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Abstract Brown adipose tissue (BAT) is composed of thermogenic cells that convert chemical

energy into heat to maintain a constant body temperature and counteract metabolic disease. The

metabolic adaptations required for thermogenesis are not fully understood. Here, we explore how

steady state levels of metabolic intermediates are altered in brown adipose tissue in response to

cold exposure. Transcriptome and metabolome analysis revealed changes in pathways involved in

amino acid, glucose, and TCA cycle metabolism. Using isotopic labeling experiments, we found

that activated brown adipocytes increased labeling of pyruvate and TCA cycle intermediates from

U13C-glucose. Although glucose oxidation has been implicated as being essential for

thermogenesis, its requirement for efficient thermogenesis has not been directly tested. We show

that mitochondrial pyruvate uptake is essential for optimal thermogenesis, as conditional deletion

of Mpc1 in brown adipocytes leads to impaired cold adaptation. Isotopic labeling experiments

using U13C-glucose showed that loss of MPC1 led to impaired labeling of TCA cycle intermediates.

Loss of MPC1 in BAT increased 3-hydroxybutyrate levels in blood and BAT in response to the cold,

suggesting that ketogenesis provides an alternative fuel source to compensate. Collectively, these

studies highlight that complete glucose oxidation is essential for optimal brown fat thermogenesis.

Introduction
The ability to thermoregulate has allowed mammals to thrive in cold regions of the world. Brown

adipose tissue (BAT) thermogenesis is an energy demanding process that has been key to the evolu-

tion and survival of mammals (Gaudry et al., 2019; Oelkrug et al., 2015; Barnett and Dickson,

1989). With the excess calorie intake associated with a western diet, mechanisms that promote

energy expenditure in the cold will provide attractive therapeutic interventions to treating metabolic

diseases associated with obesity (Cypess et al., 2009; Vijgen et al., 2011). Cold exposure triggers

the activation of the sympathetic nervous system to secrete norepinephrine, which signals through

the b3-adrenergic receptor (b3-AR) and stimulates production of cyclic AMP (cAMP) (Townsend and

Tseng, 2014; Londos et al., 1985). cAMP promotes the activation of protein kinase A (PKA), which

in turn upregulates transcription of thermogenic pathways and leads to the activation of lipolysis

(Cannon and Nedergaard, 2004; Zhang et al., 2005). Free fatty acids released can directly activate

Uncoupling Protein 1 (UCP1), which uncouples the electron transport chain to generate heat

(Fedorenko et al., 2012; Klaus et al., 1991; Busiello et al., 2015). Cold exposure stimulates uptake

of both glucose, triglyceride(TG)-rich lipoproteins and free fatty acids from the blood (Labbé et al.,

2015; Heine et al., 2018; Ferré et al., 1986). While the relative contribution and importance of FFA
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as a BAT fuel source has been extensively studied (Bartelt et al., 2011; Khedoe et al., 2015;

Townsend and Tseng, 2014; Lee et al., 2015), our understanding of metabolic fate of glucose and

the importance of its catabolism in thermogenesis in vivo remains unknown.

Human brown fat was only believed to be found in newborns, but now we appreciate that adults

have brown adipose tissue, a discovery that was made through use of glucose tracer (18F-fluoro-

deoxyglucose) and positron-emission tomographic and computed tomographic (PET–CT) scans

(Cypess et al., 2009; Virtanen et al., 2009). In addition, it was previously recognized that cold

exposure could lower blood glucose levels in adults (Martineau and Jacobs, 1989). The role of glu-

cose uptake on metabolism has been explored in vitro using immortalized brown adipocytes where

siRNAs targeting Slc2a1 (GLUT1), Slc2a4 (GLUT4), Hk2 (hexokinase2), or Pkm (pyruvate kinase, mus-

cle) (enzymes catalyzing the first and the last step of glycolysis) demonstrated the importance of gly-

colysis, as b3-AR agonist failed to increase glucose uptake and oxygen consumption in these cells

(Winther et al., 2018). However, there is no adequate in vivo model demonstrating the importance

of BAT glycolysis or glucose oxidation on adaptive thermogenesis. We will address this question in

vivo by blocking pyruvate import into mitochondria of brown adipocytes by knocking out the mito-

chondrial pyruvate carrier (MPC).

MPC is a multimeric complex in the inner mitochondrial membrane that consists of MPC1 and

MPC2 subunits (Bricker et al., 2012; Herzig et al., 2012; Schell et al., 2014). Deletion of either

subunit leads to instability of a functional MPC complex. MPC links the end product of glycolysis to

glucose oxidation by transporting pyruvate into the mitochondrial matrix (Mowbray, 1975). Loss-of-

function studies targeting MPC1 or MPC2 has been shown to limit mitochondrial pyruvate transport

in yeast, flies and mammals (Herzig et al., 2012; Bricker et al., 2012). Once in the mitochondria,

pyruvate is decarboxylated to acetyl-CoA for further processing in the TCA cycle to generate NADH

and fuel ATP production by OXPHOS complexes. Alternatively, cytosolic pyruvate can be reduced

to lactate by lactate dehydrogenase complex A (LDHA), a process commonly upregulated in cancer

cells (Vander Heiden et al., 2009). While it is clear that cold exposure or direct stimulation of b3-AR

stimulates glucose utilization by BAT in both humans (Cypess et al., 2009; Saito et al., 2009) and

rodents (Mirbolooki et al., 2014; Vallerand et al., 1990), it is not clear how important glucose oxi-

dation is during thermogenesis nor what the metabolic fate of glucose is in activated BAT. Recently,

comparative metabolomics analysis has shown that activation of BAT led to increased levels of the

TCA cycle intermediate succinate; however, it is unclear whether glucose-derived TCA cycle inter-

mediates are required for thermogenesis (Mills et al., 2018).

In this study, we use comprehensive metabolomics analysis of BAT and serum from mice housed

at different temperatures, to gain insight into the metabolic pathways altered with cold exposure.

We find changes in glucose, amino acid, and TCA cycle intermediates in BAT. Using [U-13C]-glucose,

we found increased glycolytic and TCA cycle metabolism during BAT stimulation. To test whether

glucose oxidation is required for thermogenesis, we generated mice lacking mitochondrial pyruvate

carrier one subunit (MPC1) in brown adipose tissue. We found that mice lacking MPC1 in BAT are

cold sensitive, indicating that pyruvate import into the mitochondria is essential for efficient thermo-

genesis. Furthermore, when we profiled serum and BAT metabolites of MPC1-null mice, we found

elevated 3-hydroxybutyrate levels. Prior studies supporting a role for ketogenesis in thermogenesis,

suggests an alternative carbon source that compensates for the loss of pyruvate transport. Together

this study provides new insights into the metabolic fate of glucose in brown adipose tissue during

activation of thermogenesis in response to acute cold exposure.

Results

Cold-induced changes in transcriptome and metabolite profiling of BAT
To systematically profile the transcriptional changes that are altered in response to acute cold expo-

sure, we measured steady state levels of RNA in BAT from mice at room temperature (24˚C) or cold

(4˚C) for 5 hr. We found that 1907 transcripts were upregulated with cold exposure, while 3273 were

decreased (Supplementary file 1 and supplementary file 2). Hierarchical clustering and Principal

Component Analysis (PCA) revealed that the gene expression patterns in cold room and room tem-

perature exposed BATs form two distinctive and independent clusters (Figure 1—figure supple-

ment 1A and B). Using Gene Set Enrichment Analysis (GSEA), we found that cold exposure
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stimulated distinct transcriptional changes in BAT that involve various aspects of metabolism. Nota-

ble changes include induction of glucose metabolic process, sphingolipid metabolism, amino acid

metabolism, and cellular respiration, while pathways involved in cell cycle control, DNA repair, and

glycoprotein metabolism were downregulated (Figure 1A and B).

To test whether steady state levels of metabolic intermediates were altered, we used targeted

GC-MS analysis to complete comprehensive metabolic profiling of BAT (Figure 1C and D) and

serum (Figure 1E and F) from mice across different temperatures (30˚C, 23˚C, and 4˚C). The BAT

metabolome showed elevated levels of glycolytic intermediates, TCA cycle intermediates, ketone

bodies, and branched chain amino acids when mice were challenged with the cold (Figure 1C).

