHMT, we developed a system ar-

chitecture consisting of three main components. First, SHMT defines an extensible set of

hardware-independent virtual operations (VOPs) that allows heterogeneous hardware to

interact with SHMT software as an intermediate. Second, an SHMT runtime system that

performs the low overhead task scheduling to manipulate the use of heterogeneous hard-

ware. And finally, runtime mechanisms to ensure the quality of results. This section will

overview the proposed framework and present our proposed policies and mechanisms in

each component.

3.3.1 Overview

Figure 3.3 presents the overview of SHMT. SHMT abstracts its subsystem as a

virtual hardware computing resource offering a rich set of virtual operations (VOPs) that

allows a CPU program to “offload” computation to this virtual hardware device. The com-

piler or the programmer can use VOPs to describe the desired computation for SHMT. As

the adoption of domain-specific languages (e.g., Tensorflow or PyTorch) using standard li-

braries and accelerated libraries (e.g., cuBLAS, cuDNN) in modern programming languages,

we expect the frontend authoring languages of user programs to remain the same. Most

changes should only occur at the library level.

During the program execution, the runtime system, which acts as the “driver” of

SHMT’s virtual hardware, dynamically parses the VOPs and gauges the ability of hardware

resources to make scheduling decisions. The runtime system divides a VOP into one or more
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high-level operations (HLOPs) to simultaneously use multiple hardware resources. Each

HLOP is a basic scheduling identity in SHMT and performs a partition of computation for a

VOP. The implementation of each HLOP typically maps to a set of hardware operations and

functions on the target hardware resource. Finally, the runtime system assigns these HLOPs

to the task queues of the target hardware. As HLOPs are also hardware-independent, the

runtime system can still adjust the task assignment if necessary.

As VOPs and HLOPs provide flexibility in scheduling, SHMT’s runtime system

can easily integrate scheduling policies to improve performance. This paper presents a

quality-aware work-stealing (QAWS) scheduling policy that has low execution overhead

but helps to maintain quality and balance the workload.

Figure 3.4 provides an overview from the programmer’s perspective. We envision

the programming interface for general application programmers to remain the same. The

application programmer can still use domain-specific function calls or library functions at

a high level. In Figure 3.4, the application programmer invokes the general matrix multi-

plication (GEMM) functions that TensorFlow provides (i.e., tf.matmul). Most application

programmers will be unaware of the following change at the language runtime level: the

TensorFlow implementation of tf.matmul calls the shmt:: matmul() function that SHMT

provides to the system programmer to invoke the VOP of GEMM. The SHMT internal im-

plementation of shmt::matmul() will then analyze and decompose the GEMM VOP into

HLOPs, where each HLOP is a native implementation of a chunk of GEMM computation

on the dedicated hardware resource.
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Figure 3.4 presents the programming model of SHMT. In summary, we have limited the

programming efforts as we tried to present an almost identical programming interface to

most programmers. The implementation of HLOPs also leverages existing support without

burdening most system engineers.

3.3.2 Virtual Operations (VOPs) and High-Level Operations (HLOPs)

SHMT tackles the challenge of the heterogeneity from execution models and data

formats using VOPs and HLOPs. VOPs define the available computation that SHMT can

provide to the program and HLOPs define available operations in the underlying hardware

that SHMT can leverage. In SHMT model, HLOPs without data dependency can execute

simultaneously, regardless of the actual hardware performing the computation.

Virtual operations (VOPs)

VOPs in SHMT is a set of definitions describing available operations that SHMT’s

underlying hardware can support. VOPs help to abstract the whole SHMT subsystem as

a single but powerful accelerator from the software’s perspective. The SHMT subsystem is

a big umbrella covering all computing resources that SHMT can use to exercise sub-tasks

from VOPs simultaneously.

Table 3.1 lists the VOPs that our prototyping SHMT system supports. As SHMT

focuses on the simultaneous use of multiple types of computing resources, our current list

covers the most frequently implemented supported computation in hardware accelerators.

In our current list, these VOPs can either use an element-wise vector processing model or
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vector tiling

add reduce sum conv

log relu DCT8x8

max rsqrt FDWT97

min sqrt FFT

multiply sub GEMM

parabolic PDE tanh Laplaican

reduce average Mean Filter

reduce hist256 Sobel

reduce max SRAD

reduce min stencil

Table 3.1: The VOPs list in either vector or matrix tiling processing model types.

a tile-wise matrix processing model to partition and parallelize the computation without

violating the correctness.

High-level operations (HLOPs)

An HLOP in SHMT defines a subset of a VOP operation that an underlying hard-

ware computing device can support. An HLOP shares the same opcode as the supporting

VOP. However, unlike a VOP with no assumption/restriction on the input/output data

sizes, an HLOP defines the data sizes/granularities and the data types a hardware device

can support. For each VOP, SHMT’s runtime system will dynamically partition computa-

tion tasks and data into HLOPs and assign each HLOP to an underlying hardware device

using the data sizes and the parallelization model.

If the target device provides native support for an HLOP, the HLOP’s implementa-

tion for such devices can directly invoke the hardware command. For example, as edge TPU

implements convolution 2D in hardware, the edge TPU’s HLOP implementation simply in-

vokes the corresponding hardware function. Otherwise, the HLOP can still use multiple
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hardware operations to accomplish the desired computation on optimal data sizes. For

example, the convolution 2D implementation on a GPU will internally become a series of

vector operations within the HLOP implementation. For NPUs, the implementation makes

an inference through a pre-trained model that approximates the result of convolution 2D.

3.3.3 SHMT’s runtime system

In actual system implementation, the SHMT’s runtime system is a kernel driver of

a virtual device. The virtual device driver accepts VOPs as a subset of its commands and

partitions VOPs into HLOPs on the target hardware devices. SHMT’s runtime system also

provides interfaces for more advanced scheduling policies. SHMT’s kernel driver maintains

a pair of queues for each SHMT-compatible hardware resource; one serves as the incoming

queue and the other as the completion queue. Upon the initialization of the SHMT system,

each hardware resource’s driver is responsible for providing SHMT with its list of available

HLOPs operations and their implementations.

HLOP distribution

For each VOP that SHMT receives, the runtime system figures out available hard-

ware resources to perform the VOP, gathers the information regarding the parallelization

method and data partitioning, and consults the scheduler for the task mapping on hard-

ware resources. If the scheduler suggests a plan, the runtime system realizes the plan by

partitioning the VOP into HLOPs on devices at supported data sizes. As SHMT supports

a limited number of parallelization models, the runtime system can apply the template for

each parallelization model for dataset partition, aggregation, and synchronization. SHMT
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assigns an HLOP to the target device by sending the HLOP to the device’s incoming queue.

A thread monitoring the queue will work with the target device’s kernel module and exe-

cute the HLOP implementation whenever the device is available. Once the HLOP finishes,

the thread will move the task to a completion queue that SHMT runtime system can later

dequeue and use for data aggregation and synchronization purposes.

Data distribution and transformation

In modern heterogeneous systems, hardware accelerators are typically separated

intellectual property cores or chips that communicate with the main CPU cores through

the system interconnect. Like the idea of processor caches, most hardware accelerators

also own their private device memory to facilitate the execution of operations. As each

device’s HLOP accepts fix-sized, fix-shaped data, SHMT’s runtime system creates memory

operations using similar arguments as the implementation of CUDA’s cudaMemcpy2D that

takes the starting address of the source data structure and use the element size, dimensions

of each input partition to calculate the effective addresses of source and target data locations

that each HLOP uses. The runtime system will schedule the data movement using the

effective addresses between the system’s shared main memory and each device’s memory

location after assigning an HLOP.

Most hardware accelerators optimize their computation models and architectures

for targeted application domains, thus supporting limited data precisions. Suppose the

scheduling policy determines the use of a target hardware resource as appropriate despite

the potential loss of accuracy. In that case, the runtime system will perform data type

casting through the desired quantization method before distributing the input data. When
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the device finishes computation, the runtime system is again responsible for restoring the

result to the data precision that the application desires.

