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Abstract 

We consider contributions to the heavy quark potential, in the AdS/CFT approach to 
SU(N) gauge theory, which arise from first order fluctuations of the associated,worldsheet 
in anti-deSitter space. The gaussian fluctuations occur around a classical worldsheet con
figuration resembling an infinite square well, with the bottom of the well lying at the AdS 
horizon. The eigenvalues of the corresponding Laplacian operators can be shown numeri
cally to be very close to those in flat space. We find that two of the transverse world sheet 
fields become massive, which may have implications for the existence of a Luscher term in 
the heavy quark potential. It is also suggested that these massive degrees of freedom may 
relate to extrinsic curvature of the QCD string. 
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1 Introduction 

Maldacena's conjecture [1], relating the large N expansion of conformal fields to string 
theory in a non-trivial geometry, has led to the hope that non-perturbative features of 
large N theories may be understood. Witten's extension [2] of this conjecture to non
supersymmetric gauge theories, such as large N QCD in four dimensions, provides a new 
and elegant approach to the study of gauge theory at strong couplings. 

In Witten's approach the heavy quark potential has a linear behaviour [2-5]. In this 
approach the temperature T in the higher dimensional theory acts as an ultraviolet cutoff, 
and the strong coupling g~ M N is the bare coupling at the scale T. The problem is, of course, 
how to extend this to lower coupling, and whether one encounters a phase transition on 
the way, as discussed in [6]. 

In the approach of refs. [2-5] the interquark potential has been extracted at the saddle 
point. In the present paper we extend this by including fluctuations of the world sheet 
to first order. The present paper was initiated as a sequel to a previous letter [7], where 
we have called attention to two features of strong-coupling, planar QC D3 in the saddle 
point approximation, which do not entirely agree with expectations based on lattice QCD. 
First, there is the fact that the glueball mass is essentially independent of string tension 
in the strong-coupling supergravity calculation [8], and goes to a finite constant in the 
(J ---+ 00 limit. This is quite different from the behavior in strong-coupling lattice gauge 
theory, where a glue ball is understood as a closed loop of electric flux whose mass tends to 
infinity in the infinite tension limit, and it suggests that truly different physical mechanisms 
may underlie the mass gap in the two cases. The second point concerns the existence of a 
universal Luscher term of the form -c/ L in the interquark potential. Here c is a numerical, 
coupling independent, constant. Recent lattice Monte Carlo simulations [9] indicate the 
presence of such a term in QCD3 , with a value of c consistent with that of a bosonic string, 
although there is a caveat that -c/ L represents a quite small correction to the dominating 
linear potential, and the magnitude of c is not yet well determined numerically. Following 
the approach of refs. [2-5], we have found that the interquark potential extracted from 
the saddle point action of a classical worldsheet in Ad85 x 85 , has no Luscher term at all, 
which seems to contradict the existing trend in the Monte Carlo data. 

It is quite possible, however, that the Luscher term arises beyond the classical world
sheet approximation, when quantum fluctuations of the worldsheet in Ad85 x 85 are taken 
into account [10-12]. This question is the main motivation for the work reported in the 
present paper. 

In Section 2 we study the background field in the saddle point for large interquark 
distances; It turns out that the radial AdS coordinate U [1] of the string worldsheet is 
situated at the horizon, except for a small interval in parameter space near the end points 
(J = ±L/2, where U is forced to shoot up to infinity. In Section 3 we introduce Kruskal-like 
coordinates, and discuss the near-flatness of this metric at the horizon, in the g~MN ---+ 00 

limit. The eigenvalues and eigenfunctions for the relevant Laplacians are then shown to 
be essentially the same as in the completely flat case, with the contour of the classical 
worldsheet bringing the problem into the form of an infinite square well. 
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In Section 4 we discuss the expansion of the action to the first non-trivial order. It 
is found that two of the transverse worldsheet coordinates become massive, and do not 
contribute to the Luscher term. We argue that, due to the vanishing curvature in the 
g~MN -+ 00 limit, the fermion and ghost contributions will have essentially flat-space 
contributions to -c/ L, although we do not claim to show this explicitly. This means that 
the Bose-Fermi cancellation of the Luscher term is incomplete, leaving a net contribution 
of the type +c/ L, with opposite sign to the one extracted from lattice Monte Carlo data. 
We emphasize, however, that this is a rather tentative conclusion, which assumes that 
there are no surprises coming from the fermion and ghost sectors. 

So far these results refer to QCD in three dimensions. Section 5 contains a brief 
discussion of the four dimensional case. Finally, in section 6, we suggest that in four 
dimensions the massive world sheet fields may relate to extrinsic curvature terms in an 
effective QCD string theory. 