Figure 1. Transcriptome and metabolomics analysis of brown fat shows increased carbohydrate metabolism and glycolytic metabolism during cold

exposure. (a) Network visualization of enriched biological pathways altered with cold exposure in BAT (N = 5). (b) GSEA pathway analysis of

differentially expressing genes (FDR < 0.05) in BAT at 4˚C versus room temperature (N = 5). (c) Heat map of relative normalized changes in BAT (c) and

serum (e) metabolites at 30˚C, 23˚C, and 4˚C. Dendograms illustrate hierarchical clustering of pattern similarity across metabolites (left) and conditions

(top). Each column represents average within the group (N = 5 per group). Data was sum normalized, log transformed, and autoscaled. (d) MSEA

pathway analysis of metabolites in BAT (d) and serum (f) from mice at 4˚C versus room temperature (N = 5).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. RNRNA-seq analysis of brown adipose tissue from mice at room temperature or with cold exposure.
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Notably, amino acids like tyrosine, alanine, threonine, and tryptophan were increased in BAT, while

their levels decreased in serum with cold exposure. Perhaps, BAT uptake could lead to their deple-

tion in the blood. Similar to a recent report (Yoneshiro et al., 2019), we observed that branched

chain amino acids, including Valine, Leucine, and Isoleucine were elevated in BAT, while only Leucine

and Valine were upregulated in serum (Figure 1C and E). To identify metabolic pathways that

changed with cold exposure, we used Metabolite Set Enrichment Analysis (MSEA) to compare

metabolomes of BAT and serum from mice at room temperature (24˚C) and cold (4˚C) (Figure 1D

and F). Both BAT and serum were enriched for pathways involved in amino acid, fatty acid, nucleo-

tide, and glucose metabolism. Notably, glucose and pyruvate levels in BAT were elevated in

response to 4˚C, while both glucose and pyruvate levels were similar between mice housed at 30˚C

and 23˚C. This finding would suggest that there is an increase in the rate of pyruvate synthesis in

response to the cold (Figure 1C). A list of measured metabolites from BAT and serum are detailed

in supplementary file 3 and supplementary file 4.

The observed transcriptional and metabolite changes point to a reliance on pathways involved in

carbohydrate metabolism (Figure 2A). This prompted further analysis of glucose catabolism in

brown adipocytes under aerobic conditions in response to a b3-AR agonist CL-316,243 (Figure 2B).

In vitro tracing experiments using [U-13C]-Glucose showed that activation of brown adipocytes

treated with CL-316,243 had significant 13C-glucose-derived M+3 isotopologues of 13C-Pyruvate,
13C-Lactate and 13C-Glycerol-3-Phosphate. Differentiated brown adipocytes that were treated with

CL-316,243 had more than 50% of pyruvate and lactate labeled. Surprisingly, there was little alanine

labeling from [U-13C]-glucose, despite the rise in M+3 13C-Alanine in response to b3-AR activation

(Figure 2B). During incubation with [U-13C]-Glucose, there was depletion of M+6 glucose in the

media after CL-316,243 administration, while M+3 pyruvate in the media increased, but did not

Figure 2. CL-316,243 stimulation of brown adipocytes leads to increased 13C-glucose flux. (a) Atom mapping for [U-13C] glucose tracing into glycolysis

and the TCA cycle. White balls are 12C atoms. Black balls are 13C atoms. (b) Tracing analysis from U-13C glucose in differentiated brown adipocytes

treated with vehicle or 100 nM CL-316,243 for 5 hours(N = 3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Metabolite tracing of brown adipocytes in response to b3-Adrenergic Receptor agonist.
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respond to CL-316,243 treatment (Figure 2—figure supplement 1A). To test whether M+3 lactate

derived from [U-13C]-Glucose was being released into the media, we measured media M+3 lactate,

and found that CL-316,243 increased the release of M+3 lactate into the media when compared to

vehicle (Figure 2—figure supplement 1B). These results suggest that activation of thermogenesis in

brown adipocytes leads to increased lactate synthesis and secretion.

To address whether conditions that increase oxidative metabolism correlate with MPC levels, we

measured the expression of Mpc1 and Mpc2 in BAT of C57BL6 mice challenged with thermoneutral-

ity (30˚C) or cold exposure (4˚C) for 1 day or 1 week. Using real-time PCR, we found that both Mpc1

and Mpc2 expression had increased in BAT (Figure 3A). This was accompanied by induction of ther-

mogenic transcripts, including Ucp1 and Dio2, while Cidea expression was unchanged (Figure 3A).

In contrast, thermoneutrality (30˚C) decreased Mpc2 and Ucp1 expression, while Mpc1 was

unchanged (Figure 3B). Similarly, we saw increased protein expression of MPC1, MPC2, and UCP1

in BAT after 1 week of cold exposure (Figure 3C and Figure 2—figure supplement 1A). In contrast,

another mitochondrial protein, Cytochrome C, remained unchanged after a similar cold exposure.

The increased expression of MPC1 may provide additional pyruvate transport and oxidative capacity

for sustaining prolonged thermogenesis in BAT.

BAT-selective deletion of Mpc1 leads to cold sensitivity and impaired
glucose handling
To test whether MPC is required for thermogenesis, we generated mice with conditional deletion of

Mpc1 in BAT by crossing Mpc1F/F mice (Gray et al., 2015) with UCP1-Cre (Kong et al., 2014) trans-

genic mice to generate Mpc1F/F::Ucp1Cre mice. The conditional deletion of Mpc1 in brown adipose

tissue was confirmed by gene expression analysis (Figure 3D). To test whether loss of MPC1 resulted

in destabilization of MPC2, we completed western blot analysis and found that MPC2 was also

depleted in BAT of Mpc1F/F::Ucp1Cre mice (Figure 3E and Figure 3—figure supplement 1B). To

address whether loss of MPC1 and MPC2 was specific to brown adipose tissue, we also completed

western blot analysis on iWAT, and found similar levels of both MPC1 and MPC2 (Figure 3F and Fig-

ure 3—figure supplement 1C). To test whether MPC1 is required for thermogenesis, we completed

an acute cold tolerance test at 4˚C and measured core body temperature. Upon 5 hours of cold

exposure, Mpc1F/F::Ucp1Cre mice had significantly lower core body temperatures when compared to

their Mpc1F/F littermate controls, suggesting that mitochondrial pyruvate transport is essential for

optimal thermogenesis (Figure 3G). The cold sensitivity was not due to depletion of glucose, as

blood glucose levels were similar between Mpc1F/F and Mpc1F/F::Ucp1Cre mice (Figure 3—figure

supplement 1D).

To determine whether loss of MPC1 led to changes in systemic glucose metabolism, we com-

pleted a glucose tolerance test at room temperature (23˚C) or with cold (4˚C), and found that

Mpc1F/F::Ucp1Cre mice had glucose excursion curves that were impaired when compared to their

Mpc1F/F littermate controls (Figure 4A). The loss of MPC1 in BAT did not change body composition

of chow-fed mice (Figure 4—figure supplement 1A). We also found that CL-316,243 administration

resulted in a greater decrease in blood glucose levels in Mpc1F/F controls when compared to Mpc1F/

F::Ucp1Cre mice (Figure 4—figure supplement 1B). In contrast, insulin sensitivity was similar

between the two groups as demonstrated by % change in glucose over time (Figure 4B). Histologi-

cal analysis by H and E staining of BAT, iWAT, eWAT, and liver showed little to no differences in tis-

sue morphology between the control and MPC1 null mice (Figure 4C). Given that Mpc1F/F::Ucp1Cre

mice had a cold sensitive phenotype, we measured gene expression of thermogenic-associated tran-

scripts in BAT, and found that Mpc1F/F::Ucp1Cre mice had reduced expression of Ucp1, Dio2, Elovl3,

and Pparg2 relative to Mpc1F/F control mice (Figure 4D). No changes were observed in expression

of genes involved in de novo lipogenesis and ketolysis (Figure 4—figure supplement 1C). To test

whether there is compensation for loss of mitochondrial pyruvate uptake, we measured expression

of genes that encode for transporters and enzymes involved in fatty acid oxidation. While we

observed increased levels of the fatty acid transporter CD36 in Mpc1F/F::Ucp1Cre mice, we saw no

differences in Pnpla2 (Atgl), Cpt1b, Cpt2, or Agpat2 expression (Figure 4D). This suggested that by

gene expression, we do not see a compensatory upregulation of fatty acid oxidation in brown adi-

pose tissue of mice lacking MPC1. We also did not find compensatory changes in thermogenic gene

expression in iWAT (Figure 4—figure supplement 1D). In order to assess whether there is a differ-

ence in energy expenditure, food intake, or activity, we placed mice in Columbus Instruments Animal
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Monitoring System (CLAMS), and through continuous monitoring measured energy balance in mice

challenged with 6˚C. Although we did not find a significant reduction in energy expenditure or

change in activity with the loss of MPC1, RER was significantly elevated in Mpc1F/F::Ucp1Cre mice

when compared to controls (Figure 4E, F and G). Notably, both Mpc1F/F and Mpc1F/F::Ucp1Cre

mice had reduction in RER, suggesting a metabolic switch toward fat utilization.