3.3.4 The basic work-stealing scheduler

Work-stealing is the basic scheduling policy that SHMT uses as the policy best

balances the workload among scheduling targets with various performances. The scheduler

makes an initial plan by partitioning datasets evenly based on the parallelization model of

the scheduling VOP and assigning each data partition as well as the computation associated

with that partition to a target computing resource. The runtime system will generate and

enqueue the HLOPs corresponding to the computation for each partition to the target

hardware’s incoming queue. When an HLOP completes, the runtime system also reports

to the scheduler.

As heterogeneous computing systems share and synchronize data at the system’s

main memory level, each input and output data partition should be larger than and be

multiples of the main memory page size whenever possible. For example, using the most

frequently used 4KB page size, each partition of floating-point data inputs in the vector

processing model should contain at least 1,024 consecutive elements, and a matrix tile should

be at least 1,024 ×1,024 sized. Partitioning data at larger than page-sized granularities can

make more efficient use of memory bandwidth and avoid redundant page accesses and write

amplification issues.

When the workload is imbalanced, that is, the incoming queue of a hardware

device has more pending items than others, the scheduler informs the runtime system to

withdraw HLOPs associated with unprocessed data partitions from the current assignment
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and reassign the HLOPs to the hardware with the most empty queue. The granularities

can mismatch between different devices, so the runtime system may need to further fuse or

partition HLOPs.

3.3.5 Quality-Aware Work-Stealing (QAWS) policy

This paper proposes an exemplary quality-aware work-stealing (QAWS) schedul-

ing policy to demonstrate the effect of a first-level quality control mechanism in the SHMT

scheduler and the flexibility of SHMT in changing scheduling policies. As the microar-

chitecture of application-specific hardware accelerators aims to provide just enough result

quality for the target workloads, most hardware accelerators, especially those targeting

AI/ML workloads, do not support the precision modes for exact, general-purpose comput-

ing. Without any quality control mechanism, naively using hardware accelerators as other

general-purpose processors can lead to unwanted computation results.

The design of QAWS aims at ensuring the results’ quality of critical data regions while

maintaining low computation overhead in scheduling. For each input data partition, QAWS

samples the data to determine the criticality and assigns computation to a device accord-

ingly. We leverage the experience from prior works that consider critical regions as data

partitions with the widest value distributions. In this paper, we examined two policies using

sampled criticalities.

1. Device-dependent limits This policy determines the scheduling on a device using

device-dependent limits. Each computing device has a set of acceptable hardware
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Algorithm 1 Device Limitation

Input: P, limits

1: N ← |P|

2: M ← |limits|

3: |Q| ← N

4: for i← 0 to N do

5: s← sampling module(Pi)

6: Qi ←M − 1 . your default choice

7: for j ← 0 to M do

8: if s < limitsj [0] then

9: Qi ← limitsj [1]

10: break

11: return Q

limits based on the supporting data precision and accuracy. QAWS assigns only data

inputs lower than the criticality limits to that computing resource. In the case of work

stealing, QAWS only allows a device to steal HLOPs from another device with the

same or a lower hardware limit.

2. Application-dependent top−K% criticality This policy ranks the criticality within

a window of data partitions and schedules top-K% partitions to the most accurate

device, second-L% to the second-most accurate device, and so on. The threshold val-

ues of K and L are application-dependent. The programmer or the library composer

should provide, along with each VOP, indicating the percentage of data inputs that
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Algorithm 2 Top-K Criticality

Input: P, K, W

1: N ← |P|

2: |Q| ← N

3: |window[]| ←W

4: for i← 0 to N do

5: window[i%W ]← sampling module(Pi)

6: if (i%W == W − 1) or (i == N − 1) then

7: sort(window)

8: for j ← 0 to W do

9: Qi ← (j < K) ? 0 : 1

10: return Q

are generally critical to results in this library function or the application. In the case

of work stealing, QAWS only allows a device with higher accuracy to steal HLOPs

from another device with the same or a lower accuracy.

Algorithm 1 and Algorithm 2 explain the algorithmic details of how QAWS as-

signs computation to a device for two options: (1) device-dependent limitation and (2)

application-dependent top-K criticality, respectively. In Algorithm 1, P is an array of input

partitions, and limits is an array of paired numbers - the limitation number of a device

and the index of the corresponding device queue. limits is sorted by the first index in

descending order. In Algorithm 2, the two additional inputs other than P, K, and W,

are the threshold value of top-K and window size W, respectively. Any given K has to be
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Algorithm 3 The striding sampling

Input: D, N, s

1: |S| ← N

2: for i← 0 to N do

3: Si ← D[i ∗ s]

4: return S

smaller than the W. And the result array Q from each algorithm is an array of queues’

index numbers each HLOP assigns to. For example, in the case of only GPU and Edge

TPU queues present in a SHMT system, the GPU queue has an index value of 0, and the

Edge TPU queue has an index value of 1.

The mechanism that SHMT uses to determine the criticality leverages the insight

of canary input from the input responsiveness approximation (IRA) technique [93]. IRA

technique proposes and proves that the computation result using canary input, a small set

of input data, can effectively approximate the overall computation quality. However, the

complete IRA technique requires actual computations on canary inputs that incur significant

performance overhead at the scheduler’s level. Therefore, SHMT only performs the input

evaluation from IRA and determines the criticality of an input data partition using two

metrics, data range (i.e., maximum and minimum values) and standard deviation within

the region.

As faithfully scanning through the input region increases the computation over-

head, SHMT proposes sampling. We examined three different sampling mechanisms in this
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Algorithm 4 The uniform random sampling

Input: D, N

1: |S| ← N

2: for i← 0 to N do

3: Si ← D[random()]

4: return S

Algorithm 5 The reduction sampling

Input: D, s

1: S← []

2: dims← dimension(D)

3: for i0← dims0 with step size s do

4: for i1← dims1 with step size s do

5: ...

6: S.append(D[i0, i1, ...])

7: return S

paper. Algorithms 3, 4, and 5 summarize the three sampling methods - striding, random,

and reduction - QAWS uses, respectively. The D of all options is the input data partition,

the s for Algorithms 3 and 5 is a step size, and the N for Algorithms 3 and 4 is the desired

number of samplings.
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Figure 3.5: The SHMT prototype platform

3.4 The SHMT system prototype

This paper evaluates SHMT using a custom-built prototype with real hardware

components and applications. This section describes the hardware/software system archi-

tecture and the method of incorporating NPUs into this platform.

3.4.1 The system assembly

This paper built an exemplary SHMT prototype using NVIDIA’s Jetson Nano

and Google’s Edge TPU. Figure 3.5 shows the photo of the assembled system. The Jetson

Nano module contains a quad-core ARM A57 processor and 128 Maxwell GPU cores. We

connect an Edge TPU to the system via the m.2 slot on the back of the Jetson Nano

processor/GPU module. The three types of processing units, CPU, GPU, and Edge TPU

exchange data through the on-board PCIe interface. The prototype system contains 4 GB
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64-bit LPDDR4 interface at 25.6 GB/s as the main memory. The system’s main memory

hosts the share data among CPU, GPU, and Edge TPU. Edge TPU additionally contains

8 MB device memory. The system assembly runs an Ubuntu Linux 18.04 with NVIDIA’s

customized 4.9.253-tegra kernel. We implemented the virtual SHMT hardware device as a

dynamically loadable kernel module.

