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Abstract

Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been 

implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately 

understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with 

adiposity and positively associated with genes involved in mitochondrial metabolism and markers 

of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid 

Mouse Diversity Panel. To determine the anti-obesity actions of Erα in fat, we selectively deleted 

Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative 

metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase 

parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective 

parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was 

requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled 

respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female 

mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was 

paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1. We 

identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control 

its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on 

mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.

INTRODUCTION

Accumulation of excess fat underlies the development of obesity and metabolic dysfunction, 

and the clustering of metabolic abnormalities contributes to the development of chronic 

diseases, including type 2 diabetes, cardiovascular disease, and certain types of cancer (1). 

Although premenopausal women are less prone to metabolic-related diseases than men (1), 

this protection is lost during menopause, associating with a rapid increase in central 

adiposity (1). New findings from the Study of Women’s Health Across the Nation show that 

during the menopausal transition, beginning several years before the final menstrual period, 

the mean rate of increase in fat mass nearly doubles in the average woman (2). The aging-

associated rise in adiposity observed in both women and men is an important clinical 

outcome that requires greater mechanistic insight and improved therapeutic targeting. A link 

between mitochondrial dysfunction and adiposity has been postulated (3–6), as 

mitochondria-related transcriptional signatures are differentially expressed in adipocytes of 

healthy monozygotic twins discordant for obesity (3). Similar to genes associated with 

mitochondrial biogenesis, ESR1, the gene encoding the estrogen receptor α (ERα), is also 

reduced in adipose tissue from obese women (7). Although we have previously shown that 

selective deletion of ERα from adipocytes promotes increased adipocyte size and total 

adiposity as well as disruption of metabolic homeostasis in both male and female rodents 
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(8), the molecular mechanisms underlying these phenotypes remain inadequately 

understood.

Distinct from white adipose tissue (WAT), the major fat storage depot of the body, brown 

adipocytes are characterized by the uncoupling of mitochondrial respiration from adenosine 

triphosphate (ATP) synthesis for the production of heat in thermoregulation (9). During cold 

exposure, mitochondrial remodeling shifts substrate metabolism to fatty acid mobilization 

linked with the induction of uncoupling protein [uncoupled protein 1 (UCP1)] to produce 

heat (10–16). Activation of brown adipose tissue (BAT) and WAT browning are thought to 

contribute to improvements in metabolic homeostasis and insulin action (17–22). Females 

have an increased abundance of BAT that is more highly responsive to activation and more 

highly enriched in mitochondria compared with males (23, 24). Moreover, recent reports 

show that BAT metabolism and WAT beiging are induced by estradiol (25, 26). Considering 

these observations, we set out to determine the relationship between adipose tissue Esr1 
expression and adipocyte metabolism. We used Cre-Lox to generate mouse models in which 

Esr1 was selectively deleted in WAT or BAT. Because we have shown in other metabolic cell 

types that ERα directly controls mitochondrial DNA (mtDNA) replication as well as fission-

fusion–mediated mitochondrial remodeling and turnover (27, 28), we interrogated the 

impact of ERα on mitochondrial function in white and brown adipocytes and determined 

whether the molecular links we established in rodents are relevant in humans.

RESULTS

Adipose tissue ESR1 expression is inversely associated with adiposity and positively 
associated with insulin sensitivity

An overview of our human and mouse studies is displayed in fig S1. To provide a clinical 

rationale for studies in genetically engineered rodents, we first examined clinical 

relationships between ESR1 and surrogate markers of metabolic health. We found that 

expression of ESR1 in adipose tissue was highly heritable as the narrow sense heritability 

(the fraction of the variance of a trait that is explained by additive genetic factors) 

determined for ESR1 expression in adipose tissue biopsies from female monozygotic and 

dizygotic twin pairs was 29% (n = 766, aged 38 to 85 years) (29). In this cohort of women, 

adipose tissue ESR1 expression inversely correlated with percent fat mass (Bicor −0.308, P 
= 2.29 × 10−9) and plasma insulin (Bicor −0.025, P = 1.69 × 10−5). Similarly, ESR1 
expression in adipose tissue of male participants enrolled in the Skeletal Muscles, Myokines, 

and Glucose Metabolism (MyoGlu) study inversely associated with visceral adipose tissue 

mass (Fig. 1A) and positively correlated with whole-body insulin sensitivity [glucose 

infusion rate (GIR) as determined by glucose clamps] (Fig. 1B). In addition, we observed a 

reduction in ESR1 expression in adipose tissue from dysglycemic men compared to 

normoglycemic controls (Fig. 1C). Because exercise is known to induce ESR1 and 

mitochondrial biogenesis in muscle, we studied these endpoints in subcutaneous adipose 

tissue from men after 90 days of exercise training. ESR1 expression was increased in 

adipose tissue of normoglycemic men but remained unchanged from sedentary baseline in 

adipose tissue of prediabetic dysglycemic men (Fig. 1D). Similar to our observations from 

the MyoGlu studies, we observed inverse relationships between adipose tissue ESR1 and fat 
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mass as well as the insulin resistance index Homeostatic Model Assessment of Insulin 

Resistance (HOMA-IR) in participants participating in the much larger Metabolic Syndrome 

in Men (METSIM) study (Fig. 1, E and F). Moreover, in this same population of men, we 

detected a strong inverse correlation between adipose expression of ESR1 and oral glucose 

tolerance (Bicor −0.36, P = 1.91 × 10−25; 120 min plasma glucose) and insulin area under 

the curve (Bicor −0.409, P = 3.54 × 10−32).

Similar to human participants, adipose tissue Esr1 expression inversely correlated with fat 

mass (Fig. 1, G and H) and the insulin resistance index HOMA-IR (Fig. 1, I and J) in a 

collection of 100 strains of male and female inbred mice known as the University of 

California, Los Angeles (UCLA) Hybrid Mouse Diversity Panel (HMDP). Expression 

analyses revealed a substantial overlap between ESR1/Esr1-correlated genes in adipose 

tissue from METSIM, MyoGlu, and the HMDP, signifying the reproducibility of findings 

between mouse and human (Fig. 1K and table S1). These data obtained from human 

participants suggest that ESR1 expression in adipose tissue is a strong surrogate marker of 

metabolic health.