Figure 3. Loss of MPC1 in BAT impairs thermogenesis and leads to cold sensitivity. (a) Relative gene expression in brown adipose tissue from mice

adapted to 30˚C or 4˚C for 1 day or 1 week. N = 4–5. (b) Relative gene expression in brown adipose tissue from mice adapted to 30˚C or 23˚C for 1

week. N = 4–5 (c) Western blot analysis of brown adipose tissue of mice adapted to 30˚C or 4˚C for 1 week. N = 4–5. (d) Gene expression of MPC1 and

MPC2 in brown adipose tissue after 6 hr of cold exposure. N = 7. (e) Western blot analysis of brown adipose tissue and white adipose tissue (f) at 4˚C.

N = 4. (g) Core body temperature during cold challenge at 4˚C. N = 7.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Regulation of Mpc1 in response to the cold and the conditional deletion of Mpc1 in brown fat.
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Mitochondrial pyruvate transport is required to generate 13C-glucose-
derived TCA cycle intermediates
While it is well established that cold exposure or CL-316,243 driven stimulation of b3-adrenergic

receptor stimulates glucose uptake in brown adipose tissue, the metabolic fate of carbons from glu-

cose has not been fully characterized in brown adipocytes. In order to assess how glucose is metabo-

lized in control cells and those lacking MPC1, we retrovirally expressed MSCV-CreERT2 or empty

MSCV control in Mpc1F/F brown preadipocytes to create a tamoxifen inducible knockout system.

This allowed us to generate Mpc1 null cells on day 1 of differentiation as confirmed by western blot

(Figure 5A) and gene expression analysis (Figure 5B). Although Mpc2 mRNA was not changed

(Figure 5B), loss of MPC1 led to destabilization and loss of MPC2 (Figure 5A). First, we measured

the [U-13C]-Glucose-derived incorporation into the glycolytic intermediates (Figure 5C and

Figure 4. Conditional deletion of Mpc1 in BAT impairs systemic glucose metabolism. (a) Glucose tolerance test at room temperature (23˚C) and cold (4˚

C) in Mpc1F/F and Mpc1F/F::Ucp1Cre3–4 months old, N = 5. (b) Insulin tolerance test at room temperature (23˚C) in Mpc1F/F and Mpc1F/F::Ucp1Cre, 3–4

months old, N = 6. (c). Representative H and E images of BAT, iWAT, eWAT, and liver from Mpc1F/F and Mpc1F/F::Ucp1Cre mice exposed to 4˚C for 6

hr. (d) Gene expression in BAT from Mpc1F/F and Mpc1F/F::Ucp1Cre mice exposed to 4˚C for 6 hr. N = 6. (e–g) Energy expenditure, RER, and locomotor

activity of Mpc1F/F and Mpc1F/F::Ucp1Cre mice at 6˚C. N = 4.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Conditional deletion of Mpc1 in BAT and the impact on body composition and blood glucose.
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Figure 5—figure supplement 1A). After 5 hours of CL-316,243 stimulation, we found extensive M

+3 labeling of pyruvate, lactate, serine, alanine, and M+6 labeling of glucose-6-phosphate and M+5

labeling of ribose-5-phosphate in both control and Mpc1 null cells (Figure 5D). Notably, we found

greater incorporation of glucose-derived carbons into serine in Mpc1 null cells treated with CL-

316,243. To address whether the pool size changed with CL-326,243 treatment, we measured total

abundance of glucose-6-phosphate, ribose-5-phosphate, pyruvate, lactate, alanine, and serine

(Figure 5E). CL-316,243 treatment led to a dramatic increase in lactate, pyruvate, and ribose-5-phos-

phate in both control and Mpc1 null cells. In contrast, CL-316,243 treated MPC1 null brown adipo-

cytes had a greater increase in steady state pyruvate levels (Figure 5E). We measured M+3 lactate

and M+3 pyruvate in the media to test whether loss of Mpc1 led to increased [U-13C]-Glucose-

derived lactate and pyruvate. Upon stimulation with CL-316,243, we found greater levels of M+3

pyruvate and M+3 lactate in the media, with no distinguishable differences between control and

knockout cells (Figure 5—figure supplement 1B). However, basal levels of M+3 pyruvate and M+3

lactate were elevated in MPC1 null cells. CL-316,243 treatment increased flux through pyruvate

dehydrogenase (PDH), which was illustrated by increased M+2 isotopologues of citrate/isocitrate, a-

Figure 5. Loss of mitochondrial pyruvate carrier does not affect CL-316,243-stimulated increase in 13C-glycolytic flux. (a) Western blot analysis of

differentiated brown Mpc1F/F adipocytes expressing pMSCV2 or CreERT2 treated with ethanol or 4-hydroxy tamoxifen. N = 3. (b) Gene expression

analysis in differentiated brown Mpc1F/F adipocytes expressing pMSCV2 or CreERT2 treated with ethanol or 4-hydroxy tamoxifen N = 3. (c) Atom

mapping for [U-13C]-glucose tracing incorporation into the glycolytic intermediates. White circles are 12C atoms. Black circles are 13C atoms. (d) [U-13C]-

glucose labeling in Mpc1F/F adipocytes expressing CreERT2 treated with ethanol or 4-hydroxy tamoxifen, with/without 100 nM CL-316,243 for 5 hours

(N = 6). (e) Steady state levels of glycolytic intermediates in Mpc1F/F adipocytes expressing CreERT2 treated with ethanol or 4-hydroxy tamoxifen, with/

without 100 nM CL-316,243 for 5 hours (N = 6).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Isotopic labeling of glycolitic intermediates in brown adiopcytes labeled with [U-13C]-glucose.
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ketoglutarate, succinate, fumarate, and malate (Figure 6A and B and Figure 6—figure supplement

1A). To address whether labeling through pyruvate carboxylase was altered with CL-316,243 treat-

ment, we measured M+3 aspartate, a product of M+3 oxaloacetate (Figure 6B). We found that M

+3 aspartate, increased with CL-316,243 treatment in control cells, while MPC1 null cells had

reduced M+3 aspartate. Together we found that loss of MPC1 severely attenuates incorporation of

glucose-derived carbons into the TCA cycle, leading to reduced steady state levels of both fumarate

and malate (Figure 6C).

MPC1 null brown adipocytes compensate by increasing mitochondrial
fatty acid oxidation
Although we found reduced levels of fumarate and malate in MPC1 null brown adipocytes, other

TCA cycle intermediates were similar between control and MPC1 null cells (Figure 6C). To address

whether there was compensation by other fuel sources, we measured fatty acid oxidation using 13C-

U-palmitate complexed with albumin (Figure 7A). We found that CL-316,243 treatment increased M

Figure 6. Mitochondrial pyruvate transport is required for 13C-glucose-derived TCA cycle intermediates. (a) Atom mapping for [U-13C]-glucose tracing

incorporation into the TCA cycle intermediates. White circles are 12C atoms. Black circles are 13C atoms. (b) [U-13C]-glucose labeling in Mpc1F/F

adipocytes expressing CreERT2 treated with ethanol or 4-hydroxy tamoxifen, with/without 100 nM CL-316,243 for 5 hours (N = 6). (c) Steady state levels

of TCA-cycle intermediates in Mpc1F/F adipocytes expressing CreERT2 treated with ethanol or 4-hydroxy tamoxifen, with/without 100 nM CL-316,243 for

5 hours (N = 6).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Loss of Mpc1 in brown adipocytes impairs incorporation of glucose-derived TCA-cycle intermediates.
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+2 malate and M+2 glutamate in Mpc1F/F control cells. However, the loss of MPC1 resulted in

greater levels of both M+2 malate and M+2 glutamate in the basal and CL-316,243 treated group.