We built the prototype using selected components and believe that this prototype

is representative of most use cases for the following reasons. First, the processing power

and the available types of processors and accelerators of this system platform resemble the

hardware components that modern smartphone or mobile devices [54], allowing this plat-

form to assess the real performance of using SHMT on these scenarios. Second, the ratio

of computing power between Maxwell GPUs and Edge TPUs (472 GLOPS v.s. 4 TOPS)

resembles those on data center servers (67 TFLOPS FP32 of A100 and 275 TFLOPS of

TPUv4) [123, 79], allowing this platform to assess the relative performance of SHMT on

cloud servers. Finally, the most important reason is the availability of the hardware com-

ponents and customizing the software stack. As SHMT requires changes in kernel modules,

the evaluation platform must allow full control for experimental purposes. However, Google

only provides access to data center TPUs through their cloud platforms without permitting

the creation of customized system modules. We can only use the commercially available

Edge TPUs to build the prototype platforms. Building SHMT using widely available hard-

ware components will also enable broader applications to the proposed framework.
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3.4.2 NPU implementations

Edge TPU can either serve as a matrix function accelerator as Section 3.2.2

describes or implement an NPU as Section 3.2.2 describes. In the case of using Edge TPU

as matrix accelerators, we leverage existing library to implement corresponding HLOPs [67].

Edge TPU can naturally implement the concept of NPU as the target application

of Edge TPU is inferencing NN models. Each HLOP of Edge TPU using NPU mode is

a pre-trained model for the HLOP. Based on the microarchitecture of Edge TPUs, these

HLOP-NN models should (1) use multilayer perceptrons (MLPs) with convolution and

dense operators and sigmoid or relu as activation functions and (2) be the first found and

the simplest topology whenever the learning curve of a full precision TensorFlow model

training significantly improves throughout topology searching. We use the following steps

to construct an NPU model on Edge TPU.

1. Construct the training and validation datasets by running the target algorithm/function

using high-performance CPU/GPU platforms with randomly-generated input data

and collecting the output.

2. Train the NPU-HLOP model using high-performance CPU/GPU platforms.

3. Perform post-training quantization for the trained model into an Edge TPU-compatible

model using TensorFlow Lite (TFLite) and edgetpu compiler [53].
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Benchmark Category Baseline Implementation

Blackscholes Finance CUDA Examples [121]
DCT8x8 Image Processing CUDA Examples [121]

DWT Signal Processing Rodinia 3.1 [22]
FFT Signal Processing CUDA Examples [121]

Histogram Statistical Opencv 4.5.5 [16]
Hotspot Physics Simulation Rodinia 3.1 [22]

Laplacian Image Processing Opencv 4.5.5 [16]
Mean Filter(MF) Image Processing Opencv 4.5.5 [16]

Sobel Image Processing Opencv 4.5.5 [16]
SRAD Medical Imaging CUDA Examples [121]

Table 3.2: Table of benchmarks

4. Test the Edge TPU-compatible model with validation dataset again. If the Edge

TPU-compatible model’s accuracy is significantly lower than its version on the high-

performance platform, we will enable quantization-aware training mode to re-train

the model with weights in 8-bit precisions.

3.5 Results

SHMT with QAWS achieves 1.95× speedup compared with the case where we

can only offload computation to the fastest accelerator. As SHMT leverages low-power

hardware accelerators to assist the program execution along with GPUs, SHMT reduces

the energy consumption by 51.0%. This section describes the speedup, quality, and energy

consumption of SHMT when running various applications using the prototype Section 3.4

presents.
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Figure 3.6: The application speedup relative to the baseline GPU implementations

3.5.1 Benchmark applications

Table 3.2 lists the benchmark applications this paper uses to evaluate SHMT and

the sources of their baseline GPU implementations. We select these applications as these ap-

plications have both high-performance GPU and NPU implementations that we can gather

from public code repositories through our best-effort search. In addition, these applications

cover multiple application domains, including image processing, signal processing, physics

simulation, medical imaging, and finance. Without otherwise mentioned, the default in-

put data size for each benchmark contains 8192×8192 randomly generated floating-point

numbers.
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3.5.2 Speedup of end-to-end latency

Comparing the end-to-end latency of SHMT with optimized baseline GPU im-

plementations, SHMT with the best-performing QAWS policy achieves 1.95× speedup.

Figure 3.6 illustrates the speedup of SHMT with various scheduling policies. In Figure 3.6

and the following sections, we denote the variation of QAWS results as QAWS-XY where X

stands for hardware assignment policies using (1) Device Limitation or (2)Top-K methods,

and Y stands for the sampling method, either (1)Stridding, (2)Uniform random sampling

or (3)Reduction.

We also include two policies that do not consider the quality of results, the even

distribution, and the work-stealing, as references. Naively distributing HLOPs evenly be-

tween the GPU and the Edge TPU would make the performance bounded by the slower

hardware and result in performance loss in 6 out of ten benchmark applications where Edge

TPU’s implementations are slower in our case. In contrast, work-stealing can achieve 2.07×

speedup on average as work-stealing adjusts the workloads based on the consumption rate

of HLOPs, allowing faster hardware to perform more HLOPs and slower hardware as an

auxiliary device supporting the parallel execution with the least amount of idleness. The

performance work-stealing policy also represents the optimal speedup of SHMT without

considering result qualities.

All QAWS policies in this paper sample and adjust workload distributions on

top of the basis of work-stealing. The speedup that Figure 3.6 reports for each policy

already includes the sampling overhead. Among all SHMT policies with quality control

mechanisms, QAWS-TS performs the best and achieves 1.95× speedup compared with the

85



GPU baseline on average. QAWS-TU seconds at 1.92× average speedup. Compared with

the two policies QAWS-LU and QAWS-LS that use the same sampling mechanism with

initial queue assignment policy using device limitations, the performance of QAWS-TS

and QAWS-TU reveals that “Top-K” is more suitable for performance-critical workloads.

Compared with device limitations, the rank-based approach in Top-K may increase the

amount of data partitions that Edge TPU can perform in our platform since Edge TPU

can still work on some data partitions with wider value ranges or variances than its hardware

limitation. Regardless of using Top-K or device limitations, reduction performs the worst

due to the relatively higher sampling overhead. As each SHMT policy implements a subset

of IRA-sampling [93], Figure 3.6 also includes that policy as another baseline. Implementing

the full features of IRA-sampling will result in a 45% slowdown and render SHMT unusable.

Figure 3.6 also includes the performance of optimized GPU implementations with

software pipelining as another reference design. Software pipeline can only achieve 1.25×

speedup. For compute-intensive workloads, software pipelining cannot compete with SHMT.

Software pipelining is effective for Blacksholes and MF as computation becomes relatively

minor in these applications. However, this is not a limitation of SHMT. SHMT can po-

tentially parallelize the data preprocessing part to further speed up these applications if

appropriate hardware and algorithm exist.

3.5.3 Quality of QAWS policies

This section evaluates the quality of results for all proposed QAWS policies and

their sampling mechanisms. We quantitatively measure result qualities using Mean Abso-

lute Percentage Error (MAPE) and structural similarity index measure (SSIM). The exper-
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Figure 3.7: The Mean Absolute Percentage Errors (MAPEs) for SHMT applications

imental result shows all proposed policies can effectively improve the quality of results to a

similar level.

Figure 3.7 shows the MAPEs of all QAWS mechanisms. In addition to SHMT

policies and the baseline IRA-sampling mechanisms, we create an “oracle” scenario where

we manually identify critical input data regions and assign HLOPs accordingly without

considering the performance. If the program can only use less precise Edge TPUs, the

MAPE is 5.15% on average. With careful manual optimizations, the MAPE of the Oracle

assignment is 1.77%. The MAPE of the baseline IRA-sampling is 1.85%. Without using

any QAWS policies, the pure work-stealing approach can deliver the result with an average

MAPE of 2.85%.
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For the proposed QAWS policies, the MAPEs of all policies are lower than 2% on av-

erage, close to the Oracle assignment and IRA-sampling. Furthermore, the difference in

MAPEs between the QAWS policy with the lowest and the QAWS policy with the highest

end-to-end latency is a marginal 0.07%, implying that a high-overhead sampling mechanism

is overkill for most cases.

