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Objectives: AIDS is caused by CD4þ T-cell depletion. Although combination anti-
retroviral therapy can restore blood T-cell numbers, the clonal diversity of the recon-
stituting cells, critical for immunocompetence, is not well defined.

Methods: We performed an extensive analysis of parameters of thymic function in
perinatally HIV-1-infected (n¼39) and control (n¼28) participants ranging from 13 to
23 years of age. CD4þ T cells including naive (CD27þ CD45RAþ) and recent thymic
emigrant (RTE) (CD31þ/CD45RAþ) cells, were quantified by flow cytometry. Deep
sequencing was used to examine T-cell receptor (TCR) sequence diversity in sorted RTE
CD4þ T cells.

Results: Infected participants had reduced CD4þ T-cell levels with predominant
depletion of the memory subset and preservation of naive cells. RTE CD4þ T-cell
levels were normal in most infected individuals, and enhanced thymopoiesis was
indicated by higher proportions of CD4þ T cells containing TCR recombination
excision circles. Memory CD4þ T-cell depletion was highly associated with CD8þ

T-cell activation in HIV-1-infected persons and plasma interlekin-7 levels were corre-
lated with naive CD4þ T cells, suggesting activation-driven loss and compensatory
enhancement of thymopoiesis. Deep sequencing of CD4þ T-cell receptor sequences in
well compensated infected persons demonstrated supranormal diversity, providing
additional evidence of enhanced thymic output.

Conclusion: Despite up to two decades of infection, many individuals have remarkable
thymic reserve to compensate for ongoing CD4þ T-cell loss, although there is ongoing
viral replication and immune activation despite combination antiretroviral therapy. The
longer term sustainability of this physiology remains to be determined.

Copyright � 2016 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
The hallmark of HIV-1-induced immunosuppression
leading to acquired immunodeficiency syndrome is
CD4þ T-cell depletion, which may be caused by direct
cytopathic effects of infection, immune clearance of
infected cells, persistent immune activation, and likely
other factors [1]. In particular, immune activation is
highly associated with the ongoing loss of CD4þ T cells
and believed to be the cause of increased T-cell turnover
during chronic infection. The precise mechanisms for this
inappropriate inflammatory state are unclear, but ongoing
viral replication can be a major contributor even in
persons with undetectable viremia [1–4].

Peripheral blood CD4þ T-cell concentration is a widely
used clinical predictor of the immunological status of an
infected individual, with a level of less than 200/ml
generally considered to reflect sharply increased risk for
opportunistic infections that define AIDS [1]. However,
this simple quantitative assessment does not precisely
reflect immunocompetence. For example, recurrent
bacterial pneumonias, malignancies, and AIDS-defining
illnesses such as active cytomegalovirus infection and
Pneumocystis pneumonia may occur at higher CD4þ

T-cell levels in children, adolescents, and adults [5–7]. It is
very likely that the clonal diversity of the CD4þ T-cell
population and therefore breadth of pathogen recognition
is also important [8].

Effective antiretroviral therapy (ART) suppresses HIV-1
replication, reduces immune activation, and increases
peripheral blood CD4þ T-cell concentrations [9,10].
However, the extent to which normalization of clonal
T-cell diversity occurs is less well documented. In HIV-
1-infected adults, the rise in CD4þ T-cell levels seen after
institution of ART is characterized by an initial rapid rise
that is likely because of redistribution of total body
memory CD4þ T cells, followed by a slower and more
prolonged increase in naive CD4þ T cells [9,11]. By
contrast, HIV-1-infected children demonstrate an early
and sustained increase in naive CD4þT cells [12–16] that
likely reflects greater baseline thymic function than adults,
who tend to have age-related involution of thymic
epithelial tissue and attrition of thymic function [17].

Supporting this concept, we previously demonstrated that
adolescents and young adult survivors of perinatal HIV-1
infection on ART have markers of thymopoiesis that are
comparable to uninfected age-matched controls, includ-
ing concentrations of peripheral blood naive CD4þ

T cells and T-cell receptor recombination excision circles
(TRECs) that reflect recent thymic emigrants [18].
Others have demonstrated that T-cell receptor CDR3
distribution perturbations are rapidly reduced in some
children and adolescents during ART [19] suggesting
that some degree of normalization of the TCR repertoire
is possible. However, these measurements have not
 Copyright © 2016 Wolters Kluwer H
excluded qualitative abnormalities in thymopoiesis that
might result from the known impact of HIV-1 on the
architecture of both the thymus and secondary lymphoid
tissues [13–15,20–22].

