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Abstract

Previous studies suggested brain differences in the temporal
domain when processing real human faces versus virtual agent
faces, starting from 400 ms onward. However, few studies di-
rectly compared the early and the late face processing stages
within one paradigm. Here we conducted an EEG study utiliz-
ing real human faces and high-quality virtual agent faces, ex-
amining two event-related potentials; the early N170 and the
Late Positive Potential (LPP). Results showed identical N170
responses for both face types. However, the LPP response re-
vealed a nuanced distinction, with real human faces evoking a
slightly larger LPP compared to virtual agent faces. These re-
sults suggest that although virtual agent faces can approach the
level of emotional engagement and higher-order evaluation as-
sociated with real human faces, human faces remain the most
engaging. These findings shed light on the cognitive processes
involved in face perception and the potential for intelligent vir-
tual agents in AI and education.

Keywords: face processing; virtual faces; EEG; event-related
potential (ERP); N170; LPP

Introduction
Humans have a specialized cognitive and neural machinery
designed for face processing (Duchaine & Yovel, 2015), a ca-
pability refined over millennia through exposure to the mor-
phological and reflectance patterns of natural human faces
(Oh, Dotsch, & Todorov, 2019; Sheehan & Nachman, 2014;
Sinha, Balas, Ostrovsky, & Russell, 2006). Recently, these
human faces are accompanied by artifacts that replicate the
human face appearance with differing levels of fidelity. These
include the faces of social robots—physically embodied en-
tities—and virtual agents, whether graphically rendered in
2D or 3D, and designed for verbal and non-verbal interac-
tion with humans (Lugrin, 2021; Vaitonytė, Alimardani, &
Louwerse, 2023). Furthermore, the past decade has seen pro-
liferation of synthetic media, images and videos, that depict
human faces created using AI-based creation technologies,
relying on machine learning techniques, such as Generative
Adversarial Networks (GANs) (Karras et al., 2020; Yu et al.,
2020) and Diffusion Probabilistic Models (Stypulkowski et
al., 2023).

Given the ongoing technological evolution, previous ex-
perimental studies examined humans’ ability to behaviorally
distinguish between real human faces and synthetic ones
(Nightingale & Farid, 2022; Vaitonytė, Blomsma, Alimar-
dani, & Louwerse, 2021). While the faces synthesized us-
ing GANs are indistinguishable from real faces to human ob-

servers (Miller et al., 2023; Nightingale & Farid, 2022; Tuc-
ciarelli, Vehar, Chandaria, & Tsakiris, 2022), the faces of vir-
tual agents created using 3D scanning techniques and ren-
dered as 2D images can be distinguished from real human
photographs (Vaitonytė et al., 2021). The behavioral stud-
ies are augmented by brain imaging studies. Prior work in
this field suggests that the brain can, in fact, identify differ-
ences between the real and synthetic faces (Moshel, Robin-
son, Carlson, & Grootswagers, 2022). For instance, Moshel
et al. (2022) showed that electroencephalography (EEG) ac-
tivity can be used to decode whether participants processed
real human faces or the faces created using GANs. Different
than the behavioral findings that can ascertain whether partic-
ipants can distinguish between real and synthetic faces, EEG
studies allow for monitoring the actual process of determin-
ing whether a face is real or synthetic. It may be the case that
a human perceiver processes a (real or synthetic) face stimu-
lus through a series of processing stages, with some of these
stages indicating differential processing of real vs. synthetic
faces. Those brain imaging techniques sensitive in the time
domain can help uncover a cascade of different sub-processes
regarding face processing.

EEG and magnetoencephalography (MEG) both have a
high temporal resolution and thus are particularly suitable
to studying face processing as it unfolds over time. Prior
MEG work highlighted the dynamic nature of face processing
and that it proceeds in a coarse-to-fine fashion (Dobs, Isik,
Pantazis, & Kanwisher, 2019; Wardle, Taubert, Teichmann,
& Baker, 2020). For example, illusory faces (i.e., objects
that resemble faces, also called pareidolia) are processed like
faces within the first 100 ms, but within 200 ms the brain
disentangled differing representations and represents parei-
dolia more similar to objects than faces (Dobs et al., 2019;
Wardle et al., 2020). Other neural work also suggests tempo-
ral unfolding of different face dimensions. For instance, face
age and gender are extracted before face identity (Dobs et al.,
2019). Specifically, age, gender, and identity are all extracted
within the first 100 ms, but the perception of age and gender
were shown to arise 20 ms earlier than that of identity. On
the other hand, face familiarity appears to be extracted later
in time, at around 400 ms and onwards. Dobs et al. (2019)
however was not able to clarify whether the familiarity sig-
nature in the brain was related to the activation of memories
that were linked to a specific familiar individual, an affective
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response to a familiar face, or a more general familiarity re-
sponse.