Due to the various result distributions of each application, the MAPEs across dif-

ferent applications vary significantly. For example, resulting images of edge detection type

of applications, Sobel filter, and Laplacian, contain vast amounts of near-zero values repre-

senting non-edge areas. Thus, any moderately approximated non-edge value will contribute

a much higher percentage of the error rate to the overall MAPE. The limitation in dealing

with close-to-zero is a well-known issue of MAPE [88].

To more effectively evaluate the quality of results in image data containing near-

zero values, we introduced SSIM as an additional metric. SSIM is a measure that predicts

perceived visual quality, and an SSIM score of more than 0.95 is the generally agreed thresh-

old of very good quality. We use SSIM for the six image-related workloads, DCT8x8, DWT,

Laplacian, Mean Filter, Sobel filter, and SRAD. Figure 3.8 presents the SSIMs of these

applications. All QAWS policies can maintain higher than 0.97 SSIMs as the average SSIM

results across these applications are 0.9916, 0.9924, 0.9949, 0.9873, 0.9829, and 0.9798 for

QAWS-TS, QAWS-TU, QAWS-TR, QAWS-LS, QAWS-LU, and QAWS-LR, respectively.

All QAWS policies can achieve SSIM results close to the oracle of 0.9957, especially the

top-K QAWS policies. This set of experiments again shows that using high-overhead mech-

anisms is not necessary in most cases.
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Figure 3.8: The Structural Similarity Index Measures (SSIMs) for image-related SHMT

applications
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Since all QAWS policies deliver a similar level of result qualities but QAWS-TS

obtains the best performance compared with all QAWS policies, in the rest of the paper,

we use QAWS-TS by default.

3.5.4 QAWS sampling rate

The number of samples during each sampling phase is another parameter that

helps optimize the sampling overhead. Figure 3.9(a) and Figure 3.9(b) show the speedup

and MAPEs when the sampling rate (the portion as samples from the raw datasets) of our

best-performing QAWS-TS changes, respectively. A sampling rate of 2−14 means we select

256 samples from a 2048×2048-sized input. We changed the sampling rate from 2−21 to

2−14. As SHMT’s policy already reduces the post-processing after each sample, QAWS-TS

achieves competitive performance regardless of the sampling rate. However, the MAPEs

decrease monotonically until the sampling rate reaches 2−15. The result suggests that the

sampling rate of 2−15 can generate significant enough input samples for QAWS policies

without sacrificing performance gain considerably.

3.5.5 Energy consumption

By reducing the total execution time and offloading computation to a lower-power-

consuming Edge TPU, SHMT has a strong potential for energy saving. We connect the

power source of the prototype through a power meter and collect the periodical mea-

surements from the meter. Figure 3.10 reports the breakdown of energy consumption of

both GPU baseline and SHMT with QAWS-TS. The same figure also shows the relative
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Figure 3.9: (a) Quality v.s. QAWS sampling rates, (b) Speedup v.s. QAWS sampling rates

91



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

B
la
c
k
s
c
h
o
le
s

D
C
T
8
x
8

D
W
T

F
F
T

H
is
to
g
ra
m

H
o
ts
p
o
t

L
a
p
la
c
ia
n

M
F

S
o
b
e
l

S
R
A
D

G
M
E
A
N

N
o
rm
a
liz
e
d

 V
a
lu
e
s
 t
o

 G
P
U

 B
a
s
e
lin
e

 

 (
L
o
w
e
r 
is

 B
e
tt
e
r)

baseline active energy
baseline idle energy
SHMT active energy

SHMT idle energy
SHMT EDP

0
.6
2
0

0
.3
3
5

0
.5
3
2

0
.3
1
0

0
.8
6
6

0
.5
0
7 0
.6
1
8 0
.7
1
4

0
.6
5
0

0
.2
2
3

0
.4
9
0

0
.3
3
4

0
.1
1
3 0
.2
5
3

0
.0
9
2

0
.6
2
3

0
.2
4
8

0
.2
4
9

0
.4
6
3

0
.3
7
1

0
.0
4
6

0
.2
2
0

Figure 3.10: Energy consumption and energy-delay products (EDP)
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Figure 3.11: SHMT’s Memory Footprint (Normalized to GPU Baseline)

energy-delay products (EDP) of SHMT with QAWS-TS, compared against the GPU base-

line. SHMT with QAWS-TS reduces energy consumption and EDP by 51.0% and 78.0% on

average, respectively.

The peak power consumptions of three cases including (1) platform idling, (2) GPU

baseline, and (3) the SHMT with QAWS-TS are 3.02 watts, 4.67 watts, and 5.23 watts,

respectively. Although SHMT with QAWS-TS reaches higher peak power since both GPU

and Edge TPU are functioning during runtime than GPU baseline, on average, the 51.0%

energy reduction of SHMT with QAWS-TS comes from the 1.95× speedup that reduces the

period consuming the power with 5.23 Watt at peak.
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Benchmark Communication Benchmark Communication
Overhead(%) Overhead(%)

Blackscholes 0.77% DCT8x8 0.89%
DWT 0.66% FFT 1.03%

Histogram 0.47% Hotspot 1.04%
Laplacian 0.49% MF 0.67%

Sobel 0.79% SRAD 0.59%

GMEAN 0.71%

Table 3.3: Communication Overhead

3.5.6 Memory and communication overhead

Figure 3.11 presents the total memory footprint when running benchmark appli-

cations at each process’s virtual memory abstraction level. As the specialized logic in Edge

TPUs provides more accelerated functions in hardware, Edge TPUs require less system

memory than equivalent implementations on GPUs. For example, the buffers in Edge TPU

processing elements can replace the memory in storing the intermediate results of vector

products that GPUs require. As a result, the memory footprint of SHMT counter-intuitively

reduces for applications with significant amounts of HLOPs on Edge TPUs, despite the ad-

ditional buffers for inputs to Edge TPUs.

Table 3.3 describes the communication overhead resulting from the nature of pe-

ripheral devices like Edge TPUs. The computing resources in SHMT only spend about or

less than 1% of the time, with 0.71% on the geomean average, waiting for data exchanges

for the following reasons. (1) The parallel programming model of SHMT promotes data-

parallel algorithms like matrix semiring tiling ones that implicitly have low data exchanges

among parallel chunks of computing. (2) The computation time is relatively longer on each

processing resource than the data exchange time, allowing mechanisms like double buffering
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Figure 3.12: Speedup v.s. problem sizes

to hide the latency. (3) The amount of HLOPs from each application allows the SHMT

runtime system to easily oversubscribe available processing resources and cover the latency

of data exchange.

3.5.7 Discussion on SHMT’s limitation

Figure 3.12 shows the speedups of SHMT under QAWS-TS variation when problem

sizes of benchmarks vary. Within the tested problem size interval, from 4K to 64M, the

speedup increases as the problem size increases. We did not go beyond 64M as the working

set size of GPU kernels in some applications will surpass the physical memory limitation

and crashes, not the limitation of SHMT. SHMT is more effective for larger problem sizes

as larger problem size provides more parallelism among HLOPs for various devices.
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Reviewing the result in Section 3.5.6 presents, SHMT does not lead to significant

memory and communication overhead if we can leverage the embarrassingly data-level mas-

sive parallelism as the applications we demonstrated in this paper. Therefore, the adoption

of SHMT simply helps the system to enjoy more parallel processing resources to tackle

larger problem sizes without significantly further burdening the system. In other words,

the limitation of SHMT is not the model itself but more on whether the programmer can

revisit the algorithm to exhibit the type of parallelism (e.g., matrix tiling [190, 109, 146])

that makes SHMT easy to exploit.