Esr1 regulates the expression of the mtDNA polymerase Polg1 and associates with 
markers of mitochondrial function in adipose tissue

Because male and female mice from the UCLA HMDP showed an inverse relationship 

between Esr1 and adiposity, we performed RNA sequencing (RNA-seq) analyses on fat from 

this mouse panel to determine the highly correlated Esr1 genes overlapping between the 

sexes. Of the 685 genes that highly correlated with Esr1 (P < 0.0001) in both sexes of the 

standard experimental mouse strain C57BL/6J, none were discordant in the direction of 

correlation (Fig. 2A and table S2). The biological process gene ontology (GO) terms 

associated with the gene overlap included metabolic processes (Fig. 2B). To refine our 

understanding of the ERα-regulated pathways in adipocytes and determine the molecular 

underpinnings contributing to the Esr1-adiposity relationship, we generated mice with Esr1 
selectively knocked out in either WAT [adiponectin Cre; fat specific ERalpha KO (FERKO)] 

or BAT (UCP1 Cre; ERαKOBAT). As previously shown by our group (8), we confirmed Esr1 
deletion in gonadal (gWAT) and inguinal (iWAT) fat depots in both male and female mice as 

well as increased adipose tissue mass in both fat pads of FERKO mice (Fig. 2C and fig. S2, 

A to D). In addition, FERKO mice were hyperinsulinemic, hyperleptinemic, and glucose 

intolerant when fed a high-fat diet (HFD) compared to Controlf/f, as previously described 

(8). To determine the pathways disrupted by Esr1 deletion and contributing to the increase in 

adiposity, we performed gene arrays on gWAT from FERKO and Controlf/f mice. Functional 

annotation classification revealed significant enrichment scores (P < 0.01) for mitochondria 

(table S3), nucleotide binding, transcription, DNA repair, helicase, and protein transport 

(Fig. 2D).

Because we have previously shown that ERα regulates mitochondrial function, dynamics, 

and turnover in a variety of cell types (27, 28), we next assessed the impact of ERα on 

mitochondrial biology specifically in fat. Although white adipocytes contain far less 

mitochondria than brown adipocytes, we observed a 70 to 80% reduction in mtDNA copy 

number in gWAT from both female and male FERKO mice compared with control ERα-
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replete mice (Fig. 2, E and F). This observation is consistent with reduced mtDNA copy 

number in fat from obese and type 2 diabetic subjects (30). Similarly, we also observed 

reduced mtDNA copy number in subcutaneous fat from dysglycemic compared to 

normoglycemic men (Fig. 2G). Moreover, we observed a strong positive correlation between 

ESR1 expression and mtDNA copy number in subcutaneous fat from middle-aged men (Fig. 

2H). These data were supported by the observation that Ppargc1α and genes encoding 

proteins of the tricarboxylic acid cycle and electron transport chain were reduced in adipose 

tissue of dysglycemic compared to normoglycemic men (fig. S3, A to C). Next, we assessed 

the expression of standard markers of mitochondrial biogenesis in mouse gWAT and found 

that although there was no difference between the genotypes for Pgc1a, Tfam1, or Polg2 
(which encodes the accessory subunit of polymerase γ), there was a marked reduction in 

Pgc1b, Nrf1, Polg1 (which encodes the catalytic subunit of polymerase γ), and Polrmt 
(which encodes the primary mitochondrial RNA polymerase) in FERKO compared to 

Controlf/f (Fig. 2, I and J). These findings suggest that mtDNA replication and transcription 

may be under the control of ERα in adipocytes. In FERKO gonadal fat, we confirmed a 

reduction in the total protein of polymerase γ, POLG, the only known mammalian mtDNA 

polymerase involved in the replication of the mitochondrial genome (Fig. 2, J to L). Despite 

a marked reduction in mtDNA copy number, we did not detect a difference in protein 

abundance of representative subunits of the electron transport chain in fat between mice of 

different genotypes (Fig. 2M); these findings are similar to the observations made for ERα-

deficient versus ERα-replete skeletal muscle (27) and suggest that the kinetics of protein 

turnover may be altered by the absence of ERα.

To confirm a direct effect of ERα on expression of mitochondrial-related genes, we knocked 

down ERα from 3T3L1 adipocytes using lentiviral particles containing short hairpin RNA 

(shRNA) against Esr1 (Fig. 2N). Similar to FERKO fat, we observed a reduction in mtDNA 

copy number, representative subunits of the electron transport chain complexes, and markers 

of mitochondrial biogenesis (Pgc1a, Nrf1, and Tfam) in Esr1-knockdown (KD) 3T3L1 

adipocytes in culture (Fig. 2, O to Q). This was paralleled by a reduction in Polg1 expression 

in Esr1-KD versus scrambled control 3T3L1 adipocytes, similar to FERKO versus Controlf/f 

WAT (Fig. 2R). These alterations in gene expression in adipocytes lacking ERα likely 

contributed to the reduction in maximal cellular respiration and mitochondrial respiratory 

reserve capacity (Fig. 2, S and T) as well as the increased rate of lipid esterification (Fig. 

2U). In aggregate, these findings show that ERα controls mtDNA copy number and the 

expression of Polg1, a primary regulator of mtDNA replication and function.

ERα regulates Polg1 expression and mtDNA copy number by direct binding to the Polg1 
promoter

Because mtDNA copy number was reduced in the context of ERα deletion, we next treated 

wild-type (WT) 3T3L1 adipocytes with 17β-estradiol (E2; 10 nM) to determine whether ER 

activation could induce Polg1 expression (Fig. 3A). Polg1 was induced as early as 1 hour 

after E2 treatment and was sustained for up to 16 hours before returning to baseline by 24 

hours of E2 stimulation (Fig. 3A). Next, we determined the mechanism of ERα-induced 

expression of Polg1. We performed chromatin immunoprecipitation (ChIP) studies in 3T3L1 

adipocytes and showed that E2 promoted ERα binding to several sites in the Polg1 promoter 
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(Fig. 3B). To ascertain whether the reduction in Polg1/POLG expression in the context of 

ERα deficiency drove the reduction of mtDNA copy number in adipocytes, we performed 

transient Polg1 KD studies in primary adipocytes and in 3T3L1 cells using Cre-Lox and 

lentiviral-mediated approaches, respectively. Polg1 expression and POLG protein abundance 

were reduced in both models of Polg1 gene deletion (Fig. 3, C to E), paralleled by a 

significant reduction in mtDNA copy number (P = 0.04 and P = 0.0003, respectively; Fig. 3, 

F and G).

ERα controls parkin protein abundance and its cellular localization

Because mtDNA replication is intimately linked with mitochondrial division (31) and 

feedback control of mitochondrial turnover (31), we next interrogated fission and 

mitophagic signaling. Internally consistent with a reduction in both Polg1 expression and 

mtDNA replication, the outer mitochondrial membrane docking protein mitochondrial 

fission 1 protein (FIS1) and phosphorylation of the mitochondrial fission regulator Drp1 

(dynamin-related protein 1) at its activation site Ser616 were reduced in Esr1-KD compared 

with ERα-replete adipocytes (Fig. 4, A to C). To understand the mechanisms contributing to 

the reduction in mtDNA copy number, we assessed mitophagic signaling. Although 

expression of Park6 [gene that encodes PTEN-induced kinase 1 (PINK1)] and Park2 (gene 

that encodes parkin) was identical between genotypes (fig. S4, A and B), PINK1 and parkin 

protein from whole-cell lysates were elevated in FERKO fat (both gWAT and iWAT) and 

Esr1-KD adipocytes versus respective controls (Fig. 4, D to H). The increase in parkin 

protein was paralleled by a marked reduction in its putative outer mitochondrial membrane 

target, the fusion protein Mfn2 (Fig. 4, I and J). This observation is congruent with parkin 

action to promote mitochondrial separation from the network and organelle elimination by 

lysosomal degradation. Next, we performed fractionation studies to determine parkin 

localization. Although total protein was elevated in the lysates of Esr1-KD versus control 

adipocytes (Fig. 4, F and H), parkin protein was reduced by 85% (P = 0.009) in the cytosol 

of Esr1-KD compared to control but significantly elevated (32%; P = 0.005) in the 

mitochondrial fraction of Esr1-KD versus control adipocytes (Fig. 4, K and L).