2 The saddle point field for large interquark distances 

As explained in ref. [2,4], spatial Wilson loops in D=3 planar Yang-Mills theory are com
puted, in the supergravity approach, from the dynamics of worldsheets in the near-extremal 
background metric 

2 , {U'i ( 4/ 4) 2 " 2) R2 du
2 2 r.2} ds = a R2 (1- UT U dt + L:dXi + U21- Ui/U4 + R dH5 . (1) 

The boundary of the worldsheet is a rectangle in the Xl -X2 plane at U = 00, whose interior, 
specified by Xl = <7, X2 = T with 1<71 ::; ~, and ITI ::; ~, parametrizes the worldsheet of a 
L x 1:' Wilson loop with Y »L. The classical worldsheet, in the Y -+ 00 limit, is given 
by Xl (<7, T) = <7, X2(<7, T) = T, and U(<7) determined implicitly from 

L ' R2 roo dy 

"2 - <7 = Uo }u/uo J(y4 - 1)(y4 - 1 + €) 
(2) 

with 
Uo = U(<7 = 0), € = 1 - ui/u~, R2 = J47rg~MN, UT = R2b (3) 

The metric (1) is relevant for the calculation of the boson and fermion contributions 
to the action. In general, since the background field U = U(<7) is a non-trivial function of 
<7, one cannot expect that world sheet supersymmetry is preserved in the presence of this 
background field. On the other hand, a graph of U(<7) in the range <7 E [-~,~] looks very 
much like an infinite square well at large L, as seen in Fig. 1. Starting at U( -~) = 00, U(<7) 
drops precipitously to U(<7) ~ Uo ~ UT , remaining almost constant in a range [~+d, ~ -d] 
where d « L, and then shoots back up to U = 00 at <7 = ~. The fact that the classical 
worldsheet coordinate U (<7) is nearly constant for most of the range of <7 is, of course, very 
relevant for a saddlepoint calculation, where we include the effect of gaussian fluctuations 
around the classical worldsheet. 
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Figure 1: String contours U(x) for various E = 1 - (U*/U~), in units of UT = R2b. The 
asymptotes of each curve lie at x = ±L/2. Note the approach to the horizon (here at 
U = 1), as E --7 O. 

We will need expressions for U(a) both near and away from a = ±~. Denoting y(a) = 
U(a)/Uo, we have 

dy/da = bJ(y4 -" 1)(y4 - 1 + E) 

where E = 1 - U*/U~ was found [7] to be related to the interquark distance L by 

Away from the endpoints at a = ±~ make the trial expansion 

y(a) ~ 1 + 6(a), with 16(a)1 ~ 1. 

and then linearize eq.(4), 

d6/da ~ 2bJ6(46 + E), 

which is valid as long as 6 stays small. Integrating we obtain 

In(205 + V 46 + E) = 2ba + In-lE, 

(4) 

(5) 

(6) 

(7) 

(8) 

where we used the boundary condition that y = 1, and hence 6 = 0, for a = O. Solving 
this equation for 6, we get 

y(a) ~ 1 - exp( -2bL)/8 + [exp( ~4b(L/2 + a)) + exp( -4b(L/2 - a))]/16. (9) 
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Figure 2: A a/(L/2) versus U/Uo plot of the exact solution for bL = 30, compared to the 
two asymptotic solutions. The solution valid for a :::::: L/2 approaches the exact solution 
near y = 1.25, whereas the lal < L/2 solution starts to deviate from the exact solution 
near a:::::: 0.925(L/2). 

Thus, for lal < L/2 the corrections to y = 1 are exponentially small, and U(a) :::::: Uo is 
essentially constant. 

For lal -+ ~ this analysis breaks down, since 8 is not small. From the relation 

(10) 

using Uo :::::: UT = R2b, we see that 

R 2b 
U :::::: (3b(L/2 _ a))1/3' for a -7 L/2 (11) 

in the neighbourhood of lal -+ ~. A plot of the exact solution for y(a) at bL = 30, and 
the two asymptotic solutions (9) and (11), is shown in Fig. 2. 

According to eq. (9) and Fig. 1, the classical solution for U(a) is almost constant in 
some interval [-~ + d, ~ - d]. To estimate d, we can first ask for the value close to a = ~ 
where the asymptotic solutions (9) and (11) are equal. This happens for . 

a .63 
L/2 :::::: 1- bL· (12) 

A more stringent criterion,. arrived at numerically, is to ask where y(a) deviates from 
y = 1, at large L, by more than 10-3

. With this criterion for d, we find that d < 1.5/b, 
approximately, obtained from the solutions for y(a) at various L shown in Fig. 3. 
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Figure 3: A plot of 1- al(LI2) as a function of y = UIUo. The curves from the top to the 
bottom correspond to bL=200, 400, 800, and 1600, respectively. If we fix the upper limit 
on d by requiring that y should only deviate from 1 by 10-3, corresponding to the left side 
of the figure, we see that 1 - (J I (L 12) decreases like 1 I L to a high accuracy, because in 
going from the top to the bottom at y = 1.001, the distance between the successive curves 
decreases by a factor two. 