3.6 Related work

Existing runtime for parallel programming on heterogeneous systems. Popular

domain-specific languages, including TensorFlow [1] and Pytorch [133], allow the automatic

delegation of domain-specific functions to one particular accelerator. Suppose the back-end

implementation of functions can exploit parallelism among the delegated type of acceler-

ators. In that case, these frameworks can concurrently execute pieces of computation on

multiple devices but the same type. These frameworks can also employ pipeline paral-

lelism to overlap different domain-specific functions with concurrency. However, none of

the existing domain-specific language frameworks can employ multiple types of accelera-

tors simultaneously in the manner that SHMT can perform. IR-level optimizations like

XLA [51], or model-level optimizations like TVM [23] and AutoTVM [24] do not consider

the simultaneous use of heterogeneous devices but can only optimize for a single type of

device for each code region.
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Heterogeneous programming frameworks like OpenCL [85] allow programmers to

compose a single code version but generate binary running on multiple hardware devices.

However, the OpenCL does not generate code that can simultaneously execute on hetero-

geneous devices. Though programmers can use OpenCL or other alternatives to create

programs running in SHMT model manually, the resulting program still lacks scheduling

flexibility and quality assurance.

OpenMP [21] provides an automatic parallel programming model that enables

multithreading execution on homogeneous multi-processors. Through adding pragmas,

OpenMP can exploit data-level parallelism and create homogeneous threads. SHMT can

leverage the identified data-level parallelism and create parallel execution using HLOPs to

make use of multiple types of hardware. However, without the abstraction and mechanisms

that SHMT framework presents, existing homogeneous programming frameworks cannot

take advantage of the presence of heterogeneous hardware.

Existing task distribution solutions for heterogeneous systems utilizing multiple

accelerators in the system use the following methods.

(1) Partitioning one application and mapping the partitions onto multiple accelerators of the

same type (such as GPUs) in the computer system for concurrent execution [84, 7, 132, 26,

113, 83, 117, 188, 182, 139, 153, 41, 197, 100]. Some works extend the same method to com-

puter clusters such as distributed deep learning training/inferencing [43, 92, 77, 71, 66, 55],

federated learning [174, 59, 165, 89], decentralized ad-hoc computing [40], inter-datacenter

scheduling [151], and scalable computing on supercomputer environments [166, 152]. Al-
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though these methods can achieve higher performance with parallel execution of multiple

devices of the same type, they do not consider the simultaneous use of the other types of

heterogeneous accelerators on the same system as SHMT does.

(2) Extending method (1) to multiple accelerators with different configurations or

versions [113, 154, 193, 15, 162, 25] but still falling into the same type. HDA [91] can config-

ure multiple heterogeneous dataflow accelerators for different neural-network layers where

each only differs from others with different PE configurations and connecting topology.

HASCO [178] can efficiently generate systolic array architectures with different configura-

tions for executing various tensor computation kernels. Again works using this method

do not overcome the challenge of programming model discrepancy among devices. SHMT

presents a parallel programming and execution model addressing this challenge.

(3) Allowing limited concurrent usage of multiple types of accelerators only when

the task execution triggers multiple types of dedicated functions at the same time [90,

171, 13, 163]. However, the behavior of the program’s execution flow and the diverse

characteristics of dedicated functions mapping to DSAs limit the simultaneous level of

heterogeneous execution. Whereas SHMT provides a machine-independent programming

model for task partitions such that the concept of SHMT can achieve higher hardware

utilization and allow broader applicability for accelerators.

Heterogeneous computing for AI/ML workloads. The high computing demands

of AI/ML workloads motivating the development of AI/ML accelerators provoke many

performance optimization techniques that utilize heterogeneous accelerators. Examples

are (1) tensor tiling [76, 194, 195], (2) pipelining [177, 48], (3) operation fusing [4, 118],
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(4) neural architecture searching (NAS) [164, 98, 97, 99, 167], and (5) model quantiza-

tion/compression [46, 169, 160, 74, 159, 6, 56, 170, 9]. Essentially, these techniques re-

consider the computational graphs of AI/ML workloads for better workload-to-hardware

matchings that exploit parallelisms. SHMT is orthogonal to these techniques as SHMT

allows extensions upon these software-based optimizations that explore opportunities en-

abling intra-kernel concurrent utilization on multiple heterogeneous accelerators.

Existing quality assurance policies rely on several methods including (1) taking ad-

vantage of the precision-tolerable characteristic of workloads themselves like data precision

adaptation on AI/ML models [169, 6, 56], (2) providing numerical composition solutions

to increase resulting precision such as iterative refinement [57] and extended precision [45],

or (3) performing mixed-precision computation [108, 38, 86, 180, 172] or providing multi-

resolution data [70] to adjust overall required quality according to needs. Existing approx-

imated techniques include loop perforation [96] and numerical approximation. Another

example is IRA [93] which uses canary inputs to dynamically select the most effective ap-

proximation technique for speedup before target output quality (TOQ) violation happens.

SHMT is orthogonal to these quality assurance policies as our QAWS policies are low-

overhead sampling methods without actual function execution runs. As long as any afore-

mentioned policy has low-overhead and can avoid using application-specific prior knowledge

to assure quality, they can substitute QAWS as a replaceable module.

This work needs additional quality assurance simply because the hardware per-

forms approximate computing rather than the limitation of the concept SHMT itself. Con-
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ventional homogenous simultaneous multithreading hardware does not need to cope with

quality assurance. In contrast, SHMT has to ensure quality because of the potential preci-

sion mismatch of underlying architectures.

3.7 Conclusion

Modern computer systems are already heterogeneous and consist of several types

of hardware architectures. Conventional execution models usually under-utilize these hard-

ware devices by only offloading certain workloads that depend on the kernel’s characteristics

and performance requirements.

This paper presents SHMT, a framework for heterogeneous systems to enable a

simultaneous and heterogeneous execution scheme. SHMT automatically partitions given

VOPs of a workload into HLOPs to allow concurrent execution of these sub-kernels on het-

erogeneous devices. By integrating the concept of neural generalization, SHMT enables de-

vices such as Edge TPU that have limited programming capabilities to contribute their com-

putational powers. Also, QAWS policy mitigates the precision mismatch issue from acceler-

ators with low data precision causing the potential result quality degradation. Throughout

the low-overhead re-scheduling behavior of QAWS introduced on HLOPs, SHMT achieves

less than 2% MAPE error across applications on average via prioritizing tasks over criticality.

Also, SHMT achieves 1.95× speedup and 51.0% energy reduction by enabling simultaneous

and heterogeneous execution of architectures compared to GPU baseline.
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Chapter 4

GSLD: a Globally Sparse Locally

Dense Matrix Computing Library

Sparsity is a ubiquitous data characteristic of real-world matrix-based computa-

tional applications across numerous scientific and engineering domains. Also, sparsity is a

phenomenon of data layout from the coordinate system’s perspective, and skipping com-

putation and data accessing for zero-based no-effect equations such as x*0=0 inside an

application effectively and efficiently is challenging. Existing sparse research works focus on

efficiently skipping zero values in the matrix and designing optimized data flow. However, an

optimized data flow of sparse computation and capturing the particular sparsity patterns of

an application are hard to design at the same time. Alternatively, relaxing the skipping for

zero values in sparse matrices yields a different direction of optimization opportunity. We

observed a significant amount of datasets have the ”globally sparse, locally dense” (GSLD)

property. Leveraging the insight, we propose a new sparse computing library that more in-
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telligently uses dense matrix processors and scalar cores. Our Intel AMX-based prototype

achieves 2.03× times speedup compared to a high-end CPU baseline.

4.1 Introduction

Sparsity is a ubiquitous data characteristic of real-world applications across numer-

ous scientific and engineering domains. Sparsity is also a phenomenon of a set of data points

given upon perspectives such as a coordinate system and ordering definition in dimensions.