The coarse-to-fine trajectory observed in MEG studies,
namely, first processing age and gender, and then identity is
also reflected in the EEG studies looking at different event-
related brain potentials (ERPs), such as the N170 and the Late
Positive Potential (LPP). Previous EEG studies using differ-
ent types of faces suggested that the earliest phase of face pro-
cessing is the same for different faces, including real human
faces, virtual agent faces, and the faces of dolls (Schindler,
Zell, Botsch, & Kissler, 2017; Wheatley, Weinberg, Looser,
Moran, & Hajcak, 2011). Specifically, the N170 response,
which peaks 140 ms – 200 ms post-stimulus onset, was of
comparable magnitude in response to real human faces and
doll faces (Wheatley et al., 2011) and in response to real hu-
man faces and virtual agent faces (Schindler et al., 2017). On
the other hand, a larger LPP response, which peaks 400 – 600
ms post-stimulus onset, was found for real compared to vir-
tual agent faces (Schindler et al., 2017) and for real human
faces compared to doll faces (Wheatley et al., 2011). How-
ever, there also exists research pointing to a larger LPP for
virtual agent than real human faces (Cheetham, Wu, Pauli, &
Jancke, 2015). Despite the discrepancies, these results may
be interpreted as the evidence that initially the brain is attuned
to the identification of the basic face pattern as indicated by
the presence of the early N170 response, followed by the pro-
cesses relating to higher-order evaluation as indicated by the
LPP that peaks later in time.

Overall, while there exists some research regarding the
neural representation of real human and virtual agent faces,
there is scarcity of studies that investigate the processing of
real and high-quality virtual agent faces over time. Crucially,
there exist inconsistencies in the current literature with re-
spect to the late stage of processing of real human faces and
virtual agent faces.

The current paper adds to the existing literature by clarify-
ing whether a stronger LPP response is evoked to real or vir-
tual agent faces, as well as how real human and virtual agent
faces are processed dynamically in the brain, a question rel-
evant to different domains within the cognitive sciences, in-
cluding psychology (face processing), artificial intelligence
(embodied agents), linguistics (multimodal communication),
and education (intelligent tutoring systems).

We conducted an EEG experiment in which participants
were presented with a set of real human faces intermixed with
high-quality virtual agent faces. Participants were asked to at-
tend to different faces while their EEG activity was recorded.
Based on previous literature (Schindler et al., 2017; Wheatley
et al., 2011), we predicted that real human and virtual agent
faces would evoke a comparable N170 response, whereas
the amplitude of the LPP, associated with elaboration, emo-
tional engagement and episodic memory encoding (Schupp,
Flaisch, Stockburger, & Junghöfer, 2006), would differ sig-
nificantly between real human faces and virtual agent faces.

Method
Participants
Twenty-one students (17 females, 4 males, Age: Mean =
19.76, SD = 2.14) took part in this experiment and received
course credit for their participation. All participants had nor-
mal or corrected-to-normal vision and were right-handed.
They received information about the experiment and gave
informed consent. The experiment was approved by the
Research Ethics and Data Management Committee of the
Tilburg School of Humanities and Digital Sciences (identi-
fication code: REC2019/03).

Stimuli
Images used in the experiment consisted of two types of color
images: (1) photographs of human faces, and (2) high-fidelity
virtual agent faces (Figure 1). Human face photographs (N
= 32, half female) were obtained from the Chicago Face
Database (CFD) (Ma, Correll, & Wittenbrink, 2015). Since
all images came from the CFD, they were all equivalent on
low-level image characteristics and aspects such as attractive-
ness. The images of virtual agent faces (N = 32, 18 female
faces) were either obtained from the Internet (N = 25, 13 fe-
male faces) or from the agents that were developed in-house
(N = 7, 5 female faces) using photogrammetry, a technique
of 3D scanning (Foster & Halbstein, 2014). To gather the
images from the Internet we used the following criteria: (1)
the photographs of the virtual agent face had to be of high
quality, (2) the face had to be presented in frontal view, and
(3) the face was not covered with hair that obscured facial
features. Neither virtual agent, nor human images were ma-
nipulated. To prepare stimuli, both human and virtual agent
faces were cropped to an oval to expose only the face, remov-
ing all non-facial information (e.g., hair). All images had a
constant height (800 pixels) and a slightly varying width due
to inherent variation in the facial width (from 550 to 650 pix-
els).