Thus, it is unclear if CD4þ T-cell clonal diversity is
maintained in conjunction with recovered total CD4þ

T-cell numbers on ART, particularly in individuals who
were infected before immunologic maturity. To address
this uncertainty, we assess immune reactivity to HIV-1,
thymopoiesis, and CD4þ T-cell diversity in a cohort of
long-term survivors of perinatal HIV-1 infection. These
data address key questions as to whether infection early in
life (during immunologic development), in conjunction
with chronic infection (spanning more than 13 years),
limit CD4þ T-cell reconstitution.
Methods

Study approval
Healthy control and HIV-1-infected study volunteers
were enrolled under protocols approved by institutional
review boards of the University of California Los Angeles
and Children’s Hospital Los Angeles. Written informed
consent was received from all participants prior to
inclusion in the study.

Cohort and preparation of peripheral blood
mononuclear cells
All study participants were enrolled from 2003 to 2006.
Individuals with known hepatitis B or C infections were
excluded. Twenty control participants and 20 HIV-
1-infected participants were described in previous reports
[18,23]. Peripheral blood mononuclear cells (PBMCs)
were isolated by Ficoll-Hypaque density centrifugation
gradient, washed twice with phosphate-buffered saline,
and viably cryopreserved. Fresh umbilical cord blood was
obtained from the UCLA CFAR Virology Core. For
quantitative spectratyping and pyrosequencing studies,
CD3þCD4þCD31þCD45RAþ T-cells were purified
from cryopreserved PBMC by fluorescence-activated
cell sorting (FACSAria II using FACSDiva Version 6.1;
Becton Dickinson, Franklin Lakes, New Jersey, USA).
CD4þ T cells from cord blood samples were isolated by
negative selection (human CD4þ T-cell enrichment
mixture, RosetteSep, StemCell Technologies, Vancouver,
Canada).

Clinical laboratory tests
Complete blood counts and plasma HIV-1 RNA
measurements were obtained through the Children’s
Hospital Los Angeles and UCLA clinical laboratories.

Volumetric tomography of thymic tissue
Noncontrast helical computed tomography (CT) studies
of the chest were performed with 3-mm collimation
ealth, Inc. All rights reserved.
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extending from the thoracic inlet to the lung bases, using
previously described methods [18]. All female partici-
pants had negative pregnancy tests confirmed prior to
imaging. Volumetric CT scans were discontinued after 49
scans (29 HIV-1-infected and 20 uninfected controls)
because an interim analysis indicated futility to detect
statistically significant differences with the initially
planned sample size.

T-cell immunophenotyping by flow cytometry
Whole blood T-cell staining and flow cytometry was
performed as described previously, with naive CD4þ

T cells defined as CD4þCD45RAþCD27þ [18].
CD45RA�CD4þ T cells were defined as memory cells
(combined central and effector subsets). Staining was also
performed to quantify the CD45RAþCD31þ subset of
CD4þ T cells (recent thymic emigrants) [24] and the
CD38þHLA-DRþ subset of CD8þ T cells (activated)
[25]. Quantitation of naive, recent thymic emigrants, and
memory CD4þ T cells was not performed in one control
participant and the percentage of CD38þHLA-DRþ

CD8þ T cells was not determined for two other control
participants. Because of the absence of a complete blood
count, the concentrations (cells/ml) of T-cell subsets of
one HIV-1-infected individual are absent from panels of
Figs. 1 and 2.