Because the stress protein p53 is an ERα target and binds parkin to regulate mitophagy (32) 

and because p53 is induced with HFD feeding and prevents beiging of WAT (33, 34), we 

interrogated the role of p53 in controlling parkin localization in the context of ERα 
overexpression (fig. S4, C to E) and deficiency (fig. S4, F and G). The 

mitochondrial:cytosolic distribution of parkin mirrored that of p53 in 3T3L1 adipocytes (fig. 

S4, D to G). We determined that mitochondrial distribution of p53 was reduced in the 

context of ERα overexpression and increased as a consequence of ERα deletion. To test this 

relationship further, we chemically disrupted the binding of p53 to parkin by incubating cells 

with Pifithrin-α (PFT; 10 to 50 μM for 5 hours). Inhibition of p53 led to nearly undetectable 

amounts of parkin in the mitochondrial fraction of adipocytes (fig. S4, H to J). These 

findings are consistent with observations of increased mtDNA copy number and reduced 

adiposity in p53−/− mice (34–36).

To determine the role of parkin in the regulation of adiposity, we studied gonadal fat from 

ParkinKO mice and observed that mtDNA copy number was elevated 1.8-fold (P = 0.04) 
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compared to WT animals (Fig. 4M). Increased mtDNA copy number was paralleled by 

reduced fat weight (relative to total body weight; Fig. 4N) (37). We next confirmed the 

reduction in fat pad size in adipose-selective parkin knockout mice (ParkinAdiKO) and 

observed that the fat pads harvested from the two parkin deletion models were darker in 

color compared with respective controls (Fig. 4O) (40). Last, we investigated the 

relationship between Polg1 expression and parkin protein abundance, finding that parkin 

protein was induced 2.5-fold (P = 0.01) in adipocytes with Polg1 KD (Fig. 4, P and Q). 

Together, these data show enhanced parkin redistribution to the mitochondria by a p53-

regulated mechanism (33, 34) in ERα-deficient adipocytes and suggest a link between 

mtDNA replication and mitophagic signaling in white adipocytes.

ERα deletion drives autophagic turnover of mitochondria in WAT

Consistent with the notion of reduced mitochondrial content in ERα-deficient adipocytes, 

we observed that markers of macroautophagy required for mitochondrial turnover by the 

lysosome, including Beclin, Atg5, Atg7, and Atg12, and LC3B processing, were elevated in 

FERKO mouse fat and Esr1-KD 3T3L1 adipocytes compared to respective controls (Fig. 5, 

A to E). KD of Polg1 reproduced a similar increase in upstream and downstream autophagic 

markers Beclin1 and LC3BII, respectively (Fig. 5F). To show that ERα controls mitophagic 

flux in white adipocytes, we used a dual-label fluorescence tag and performed confocal 

microscopy to visualize the colocalization of mitochondria with lysosomes (Fig. 5, G to K). 

Mtphagy Dye. and LysoTracker Green quantification showed a marked increase in 

colocalization of mitochondria with lysosomes in Esr1-KD adipocytes (Fig. 5, J and K). We 

assessed mitochondrial membrane potential, critical for generating ATP by oxidative 

phosphorylation by tetramethylrhodamine ethyl ester perchlorate (TMRE) as previously 

described (Fig. 5L) (38).

Mitochondrial membrane potential is a key indicator of cellular health, and a reduction in 

membrane potential initiates the accumulation of PINK1 to promote mitochondrial turnover 

(39, 40). Although recent evidence shows that reduction in Polg1 expression, similar to that 

observed in Esr1-KD cells, diminishes overall cellular membrane potential in human 

embryonic kidney 293 cells (41), we detected no difference in overall mitochondrial 

membrane potential between the two genotypes of cells [Fig. 5L, TMRE relative to 

MitoTracker Green (MTG) fluorescence; fig. S5]. However, mitochondrial size was reduced 

in Esr1-KD cells (Fig. 5M). Because recent work showed that different cristae within an 

individual mitochondrion can have disparate membrane potentials, we assessed the 

variability of membrane potential per cell (38). This comparison revealed that mitochondrial 

membrane potential variability was increased in cells lacking ERα (Fig. 5N). These data are 

consistent with the observation that interventions aimed at promoting mitochondrial 

depolarization may affect some cristae while sparing others and that polarized cristae 

maintain a higher potential than neighboring depolarized cristae. Therefore, a mitochondrial 

hetero-potential arising from the compartmentalization of the mitochondrial membrane 

potential along the inner mitochondrial membrane may render the cell more vulnerable to 

metabolic stress. Our findings support the notion that increased mitophagy underlies the 

reduction in mtDNA copy number and impairment of oxidative metabolism in Esr1-deficient 

fat, which we confirmed, in part, by restoring mtDNA copy number in FERKO fat via 
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leupeptin (LPT)–induced inhibition of autophagic proteases within the lysosome (Fig. 5O). 

Although more work is required to understand the mechanisms linking mtDNA replication 

and turnover via mitophagy, the findings related to the role of ERα in the control of 

adipocyte metabolism provide insight into the fat accumulation observed during conditions 

of reduced estrogen action such as the menopausal transition.

ERα regulates UCP1 induction and substrate metabolism in brown adipocytes

Considering that females have increased BAT and enhanced thermogenic capacity (23, 24), 

we confirmed that Esr1 and Ucp1 expression and mitochondrial content were higher in BAT 

from WT female versus male mice (Fig. 6, A and B). Moreover, during cold exposure, Esr1 
expression was induced fourfold in BAT of female mice (Fig. 6C), suggesting that ERα may 

play an important role in BAT metabolism and thermoregulation. HFD and genetic obesity 

reduced expression of Esr1, as well as Polg1 and Polg2, genes that respectively encode the 

catalytic and accessory subunits of POLG (Fig. 6D); thus, environmental perturbations 

appear to disrupt estrogen action, and these signaling defects may underpin the well-known 

diet-induced alterations in energy homeostasis. To understand the actions of ERα in brown 

adipocytes, we used the UCP1 Cre recombinase mouse (42) to generate animals with a BAT-

specific Esr1 knockout (ERαKOBAT) (Fig. 6E and fig. S6, A to D). Consistent with our 

hypothesis, we observed a 42% reduction (P = 0.002) in Ucp1 expression in the basal state 

and a markedly blunted response (P = 0.006) of Ucp1 to cold challenge in ERαKOBAT 

versus Controlf/f animals (6 hours at 4°C; Fig. 6F).