These studies would suggest that loss of MPC1 promotes a compensatory increase in mitochondrial

fatty acid oxidation. To test whether acute inhibition of MPC alters respiratory capacity in brown adi-

pocytes, we treated cells with MPC inhibitor UK-5099, and surprisingly found increased oxygen con-

sumption in the basal state and in response to CL-316,243 treatment (Figure 7B). To test whether

fatty acid oxidation was required for the rise in basal oxygen consumption, we included etomoxir

with UK-5099 treatment, which led to a dramatic drop in oxygen consumption. To address whether

mitochondrial oxidative capacity was altered in brown adipose tissue, we isolated mitochondria from

brown fat of Mpc1F/F or Mpc1F/F::Ucp1Cre mice. Mitochondria were incubated with defined respira-

tory substrates, including pyruvate/malate or palmitoyl-carnitine, and found that oxygen consump-

tion increased in Mpc1F/F brown adipocytes. In contrast, brown fat mitochondria from Mpc1F/F::

UCP1Cre mice had reduced oxygen consumption when challenged with pyruvate/malate (Figure 7C).

However, upon incubation with palmitoyl-carnitine, MPC1 null cells showed a compensatory increase

in oxygen consumption rate when provided palmitoyl-carnitine. When ADP or Succinate was added,

MPC1 null mitochondria had reduced respiratory capacity relative to Mpc1F/F controls (Figure 7D).

To test whether complex IV-dependent respiration was altered, we incubated mitochondria with

ascorbate and TMPD, and found similar increase in respiration in Mpc1F/F and Mpc1F/F::Ucp1Cre

brown adipocytes.

Figure 7. Conditional deletion of MPC1 in brown fat leads to compensatory increase in fatty acid oxidation. (a) U-13C palmitate-tracing experiments in

Mpc1F/F cells expressing CRE-ERT2. Cells were treated with ethanol or 4-hydroxy tamoxifen, with/without 100 nM CL-316,243 for 5 hours (N = 6). (b)

Oxygen consumption rate in differentiated brown adipocytes treated with/without 100 nM CL-316,243 ± vehicle, 10 mM UK5099, 10 mM Etomoxir, or

both (N = 10–12). (c) Oxygen consumption in mitochondria isolated from BAT of Mpc1F/F and Mpc1F/F::Ucp1Cre mice with 5 mM pyruvate and 0.5 mM

malate or 5 mM L-Carnitine (N = 4). (d) Oxygen consumption in mitochondria isolated from BAT of Mpc1F/F and Mpc1F/F::Ucp1Cre mice with 1 mM

ADP, 2 mM ascorbate and 0.5 mM TMPD (N = 4).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Proton leak in response to UK5099, etomoxir, or both.
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Metabolic profiling in vivo shows increase in Ketogenesis with loss of
MPC1 in brown adipose tissue
To understand the systemic metabolic adaptations that occur with the loss of MPC in BAT, we com-

pleted metabolomics analysis of serum and BAT in cold challenged Mpc1F/F or Mpc1F/F::Ucp1Cre

mice. We hypothesized that there may be systemic mechanisms that allow Mpc1F/F::Ucp1Cre mice to

cope with the loss of MPC during cold stress. Metabolite analysis of serum showed an increase in 3-

hydroxybutyrate and adenosine (Figure 8A), while metabolite analysis of BAT showed that cold

exposed Mpc1F/F::Ucp1Cre mice had elevated 3-hydroxybutyrate, 2-hydroxybutyrate, adenosine 5’-

monophosphate (AMP), 2-monopalmitoylglycerol, malonic acid, and cis-acotinic acid relative to

Mpc1F/F mice (Figure 8B). Analysis of the top 25 BAT metabolites showed a significant increase in 3-

hydroxybutyrate, while TCA cycle intermediates such as succinic, citric, and isocitric acid were

decreased (Figure 8B). A list of measured metabolites in BAT and serum of Mpc1F/F or Mpc1F/F::

Ucp1Cre mice are included in Supplementary file 5–6. To test whether ketones were induced with

Figure 8. Conditional deletion of Mpc1 in brown fat leads to increased ketogenesis. (a) Volcano plot showing changes in serum metabolites between

Mpc1F/F and Mpc1F/F::Ucp1Cre mice housed at 4˚C for 6 hr. N = 6. (b) Heat map of top 25 metabolites in BAT from Mpc1F/F and Mpc1F/F::Ucp1Cre mice

housed at 4˚C for 6 hr. Dendograms illustrate hierarchical clustering across metabolites (left) and genotypes (top). N = 6. Data was sum normalized, log

transformed, and autoscaled. (c) Serum 3-hydroxybutyrate levels from Mpc1F/F and Mpc1F/F::Ucp1Cre mice housed at 23˚C or 4˚C for 6 hr. N = 6. (d)

Gene expression analysis of livers from Mpc1F/F and Mpc1F/F::Ucp1Cre mice housed at 4˚C for 6 hr. N = 6.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Gene expression analysis and serum FFA levels.
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cold exposure, we measured serum 3-hydroxybutyrate in Mpc1F/F and Mpc1F/F::Ucp1Cre mice, and

found that cold exposure elevated serum 3-hydroxybutyrate levels in Mpc1F/F control mice

(Figure 8C). Notably, loss of MPC1 in brown adipose tissue led to blood 3-hydroxybutyrate levels

that surpassed those of control mice in the cold (Figure 8C). This prompted us to think that liver,

being the major ketogenic organ, may be oxidizing more free fatty acids to produce 3-hydroxybuty-

rate as an alternative fuel for the extrahepatic organs during cold. Therefore, we examined the

expression of genes implicated in fatty acid synthesis, oxidation, and ketone body production. While

Fasn, Acaca (ACC1), and Acly, genes involved in fatty acid synthesis, were downregulated in Mpc1F/

F::Ucp1Cre mice, Cpt1b, Cpt2, and Acadm (fatty acid oxidation genes) were increased, followed by

increased levels of Hmgcs2 which is directly involved in ketogenesis (Figure 8D). In contrast,

upstream regulators of ketogenesis, including Ppar and Pppargc1a, were not changed in the livers

(Figure 8—figure supplement 1A). No notable differences were seen in serum free fatty acids (Fig-

ure 8—figure supplement 1B), suggesting that activation of ketogenesis is likely contributing to

rise in 3-hydroxybutyrate levels. In addition, we did not find changes in expression of ketogenic

pathway in iWAT (Figure 8—figure supplement 1C). Together, these findings suggest that activa-

tion of hepatic ketone production provides an additional compensatory mechanism to counteract

the inability to directly oxidize pyruvate in the BAT mitochondria.

Discussion
There is a prevailing view that BAT relies primarily on free fatty acids as the primary source of energy

for brown fat thermogenesis. However, it has been demonstrated in the past that cold activation of

BAT leads to utilization of other substrates besides fatty acids, such as glucose, amino acids (López-

Soriano et al., 1988; Yoneshiro et al., 2019) and acylcarnitines (Simcox et al., 2017). In this study,

we address a fundamental question in BAT thermogenesis: What is the role of glucose oxidation in

short-term non-shivering thermogenesis? Is glycolysis or glucose-derived TCA cycle intermediates

needed for efficient thermogenesis in BAT? Thus far, there have not been adequate in vivo models

to address these questions. In this study, we combined in vitro U-13C-glucose tracing experiments

with comprehensive in vivo transcriptome and metabolome analysis of activated brown fat to

address these questions.