Detection of HIV-1-specific CD8R T-cell
responses against HIV-1 by interferon-g ELIspot
analysis
Peripheral blood HIV-1 specific CD8þ T-cell responses
in HIV-1-infected individuals with plasma HIV-1 levels
of 400 RNA copies/ml or less at study entry were
quantified by interferon (IFN)-g ELIspot analysis, as
previously described [26]. In brief, purified CD8þ T cells
were screened against 53 pools of overlapping peptides
spanning the total HIV-1 clade B consensus sequence
proteome (NIH AIDS Reference and Reagent Repo-
sitory) to determine the frequency of spot-forming
cells (SFC) per added CD8þ T cells. The frequency of
HIV-1-specific SFC per volume of peripheral blood was
calculated by multiplying the frequency of SFC in CD8þ

T cells and the number of CD8þ T cells per volume
of blood.

Peripheral blood T-cell receptor recombination
excision circles analyses
Cellular DNA was prepared from PBMCs and signal
joint TRECs were quantified by real-time PCR as
previously described [27–29], and reported as TREC/
million cells. TREC were measured using isolated
CD4þ T cells (Rosette-Sep beads, StemCell Technol-
ogies) for most participants. The number of TRECþ

CD4þ T cells per volume of peripheral blood was
calculated by multiplying the frequency of TREC in
isolated CD4þ T cells and the concentration of CD4þ

T cells per volume of blood.
 Copyright © 2016 Wolters Kluwe
Human leukocyte antigen and CCR5 genetic
analyses
Using PBMC DNA, human leukocyte antigen (HLA)
typing was performed by the clinical laboratory at the
UCLA Immunogenetics Center, and PCR was used to
determine if the D32 deletion was present at the CCR5
locus using oligonucleotide primers described by others
[30].

Quantitation of T-cell receptor beta variable
family RNA transcripts
From 3 to 15 million cryopreserved PBMC from HIV-
1-infected or control participants were stained and sorted
to purify CD31þCD45RAþCD4þ T cells, yielding
230 000–700 000 cells per individual. RNA was isolated
from purified lymphocytes (RNeasy MiniKit; Qiagen,
Valencia, California, USA), and reverse-transcribed to
cDNA using random primers (High Capacity Reverse
Transcription Kit; Applied Biosystems, Carlsbad,
California, USA). Quantitative spectratyping was used
to examine beta variable (BV) family usage as described
previously [31]. In brief, RT-PCR was employed to
determine the relative concentration of each BV gene
family [IMGT nomenclature (http://www.imgt.org)],
and capillary electrophoretic size resolution of each family
yielded a profile of TCR sequence size distribution
within each family.

Deep sequencing of T-cell receptor coding
sequences
The cDNA (6.5–15 mg) generated for spectratyping was
PCR-amplified (Phusion High-Fidelity DNA Polymer-
ase; New England BioLabs, Ipswich, Massachusetts,
USA) for 35 cycles under the following conditions: initial
denaturation 988C (30 s), denaturation 988C (10 s),
annealing 628C (30 s), extension 728C (15 sec), and final
extension (5 min). The PCR products were then purified
(PureLink PCR Purification Kit; Invitrogen, Waltham,
Massachusetts, USA) and further amplified using nested
PCR (Phusion High-Fidelity DNA Polymerase) for
35 cycles under the following conditions: initial
denaturation 988C (30 s), denaturation 988C (10 s),
annealing 628C (30 s), extension 728C (15 s), and final
extension (5 min). These PCR products were then
separated in 2% agarose gels and cDNA from the
appropriate bands was purified (QIA Gel Extraction Kit;
Qiagen, Valencia, California, USA). Pyrosequencing of
the nested PCR purified products using 454 FLX
Titanium chemistry was performed according to the
manufacturer’s protocols (Roche Applied Science). The
primers used for the three BV families were the same as
those used in quantitative spectratyping analysis [31],
but additionally tagged with multiplex identifier and
primer key sequences (Supplemental Table S1, http://
links.lww.com/QAD/A863). To check that diversity
within the samples was retained during PCR amplifica-
tion with the modified primers, the following control
experiments were performed. First, three rounds of PCR
r Health, Inc. All rights reserved.
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Fig. 1. Clinical and immune parameters of study participants. The HIV-1-infected participants included 39 persons, of whom 18
had plasma viremia less than 50 HIV-1 RNA copies/ml (uVL group, 11 male and 7 female) and 21 had plasma viremia 50 HIV-1
RNA copies/ml or more (dVL group, 11 male and 10 female), who were compared to a control group of healthy uninfected persons
(10 male and 18 female) of similar ages (a). Most of the infected persons had had symptomatic disease in the past (b). Evaluated
parameters included thymic volume (c), concentrations of blood CD4þ T cells (d) and their characteristics (e–h), blood CD8þ