Existing matrix accelerators such as NVIDIA’s TesnorCore Units (TCU), Google’s

Tensor Processing Units (TPU), and Intel’s Advanced Matrix Extensions (AMX), are spe-

cialized accelerators for processing dense matrices efficiently on prioritized computing ker-

nels such as general matrix multiply (GEMM) for artificial intelligence (AI) and machine

learning (ML) applications. On the other hand, general-purpose hardware architectures

such as central processing units (CPUs) and general-purpose graphic processing units (GPG-

PUs) don’t natively support sparse-aware computing, which leads to the x*0=0 performance-

improving opportunity unexploited.

Existing sparsity-aware hardware accelerators exploit either sparse acceleration

features (SAFs), dataflow of target applications, or both dimensions, to achieve optimal

performance in real-time. Sparseloop [176] defines SAF in three terms: representation

format, gating, and skipping. Representation format refers to the choice of a sparse format

storing non-zero values and the associated location information. Gating refers to the idleness

of the storage and/or computing units to avoid ineffectual operations. Skipping refers to

the exploitation of such ineffectual operations by avoiding spending cycles.
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However, two challenging aspects of existing sparse computing scenarios remain

under-exploited. (1) One single computing kernel in different application domains, some-

times even in the same domain, may need to compute on different types of sparse patterns of

input matrices, where no single SAF is a one-design-fits-all choice in terms of performance.

Similarly, different computing kernels may share the same sparse matrix as inputs, where

both have to consider their dataflows of computations separately in their sparse acceleration

solutions. (2) Sparse format transformation overhead and the re-design of both dataflow

and SAF associated with the format are expensive. Sparse computations are fundamentally

optimization works. The level of optimization of a narrow range of applications is extremely

high as the exploitations are close to the theoretical optimal such as GEMM computation.

On the other hand, sparse computing solutions usually under-exploit generalizability and

leave the selection for users.

In response to the design challenges, we proposed GSLD – a sparse computing

library that relaxes the optimization goal by trading off optimized SAF with broader ap-

plicability of the library’s usage domains. From a high-level perspective, GSLD does not

differentiate between dense and sparse matrix computation and thus relieves the choice

burn of the users from selecting a proper computing library and storage format that to-

gether affect the computing performance, and thus complex the real-world design decisions

in practice. Based on the observation that real-world sparse data are typically ”globally

sparse, locally dense”, GSLD exploits such property and intelligently leverages dense ma-

trix processors for locally dense sub-matrix computation along with the assistance of other

scalar cores in a system.
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GSLD indifferences dense and sparse matrices by adopting a sparsity threshold

checking that allows not-so-sparse sparse computation using a dense library. Based on the

rule of thumb that a sparse library will only start to gain performance benefits when the

sparsity of the input data is lower than 1%, which comes from the experiment result of

SIMD2 [190], GSLD focuses on optimizing sparser sparse computing tasks by capturing the

GSLD property. We also observe that real-world sparse patterns are not random, and one

of the common sparse patterns is diagonally dominant. Combining these two observations,

the GSLD design includes a diagonal-dominant-based compressed sparse row (CSR) sparse

format for the sparser sparse computations that address the design challenges of sparse

computations.

We built a prototype GSLD library by integrating Intel’s AMX extension cores to

evaluate GSLD’s performance compared to the best-performing sparse library in terms of

end-to-end latency. GSLD demonstrates that programmers can simply replace their matrix

computation by integrating the GSLD library as the computing kernels. The experimental

result shows that GSLD achieves 2.03× times speedup.

In presenting GSLD, this paper makes the following contributions.

• GSLD presents a new matrix computing library that eases the implementation burden

of optimizing sparse computation with complex design choices such as sparse format

and data flow design.

• GSLD evaluates and demonstrates the potential of relaxing the traditional optimiza-

tion goals of sparse computation and providing broader application domains for users.
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• GSLD proposes a new sparse format that captures one of the commonly seen sparse

patterns that is diagonally dominant.

• The prototype implementation of GSLD shows 2.03× times end-to-end latency speedup

by integrating Intel’s AMX extension cores for computing locally dense sub-matrices

along with the assistance of other scalar cores.

4.2 Background and motivation

This section describes the background and motivation of GSLD. By investigating

the real-world sparse data, we observed the GSLD property and commonly seen sparse

patterns that serve as the backbone motivation of the proposed GSLD matrix computing

library.

4.2.1 Observation on real-world sparse data

Sparsity is a general terminology describing any matrix or tensor-based data that

has a certain amount of zero values within the layout of the grid cells. The sparse pattern of a

sparse matrix describes the organization of such zero values in the layout, and the pattern of

such locations is a critical factor affecting the level of optimization a potential sparse library

can achieve. Depending on the associated computation, the theoretical optimization in the

performance of a sparse matrix computation can reduce the theoretical time complexity by

orders of magnitude. For example, although the time complexity of a naive general matrix

multiply (GEMM) implementation is in the order of 3, a sparse corresponding case that is

also called sparse GEMM (spGEMM), can be as low as in the order of 2 when the number
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Figure 4.1: 32 representative real-world sparse matrices.
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of non-zero values is proportional to the dimension size of the matrix. In the extreme

case, a spGEMM with the input sparse matrix having only one non-zero value will have

a constant time complexity. The critical challenge of sparse computation optimization is

that any other scenarios between the two extreme cases are hard to achieve, and providing

a general solution for different cases is even more challenging.

To better understand the sparse characteristics of real-world sparse data, we ex-

plored the SuiteSparse Collection [31] sparse data in full scale. Figure 4.1 shows 32 repre-

sentative sparse matrices from the SuiteSparse Collection out of 2,878 effective samples. By

using a k-medoids clustering algorithm with a customized matrix-based similarity metric,

these 32 selected samples as cluster centers represent some of the important and common

characteristics. Based on the sampling result, we can see that 16 samples have prominent

diagonal dominant non-zero value patterns. Also, there are other common patterns such as

uniform distribution and hybrids.

4.2.2 The GSLD property

Beyond visualization, we further investigated all effective samples at full scale and

identified the GSLD property. To identify the density properties in both global and local

scales, we defined both the typical global density and non-zero block density for each, re-

spectively. A non-zero block of a sparse matrix is a local square region that contains at

least one non-zero value. Because different sparse matrices have different sparse patterns,

we classified them into four main categories including (1) dense-ish, (2) sparse and diagonal

dominant, (3) sparse and symmetric, and (4) sparse and others.
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Figure 4.2: The Globally Sparse, Locally Dense (GSLD) property (number of samples)

We proposed a heuristic classifying method as the following describes. First, the

method will check the global density of a given matrix. If the density of the matrix is larger

than the threshold, which is 0.01 in our case, then the matrix is dense-ish. Otherwise, the

method will further check if the matrix is diagonally dominant. A sparse matrix is diagonal

dominant if one of the following conditions is satisfied. (1) The diagonal blocks have 50%

density on average, or (2) at least 50% of the non-zero values of the sparse matrix located

within the diagonal blocks region. Notice that two factors determine the region area: the

block size of each block and the duplication number of a diagonal block in a horizontal

direction. The latter is to capture more non-zero values for the cases in which diagonal

patterns were wider visually. The last check is to determine if the matrix is symmetric.
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Figure 4.3: Globally Sparse

Figure 4.2 summarizes the global density and local density of samples. By sum-

marizing the average results, we can see that all three sparse type categories have significant

GSLD properties. The average global densities are all significantly lower than the average

non-zero block densities. Compared to the dense-ish type one, the global to non-zero block

density ratios of the three sparse types are all about 50 times larger. We can see that for a

matrix that is sparse enough, the GSLD property will be prominent. Notice that it is not

obvious to identify the GSLD property if we only look at the total case. Also, we denoted

the number of samples examined for each type in the graph. And each category has a

comparable number of samples.