Figure 1: Example of stimuli, showing two high-quality vir-
tual agent faces on the left and two human faces on the right.

Even though our stimuli were not controlled for low-level
characteristics, our selected images were comparable in size
and viewpoint. We chose not to control for low-level features
for two main reasons: (1) even with respect to the early com-
ponents, such as N170, it has been shown that they are largely
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unaffected by low-level characteristics of stimuli (Bentin et
al., 2007), and (2) the stimuli used in the current study had
previously been employed in two behavioral studies explor-
ing perception and memory (Vaitonytė et al., 2021; 2022).
Thus, we aimed to maintain consistency in stimuli across
studies to facilitate result interpretation.

Procedure
Before commencing the experiment, participants were
screened for neurological disorders (e.g., epilepsy and mi-
graine). They then read an information letter, signed an in-
formed consent form, and filled in a demographic question-
naire asking about their age, gender, ethnicity, handedness,
and whether they had normal or corrected-to-normal vision.
Next, the experimenter provided verbal instructions about the
experiment nature, set up and the expectations from the par-
ticipants (e.g., minimizing movement during EEG recording).
The experiment presented face images one by one on the
computer screen. Participants were instructed to sit still and
focus on each image. No specific cognitive task was assigned
following previous literature (Schindler et al., 2017; Wheat-
ley et al., 2011). Once seated, participants first saw a brief
introduction and were familiarized with the procedure by be-
ing presented with three practice images (one virtual agent
face and two real human faces). These practice trials were
not included in the analysis. Next, the experimental images
were presented. The 32 virtual agent face images and 32 hu-
man face images were presented on a white background semi-
randomly (different randomization lists were used) using Psy-
choPy, an open-source software based on Python (Peirce,
2007). The images were displayed on a monitor with a 60
Hz refresh rate and 2560 × 1440 resolution. Each trial con-
sisted of presenting a face stimulus for 1,000 ms, with the in-
terstimulus interval being jittered between 700 ms and 2,700
ms, during which a black fixation cross was presented cen-
trally on the screen. Participants were seated approximately
40 cm from the computer monitor and the images subtended
14.3 × 19.9 degrees of visual angle. The stimulus presenta-
tion lasted for about 4 minutes.

EEG Signal Acquisition
Data collection took place in a quiet and dimly lit room. A
wireless EEG cap, g.Nautilus Research (g.tec medical engi-
neering GmbH, Austria), was used to record continuous EEG
brain signals. This cap is lightweight, with 32 prefixed elec-
trodes over frontal, central, temporal, and parietal regions
according to 10-20 International Electrode Placing System
(Figure 2). The signal was digitized at 24-bit resolution and
recorded at a sampling rate of 250 Hz. The ground electrode
was mounted on the right earlobe (there is no reference elec-
trode as the system is bipolar). To acquire high-quality EEG
signals, conductive gel was applied at each electrode site to
ensure good contact with the scalp and reduce impedance.
The continuous EEG data were subjected to an online band-
pass filter between 0.5 Hz and 60 Hz, and a notch filter be-
tween 48 Hz and 52 Hz.

Figure 2: Electrode placement according to 10-20 system.
EEG data were acquired using 32 electrodes, of which 4 were
used for the analyses, P7, P8, and Cz, Pz as marked in light
yellow.