Reduced ERα expression by experimental Esr1 deletion in BAT increased body weight gain 

and WAT accumulation during HFD feeding of female ERαKOBAT versus Controlf/f (Fig. 6, 

G and H). During extended duration cold tolerance testing, body temperature was reduced 

for ERαKOBAT at later time points during the test compared with Controlf/f mice (Fig. 6I). 

Histological analyses revealed that BAT lacking ERα accumulated a greater number of large 

lipid droplets (Fig. 6J), so although ample substrate was available to fuel thermogenesis, 

lipid droplet utilization may have been impaired in ERαKOBAT mice. We performed 

transmission electron microscopy and found that mitochondria in BAT of ERαKOBAT mice 

had thinner cristae and an increased perimeter and area (Fig. 6, K to M). In contrast to 

FERKO WAT, we observed no difference in BAT mtDNA copy number between 

ERαKOBAT and Controlf/f mice (Fig. 6N). Although mtDNA copy number was identical 

between the groups, we observed a marked reduction in Polg1 expression in BAT from 

ERαKOBAT compared with floxed controls (Fig. 6O). The reduction in Polg1 expression in 

BAT of ERαKOBAT was similar to our observation in WAT of FERKO mice. The reduction 

in Polg1 was paralleled by a reduction in total protein and activation signaling of the 

mitochondrial fission protein DRP1 (Fig. 6, P to R). In contrast to WAT, however, parkin 

protein expression in BAT was identical between ERαKOBAT and Controlf/f (Fig. 6, P and 

S) and was not elevated over control as seen in ERα-deficient WAT from FERKO mice. 

Moreover, mRNA and protein of the macroautophagy marker LC3B was reduced in BAT of 

ERαKOBAT compared to control (LC3BI and LC3BII; fig. S7, A to C). These findings for 

parkin and macroautophagy likely underpin the differential observation of mtDNA copy 

number between BAT versus WAT in the context of ERα deficiency. Our findings confirm a 

differential regulation of mitophagy in WAT versus BAT that is mediated by divergent 
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downstream responses to the reduction in Polg1 expression in the context of ERα deletion 

(43).

Esr1 deletion drives a greater reliance on glucose metabolism for thermoregulation

Because we observed a blunted induction of Ucp1 and reduced mitochondrial fission 

signaling in BAT of ERαKOBAT mice, we hypothesized that the increased lipid storage 

phenotype was a consequence of impaired lipid mobilization and reduced fatty acid 

oxidation (44). To test a shift in substrate reliance between the genotypes during cold stress, 

we performed fluorodeoxyglucose F18 (18FDG) MicroCT-PET (positron emission 

tomography) imaging after a 6-hour cold challenge. Even at room temperature, glucose 

uptake into BAT was increased in ERαKOBAT compared to Controlf/f mice, and this elevated 

glucose reliance in BAT of ERαKOBAT was heightened during cold stress (Fig. 7, A and B) 

when fatty acid oxidation is typically maximized. The increased reliance on glucose as fuel 

to maintain body temperature caused a marked reduction (49%; P = 0.002) in circulating 

blood glucose in ERαKOBAT mice during cold challenge, whereas Controlf/f mice 

maintained euglycemia for the duration of cold exposure (Fig. 7C). These findings in BAT 

suggest that in the absence of ERα, Polg1 (a direct ERα target) is markedly reduced, and 

mitochondria become metabolically dysfunctional because of a feedback impairment of 

mitochondrial fission remodeling. Our findings suggest that ERα controls a mtDNA 

replication architecture remodeling nexus to dictate metabolism and cellular health of 

adipose tissue (fig. S8).

DISCUSSION

Accumulation of excess fat underlies the development of obesity and metabolic dysfunction, 

and these contribute to the progression of chronic diseases that challenge Western society, 

including type 2 diabetes, cardiovascular disease, and certain types of cancer (1). Although 

premenopausal women are less prone to metabolic disease compared with men (1), 

menopause reverses this metabolic protection, equalizing disease risk between the sexes (1, 

2). The aging-associated rise in fat accumulation in both women and men is an important 

clinical outcome that requires improved mechanistic insight. Although mitochondrial 

dysfunction is commonly linked with adiposity (3–6), and ESR1, a gene linked with 

mitochondrial function (27, 45), was shown to be reduced in adipose tissue from obese 

women (7), the mechanistic links between these relationships remain unresolved. Because 

females have higher expression of ESR1/Esr1 and higher mtDNA copy numbers in WAT and 

BAT compared to males (23), we studied the relationships between ESR1/Esr1 expression, 

mitochondrial function, and adiposity in humans and mice.

Our findings in fat biopsies from monozygotic and dizygotic twins show strong heritability 

of ESR1 expression in adipose tissue. We provide evidence in humans and rodents, 

confirming that natural expression of ESR1/Esr1 in fat is inversely correlated with adiposity 

independent of sex. Because mitochondrial content in fat is reduced in obese and diabetic 

subjects (3, 5, 46) and gene expression analyses identified mitochondrial genes as most 

highly associated with ESR1 in fat from humans and rodents (27, 28), we focused our efforts 

in this area. Our findings are consistent with a role for ERα in regulating adiposity by 
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controlling mitochondrial function in WAT and BAT. We observed a marked difference in 

mtDNA copy number and oxidative function between ERα-KO versus ERα-replete WAT 

and adipocytes. We showed that Polg1, the gene that encodes the catalytic subunit of the 

mtDNA polymerase γ POLG and is involved in the control of mtDNA replication, is 

reduced in ERα-KO versus ERα-replete white adipocytes. Although the reduction in tissue 

Polg1 expression and consequent lipid accumulation was similar between ERα WAT 

(FERKO) and BAT (ERαKOBAT) knockout mice, the impact of ERα deletion on mtDNA 

copy number and mitophagic flux via parkin was divergent in the two different fat types. In 

contrast to the reduction in mtDNA copy number in ERα-deficient WAT, mtDNA copy 

number was maintained in BAT from ERαKOBAT mice similarly to control.

In the context of ERα deletion, a reduction in mtDNA copy number occurred in both male 

and female mice. This observation is consistent with adipose tissue mtDNA reduction in 

rodent models of obesity and type 2 diabetes (46) and with our observations in subcutaneous 

adipose tissue from dysglycemic men. Consistent with the reduction in mtDNA copy 

number in ERα-deficient WAT, expression of the mtDNA polymerase Polg1 and the 

mitochondrial RNA polymerase Polrmt as well as transcription factors associated with 

mitochondrial biogenesis markers Pgc1b and Nrf1 were reduced. Similar to WAT, we also 

observed reductions in Polg1 expression, mtDNA copy number, and genes associated with 

mitochondrial biogenesis markers in 3T3L1 adipocytes with Esr1-KD. As expected, cellular 

respiration and fatty acid oxidation rates were reduced in adipocytes lacking ERα, consistent 

with functional phenotypes previously observed in ERα-deficient muscle and myotubes 

(27). We confirmed that Polg1 deletion could recapitulate the reduction in mtDNA copy 

number and increase mitophagic signaling in WAT. Although PINK1 and parkin protein 

content were elevated and the abundance of the mitochondrial fusion protein Mfn2 was 

reduced in ERα-deficient white adipocytes, the molecular underpinnings driving these 

responses remain unclear, especially because mRNA expression of these markers was 

identical between FERKO and Controlf/f.