Figure 4.3 and Figure 4.4 further show the GSLD property in visualization at

full-scale. Figure 4.3 demonstrates the scatter plot of all effective samples with the matrix

sizes as the x-axis, and the densities as the y-axis. We can see that the density range has
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Figure 4.4: Locally Dense

wide coverage from 10 to the order of 0 to 10 to the order of -6, and real-world sparse

matrices tend to be more sparse when the matrix size is larger. Figure 4.4, on the other

hand, visualizes how dense local regions of a sparse matrix can be compared to global

density. The local-to-global density ratio at the y-axis represents how strong the GSLD

property a sparse matrix has. We also observe the trend that a larger sparse matrix tends

to have stronger GSLD property. Table 4.1 summarizes more detailed matrix characteristics

including the number of application domains of each type.

110



b
lo

ck
si

ze
=

8x
8

D
en

se
S

p
ar

se
-

D
ia

go
-

n
al

d
om

in
an

t
S

p
ar

se
-

sy
m

m
et

ri
c

S
p

a
rs

e
-

o
th

er
s

T
o
ta

l

p
er

ce
n
ta

ge
of

sa
m

p
le

s
(

ou
t

of
28

78
)

25
.0

52
%

26
.8

94
%

16
.8

17
%

3
1
.2

3
7
%

1
0
0
%

d
en

si
ty

av
er

ag
e

17
.8

61
%

0.
29

5%
0.

11
2%

0
.2

0
9
%

4
.6

3
8
%

ge
om

ea
n

3.
01

1%
0.

13
3%

0.
02

8%
0
.1

0
1
%

0
.2

3
8
%

N
Z

b
lo

ck
d

en
si

ty
av

er
ag

e
19

.3
76

%
14

.9
55

%
10

.4
85

%
8
.6

8
3
%

1
3
.3

5
2
%

ge
om

ea
n

13
.3

33
%

9.
65

9%
7.

54
9%

6
.8

2
3
%

8
.7

8
3
%

n
u

m
b

er
of

N
Z

b
lo

ck
s

/
n
u

m
b

er
of

b
lo

ck
s

av
er

ag
e

38
.3

51
%

3.
31

6%
1.

76
5%

3
.2

7
5
%

1
1
.8

1
9
%

ge
om

ea
n

29
.0

21
%

1.
06

1%
0.

45
1%

1
.4

0
6
%

2
.3

0
2
%

n
u

m
b

er
of

u
n

iq
u

e
m

at
ri

x
d

om
ai

n
s

50
56

38
5
2

8
9

T
ab

le
4.

1:
S

p
ar

se
m

at
ri

x
ch

ar
ec

te
ri

za
ti

on

111



4.3 Overview of GSLD

The proposed GSLD matrix computing library follows the two design principles

to address the issues mentioned in Section 4.1.

A unified matrix acceleration library interface

The existing division between dense and sparse computing scenarios separates the

use of the underlying kernel library. Also, the existing interfaces of each are independent

such that the additional arguments related to sparse format differentiate the interface usage

of dense and sparse ones. GSLD aims to blur the separation and provide a unified matrix

library interface for matrix computation tasks in either situation.

An ideal unified matrix computing library not only keeps the interface standard

but also guarantees performance for various sparse input matrices. We propose GSLD that

in theory compromises achieving optimal performance for every possible sparse scenario but

provides a unified interface. GSLD captures the globally sparse and locally dense properties

of sparse matrices in general, and yet the design of GSLD effectively achieves performance

gain on average because of the following reasons: (1) Disgarding the entrenched differenti-

ation rule of dense and sparse matrices, but only separate them with different implemen-

tations based on the consideration of performance instead of sparsity. (2) Using only one

single static sparse format that approximately yet effectively captures the commonly seen

sparse pattern in exchange for avoiding the design of domain-specific data flow optimization

techniques.
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Figure 4.5: Performance of sparse matrix multiplication

Figure 4.5 shows the rule of thumb regarding how to determine a performance

implementation of dense or sparse matrix computation, and it originates from SIMD2 [190].

In this graph, we can see that a spGEMM sparse implementation will start to outperform a

dense counterpart when the sparsity is lower than 1% for the 4K by 4K size case. In other

words, a dense cuBLAS implementation will keep performance for sparse matrix multipli-

cation for sparse matrices that are not-so-sparse. Additionally, a sparse implementation

will have an out-of-memory runtime issue in the case that the density is relatively higher.

This is because using a sparse storage format, which is CSR in this case, for a dense-ish

matrix requires more memory space due to the additional coordination-related information

compared to simply using a naive dense storage format.
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A standard sparse storage format

Determining an efficient sparse format for sparse computation in terms of both

memory requirement and runtime performance is challenging. Also, users ultimately do not

need to care about the design choice of the sparse format as long as a library can guarantee

performance matrix computation. The sparse format will thus become a less meaningful

factor to expose to the users. To achieve the goal of the first design principle, GSLD

incorporates a proposed sparse storage format that statically captures commonly seen sparse

patterns in exchange for chasing optimal data flow in runtime. Although counterintuitive

in the first place, GSLD’s sparse format at the maximum level captures the sparse pattern

in general which implies a corresponding static data flow is efficient enough.

In GSLD, we proposed a diagonal dominant-based CSR sparse format as an opti-

mized option for sparse format implementation.

4.4 GSLD implementation

This section describes the implementation details of GSLD library in three different

aspects: (1) The core design algorithm, (2) the proposed diagonal-dominant CSR sparse

format, and (3) the sparse computation of applications.

4.4.1 The core design algorithm

Algorithm 6 describes the core design algorithm of GSLD in a high-level perspec-

tive. To align with the design principle mentioned in Section 4.3, the algorithm takes

matrix inputs in either dense or any level of sparse. Depending on the result of density
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Algorithm 6 The core design algorithm of GSLD

Input: input matrix in either dense or sparse

1: if density > threshold then

2: Call dense implementation.//ex : cublasSgemm();

3: else

4: Call sparse implementation.//ex : gsld :: spmv();

thresholding, GSLD will invoke a proper internal matrix computation implementation. For

dense-ish cases, GSLD adopts existing high-performance dense implementation based on

the rule of thumb demonstrated in Figure 4.5 and mentioned in Section 4.3. For sparse

cases, GSLD will invoke the actual underlying sparse library implementation that provides

a set of BLAS-like matrix kernels including sparse matrix-vector multiplication (spMV).

4.4.2 The proposed diagonal-dominant CSR sparse format

The sparse part of the library implementation includes a special sparse format

that captures the commonly seen diagonal dominant pattern. Figure 4.6 illustrates the

proposed sparse format. The format stores all diagonal blocks in dense format regardless

of how dense the local block may be and stores the rest of the non-zero values in CSR

format. This sparse format avoids recording additional coordination-related information

for most of the dense blocks to save space. Although this is an approximate design for

capturing sparsity patterns, the static nature of a sparse format allows for simpler sparse

implementation without chasing the complex data flow of specific tasks and inputs.
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4.4.3 The sparse computation of applications

We summarize some of the most common applications used for the matrices we

profiled including the SuiteSparse Collection, and Table 4.2 shows the mapping from sam-

ples, applications, and the essential kernel. General sparse computation has a very broad

application domain and computational characteristics. However, we observed that many

applications share common kernels, and spMV is one of the most used kernels in applica-

tions.

4.5 Experimental methodology

This section describes the system configuration and applications we evaluated for

GSLD library.

Experimental platform

We used a 64-core Intel XEON 6530 processor with a clock rate of up to 4 GHz.

The processor has the Advanced Matrix Extensions (AMX) co-processor that is capable of

computing dense matrix multiplication. We installed Ubuntu 24.04 (Linux kernel version

6.8.0-11-generic). For the GPU baseline part of the experiment, we additionally have an

NVIDIA RTX 3090 GPU with 24 GB of device memory and CUDA 12.3.