Data Pre-processing and Analysis

EEGLAB (Delorme & Makeig, 2004; Version 2023.0) run-
ning under Matlab (V2023a) was used for data pre-processing
and analyses. First, data was re-referenced using the Com-
mon Average Reference method. Since the data was already
filtered online with a low- and high-pass filter, we did not fil-
ter the data offline. We then segmented the data into epochs
of 1,200 ms, beginning 200 ms before the trial onset (stim-
ulus presentation) and ending at the end of the trial. The
200 ms before trial onset was used for baseline correction.
Next, we utilized a semi-automatic rejection routine to elim-
inate artifacts from the data. Independent Component Anal-
ysis (ICA) using the “runica()” function was applied on the
epoched data. Additionally, the data were visually inspected
to identify and discard any epochs that still contained artifacts
following the ICA procedure (a total of 1.56% of trials were
rejected for all participants). To calculate the event-related
potential, the time-locked average (time-locked to stimulus
onset) over all retained trials was computed separately for the
two conditions, virtual agent faces (henceforth, agent) and
real human faces (henceforth, human), for each participant.
Following previous research, N170 was scored as the mean
activity between 140 ms and 200 ms from lateral posterior
electrodes, P7 and P8, at which N170 is typically maximal
(Eimer, 2011). The LPP was scored as the mean activity be-
tween 400 ms and 600 ms from midline central and posterior
sites: Cz and Pz, where it also tends to be maximal (Hajcak,
Moser, & Simons, 2006). The obtained mean amplitude val-
ues were subjected to a statistical analysis in R (R Core Team,
2013; version 4.2.2). Since the data were normally distributed
paired t-tests were used to verify our hypotheses. The signifi-
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Figure 3: ERPs elicited by agent and human faces at parietal
electrode sites, P7 (top) and P8 (bottom). N170 is indicated
by a negative deflection at around 180 ms that is identical
for both agent and human faces. The shaded area shows the
standard error.

cance threshold was adjusted using the Bonferroni correction
method for two comparisons at two different electrode sites
(p < .05/2 = .025).

Results
As shown in Figure 3, presenting human and agent faces
elicited N170 response between 140 ms – 200 ms, which did
not differ in amplitude between the two conditions neither at
P7, t(20) = 0.05, p = .96 (MHuman = -1.34, SDHuman = 3.61;
MAgent = -1.35, SDAgent = 3.35), nor at P8, t(20) = 0.18, p =
.86 (MHuman = -1.92, SDHuman = 2.91; MAgent = -1.98, SDAgent
= 2.91).

Presenting human faces elicited LPP responses that
showed a trend of being larger than LPP responses to agent
faces at Cz, t(20) = 2.25, p = .03 (MHuman = 0.84, SDHuman
= 1.18; MAgent = 0.30, SDAgent = 1.67) as shown in Figure 4.
However, at Pz, the LPP between human and agent faces did
not differ, t(20) = 0.18, p = 1.46 (MHuman = -2.28, SDHuman =
2.10; MAgent = -2.62, SDAgent = 2.22). Albeit not significant
when taking multiple comparisons into account, overall, the
results indicated the trend in the predicted direction, with hu-
man faces leading to larger late positivity compared to agent
faces, while the early N170 response was identical for human
and agent conditions.

Discussion
The current study investigated the neural processing time
course during the observation of real human faces and high-

Figure 4: ERPs elicited by agent and human faces at parietal
and centro-parietal electrode sites, Pz (top) and Cz (bottom),
respectively. LPP tends to be larger for human compared to
agent faces as indicated by a more positive deflection at Cz for
human than agent faces from 400 ms onwards. The shaded
area shows the standard error.

quality virtual agent faces, in particular, examining the early
and the late stages of processing as measured by EEG. The
results revealed that both types of faces elicited a comparable
N170 response while the LPP response was slightly larger for
human faces than virtual agent faces, although the difference
between real and virtual agent faces did not reach adjusted
significance threshold. Overall, ERPs were in the predicted
direction, showing neural processing that was similar for both
types of faces at an early stage of observation but then tended
to be different at a later stage.

These findings contribute to the existing literature on N170,
indicating its responsiveness to various types of faces, includ-
ing emoticons, stylized faces, doll faces, virtual agent faces,
and real human faces (Mustafa & Magnor, 2016; Schindler
et al., 2017; Wheatley et al., 2011). Our study demonstrated
that high-quality virtual agent faces elicited an N170 response
that was indistinguishable from the response evoked by real
human faces. This result is particularly interesting in light of
our previous behavioral results using largely the same set of
virtual agent faces as in the current study (Vaitonytė et al.,
2021). Specifically, a computational analysis revealed that
virtual agent faces had fewer corneal reflections in the eyes
and smoother skin texture compared to real human faces,
which was further corroborated in perceptual experiments,
showing that observers identified virtual agent faces as agent-
like based on these subtle discrepancies in the eyes and the
skin. Despite this, as shown by the current study, at the early
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stage of processing, the brain appears to be less concerned
with minute facial details so long as the stimulus presents a
face pattern—at least when assessed by N170.