It has been suggested that a reduction in mitochondrial membrane potential initiates 

mitophagic signaling to eliminate mitochondrial contents from the network (27). This 

process is thought to require mitochondrial fission and separation of the organelle from the 

network. Because we detected a reduction in fission signaling in white adipocytes but no 

overt change in mitochondrial membrane potential, the signal coupling the reduction in 

Esr1-Polg1 to mitophagic flux is not readily apparent. We did, however, detect increased 

variability in mitochondrial membrane potential on a cell-by-cell basis, which was recently 

suggested to reduce metabolic fitness (38). Thus, it is possible that a mitochondrial hetero-

potential could serve as an underlying signal for mitochondrial turnover in white adipocytes.

We identified the mitochondrial stress sensor p53 as an intermediate signal linking parkin 

cellular redistribution with organelle turnover in Esr1-deficient adipocytes (47). Both p53 

and parkin were coordinately recruited to mitochondria in Esr1-KD cells, and the reduction 

in the outer mitochondrial membrane target of parkin, Mfn2, supports enhanced parkin 

action to promote mitophagy. Increased mitophagy in Esr1-KD 3T3L1 adipocytes was also 

supported by confocal microscopy studies showing increased colocalization of mitochondria 

and lysosomes compared with ERα-replete cells. Overexpression of Esr1 in adipocytes and 
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chemical inhibition of p53 reduced parkin protein in mitochondrial fractions. These data are 

consistent with in vivo data, showing that p53 and parkin are increased in WAT of aged, 

HFD-fed, genetically obese, and insulin-resistant mice (33, 34, 36, 48) but reduced in 

metabolically fit animals and cells (49). These data suggest that ERα may control parkin 

action and mtDNA copy number by dictating the cellular localization of p53.

Here, we provide findings in adipose-selective Parkin KO mice (ParkinAdiKO), and our 

observations are consistent with reports of global p53 and parkin deletion models showing 

reduced mitophagic flux, increased mtDNA content, and enhanced beiging capacity of WAT 

(33, 49, 50). Moreover, p53KO, ParkinKO, and ParkinAdiKO mouse models are phenotypically 

similar showing reduced fat accumulation when fed either a normal chow (NC) or HFD (34, 

35, 37). Parkin-mediated mitophagy is selectively down-regulated during browning of WAT 

(49), and recent evidence shows that experimental parkin inhibition promotes fat beiging 

while prolonging the retention of beige adipocytes even after β3-adrenergic receptor agonist 

withdrawal (43). These findings suggest that WAT beiging observed during ERα agonism 

(26) may be underpinned by suppression of a p53-parkin axis to remodel and turnover the 

mitochondrial network. Our laboratory is currently interrogating whether overexpression of 

Esr1 selectively in fat increases mitochondrial content and prevents HFD-induced increases 

in adiposity in male and female mice.

There exists a well-described sex difference in BAT abundance and activity in humans and 

rodents (23, 51, 52). Because females have higher BAT abundance and increased BAT 

activity, we examined whether Esr1 plays a role in regulating BAT metabolism. Esr1 was 

elevated in BAT of female mice, and the induction of Ucp1 during cold exposure required 

the expression of Esr1. During cold exposure or norepinephrine treatment, mitochondria 

undergo rapid Drp1-induced fragmentation and increased respiration and utilization of fatty 

acids (16, 51, 53, 54). Accumulating evidence shows that mitochondrial fission signaling by 

Drp1 is an important initiator of adipocyte beiging and browning (51, 54, 55). KD of Drp1 

reduces Ucp1 expression, blunts uncoupled mitochondrial respiration, shifts substrate 

metabolism to glucose, and is associated with BAT lipid droplet accumulation—all features 

recapitulated in ERαKOBAT mice (51, 55). We have previously shown that ERα expression 

is intimately connected with Drp1 signaling and fission competency in skeletal muscle (27, 

28). Our observations of impaired mitochondrial fission signaling but preservation of 

mtDNA copy number in ERα-deficient BAT is reminiscent of findings in ERα-deficient 

skeletal muscle (27). In view of the fact that muscle and BAT are derived from the same 

precursor lineage (56–58), it follows that the brown fat transcriptome and proteome are more 

similar to their counterparts in skeletal muscle than WAT (52). Collectively, our findings 

point to ERα-controlled mitochondrial remodeling via Drp1 as a central mechanism 

underlying the well-described sexual dimorphism in BAT abundance and activity.

Fission competency is also a requisite for mtDNA replication via Polg1 (31). As we showed 

the direct regulation of Polg1 expression by ERα in adipocytes, we presume that the marked 

reduction of Polg1 expression in BAT of ERαKOBAT mice is the consequence of reduced 

positive regulation by ERα. This finding is consistent with our previous studies in skeletal 

muscle, showing a direct role for ERα in the regulation of Polg1 expression and mtDNA 

replication (27). Despite the reduction in Polg1 expression in BAT of ERαKOBAT, in 
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contrast to FERKO, mtDNA copy number was equivalent in BAT from ERαKOBAT 

compared to Controlf/f mice. We have observed that a mitochondrial fission–mtDNA 

replication axis exerts feedback control of macro- and micro-autophagy (27, 28). The rates 

of flux and the relative balance between mtDNA replication and mtDNA degradation govern 

mtDNA copy number (59, 60). In contrast to WAT, the preservation of mtDNA copy number 

in ERα-deficient BAT and skeletal muscle presumably occurred as a consequence of 

reduced flux in mitophagy to match diminished rates of mtDNA replication (27, 28). The 

molecular mechanisms controlling the health of the mitochondrial genome and whether copy 

number is a meaningful marker of mitochondrial function remain inadequately understood. 

In addition, retrograde signaling links between intramitochondrial events, such as mtDNA 

replication with changes in nuclear genes expression also require further investigation.

One limitation of the current investigation is a lack of balanced and comprehensive 

investigation in both sexes in humans and mice. In addition, the use of conventional Cre 

recombinase transgenic mouse lines introduced issues involving cell type specificity and 

adaptive phenotypes as a consequence of gene deletion during development. To circumvent 

developmental adaptations that arise due to gene deletion, we have now generated animals 

with conditional deletion alleles of Esr1, and studies in these mice are underway. We have 

also generated a mouse line conditionally overexpressing Esr1 in WAT or BAT. We will use 

this mouse line to ascertain whether increasing Esr1 expression in adipose tissue confers 

protection against diet-induced obesity and insulin resistance. In addition, in future research, 

we will perform metabolic caging studies to determine the role of adipose tissue Esr1 in 

controlling whole-body energy homeostasis, as a lack of indirect calorimetry assessment in 

physiological samples is a major limitation of the current work.