Applications

For comparison, we implemented the single-CPU version of spMV computation by

the PageRank application in Graphit [17]. For the multiple-CPU version, we additionally
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Figure 4.7: GSLD - spMV end-to-end Speedup

enabled the OpenMP [21] feature of the baseline. For the GPU baseline, we used the

spmv csr kernel of the cuSPARSE [120] GPU library.

4.6 Results

This section describes the speedup, performance result of full-scale sampling, and

memory space-saving comparison against the scenario where a matrix computation uses

a dense storage format. Compared to modern CPU-based platforms running optimized

sparse matrix computation, GSLD exhibits improved performance and controlled memory

save requirement. In addition, the GSLD in full-scale testing result shows a reliable lower

bound performance guarantee for various real-world sparse data inputs.
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Figure 4.8: Full-scale testing

4.6.1 Speedup of end-to-end latency

Figure 4.7 shows the end-to-end latency result of the spMV kernel. We evaluated a

few versions of sparse implementation including single-CPU as the baseline, multiple-CPU,

GPU, the GSLD with Intel AMX kernel, and additionally the same GSLD implementation

with the proposed diagonal dominant CSR sparse format. On either average or geomean of

a total of 197 samples included, multiple-CPU version has significant end-to-end speedup,

and GPU ones suffer from data movement as the main reason for the slowdown. As for our

GSLD implementation in standard CSR format, the geomean result is slightly better than

the baseline. However, the GSLD with diagonal dominant plus CSR sparse format achieves

2.03× speedup on average.
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4.6.2 Full-scale testing on real-world samples

Beyond the selected samples, we also tested the spMV kernel on all sparse matrices

from the SuiteSparse Collection to understand the possible worst-case performance of the

GSLD library. In our experiment, as shown in Figure 4.8, around 2 thirds of the samples

have speedup improvement over a single-CPU baseline. Among the rest of the cases, most

of them are at least 1 fifth of the CPU baseline performance except for only 6 outliers.

The proposed diagonal dominant plus CSR format is a beneficial option with a reasonable

lower bound for almost all of the cases. We do not observe a significant correlated factor

for the performance trend as the correlation coefficients between performance and factors

including sparsity and matrix size are all close to zero. The correlation coefficients between

performance and matrix size, density, sparse pattern, and the number of non-zero values

are 0.00388, 0.00196, 0.00766, and -0.0460, respectively.

4.6.3 Diagonal area density

Figure 4.9 shows the average density of the diagonal area defined by the proposed

diagonal dominant plus CSR sparse format. Due to the diagonal-dominant nature of the

diagonal-dominant type of samples, the average and geomean diagonal area densities are

44.53% and 28.95%, respectively. Both results indicate that the proposed sparse format

captures the sparse patterns with a regional density significantly larger than the density

threshold based on the rule of thumb mentioned in Section 3.3.1. The sparsity capturing

contributes to the performance of utilizing dense matrix processors for those diagonal blocks

in diagonal.
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Figure 4.9: Diagonal area density

4.6.4 Memory space saving of sparse formats

Figure 4.10 shows the memory space requirement of various sparse matrix formats.

By varying the block size of the proposed format from zero, which means the typical CSR

format toward larger block sizes, we can see that a larger block size requires more memory

size as we can expect. However, when we compare the relative sizes against dense coun-

terparts, the diagonal-dominant+CSR format still has quite significant savings. The block

size is a critical factor of the format and we selected the moderate 32 in size in the exper-

iment. For the dense-ish category of results, the memory saving is significantly less than

other types since the amount of coordination-related information undermines the expected

memory saving of sparse formats as the saving is at the magnitude of 10 to the power of

2. There is one only memory-saving overturn that happens when using a diagonal domi-
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Figure 4.10: Memory space saving of sparse formats

nant plus CSR sparse format with a block size equal to 8 compared to naive CSR format.

For other types, the proposed format still maintains at least 1 tenth of the memory saving

compared to the naive CSR format.

4.7 Related work

Many prior works focus on designing sparse accelerators for optimizing sparse

computation. Examples are ExTensor [61], SIGMA [136], SpArch [191], MatRaptor [158],

Tensaurus [157], TensorDash [106], GoSPA [35], ALRESCHA [12], Sparseloop [176], Sex-

tans [155], SPAGHETTI [63], SparseCore [140], TeAAL [115], Sparse Abstract Machine [68],

Sparse-TPU [60], Flexagon [111], Cerberus [72], Symphony [134], and more [173, 102, 125].

Capstan [143] took a similar approach to our work as it targets both dense and sparse tensor

applications. However, our work does not propose new hardware architecture but leverages
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existing dense matrix processors in a system to achieve the same. VEGETA [75] extends

the ISA of CPUs for sparse tile computation with explicit programming interface support

for AI workloads, while our work is sparsity-agnostic and aims for general computations.

Other than AI/ML tasks, some works focus on general computations. Spatula [44] proposes

a hardware accelerator for sparse matrix factorization. Also, due to the memory-bound

characteristics of sparse computation, some works focus on offloading computation toward

memory or storage, examples are SpaceA [179], SparseP [49].

4.8 Conclusion

Sparsity is one of the most important characteristics of data in many general

computing workloads. However, optimizing the sparse computation associated with the

specific sparse patterns of input data and desired data flow toward optimal performance is

challenging and usually domain-specific.

This paper presents GSLD, a matrix computing library for general sparse matrix

computation that leverages the ”globally sparse, locally dense” property of sparse data

in general and proposes a diagonal-dominant CSR sparse storage format that explores a

trade-off opportunity between chasing the optimal performance for domain-specific sparse

computation and extending the usage spectrum of the sparse matrix computing library.

Leveraging the insight, GSLD can intelligently use dense matrix processors and scalar cores

for spare computation. Our Intel AMX-based prototype implementation achieves 2.03×

speedup compared to the CPU baseline.
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Chapter 5

Conclusions

Modern computer systems are increasingly heterogeneous, integrating various hard-

ware accelerators due to the end of Dennard Scaling. These domain-specific accelerators,

including GPUs, TPUs, and NPUs, meet the growing computational demands of AI and

ML applications. Despite differences in their microarchitectural designs, tensor processors,

which focus on efficient matrix-based computations, play a crucial role in enhancing system

performance. This dissertation introduces a new programming paradigm that leverages ten-

sor processors for general-purpose computing beyond their traditional AI and ML domains.

Firstly, GPTPU, mentioned in Chapter 2, proposes a general programming frame-

work that additionally explores the usage opportunity of tensor processors in a computer

system for general applications beyond AI and ML. With the help of the tensorizer, GPTPU

demonstrates the mechanism of dynamically and transparently mapping AI/ML-specific op-

erators that lead to efficient use of the underlying tensor processors. The GPTPU prototype

system achieves 2.46× speedup and 40% energy reduction compared to modern CPUs.
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Secondly, SHMT, mentioned in Chapter 3, proposes a new programming model

and execution model that provides ”real” parallel processing using heterogeneous processing

units for the same user function. SHMT presents two abstractions, VOPs and HLOPs

along with mechanisms that coordinate concurrent execution on heterogeneous hardware

components. The prototype implementation of SHMT archives 1.95× speedup with the

proposed quality assurance mechanisms and also achieves 51.0% energy reduction.

Lastly, GSLD, mentioned in Chapter 4, is a new matrix computing library that

accommodates either dense or sparse input matrix data. GSLD leverages a critical insight

that sparse matrix data are generally ”globally sparse, locally dense” and is a sparsity-

agnostic matrix library that intelligently uses dense matrix processors and scalar cores.

The Intel AMX-based prototype implementation achieves 2.03× speedup compared to the

CPU baseline.

Beyond the proposed research works, we believe that more work can be done to

realize the future of general-purpose computing using tensor processors. The heterogeneity

of tensor processors should not be an obstacle to the computation in future computer

systems but is an opportunity for designing a more powerful computer system with better

performance for more general computing workloads.
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