Regarding the LPP component, our findings largely align
with prior work by Schindler et al. (2017), showing larger
LPP values for human faces relative to virtual agent faces.
However, the similarity of the LPP waveforms in the current
study for high-quality virtual agent and real human faces sug-
gests that these virtual agent faces might partially tap into
higher-order evaluation, affective processes, and memory en-
coding expected for fully-fledged human faces (Schindler et
al., 2017; Wheatley et al., 2011).

Does this then mean that the brain cannot differentiate be-
tween the highest quality computer-generated/synthetic faces
and real human faces? While a recent study by Moshel et al.
(2022) found that it was possible for machine learning clas-
sifiers to decode from EEG activity whether GAN images
of faces were perceived as realistic or not, behavioral stud-
ies show that perceptually humans struggle to tell apart GAN
faces from real human faces (Miller et al., 2023; Nightingale
& Farid, 2022; Tucciarelli et al., 2022). The current neural
results similarly point to a dissociation between behavior and
the brain. Specifically, while observers can distinguish real
human faces from virtual agent faces (Vaitonytė et al., 2021),
the differentiation between these two classes of faces only be-
gins to manifest at a later stage of neural processing.

In the future, it would be advantageous to investigate and
compare the neural processing of real human faces and virtual
agent faces based on different late ERP components, includ-
ing the LPP and N400. The N400 component, found to be
indicative of integrating and processing semantic information
(Kutas & Federmeier, 2011), has been associated with the un-
canny valley response in humans—a phenomenon where arti-
ficial entities, such as virtual agent faces, provoke discomfort
in humans as they become increasingly human-like (Mustafa,
Guthe, Tauscher, Goesele, & Magnor, 2017); see Vaitonytė
et al. (2023) for an alternative perspective on N400 and the
uncanny valley.

The current findings however need to be considered in a
broader context, acknowledging their limitations. First, as
with many experimental studies, our participant population
primarily included young adult female students. Follow-up
experiments ought to employ a more varied participant sam-
ple to understand how these results generalize to individuals
of differing age and gender. Furthermore, age and gender
taken into account, interactions between the individual char-
acteristics of the human participants and the stimuli need to
be taken into account. Finally, a more informative approach
to examining the processing of real and virtual agent faces
in terms of both temporal and spatial scales would be to in-
volve a simultaneous EEG-fMIR recording, as demonstrated
in Liu, Huang, McGinnis-Deweese, Keil, and Ding (2012).
This hybrid neuroimaging method would make it possible to
understand how LPP amplitudes vary with the engagement
of specific regions within the visual cortex as well as deep

subcortical structures, such as the amygdala, known to be in-
volved in emotional processing of stimuli (Liu et al., 2012;
Sabatinelli, Keil, Frank, & Lang, 2013).

In summary, our results suggest that face processing
evolves from a broad to specific pattern, where the percep-
tual system initially exhibits broad responsiveness to differ-
ent faces, but at a later stage, it shows a heightened response
to faces of high perceptual quality.

Conclusion
Current EEG results provide evidence that high-quality vir-
tual agent faces elicit an early-stage neural response, repre-
sented by the N170 component, that is indistinguishable from
the response evoked by real human faces. This suggests that
the early stage of face processing is primarily concerned with
the presence of a face template rather than minute details
or perceptual quality, at least when assessed by N170. Ad-
ditionally, our findings suggest that virtual agent faces can
to some extent tap into the processes associated with fully-
fledged faces; however, a slight difference in the LPP re-
sponse between real human faces and virtual agent faces sug-
gests that real human faces may still evoke stronger associa-
tions with higher-order evaluation. These results contribute to
the understanding of the temporal unfolding of face process-
ing and highlight the potential of high-quality virtual agent
faces to engage similar neural mechanisms as real human
faces. The relevance of these findings spans across the devel-
opment of embodied agents, their utilization in fields ranging
from healthcare to education, and adds to our understanding
of the psychological processes underlying human face per-
ception.
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