T-cell concentrations (i) and the ratio of CD4þ to CD8þ T cells (j), and CD8þ T-cell activation (k) and HIV-1 targeting (l). Filled
circles represent uninfected control participants; unfilled circles, represent undetectable viral load (uVL) participants with plasma
HIV-1 RNA less than 50 copies/ml; open triangles represent detectable viral load (dVL) individuals with plasma HIV-1 RNA 50 to
less than 400 copies/ml. Statistically significant results (P<0.05), as determined by Mann–Whitney U tests, are indicated. Bars
indicate median values.
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Fig. 2. Relationship of immune activation to memory CD4R T-cell loss, and resulting homeostatic proliferation of CD4R T cells.
(a) Systemic immune activation, as reflected by CD8þ T-cell coexpression of activation markers, is plotted against blood levels of
memory CD4þ T cells (CD45RA�, including central and effector memory subsets). (b) The relationship of blood levels of naive
CD4þ T cells to plasma levels of the homeostatic cytokine interlekin-7 is plotted. Linear regression line and its associated P value is
indicated for relationship between naive T-cells and plasma interlekin-7 concentrations of HIV-infected participants. In both
panels, filled circles represent uninfected control participants, unfilled circles represent uVL participants, and open triangles
represent dVL individuals.
amplification were performed on an aliquot of an
umbilical cord blood DNA sample, and spectratyping
was performed after each round, showing that the TCR
genes of the third round of amplification remained
Gaussian in size distribution (Supplemental Fig. S1,
http://links.lww.com/QAD/A863). Second, the PCR
products from the third round of amplification were
cloned and sequenced, showing polyclonality of TCRs in
all cases (Supplemental Table S2, http://links.lww.com/
QAD/A863), thus demonstrating no evidence of biased
amplification.

Statistical analyses
Clinical parameters analyzed as continuous variables were
compared using two-tailed Mann–Whitney U test
(except for the comparison of HIV ELISpot responses).
Categorical variables were compared using Fisher’s exact
test. Pyrosequencing (454, Roche) of TCRs in nine
samples of sorted CD31þCD45RAþCD4þ T cells [from
three HIV-1-infected participants receiving ART with
suppressed viremia (uVL), three uninfected controls, and
three umbilical cord blood (CB) Supplemental Table S3,
http://links.lww.com/QAD/A863] yielded between
32 000 and 198 000 TCR sequences per sample. To
compare the diversity of TCR sequences in these
individuals, we examined TCR sequences in three
specific BV families: BV03, BV19, and BV29 (IMGT
nomenclature). These families were selected because they
represented about 5% of total BV families in the
CD31þCD4þ T cells in HIV-infected individuals,
control study participants, and cord blood specimens
that were selected. Two samples with lower yields
(control BN02 and infected participants CB13 with
 Copyright © 2016 Wolters Kluwe
33 000 and 32 000 sequences, respectively) were excluded
from analyses that are especially sensitive to sample size.

Pyrosequencing is typically associated with significant
sequencing errors [32,33], but this will alter comparisons
of diversity estimates if the error statistics do not differ
across samples. Differences in the diversity of TCR
coding sequences were evaluated by methods commonly
employed in ecologic studies including Shannon index of
diversity, sample size-corrected Shannon index, rarefac-
tion curves, and analysis of the fraction of singleton
species (that occur only once in the sample). We also used
a histogram shape estimation technique using an ‘unseen
estimator,’ which uses the observed distribution of species
in a sample to estimate the total number of unique species
missed in sampling, as well as the full species distribution
[34].