Gene expression profiling of brown adipose tissue showed that mice exposed to short-term cold

exposure exhibit evidence of activated cellular respiration, amino acid metabolism, and glucose

metabolism. Similar, but distinct findings have been reported with prolonged cold exposure (2–4

days and 10 days respectively)(Hao et al., 2015; Rosell et al., 2014). In order to see how acute cold

exposure affected the metabolome in mice, we followed up these studies by performing GC-MS

metabolomics analysis on serum and BAT of mice housed at 30˚C, 23˚C, and 4˚C for 5 hours. This

analyses revealed increased branched chain amino acids, ketones, glucose, and TCA cycle metabo-

lites in BAT with decreased temperatures. These results confirmed the previously proposed idea that

BAT is a highly metabolically active tissue that upregulates uptake of various fuels to support the

energy demand needed to adapt during cold stress. When stimulated with CL-316,243 for 5 hour-

sand given [U-13C]-labeled glucose, brown adipocytes significantly upregulated 13C incorporation

into pyruvate, lactate, and TCA cycle intermediates, suggesting that glucose catabolism occurs early

in BAT activation. These results are an important complement to recent studies that have described

the metabolic response to chronic cold exposure (Hao et al., 2015; Marcher et al., 2015;

Rosell et al., 2014). It is not surprising that acute activation of BAT leads to uptake of most sub-

strates available to fuel the heat production process as an initial response to the cold shock. In con-

trast, cold acclimation or chronic cold exposure, leads to BAT remodeling and adaptive changes

such as increased BAT mass, blood flow, and increased mitochondrial number (López-Soriano et al.,

1988; Rafael et al., 1985). Our observation that branched chain amino acids (BCAA) are elevated in

BAT with cold exposure is consistent with recent findings highlighting their requirement for optimal

thermogenesis (Yoneshiro et al., 2019).

Here, we show that mitochondrial pyruvate transport, presumably by its utilization in the TCA

cycle, is essential for efficient thermogenesis. In wild type mice challenged with short-term cold

exposure, we observe higher levels of MPC1 and MPC2 in BAT compared to that of mice housed at

thermoneutrality. We propose that the induction of MPC1 and MPC2 is an adaptive mechanism to

increase oxidative capacity during prolonged cold exposure. The inability to directly import pyruvate
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into the mitochondria for further oxidation leads to hypothermia, an indication of impaired thermo-

genesis. This was observed in our Mpc1F/F::Ucp1Cre mouse model where animals had lower core

body temperatures during the cold challenge. We also noted small but significant reductions in ther-

mogenic gene expression (Ucp1, Dio2, Elovl3, Pparg), but there were no compensatory changes in

BAT expression of genes required for fatty acid oxidation. However, we did note that loss of MPC

leads to upregulation of Cd36, which may drive increased fatty acid uptake during the cold

(Bartelt et al., 2011). An obvious alternative source of energy is fatty acids, therefore we measured

fatty acid oxidation in brown adipocytes and isolated mitochondria. As noted in the intestine lacking

MPC1, brown adipocytes have increased fatty acid oxidation (Bensard et al., 2020). These effects

highlight that the inability to transport pyruvate, leads to compensatory metabolic programming

towards fatty acid oxidation. The shift towardfatty acid oxidation was supported both by our tracer

studies and measurement of mitochondrial oxygen consumption when palmitoyl-carnitine is pro-

vided as a substrate. In addition, there may be compensation through glutamine oxidation, transami-

nation of alanine to pyruvate in the mitochondria, glutamine anaplerosis via glutamate to a-

ketoglutarate by glutaminase and glutamate dehydrogenase enzymes, or conversion of glutamine-

derived malate to pyruvate by mitochondrial malic enzyme (Bender and Martinou, 2016;

Gray et al., 2015; McCommis et al., 2015; Schell et al., 2014; Vacanti et al., 2014; Yang et al.,

2014).

One striking feature observed with cold adaptation in Mpc1F/F::Ucp1Cre mice and their littermate

controls was elevated ketone levels in the blood. Mpc1F/F::Ucp1Cre mice had significantly elevated

serum 3-hydroxybutyrate levels after 6 hr of cold challenge, but there were no measurable differen-

ces between the two groups after 6 hr at room temperature. These changes were accompanied by

elevated 3-hydroxybutyrate levels in the BAT. Ketogenesis occurs primarily in the liver during exer-

cise or prolonged fasting, and more recently was found to be a cold-induced

metabolite (Newman and Verdin, 2014b; Newman and Verdin, 2014a; Wang et al., 2019).

Ketones can be exported to extrahepatic tissues for further oxidation as they are rich energy sour-

ces. When we measured ketogenic gene expression in the liver, we found that Mpc1F/F::Ucp1Cre

mice had significantly increased Hmgcs2 levels compared to control mice. Together with serum and

BAT metabolomics data this suggest that Mpc1F/F::Ucp1Cre mice compensate by activating ketone

production. At first, we speculated that 3-hydroxybutyrate is utilized by BAT of Mpc1-deficient mice

to compensate for the inability to oxidize pyruvate. However, in order for ketones to be catabolized

in peripheral tissues they have to utilize OXCT1 for import and succinyl-CoA to donate coenzyme-A.

In the BAT metabolomics analysis, Mpc1F/F::Ucp1Cre mice had lower levels of TCA cycle intermedi-

ates compared to their littermate controls, including succinic acid, citric acid, and malic acid. This

would suggest that oxidative metabolism is limited in the absence of MPC1. Further, this poses a

question of why would Mpc1F/F::Ucp1Cre mice make more 3-hydroxybutyrate and what role it might

have in these mice? One likely explanation is that BAT utilizes ketones for thermogenesis. Alterna-

tively, ketones can promote energy expenditure, mitochondrial biogenesis, and stimulate the

expression of Ucp1 in WAT (Srivastava et al., 2012).

Taken together, our studies aimed to gain a better understanding of the metabolic fate of glu-

cose in BAT during short-term cold exposure. Here, we report a novel mouse model of Mpc1 loss in

brown adipocytes that allowed us to assess the importance of efficient pyruvate import and oxida-

tion for thermogenesis. Understanding the metabolic pathways and key metabolites that are upregu-

lated in brown fat during cold exposure could provide new therapeutic targets to treat metabolic

disorders such as obesity and diabetes.

Materials and methods

Animals
All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Uni-

versity of Utah. Mice were housed at 22–23˚C using a 12 hr light/12 hr dark cycle. Animals were

maintained on a regular Chow diet (2920x-030917M). Mice had ad libitum access to water at all

times. Food was only withdrawn during experiments. C57BL/6J male mice at 3 months of age were

purchased from Jackson Laboratories. C57BL/6J Mpc1F/F mice were generated as previously

described (Birsoy et al., 2015). Floxed mice were crossed with C57BL/6J Ucp1Cre (Jax #024670)
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mice to generate conditional deletion of Mpc1 in brown adipocytes. Floxed Cre-negative littermates

were used as controls. The age of mice used for all the studies were 12–20 weeks old. No animals

were excluded from any experiments.

Cold exposure
For short-term cold exposure studies (5–6 hr) mice were singly housed without food, nor bedding,

with free access to water. Starting at T0 mice were placed at either 30˚C (thermoneutrality), 23˚C

(room temperature), or 4–6˚C (cold exposure) for 6 hr. Body temperatures were taken once every

hour with a physitemp A590 rectal probe using an Oaklon Thermocouple digital thermometer. For

long-term cold exposure studies (1 week) mice were individually housed, with bedding and ad libi-

tum access to food and water.

Glucose tolerance and insulin tolerance tests
For glucose tolerance test 12 weeks old mice were fasted for 6 hr and then administered 1 g/kg of

body weight of glucose by intraperitoneal injection. For insulin tolerance test non-fasted mice were

administered 0.75 units/kg of body weight of insulin. Glucose levels were measured by tail vein using

Contour next one glucometers at the indicated time points.

Metabolic cages
Food and water intake, energy expenditure and ambulatory activity were measured by using Com-

prehensive Lab Animal Monitoring System (CLAMS) (Columbus Instruments) through the University

of Utah Metabolic Phenotyping core. Mice were single housed in metabolic cages with ad libitum

access to food and water on a 12 hr light/12 hr dark cycle. Mice were single housed in metabolic

cages with no food and with free access to water. Temperature was was set at 6˚C and measure-

ments were obtained for a period of 4 hours. Energy expenditure was calculated as a function of

oxygen consumption and carbon dioxide production in the CLAMS cages.