Our research shows that ESR1 is highly heritable, inversely associated with fat mass, and 

modulated in expression by environmental factors including caloric consumption, exercise, 

and temperature. The findings reported here support the notion that ERα regulates 

mitochondrial function and energy homeostasis in WAT and BAT via coordinated control of 

mtDNA replication by Polg1 and fission-fusion-mitophagy dynamics. With respect to 

chronic disease susceptibility, reduced ERα action impairs mitochondrial function, promotes 

increased adiposity, and disrupts metabolic homeostasis in mice and humans. Therefore, 

ERα action in adipose tissue may be an attractive therapeutic target to combat obesity and 

metabolic dysfunction especially in women during the menopausal transition.

MATERIALS AND METHODS

Study design

The objectives of this research were to understand the role of ERα in the control of adiposity 

and to identify target genes that control mitochondrial function in white and brown 

adipocytes. First, to establish a clinical rationale for our studies in genetically engineered 

mice, we determined the relationship between adipose tissue Esr1/ESR1 expression and 

clinical traits including fat mass and indices of metabolic function using historical 

deidentified data and samples from published human (29, 61–68) and mouse studies (6, 69). 

Each human participant provided written informed consent before participation, and the 

study procedures were approved by the Scientific Ethical Committees of the respective 
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institutions in accordance with the principles of the Declaration of Helsinki. All procedures 

in rodents were performed in accordance with the Guide for the Care and Use of Laboratory 

Animals of the National Institutes of Health (NIH) and were approved by the Animal 

Subjects Committee of UCLA.

We investigated adipose ESR1 expression in dysglycemic subjects compared to lean healthy 

controls. To identify the mechanisms by which ERα controls adiposity, we generated mice 

with an adipose-selective ERα deletion using the standard Cre-Lox approach. We performed 

phenotypic evaluation of at least five cohorts of FERKO and Controlf/f mice using a variety 

of in vivo and ex vivo approaches. The number of animals used for each study was 

determined by power calculations using an a priori P value of <0.05; animal numbers for 

each study are indicated in the figure legends. All studies assessing glucose homeostasis 

were blinded for animal genotype. To study cells in culture, we generated primary fat cells 

from Controlf/f, FERKO, and Polg1f/f mice, as well as 3T3L1 adipocytes with ERα KD 

using lentiviral containing shRNA targeting Esr1. Nearly all in vitro studies were performed 

with a minimum of three independent experiments in duplicate, as indicated in figure 

legends.

Human studies analyzed

All data from human participants were generated from tissue samples obtained from 

previously published studies as reported below. No new human samples were acquired for 

the generation of this manuscript.

MyoGlu

Twenty-six sedentary (<1 exercise session/week) men of Scandinavian origin from Oslo, 

Norway (aged 40 to 65 years) were recruited into the Skeletal Muscles, Myokines, and 

Glucose Metabolism (MyoGlu) intervention trial and divided into two groups: (i) 

normoglycemic (NG control) with body mass index (BMI) of <27 kg/m2 (n = 13) or (ii) 

dysglycemic (DG) with a BMI of 27 to 32 kg/m2 with impaired fasting plasma glucose, 

impaired glucose tolerance (IGT), or insulin resistance (HOMA-IR) (n = 13), as described 

previously (62–65). Total adipose tissue, subcutaneous adipose tissue, and intra-abdominal 

adipose tissue were measured by magnetic resonance imaging (MRI) scanning (1.5T Philips 

Achieva MR, Philips) 3 weeks before and 2 weeks after a 12-week intensive exercise 

intervention (66). Subcutaneous abdominal adipose tissue samples (n = 48) were obtained 1 

hour after an acute bicycle test, before and after training. The MyoGlu trial is registered at 

ClinicalTrial.gov (NCT01803568).

TwinsUK

We determined narrow sense heritability (h2) of ESR1 in adipose tissue by accessing data 

from the TwinsUK study in which subcutaneous adipose tissue from punch biopsies (8 mm) 

were obtained adjacent and inferior to the umbilicus in ~766 healthy female monozygotic 

and dizygotic twins ages 38 to 85 years (median age of 62, ~75% postmenopausal by the 

final menstrual period calculation) (29, 61). Biopsies were RNA-sequenced as described 

(70), and correlations between adipose tissue expression of ESR1 and metabolic traits were 
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determined. TwinsUK RNA-seq data are available from the European Genome-phenome 

Archive (accession EGAS00001000805).

Metabolic Syndrome in Men

For the study of adipose tissue insulin sensitivity (study 1), 8460 nondiabetic participants 

from an ongoing population-based cross-sectional METSIM study were included (67, 68). In 

this previous study, participants aged 45 to 70 years were randomly selected from the 

population register of Kuopio, Eastern Finland. Of those included, 2951 participants had 

normal glucose tolerance, 4181 had isolated impaired fasting glucose (IFG), 302 had 

isolated IGT, and 1026 had IFG and IGT according to the American Diabetes Association 

criteria. For the genetic association study (study 2), the first 6733 nondiabetic men (age 57.0 

± 6.9 years, BMI 26.8 ± 3.8 kg/m2; means ± SD) examined in the METSIM study were 

included. The gene expression study (study 3) included 41 obese participants (age 44.2 ± 8.3 

years, BMI 45.5 ± 6.1 kg/m2) and 18 patients with type 2 diabetes from an ongoing study, 

including participants undergoing bariatric surgery at the Kuopio University Hospital. All 

studies were approved by the ethics committee of the University of Kuopio and Kuopio 

University Hospital and were carried out in accordance with the Declaration of Helsinki. 

Tissue-specific expression data were obtained from GeneSapiens, version IST4, containing 

expression data of 16 adipose tissue samples from healthy human tissue, measured with 

Affymetrix gene expression microarrays. METSIM adipose array data are available from 

Gene Expression Omnibus (GSE70353) (68). Gene-trait relationships presented here were 

obtained from 770 male participants.

Animals

Hybrid Mouse Diversity Panel—All mice were obtained from The Jackson Laboratory 

and bred at UCLA. Mice were maintained on a chow diet (PicoLab Rodent Diet 20, 

LabDiet, 62% carbohydrate, 13% fat, and 25% protein) until 8 weeks of age when they 

either continued on the chow diet or received a high-fat/high-sucrose diet (HF/HS Research 

Diets; 8 weeks, 16.8% kcal protein, 51.4% kcal carbohydrate, and 31.8% kcal fat). A 

complete list of the strains included in this study is in table S4. Gene symbols from HMDP 

mice were converted to human orthologs using biomaRt package (version 2.38.0) in R 

Studio.