As an additional control, sequences were also clustered
with two different algorithms, as described by others [35].
Finally, the clusters were translated into stop codon-free
amino acid sequences with verified BV and Jb flanking
regions.
Results

Cohort characteristics
The study participants included 39 persons who were
infected with HIV-1 as infants (22 male and 17 female) and
an uninfected control group of 28 individuals (10 male and
18 female), ranging from 13.3 to 23.0 and 13.1 to 22.9 years
of age respectively at the time of study (Fig. 1a). Most
r Health, Inc. All rights reserved.
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infections (85%) were from mother to child transmission
(including one by breastfeeding from a mother who
acquired infection postpartum by blood transfusion), and
the remainder (15%) were from blood transfusions in 1982
and 1983, including twin brothers who were described
extensively in an earlier report [23]. Among the infected
individuals, none had the CCR5 D32 mutation; one and
three respectively had HLA-B�27 and HLA-B�57
genotypes associated with slower disease progression
[36], and one and none respectively had HLA-B�3502
and HLA-B�3503 associated with accelerated disease
progression. All infected participants were receiving
combination ART at the time of study; 18 had plasma
viremia less than 50 HIV-1 RNA copies/ml (uVL group,
11 male and 7 female) and 21 had plasma viremia 50 HIV-1
RNA copies/ml or more (dVL group, 11 male and
10 female). Most (77%) of the HIV-1-infected individuals
had clinical or laboratory evidence of immunodeficiency
(CDC class B or C) in the past (Fig. 1b), although imaging
revealed relatively normal thymic size overall (Fig. 1c).
Thus, the infected individuals represented a group of long-
term survivors of whom most had sustained clinically
significant immunodeficiency because of HIV-1 infection
at some point.

Many long-term survivors of perinatal HIV-1
infection have relatively normal total and naive
CD4R T-cell concentrations on ART, despite
generally depressed levels of memory CD4R

T cells
At enrolment, peripheral blood CD4þ T-cell levels were
lower overall in the HIV-1-infected persons versus
uninfected controls (mean 514 versus 686 cells/ml blood,
respectively), although the uVL group had levels similar
to the controls (mean 601 versus 686 CD4þ T cells/ml,
respectively, Fig. 1d). Examining the CD4þ T-cell
population phenotypically, both HIV-1-infected groups
exhibited significant depletion of the memory (CD45
RA�) subset (Fig. 1e). By contrast, the naive
(CD45RAþ/CD27þ) subset was relatively normal to
elevated in the uVL group and slightly reduced in the dVL
group (neither statistically significantly different; Fig. 1f).
More detailed analysis of the naive CD4þ T-cell
population suggested overall normal levels of recent
thymic emigrants (CD45RAþ/CD31þ) [24] in the uVL
group and normal to reduced levels in the dVL group
compared to controls (no statistically significant differ-
ences, Fig. 1g). Furthermore, the frequency of the total
CD4þ T-cell population with TRECs was elevated in
both uVL and dVL groups compared to controls
(statistically significantly only for the uVL group;
Fig. 1h), suggesting higher percentages of cells produced
in the thymus (versus peripheral homeostatic prolifer-
ation). As a whole, these data demonstrate that these long-
term survivors of perinatal HIV-1 infection had depleted
levels of memory CD4þ T cells, but generally exhibited
quantitative restoration of naive T-cell populations via
increased thymic output on ART.
 Copyright © 2016 Wolters Kluwer H
Despite suppression of viremia by treatment,
perinatally infected individuals have evidence
of ongoing HIV-1-driven immune activation
Compared to controls, both groups of HIV-1-infected
participants had significantly elevated blood CD8þ T-cell
levels (Fig. 1i). Examining the ratio of CD4þ to CD8þ

T cells, it was apparent that the relative increase of CD8þ

T cells and decrease of CD4þ T cells was especially
marked in the dVL group (Fig. 1j), suggesting an
association between abnormality in the CD8þ and CD4þ

T-cell compartments. Additionally, CD8þ T-cell
activation (CD38þ/HLA-DRþ) was increased in both
infected groups versus the control group, significantly
greater in the dVL versus uVL group (Fig. 1k). Finally,
screening of participants with<400 HIV-1 RNA copies/
ml plasma (12 from the uVL group and five from the dVL
group) for CD8þT-cell responses against the whole HIV-
1 proteome [26] (Fig. 1l) revealed persisting responses
(predominately targeting Gag and Nef proteins similarly
to infected older adults [37])(not shown) in most persons
despite undetectable or low viremia (between 50 and
400 copies/ml). Lower blood levels of memory CD4þ

T cells were seen in infected individuals with higher levels
of CD8þ T-cell activation (Fig. 2a), and there was a
significant inverse correlation between the number of
naive CD4þ T cells and the plasma concentration of
interlekin-7 in the HIV-1-infected group (Fig. 2b); no
such correlation was seen in the uninfected control group.
These results suggest persistent generalized immune
activation was present and was associated with ongoing
loss of memory CD4þ T cells and secondary enhanced
homeostatic proliferation of naive CD4þ T cells in
addition to the enhanced thymic output suggested by the
aforementioned data.