CL-316,243 Treatment
CL-316,243 (1 mg/kg body weight; Sigma) or a vehicle control sterile PBS pH 7.4 was injected intra-

peritoneally. After drug or vehicle were administered, glucose levels were measured once every

hour for 6 hr by tail vein using Contour next one glucometer. During this time mice were single

housed at 23˚C, without food but water was readily available.

Cell culture
Brown preadipocytes were isolated from 6-week-old MPC1 F/F mice (Rodriguez-Cuenca et al.,

2007). Intrascapular BAT was removed, minced, and digested in buffer containing 1% collagenase,

DMEM (Cat# 11995073, Invitrogen Life) and antibiotics-50 IU Penicillin/mL and 50 mg Streptomycin/

mL (Cat# 15140122, Invitrogen Life) plus Primocin 100 mg/mL (Cat# ANT-PM-2, Invivogen). Samples

were incubated in the shaking water bath at 37˚C for 45 min after which they were allow to cool on

ice for 20 min. Infranatant was filtered through a 100 mm filter and centrifuged for 5 min at 500xg.

The digestion buffer was removed and pellet was washed twice with DMEM with antibiotics. After

the last spin pellet was resuspended in 1 mL of DMEM containing 10% FBS (Cat# FB-01, Omega Sci-

entific, Inc) and antibiotics. Cells were then plated into a six-well plate and the next day they were

immortalized by retroviral expression of SV40 Large T-antigen (Cat# 13970, Adgene) using hygromy-

cin for selection. For MPC1 null studies, stable expression of CreERT was generated using pMSCV

CreERT2 retroviral vector (Cat# 22776, Adgene) with puromycin selection marker. Cells are routinely

tested for mycoplasma prior to experimentation. For gene expression experiments, the cells were

plated in 12-well plates (75,000 cells/well) in DMEM containing 10%FBS, 1nM T3 (Cat# T6397,

Sigma), and 20 nM insulin (Cat# 91077C, Sigma). Upon confluency cells were given differentiation

cocktail containing 10%FBS, 1nM T3, 20 nM insulin, 1 mM rosiglitazone (Cat#71740, Cayman Chemi-

cal), 0.5 mM dexamethasone (Cat# D4902, Sigma), 0.5 mM isobutylmethylxanthine (Cat# I5879,

Sigma), and 0.125 mM indomethacin (Cat# I7378, Sigma). After 1 day of differentiation 100 nM 4-

hydroxy-tamoxifen (Cat# 3412, Tocris) was added to knock out MPC1 gene or DMSO (Cat# D2650,

Sigma) was added as a control. After 2 days of differentiation, media was changed to DMEM
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containing 10% FBS, 1nM T3, 20 nM insulin, and 1 mM rosiglitazone. Cells were harvested on day 9

of differentiation for different experimental analyses.

Brown adipocyte U-13C glucose and U-13C palmitate labeling
Cells were plated in a 6-well plate at a seeding density of 200,000 cells/well. On day 8 of differentia-

tion cells were washed twice with 1XPBS and media was changed to high-glucose DMEM (Cat#

11995073, Thermo Fisher) containing 10% FBS overnight. The next day this media was removed and

cells were washed twice with 1X PBS. They were incubated in a glucose/phenol red/glutamine-free

DMEM (Cat# A14430-01, Thermo Fisher) with added 5.5 mM glucose (Cat# G8270, Sigma), Gluta-

Max(Cat# 35050061, Thermo Fisher), and MEM Non-Essential Amino Acid Solution (Cat# 11140050,

Thermo Fisher). Cells were allowed to equilibrate for 4 hr before the media was changed to the

same composed DMEM but this time containing 5.5 mM U-13C D-Glucose (Cat# CLM-1396–5, Cam-

bridge Isotopes). For U-13C palmitate labeling same composed media containing 5.5 mM glucose

was used with added 150 mM U-13C Sodium palmitate (CLM-6059–1, Cambridge Isotopes) conju-

gated to fatty-acid-free BSA (Cat# 700–107P, Gemini Bio Products) and 1 mM Carnitine (Cat#

C0823, Sigma). In both experiments, cells were stimulated with 100 nM CL-316,243 or vehicle for 5

hours. Before harvesting the cells 1 mL od media was taken and centrifuged at 21,000xg for 10 min

at 4˚C. 40 mL of supernatant were added to 160 mL of ice-cold 80% methanol for metabolic tracing

analysis. The remaining media was removed and cells were harvested by addition of 200 mL of �80˚

C chilled buffer containing 20% water and 80% methanol (Cat# AA47192M6, Fisher Scientific). Lysed

cells were kept on dry ice for 5 min before collection. Samples were spun down as before and 100

mL of supernatant was directly used for metabolic tracer analysis.

Measure of oxygen consumption
Oxygen consumption rate was measured using a Seahorse XF96e analyzer through the University of

Utah Metabolic Phenotyping core. 35,000 differentiated brown adipocytes were plated in each well

of a XF 96-well cell culture plate in 100 mL of DMEM culture media and allowed to attach overnight.

Cells were pre-treated overnight in vehicle or 10 mM UK5099 and incubated at 37˚C in 5% CO2.

Next day the culture media was replaced with standard assay media (DMEM, 25 mM glucose, 1 mM

pyruvate, 2 mM glutamine, pH 7.4). Cells were pretreated with 10 mM Etomoxir for 15 min and acti-

vated with/without 100 nM CL-316,243. Cells were run on a XF96e analyzer for a Mito Stress Test

using manufacturers protocol and standard drug concentrations (Oligomycin 2.5 mM, FCCP 2 mM,

Rotenone 0.5 mM, and Antimycin A 0.5 mM). Assay protocol was standard (three measurements per

phase, acute injection followed by 3 min of mixing, 0 min waiting, and 3 min measuring). Data was

normalized to total cellular protein levels per well (ThermoFisher BCA Kit cat #23227).

Mitochondrial isolation and measure of mitochondrial oxygen
consumption
Mitochondria were isolated from MPC1F/F and MPC1F/F UCP1Cre mice. BAT was excised and placed

in ice-cold mitochondrial isolation media (MIM) consisting of 300 mM sucrose, 10 mM HEPES, 1 mM

EGTA, pH 7.2 and minced. The tissue was then gently homogenized and centrifuged for 10 min, 4˚

C, at 10,000 rcf. The floating lipid layer and supernatant were then aspirated and the pellet was

resuspended in MIM + 1 mg / mL BSA. To remove cellular debris, samples were then split into two

tubes, centrifuged for 5 min, 4˚C at 200 rcf and the supernatant was saved (discarding the pellet)

two consecutive times. Samples were then centrifuged for 10 min, 4˚C at 10,000 rcf to pellet the

mitochondria. Finally, samples were resuspended in MIM and an aliquot was used to determine pro-

tein content by BCA Assay.

25 mg of mitochondria were loaded in triplicate into the Oroboros O2K High-Resolution respirom-

eter in 2.1 mL of Buffer Z (105 mM MES Potassium Salt, 30 mM KCl, KH2PO4 10 mM, MgCl2-6H2O

5 mM, Fatty-acid free BSA 0.5 mg/ml). Respiratory oxygen flux was measured in real time and

reported as pico moles O2 consumed per second per mg mitochondria. 5 mM pyruvate and 0.5 mM

malate were added followed by 5 mM L-Carnitine. In a separate experiment, Complex I activity was

measured by the addition of 5 mM pyruvate, 0.5 mM malate, and 1 mM ADP. Complex II respiration

was then tested by the addition of 5 mM Succinate. Finally, Complex IV was tested using 2 mM

ascorbate and 0.5 mM N,N,N,N-tetramethyl-p-phenylenediamine (TMPD).
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FFA measurement
Free fatty acids were measured from the blood serum of MPC1 null mice and their littermate con-

trols that were housed at room temperature or challenged by cold for 6 hr. 10 mL of the serum was

used for analysis using commercial kit (Cat# MAK044-1KT, Sigma) according to the manufacturer

instructions.