Genetically engineered mice—ERα floxed mice (from K.S.K.) were crossed with 

adiponectin (a gift from E. Rosen) or UCP1 Cre mice (The Jackson Laboratory) to generate 

animals with ERα deletion in either white and brown fat or BAT selectively (fig. S1E). We 

selected these two conventional Cre lines to induce gene deletion during development 

because we are interested in understanding the impact of Esr1 heritability and its 

relationship with metabolic health. Whole-body parkin null mice (The Jackson Laboratory) 

and adipose tissue–selective parkin knockout mice (ParkinAdiKO), generated by crossing the 

parkin floxed line (floxed parkin mice were a gift from T. Dawson) with adiponectin Cre 

transgenic mice, were used to confirm a role for parkin in mediating the effects of ERα 
deletion on mtDNA copy number. Floxed Polg1 mice were obtained from J.W. Mice were 

studied under NC-fed and HFD-fed conditions between the ages of 4 and 10 months. Mouse 

sex is indicted in the figure legends for each experiment.
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Genetically engineered adipocytes and treatments—Isolated primary white 

adipose stromal vascular fraction cells from iWAT of Polg1-floxed mice were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium with 10% fetal bovine serum 

(FBS) as described (8, 71). Then, the cells were cultured for 2 days in DM1 medium 

[DMEM/F12 medium, 10% FBS, insulin (5 μg/ml), 1 μM dexamethasone, 0.5 mM 3-

isobutyl-1-methylxanthine, and 1 μM rosiglitazone], 2 days in DM2 medium [DMEM/F12 

medium with 10% FBS and insulin (5 μg/ml)], and extra 6 days in DM2 medium. To achieve 

Esr1 KD, lentiviral particles (sc-37776-V, Santa Cruz Biotechnology) carrying shRNA 

targeted to Esr1 or scramble shRNA (multiplicity of infection = 3) were used to transduce 

3T3L1 preadipocytes. Forty-eight hours after transduction, the cells were analyzed for KD 

efficiency by immunoblotting and reverse transcription polymerase chain reaction (RT-

PCR). To achieve Polg1-KD, 1.2 × 1010 genome copies (GC) of AAV8-CMV-GFP (green 

fluorescent protein) and AAV8-CMV-Cre-GFP (7061 and 7062, Vector Biolabs) were used 

to transduce primary adipocytes for 6 days. Cells were analyzed for KD efficiency and 

mtDNA copy number by RT-PCR as described below. In studies to assess membrane 

potential, cells were labeled with MTG (Invitrogen) and TMRE (Invitrogen). Fluorescence 

was quantified by confocal microscopy and analyzed in Fiji (ImageJ, NIH) as described 

below (38).

Statistical analysis—Values are presented as means ± SEM and expressed relative to the 

respective control group. Group differences were assessed by Student’s t test, one-way 

analysis of variance (ANOVA), or two-way ANOVA where appropriate followed by Tukey’s 

post hoc test. Data were tested for normality before the use of a parametric test. Venn 

diagrams were created using the VennDiagram package (version 1.6.20) in R Studio. Gene 

overlaps presented in Fig. 1K ESR1/Esr1 by gene correlations were calculated in adipose 

tissue from METSIM, MyoGlu, and HMDP studies using the midweight bicorrelation 

function in the weighted gene correlation network analysis package (version 1.67) in R 

Studio; significant correlations were set a priori as P < 0.001. Statistical significance of 

overlap for Venn diagrams was determined for each pairwise overlap using the 

hypergeometric probability formula. The represent ation factor (RF) indicates the fold 

change in observed versus expected overlap (R package version 1.24.0) (72). Statistical 

significance was established a priori at P < 0.05 for all other comparisons (GraphPad Prism 

7.0).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Adipose tissue ESR1/Esr1 expression is strongly associated with adiposity and insulin 
sensitivity.
(A and B) Subcutaneous white adipose tissue ESR1 expression in relation to visceral 

adipose tissue volume as determined by MRI and insulin sensitivity as assessed by the 

glucose clamp technique (GIR, glucose infusion rate). (C) ESR1 expression in adipose 

tissue of dysglycemic men (DG) compared with normoglycemic (NG) men of the MyoGlu 

study (n = 13 NG controls and n = 11 DG; age 40 to 65 years). (D) Adipose tissue ESR1 
expression in normoglycemic and dysglycemic men after exercise. (E and F) Correlations of 
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adipose tissue ESR1 expression with fat mass (percentage) and the insulin resistance index 

HOMA-IR from the METSIM study (n = 770 men, age of 45 to 70 years). (G to J) Esr1 
expression in gonadal adipose tissue from male and female HMDP mice (4 mice per strain, 

~100 strains per sex) versus adipose tissue mass (%) and HOMA-IR. (K) Venn diagram 

depicting overlap in ESR1/Esr1 by gene correlations (midweight bicorrelation) in adipose 

tissue from METSIM, MyoGlu, and HMDP studies. Statistical analysis between each 

pairwise group indicates the overlaps in gene expression to be significantly more probable 

than predicted (RF, representation factor; **P < 0.001; ***P < 0.0001). Data are means ± 

SEM. Mean differences were detected using Student’s t test or one-way ANOVA, and 

correlations were determined by Pearson’s r. *P < 0.05 between groups NG versus DG. #P < 

0.05 within group pre-exercise versus postexercise difference. NS, not significant; RPKM, 

reads per kilobase million; AU, arbitrary units.
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Fig. 2. ERα deficiency reduces Polg1 and mtDNA copy number in white adipose tissue.
(A) Esr1-correlated genes (P < 0.0001) in WAT of the male and female C57BL/6J mice and 

(B) the overlapping Esr1 genes represent metabolic processes. (C) Gonadal adipose tissue 

weight in male and female mice lacking ERα in fat. (D) Functional annotation analysis of 

the processes disrupted by adipose tissue ERα deletion in female FERKO mice. (E and F) 

mtDNA copy number in adipose tissue from male and female FERKO mice (n = 6 to 8 mice 

per genotype), as well as (G) adipose tissue from dysglycemic versus normoglycemic men 

(n = 11 to 13 per group). (H) Correlation of ESR1 with mtDNA abundance in human 
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subcutaneous fat (n = 24 men). (I) Pgc1b, Nrf1, Pgc1a, and Tfam1 expression in gonadal fat 

from female FERKO mice (n = 5 to 6 mice per genotype). (J to L) Polg1, Polg2, and Polrmt 
mRNA and POLG1, TFAM, and Pgc1α protein in gonadal fat from female Controlf/f and 

FERKO mice (n = 5 to 6 mice per genotype). (M) Abundance of specific subunits of the 

electron transport chain between the mouse genotypes. (N) Esr1 deletion in 3T3L1 

adipocytes and its impact on (O) mtDNA copy number, (P to R) markers of mitochondrial 

biogenesis (Pgc1a, Nrf1, Tfam, Polg1 and Polg2), and representative subunits of the electron 

transport chain (n = 3 in triplicate per condition). (S and T) Maximal respiration and 

respiratory reserve capacity (RCR), assessed by real-time respirometry in 3T3L1 adipocytes 

lacking ERα (n = 5 per condition). (U) Fatty acid esterification rates using 14C palmitate in 

Esr1-KD 3T3L1 adipocytes compared to scrambled control (Scr). Data are means ± SEM. 