The long-term survivors of perinatally HIV-1
infection exhibit increased CD4R T-cell receptor
diversity and breadth
To evaluate thymopoiesis more qualitatively, we
examined the TCR repertoire of the CD31þ subset of
CD4þ T cells, which represent thymic emigrants and
their early progeny because CD31 is lost after a few cycles
of homeostatic proliferation. Quantitative spectratyping
analysis [23,38] revealed Gaussian distributions of TCR
size populations for three control umbilical cord blood
samples, as expected for unperturbed native populations
[31] (Supplemental Figure S2, Panel A, http://
links.lww.com/QAD/A863). TCR repertoires of con-
trol participants and uVL individuals also showed
generally Gaussian distributions (data not shown),
suggesting grossly diverse TCR production.

To better define the diversity of TCR production, we
performed deep sequencing analysis of TCR families
BV03, BV19 and BV29 (IMGT nomenclature), selected
for having relatively consistent representation of �5%
of total BV families in CD31þCD4þ T cells from
representative uVL and control study participants and
ealth, Inc. All rights reserved.
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three CB specimens (Supplemental Table 3, Supple-
mental Table 4 and Supplemental Figure S2, Panel B,
http://links.lww.com/QAD/A863). The Shannon
entropy index (S) for raw sequences (initially excluding
BN02 (an uninfected control)) and cord blood CB13,
which had insufficient sampling), ranged from 14.3 to
16.3 for CB, 11.3 to 14.1 for controls, and 13.6 to 14.1
uVL. The Shannon index of the estimated histogram
from filtered sequences ranged from 16.8 to 17.2 for CB,
13.2 to 13.5 for uninfected controls, and 13.8 to 14.1 for
uVL (Table 1), indicating that TCR diversity was greatest
in CB and least in controls (P< 0.01). The two samples
initially excluded (control BN02 and cord blood CB13)
were also consistent with this pattern (Table 1).

As sample sizes could have biased estimates of Shannon
index even after simple corrections, we also analyzed the
TCR repertoire using rarefaction curves plotting the
number of unique species found in random subsamples of
the total sequence population of all three BV families
(Fig. 3), which revealed the same relative pattern of TCR
diversity being highest in CB, intermediate in uVL
participants, and least in control participants (P¼ 0.018).
These differences also held true for BV families
considered individually (P¼ 0.041; Supplemental Figure
S3, http://links.lww.com/QAD/A863).

As a third approach to confirming the diversity
comparisons between groups, we also performed analyses
using random subsamples 24 000 sequences (correspond-
ing to the smallest sampling size, obtained for CB13) from
each individual sequence set. The number of discrete
sequences, Shannon index, and fraction of singletons
(number of sequences observed only once divided by the
total number of observed sequences) were assessed
(Supplemental Table 5, http://links.lww.com/QAD/
A863). Again, all parameters revealed the pattern of
highest TCR diversity in CB followed by uVL, both
greater than uninfected control persons (P< 0.01). The
HIV-1-infected individuals had overall more species and a
higher fraction of singleton sequences. Additional
analyses examining the abundance of rare and common
sequences (Supplemental Figures S4 and S5, http://
links.lww.com/QAD/A863) corroborated these results,
supporting the overall conclusion that the recent thymic
emigrant CD4þ T cells of uVL participants had a broader
TCR repertoire than uninfected participants.
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Discussion