Metabolite extraction
In order to extract metabolites from the tissue, each sample was transferred to 2.0 ml ceramic bead

mill tubes (bioExpress). Each sample received 450 ul of 90% cold methanol in diH2O for every 25

mg of tissue. The samples were then homogenized in an OMNI Bead Ruptor 24. Homogenized sam-

ples were then incubated at �20 ˚C for 1 hr. D4-succinic acid (Sigma 293075) was added to each

sample as an internal standard. After incubation, all the samples were centrifuged at 20,000 x g for

10 min at 4 ˚C. 450 ul of supernatant was then transferred from each bead mill tube into a labeled,

fresh micro centrifuge tube where another internal standard d27-myristic acid (CDN Isotopes:

D-1711). Samples were then dried en vacuo. For metabolite extraction from serum, 90% methanol in

diH2O containing d4-succinic acid was added to each sample to give a final methanol concentration

of 80%. Samples were vortexed and incubated at �20 ˚C for 1 hr. After incubation, all samples were

centrifuged at 20,000 x g for 10 min at 4 ˚C. Another internal standard, d27-myristic acid (CDN Iso-

topes: D-1711), was added to each sample. Process blanks were made using the extraction solvent

and went through the same process steps as the real samples. The samples were then dried en

vacuo.

GC-MS analysis of metabolites
All GC-MS analysis was performed with an Agilent 7200 GC-QTOF and an Agilent 7693A automatic

liquid sampler. Dried samples were suspended in 40 mL of a 40 mg/mL O-methoxylamine hydrochlo-

ride (MOX) (MP Bio #155405) in dry pyridine (EMD Millipore #PX2012-7) and incubated for 1 hr at

37˚C in a sand bath. 25 mL of this solution was added to auto sampler vials. 60 mL of N-methyl-N-tri-

methylsilyltrifluoracetamide (MSTFA with 1%TMCS, Thermo #TS48913) was added automatically via

the auto sampler and incubated for 30 min at 37˚C. After incubation, samples were vortexed and 1

mL of the prepared sample was injected into the gas chromatograph inlet in the split mode with the

inlet temperature held at 250˚C. A 5:1 split ratio was used for analysis for the majority of metabo-

lites. Any metabolites that saturated the instrument at the 5:1 split were analyzed at a 50:1 split

ratio. The gas chromatograph had an initial temperature of 60˚C for one minute followed by a 10 ˚C/

min ramp to 325˚C and a hold time of 10 min. A 30-meter Agilent Zorbax DB-5MS with 10 m Dura-

guard capillary column was employed for chromatographic separation. Helium was used as the car-

rier gas at a rate of 1 mL/min. Below is a description of the two-step derivatization process used to

convert non-volatile metabolites to a volatile form amenable to GC-MS. Pyruvic acid is used here as

an example.

Analysis of GC-MS metabolomics data
Data was collected using MassHunter software (Agilent). Metabolites were identified and their peak

area was recorded using MassHunter Quant. This data was transferred to an Excel spread sheet

(Microsoft, Redmond, WA). Metabolite identity was established using a combination of an in-house

metabolite library developed using pure purchased standards, the NIST library and the Fiehn library.

There are a few reasons a specific metabolite may not be observable through GC-MS. The metabo-

lite may not be amenable to GC-MS due to its size, or a quaternary amine such as carnitine, or sim-

ply because it does not ionize well. Metabolites that do not ionize well include oxaloacetate,

histidine and arginine. Cysteine can be observed depending on cellular conditions. It often forms

disulfide bonds with proteins and is generally at a low concentration. Metabolites may not be quanti-

fiable if they are only present in very low concentrations.

LC-MS analysis of polar metabolites
Extracted polar metabolite samples were analyzed by LC-MC. Separation was achieved by hydro-

philic interaction liquid chromotograhpy (HILIC) using a Vanquish HPLC system (ThermoFisher Scien-

tific). The column was an Xbridge BEH amide column (2.1 mm x 150 mm, 2.5 mM particular size, 130
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Å pore size, Waters Co.) run with a gradient of solvent A (20 mM ammonium hydroxide, 20 mM

ammonium acetate in 95:5 acetonitrile:Water, pH 9.5) and solvent B (100% acetonitrile) at a constant

flow rate of 150 uL/min. The gradient function was: 0 min, 90% B; 2 min, 90% B; 3 min, 75% B; 7

min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min, 50% B; 12 min, 50% B; 13 min, 25% B; 14 min, 25%

B; 16 min, 0% B; 20.5 min, 0% B; 21 min; 90% B; 25 min, 90% B. Autosampler temperature was 4˚C,

column temperature 30˚C and injection volume 2 mL. Samples were injected by electrospray ioniza-

tion into a QExactive HF orbitrap mass spectrometer (ThermoFisher Scientific) operating in negative

ion mode with a resolving power of 120,000 at m/z of 200 and a full scan range of 75–1000. Data

were analyzed using the MAVEN software package and specific peaks assigned based on exact

mass and comparison with known standards (Melamud et al., 2010). Extracted peak intensities were

corrected for natural isotopic abundance (Su et al., 2017).

Gene expression
RNA was isolated from differentiated brown adipocytes or from brown adipose tissue or white adi-

pose tissue using Trizol reagent (Cat# 15596018, ThermoFisher). Tissue samples were homogenized

with a TissueLyzer II (Qiagen). Isolated RNA was reverse transcribed using SuperScript VILO Master-

mix (Cat# 11755500, ThermoFisher). Gene expression was quantified using Quant Studio 6 Flex

Real-Time PCR instrument, 384-well (Applied Biosystems by Invitrogen) with KAPA SYBR FAST qPCR

2x Master Mix Rox Low (Cat# KK4621, Kapa Biosystems). Relative mRNA expression of indicated

transcripts was normalized to expression of the housekeeping gene RPS3. Primers were designed

using Universal Probe Library (Roche) or qPrimer Depot. A list of primer sequences can be found in

Supplementary file 7.

Western blots
Cells were lysed using Radioimmunoprecipitation assay (RIPA) buffer (Boston Bioproducts, Inc) plus

protease inhibitor cocktail (Cat# 04693124001, Sigma Aldrich) and phosphatase inhibitor cocktail

(Cat# 78428, ThermoFisher). Lysates were passaged through a 25-gauge needle 10 times. Snap-fro-

zen tissues were homogenized using a TissueLyzer II (Qiagen) in the same lysis buffer. Cell/tissue

lysates were centrifuged twice at 13,000 rpm at 4˚C for 10 min. Lipid layer was removed after each

centrifugation. Protein concentrations were measured using Pierce BCA Protein Assay Kit (Cat#

23225, Thermo Fisher). 20 mg of total protein was denatured using Laemmli buffer and samples

were heated at 50˚C for 10 min. Protein was loaded onto 10% acrylamide/bisacrylamide gels and

transferred to a nitrocellulose membrane (GE Healthcare) for 60 min at 100 V for detection with the

indicated antibodies. Briefly, membranes were blocked in 5% milk/PBST for 1 hr and then incubated

with primary antibodies (1:1000 dilution) in 5% BSA/PBST overnight at 4˚C. Horse radish peroxidase-

conjugated secondary antibodies (1:4000 dilution) were given for 1 hr. Western blots were devel-

oped using WesternSure Premium Chemiluminescent substrate (Cat# C807723-02, LI-COR Bioscien-

ces) and detected by ChemiDoc MP Imaging System (BioRad).

Antibodies and reagents
MPC1 (14462), MPC2 (46141), b-Actin (4970), Akt (9272) were purchased from Cell Signaling Tech-

nologies, UCP1 (AB10983), Cytochrome C [7H8.2C12] (AB13575), HMGB1 (AB18256) were pur-

chased from Abcam. 4-hydroxy-tamoxifen (4-OHT) and UK5099 were purchased from Tocris. CL-

316,243 (C5796) was purchased from Sigma. U-13C D-Glucose (CLM-1396–5) and U-13C Sodium pal-

mitate (CLM-6059–1) were purchased from Cambridge Isotopes. Sodium palmitate (P9767) was pur-

chased from Sigma Aldrich. DL-[1-14C] 3-hydroxybutyric acid sodium salt (ARC1455) was purchased

from American Radiolabeled Chemicals. DL-b-Hydroxybutyric acid sodium salt (H6501) was pur-

chased from Sigma.