Student’s t test or one-way ANOVA, *P < 0.05 between groups. GAPDH, glyceraldehyde 

phosphate dehydrogenase; FPKM, fragments per kilobase million; TFAM, mitochondrial 

transcription factor A; CN, copy number; nuDNA, nuclear DNA.
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Fig. 3. ERα controls Polg1 expression and mtDNA copy number by direct binding to the Polg1 
promoter.
(A) The impact of estradiol (E2 10 nM over time; closed bars) on Polg1 expression in 3T3L1 

adipocytes (n = 3 per time point). (B) ChIP studies of ERα and the Polg1 promoter in 

3T3L1 adipocytes (n = 3 experiments in duplicate). (C and D) Transient deletion of Polg1 in 

primary adipocytes from Polg1-floxed mice using AAV-Cre or in 3T3L1 adipocytes using 

lentivirus, (E) POLG protein, and (F and G) mtDNA copy number [n = 3 experiments in 

duplicate, AAV-Cre versus AAV-GFP control and scrambled control (Scr) versus Polg1-
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KD]. Data are means ± SEM. Student’s t test or one-way ANOVA, *P < 0.05 between 

groups or treatment conditions.
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Fig. 4. ERα controls mitochondrial fission-fusion-mitophagy signaling.
(A to C) FIS1 protein and p-Drp1Ser616 compared with scrambled control (Scr) in Esr1-KD 

3T3L1 adipocytes (n = 3 biological replicates per group in duplicate). (D and E) Parkin 

protein in gWAT and iWAT of FERKO mice versus Controlf/f (n = 4 to 6 per genotype). (F 
to H) PINK1 and parkin protein expression and (I and J) Mfn1 and Mfn2 protein in 3T3L1 

adipocytes with Esr1-KD versus scrambled control (n = 3 biological replicates per group in 

duplicate). (K) Parkin protein blots and (L) densitometric analysis of cytosolic and 

mitochondrial fractions in Esr1-KD and scrambled control (Scr) 3T3L1 adipocytes. (M) 
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Adipose tissue mtDNA copy number and (N) fat mass in whole-body parkin null mice (n = 5 

to 8 per genotype). (O) Images of gWAT, iWAT, and BAT from adipose-selective parkin 

knockout (ParkinAdiKO) mice compared with Control. (P) Parkin protein immunoblots and 

(Q) densitometric analysis in lysates from 3T3L1 adipocytes with Polg1 KD (n = 3 

biological replicates per group in duplicate). Data are means ± SEM. Student’s t test or 

ANOVA, *P < 0.05 between the genotypes or groups.
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Fig. 5. ERα controls macroautophagy signaling and mitophagic flux in white adipocytes.
(A to D) Beclin1 and Atg7 protein and LC3B processing (I and II) in gonadal fat from 

FERKO versus Controlf/f mice (n = 5 to 6 mice per genotype). (E) Autophagy signaling in 

Esr1-KD 3T3L1 adipocytes (n = 3 in triplicate) and in (F) Polg1-KD adipocytes. (G) 

Mtphagy Dye, LysoTracker Green, and merged images and quantification of (H) the number 

of lysosomes per cell, (I) total lysosome area per cell, (J) total mitolysosomes per cell, and 

(K) total mitolysosome area per cell in Esr1-KD adipocytes versus scrambled control (Scr) 

cells (n = 3 independent experiments). (L) Mitochondrial membrane potential (ΔѰm) 
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determined by TRME staining [50 nM; relative to MitoTracker Green (MTG) for 

quantification of mitochondrial size (M)] and assessed by confocal microscopy (images in 

fig. S4). (N) Mitochondrial membrane potential (ΔѰm) variability (SD) on a per-cell basis 

in Esr1-KD adipocytes versus scrambled control (Scr). (O) mtDNA copy number in gonadal 

fat of FERKO mice treated with leupeptin, an inhibitor of lysosomal-mediated autophagy (n 
= 4 mice per treatment group). Data are means ± SEM. Student’s t test or one-way ANOVA, 

*P < 0.05 between genotypes.
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Fig. 6. ERα controls Ucp1 induction, mitochondrial morphology, and thermogenic capacity of 
BAT.
(A) Sex difference in Esr1 and Ucp1 expression and (B) mtDNA copy number in BAT of 

male and female WT mice (n = 5 to 6 mice per sex). (C) Esr1 expression is induced in BAT 

of WT female mice during cold challenge (5 hours, 4°C) versus room temperature (RT). (D) 

Expression of Esr1, Polg1, and Polg2 in HFD-fed or with genetic obesity (LepOb/+) with 

NC-fed WT mice (n = 5 to 6 mice per group). (E) Confirmation of ERα deletion in BAT 

from female ERαKOBAT mice (n = 6 per genotype). (F) Ucp1 expression in BAT at room 

temperature ERαKOBAT and impaired Ucp1 induction during cold challenge (5 hours, 4°C) 
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in female ERαKOBAT mice versus Controlf/f. (G) Body weight during early HFD feeding of 

female versus Controlf/f (n = 5 to 6 per genotype). (H) WAT, inguinal (iWAT) and gonadal 

(gWAT), in female ERαKOBAT versus Controlf/f under normal chow (NC) and high-fat diet 

(HFD) feeding (n = 5 to 6 mice per genotype). (I) Body temperature in ERαKOBAT versus 

Controlf/f over time during cold challenge (5 hours, 4°C). (J) Increased lipid droplets in BAT 

from ERαKOBAT versus Controlf/f detected by histochemistry (n = 3 per genotype). (K) 

Transmission electron microscopy showing mitochondrial architecture in ERαKOBAT versus 

Controlf/f, with mitochondrial images quantified for (L) perimeter and (M) area. (N) mtDNA 

copy number determined by quantitative PCR (qPCR) in BAT from male and female 

ERαKOBAT versus Controlf/f (n = 5 to 6 mice per genotype; normalized to 1.0). (O) Polg1 
expression in BAT of female ERαKOBAT versus Controlf/f. (P to S) Immunoblots and 

corresponding densitometry showing (Q) parkin protein expression, (R) Drp1 total protein, 

and (S) Drp1Ser600 phosphorylation in ERαKOBAT versus Controlf/f (n = 5 to 6 mice per 

genotype). Data are means ± SEM. Student’s t test or one-way ANOVA, *P < 0.05 between 

the genotypes or sexes. #P < 0.05 within group and between conditions.
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Fig. 7. ERα deletion alters substrate metabolism in BAT during cold stress.
(A and B) 18FDG MicroCT-PET imaging of glucose utilization in BAT of ERαKOBAT mice 

and Controlf/f at room temperature (22°C) as well as after a 6-hour cold challenge at 4°C. 

(C) Blood glucose in ERαKOBAT during cold stress compared with Controlf/f. Data are 

means ± SEM. Student’s t test or one-way ANOVA, *P < 0.05 between genotypes. #P < 0.05 

within genotype and between conditions.
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