Immune reconstitution following initiation of ART of
HIV-1 infection clearly differs between children and
adults. In children, expansion of naive T-cell populations
begins soon after initiation of ART, whereas redistribu-
tion and expansion of memory T-cell populations initially
predominate in adults, in whom increases in naive CD4þ
 Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
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Fig. 3. Rarefaction analysis of TCR species in CD31R naive
CD4R T cells. Rarefaction curves are plotted for TCR
sequences isolated from each sample, indicating that diversity
is greater in the uVL participants compared to uninfected
control participants (considering the number of species at
x¼9809, P¼0.02).
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Fig. 4. Schematic model of CD4R T-cell homeostasis in long-
term survivors of perinatal HIV-1-infection. Box depicts the
partitioning of CD4þ T cells into three discrete populations
following emigration from the thymus: recent thymic emi-
grant CD31þ T cells (Naive-RTE) that have not undergone
peripheral expansion, naive T cells that have undergone
homeostatic proliferation (CD27þ CD31�), and memory
(CD45RA�) cells. In the infected persons receiving ART,
loss of memory (and possibly naive) CD4þ T cells is associated
with enhanced thymopoiesis (thicker bold lines) and possibly
less homeostatic proliferation in the naive subset. The naive
T-cell population is retained. In some individuals, this com-
pensatory results in resulting in an increased fraction of Naive
RTE cells with relatively increased TREC content, and enrich-
ment of TCR diversity.
T cells are typically seen only months after therapy
[9,11–15,39]. To investigate the nature of these
differences, we performed an extensive survey of thymic
function markers and found evidence of robust thymo-
poiesis in long-term survivors of perinatal infection
(>13 years) receiving ART, compared to healthy controls
of similar age. The majority in the HIV-1-infected group
had evidence of abundant thymic tissue and active
thymopoiesis, with naive CD4þ T-cell levels and markers
(TRECs) suggesting elevated production compared to
uninfected persons. This was further supported by deep
sequencing of TCRs in the naive CD4þ T-cell
population, which demonstrated not only preserved
but also enhanced diversity in these long-term survivors
of perinatal infection versus uninfected persons. These
findings are consistent with previous studies of immune
reconstitution during ART [12–16], and observations
that ‘thymic rebound’ (expansion of histologically normal
thymic tissue occurring after illness, stress, and cancer
chemotherapy) is more common in children than adults,
likely underlying age-dependent recovery of lymphocyte
populations after cancer chemotherapy [40]. Of note, a
recent report demonstrated that restoration of naive T-cell
populations may be impaired in adult individuals with
advanced HIV-1 infection, possibly because of loss of the
normal stromal fibroblastic reticular cell network in
lymphoid tissue [41]. Given the long average duration of
infection (�17 years) and histories of AIDS-defining
illness in more than half of our study participants, this
underscores the likely importance of age in HIV-1-
induced damage to secondary lymphoid tissues and/or its
reversal during ART.

As a whole, the data presented earlier suggest a model in
which HIV-1 replication (and/or secondary immune
dysregulation) drives loss of memory CD4þ T cells,
 Copyright © 2016 Wolters Kluwer H
leading to compensatory supranormal thymic output of
naive CD4þ T cells (Fig. 4) in these youths. Evidence of
ongoing immune activation and replication is provided by
the high fraction of CD38þ HLA-DRþ CD8þ T cells
(Fig. 1k) [25] and the persistence of CD8þ T-cell
responses to HIV (Fig. 1l) which indicate ongoing HIV
antigen production. We note that the persistence of broad
antiviral responses to HIV during cART has previously
been observed in other perinatally infected persons
and contrasts with the situation in older adults, in
whom complete decay of these responses is common
[37,42–45].

The Naive CD4þ T-cell population is composed of
both CD31þ and CD31� CD45RAþ cells and homeo-
static proliferation is thought to transform the former into
the latter, resulting in a decrease in the concentration of
TREC in CD4þ T cells [24,46]. Within the naive CD4þ

T-cell population, the population size of the recent
thymic emigrant (CD31þ CD45RAþ) CD4þ T cells
(Naive RTE) is maintained in most individuals studied
(Fig. 1g), suggesting increased thymic output occurs to
replace loss of naive (CD27þCD45RAþ) cells that
differentiate into memory CD4þ T cells. The hypothesis
that supranormal thymopoiesis occurs is also supported by
ealth, Inc. All rights reserved.
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our observation of enrichment of TREC in CD4þT-cells
of uVL participants (Fig. 1h) and the enhanced diversity
of TCRs in the CD31þ CD4þ T-cell population
observed by pyrosequencing.