Quantification and statistical analysis
Assessment of metabolomics using hierarchical clustering was performed using MetaboAnalyst 3.0

(Xia and Wishart, 2016). The data was interquartile range filtered, sum normalized, log2 trans-

formed and autoscaled. Comparison of differentially abundant plasma or BAT metabolites from 3-

month-old mice in 30˚C, 23˚C, or 4˚C was performed in MetaboAnalyst 3.0 by using 1-way ANOVA
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analysis followed by Tukey’s HSD post hoc test. All other data are presented as mean ± SEM and

Student’s t-test was used to determine significance, unless otherwise stated.

RNA sequencing and data processing
We used the standard procedure of Qiagen RNeasy kit to extract total RNA from BAT of mice. The

RNA library for sequencing was prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina,

San Diego, CA) and rRNA was removed by Ribo-Zero following the protocol provided by the manu-

facturer. The final libraries were normalized in preparation pooling by Kapa Library Quantification Kit

for Illumina Platforms and the libraries were sequenced with the Illumina HiSeq 2000 sequencing

platform within a lane for all six samples. For RNA-seq data process, we used Rsubread (Bioconduc-

tor release 3.8) [23558742] to align sequence reads to reference genome and used edgeR

[22287627] and Limma [25605792] R packages (Bioconductor release 3.8) to normalize gene expres-

sion level to log2 transcripts per million (TPM) [22872506]. We aligned sequence reads to GRCh38

human genome reference sequence and mapped the aligned sequences to Ensembl or Entrez Gene

IDs. After normalization for every sample, we used young room temperature (five mice) and cold

room exposed (five mice) samples in this study. The raw RNA-seq data files and normalized expres-

sion profile data is available through GEO (GSEOOOOOO).

Clustering analysis and Gene Set Enrichment Analysis (GSEA)
We removed genes of which expression level is zero across all samples and explored the expression

clusters between young room temperature and cold room exposed groups. We performed unsuper-

vised hierarchical clustering analysis and Principal Component Analysis (PCA). We used Euclidean

distance metric in hierarchical clustering, and the first three components in PCA. Furthermore, we

validated this result with the supervised learning method, Random Forest. To identify biological pro-

cesses whose expression differed between the clusters, we ran GSEA using Gene Ontology biologi-

cal process (version 4.0) gene signatures [16199517]. In this analysis, we used all genes and

calculated p-values by permuting the class labels 1000 times. Gene sets with a false discovery rate

(FDR) q-value <0.25 were considered significant. To visualize relationships among the top-perform-

ing gene signatures, we used EnrichmentMap [22962466].
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S, Nuutila P. 2009. Functional Brown adipose tissue in healthy adults. New England Journal of Medicine 360:
1518–1525. DOI: https://doi.org/10.1056/NEJMoa0808949, PMID: 19357407

Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ, Sakers A, Lim H-W, O’Connor S, Doan MT, Cohen P, Baur
JA, King MT, Veech RL, Won K-J, Rabinowitz JD, Snyder NW, Gupta RK, Seale P. 2019. A PRDM16-Driven
metabolic signal from adipocytes regulates precursor cell fate. Cell Metabolism 30:174–189. DOI: https://doi.
org/10.1016/j.cmet.2019.05.005

Winther S, Isidor MS, Basse AL, Skjoldborg N, Cheung A, Quistorff B, Hansen JB. 2018. Restricting glycolysis
impairs Brown adipocyte glucose and oxygen consumption. American Journal of Physiology-Endocrinology and
Metabolism 314:E214–E223. DOI: https://doi.org/10.1152/ajpendo.00218.2017, PMID: 29118013

Xia J, Wishart DS. 2016. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current
Protocols in Bioinformatics 55:1–14. DOI: https://doi.org/10.1002/cpbi.11, PMID: 27603023

Panic et al. eLife 2020;9:e52558. DOI: https://doi.org/10.7554/eLife.52558 21 of 22

Research article Biochemistry and Chemical Biology

https://doi.org/10.1038/s41586-018-0353-2
https://doi.org/10.1038/s41586-018-0353-2
http://www.ncbi.nlm.nih.gov/pubmed/30022159
https://doi.org/10.1016/j.nucmedbio.2013.08.009
http://www.ncbi.nlm.nih.gov/pubmed/24090673
https://doi.org/10.1042/bj1480041
http://www.ncbi.nlm.nih.gov/pubmed/1156399
https://doi.org/10.1016/j.diabres.2014.08.009
https://doi.org/10.1016/j.tem.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24140022
https://doi.org/10.1007/s00360-015-0907-7
https://doi.org/10.1007/s00360-015-0907-7
https://doi.org/10.1007/BF00694586
https://doi.org/10.1159/000110448
http://www.ncbi.nlm.nih.gov/pubmed/17982270
https://doi.org/10.1152/ajpendo.00473.2013
https://doi.org/10.1152/ajpendo.00473.2013
http://www.ncbi.nlm.nih.gov/pubmed/24549398
https://doi.org/10.2337/db09-0530
https://doi.org/10.2337/db09-0530
http://www.ncbi.nlm.nih.gov/pubmed/19401428
https://doi.org/10.1016/j.molcel.2014.09.026
https://doi.org/10.1016/j.cmet.2017.08.006
http://www.ncbi.nlm.nih.gov/pubmed/28877455
https://doi.org/10.1096/fj.11-200410
https://doi.org/10.1021/acs.analchem.7b00396
http://www.ncbi.nlm.nih.gov/pubmed/28471646
https://doi.org/10.1016/j.tem.2013.12.004
http://www.ncbi.nlm.nih.gov/pubmed/24389130
https://doi.org/10.1016/j.molcel.2014.09.024
http://www.ncbi.nlm.nih.gov/pubmed/25458843
https://doi.org/10.1152/ajpregu.1990.259.5.R1043
https://doi.org/10.1126/science.1160809
http://www.ncbi.nlm.nih.gov/pubmed/19460998
https://doi.org/10.1371/journal.pone.0017247
http://www.ncbi.nlm.nih.gov/pubmed/21390318
https://doi.org/10.1056/NEJMoa0808949
http://www.ncbi.nlm.nih.gov/pubmed/19357407
https://doi.org/10.1016/j.cmet.2019.05.005
https://doi.org/10.1016/j.cmet.2019.05.005
https://doi.org/10.1152/ajpendo.00218.2017
http://www.ncbi.nlm.nih.gov/pubmed/29118013
https://doi.org/10.1002/cpbi.11
http://www.ncbi.nlm.nih.gov/pubmed/27603023
https://doi.org/10.7554/eLife.52558


Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, Sudderth J, Calvaruso MA, Lumata L, Mitsche M, Rutter J,
Merritt ME, DeBerardinis RJ. 2014. Glutamine oxidation maintains the TCA cycle and cell survival during
impaired mitochondrial pyruvate transport. Molecular Cell 56:414–424. DOI: https://doi.org/10.1016/j.molcel.
2014.09.025, PMID: 25458842

Yoneshiro T, Wang Q, Tajima K, Matsushita M, Maki H, Igarashi K, Dai Z, White PJ, McGarrah RW, Ilkayeva OR,
Deleye Y, Oguri Y, Kuroda M, Ikeda K, Li H, Ueno A, Ohishi M, Ishikawa T, Kim K, Chen Y, et al. 2019. BCAA
catabolism in Brown fat controls energy homeostasis through SLC25A44. Nature 572:614–619. DOI: https://
doi.org/10.1038/s41586-019-1503-x, PMID: 31435015

Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY. 2005. Insulin disrupts beta-adrenergic signalling to protein
kinase A in adipocytes. Nature 437:569–573. DOI: https://doi.org/10.1038/nature04140, PMID: 16177793

Panic et al. eLife 2020;9:e52558. DOI: https://doi.org/10.7554/eLife.52558 22 of 22

Research article Biochemistry and Chemical Biology

https://doi.org/10.1016/j.molcel.2014.09.025
https://doi.org/10.1016/j.molcel.2014.09.025
http://www.ncbi.nlm.nih.gov/pubmed/25458842
https://doi.org/10.1038/s41586-019-1503-x
https://doi.org/10.1038/s41586-019-1503-x
http://www.ncbi.nlm.nih.gov/pubmed/31435015
https://doi.org/10.1038/nature04140
http://www.ncbi.nlm.nih.gov/pubmed/16177793
https://doi.org/10.7554/eLife.52558