TCR breadth is likely an important clinical factor, as
severe AIDS-defining illnesses may occur years after
blood CD4þ T-cell concentrations have ‘reconstituted’ to
seemingly safe levels in both children and adults receiving
ART [5–7]. Our detailed analysis of TCR repertoire
substantiates and extends prior studies of HIV-1-infected
adults in whom ART does not generally restore CD4þ

T-cell numbers to normal or fully normalize skewing of
the TCR repertoire, as assessed by various tools ranging
from relatively indirect to more precise measures of
diversity such as CDR3 size distributions (‘spectratyping’
or ‘immunoscoping’), DNA hybridization kinetics
(‘Amplicot’), multiplex amplification of V-J segments,
and CDR3 sequencing [8,23,47–50], and one study in
children/adolescents indicating that perturbations in
TCR diversity of naive cells begin to resolve within
several months of therapy [19]. Because HIV-1 infection
is typically associated with disrupted thymic architecture,
involution of the thymic cortical epithelial space, and
fibrosis of the peripheral lymph nodes that are required
for expansion of thymic emigrants [41,51–53], the novel
finding of substantially increased TCR breadth in the
recent thymic emigrant CD4þT-cell compartment of our
HIV-1-infected participants was surprising. Supporting
this observation, recent trials of administering recombi-
nant human interlekin-7 to infected persons on ART
have demonstrated enhanced naive CD4þ T-cell pro-
duction accompanied by indirect measures of increased
TCR diversity [54].

Our study has several limitations, including its cross-
sectional nature and the �2.3 year average age difference
between the groups of HIV-1-infected and control
individuals. These concerns are mitigated by evidence
that thymic architecture and function change little over
this short age span [39,51,55,56]. Moreover, we found no
evidence of a correlation between age and the number of
CD31þ T cells in any of the three groups studied
(Controls, uVL or dVL individuals; data not shown),
consistent with earlier reports indicating that CD31þ

T cells decrease less than 50% between 20 and 60 years of
age [24,46]. We also observed stability of thymopoiesis
parameters over 1–3 years in our cohort (TREC, number
and fraction of blood CD31þCD4þ T cells; manuscript
in preparation). Our assessment of TCR repertoire was
limited to three BV families representing about 5% of
naive CD4þ T cells, and may not reflect the total
functional repertoire, although there is no reason to
suspect BV family-specific differences. Despite these
limitations, the composite data support the sanguine view
that thymic function and naive T-cell homeostasis may be
restored by prolonged ART in adolescent and young
adult survivors of perinatal infection.
 Copyright © 2016 Wolters Kluwe
Overall, our study suggests that thymic function is
resilient in most persons, even �17 years after HIV-1
infection that occurred when immunologically
immature. Despite prior clinically significant immuno-
suppression (including AIDS defining illness and con-
ditions indicative of moderate immune deficiency), ART
appears to allow recovery of an apparently adequate TCR
repertoire in many survivors of perinatal infection who
have reached young adulthood, which is encouraging in
light of numerous studies showing damaging effects of
HIV-1 on the thymus. This appears to differ from persons
infected as adults, and it is unclear whether the difference
is simply because of better age-related regenerative
potential and immunologic reserve, or perhaps a
difference in viral persistence or reservoirs specific to
infection when immunologically immature. While the
data are hopeful that long-term survivors of perinatal
infection are well compensated immunologically, there
remain questions about whether the supraphysiologic
TCR repertoire could in fact reflect an abnormality such
as reduced stringency in thymic T-cell negative selection,
and whether heightened thymic output will remain
sustainable over longer periods of time if persistent HIV-
1-driven memory CD4þ T-cell loss continues. Indeed,
there appeared to be some persons in our cohort with low
memory and naive CD4þ T-cell levels. Additional studies
will be needed to determine the extent to which
normalization of TCR diversity in and other T-cell
parameters is indicative of true restoration of normal
immune function in the setting of prolonged HIV-1
infection, and to examine the impact of detectable HIV
replication and residual HIV-specific immune responses
on these processes.
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