3 Eigenvalues of Laplacians in the AdS background 

We would like to make an expansion around the saddle point. In order to do this, it is 
convenient to use different variables than U and t, because of the singular form of the 
metric (1). We therefore introduce the Kruskal-like coordinates for U > UT 

T - J2 R2 -tr/4 tan- 1 (U/UT) V U - UT (2UT t) 
- U

T 
e e U + U

T 
cos R2 ' 

. Z - J2 R2 . -tr/4 tan-1(U/UT)VU - UT . (2UT t) 
- U

T 
e e U + U

T 
sm R2 . (13) 

These expressions are valid in Euclidean space, and in Minkowski space the sine and 
cosine are replaced by the hyperbolic sine and cosine, respectively. The time variable t is 

. periodically identified by t ---7 t + 7r Ib, with UT = bR2. In these coordinates 

ds2 = ' { (U
2 + Uj,)(U + UT )2etr/2 -2tan-1(U/UT) (dT2 dZ2) 

a 8R2U2 e + 

U
2 

""' 2 2 2} + R2 L: dX i + R dOs , (14) 

so that the metric is now symmetric in terms of the new variables Z and T. As usual with 
the (Euclidean) Kruskal metric, U should be considered as a function of T2 + Z2 through 
the equation (U > Ur ) 

2R4 -tr/2 U TT 

Z 2 T2 _ e 2tan- 1(U/UT) - UT 
+ - , Uj, e U + U

T
' 

(15) 
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It should be noticed that the metric (14) is flat up to exponentially small terms, except at 
the end points u = ±L /2. 

The saddlepoint contribution to the spatial Wilson loop is given by simply evaluating 
the N ambu action of the classical worldsheet in this' metric [2,4]' and is found to be 

u,2 
Sel = 27r~2YL (16) 

We are interested now in the contribution from gaussian fluctuations around the saddle
point, which involve the bosonic, fermionic, and ghost degrees of freedom, in the limit of 
very large R. 

In the R ---t 00 limit the curvature of the 5-sphere (as well as the curvature of AdS space) 
vanishes, and the contribution of each degree of freedom associated with the 5-sphere 
is identical to the corresponding flat-space value, i.e. -7r Y /12L. Likewise, fluctuations 
around the classical worldsheet in AdS space in the neighborhood of the horizon, i.e. 
u E [-~ + d, ~ - d], are essentially fluctuations in flat space, and the relevant differential 
operators are either the flat-space 2D Laplacian, or, as we shall see in the next section, 
this operator plus a mass term. Thus, for example, the eigenstates 'I/J(u, T) of 

(17) 

will be identical to eigenstates of the flat-space 2D Laplacian, i.e. 

'I/J(u, T) ex: sin[a(u + c)]eiWT (18) 

away from the u = ±~ endpoints. The eigenvalue spectrum is determined by the boundary 
conditions 'I/J(u, T) = 0 at u = ±~ (meaning that fluctuations vanish at the Wilson loop 
perimeter). In flat space these conditions yield the usual result that 

flat _ n7r 
an -Y' c= L/2 (19) 

In AdS space the values for a are slightly different, owing to the fact that eq. (18) breaks 
down for ~ -lui < d. Very close to the endpoints, the operator [iit becomes aaU2(u)aa. We 
solve for the eigenfunctions in this region by making separation ansatz 'I/J(T, u) = 8(T)S(U), 
and find for the eigenvalue equation ai(U2ad'l/J = A'I/J near the end points 

2 2 _ - _ 2/3 _ _ . - _ {3b)2/3 
auS + 3(L/2 _ u) auS A(L/2 u) S )"S - 0, where A - R4b2 A. 

0;8 = -),,8. (20) 

Here).. is a separation constant. The equation for 8 is the same as for the 02 operator, 
whereas for the function S in the neighborhood of the endpoints there are two solutions, 
namely one for which S vanishes, in u ---t ~ limit, as 

S ~ {:onst. (L/2 _·u)5/3 (21) 
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and one where S goes to a non-zero constant for a ~ ~. The solution vanishing at the 
endpoints is the one which is relevant for worldsheet fluctuations. Away from the endpoints, 
'¢(a, T) has the harmonic form shown in eq. (18). T~e "end point solution" (21) vanishes 
more rapidly than the sine function near a = ±~, which is due to the fact that in eq. (20) 
the first derivative Sf is multiplied by a large factor, and hence is forced to be small. 

We can now make a rough estimate of how the eigenvalues of 8'tt compare to those of 
the flat-space operator, based on the fact that '¢(a, T) falls much more rapidly to zero, near 
the endpoints at a = ±~, than the sine function. This allows us to approximate '¢(a, T) 
as a harmonic function in the range [-~ + d, ~ - d], and equal to zero outside this range. 
Then 

Ian - a~latl n7r n7r 
L-d - L 

flat '" n7r 
an L 

'" O[~] 
'" O[b~] (22) 

Since the flat-space eigenvalues for the massless Laplacian lead to a Luscher term of 0(1/ L), 
these small deviations can only lead to a further correction, in the AdS case, of still higher 
order in 1/ L. For the massive Laplacian the situation is, however, different, as we shall see 
in the next section. 

A similar observation presumably applies to the fermionic and ghost degrees of freedom. 
The associated differential operators in a, T again only deviate from the corresponding flat
space case in a region near the endpoints, where the derivatives are multiplied by a factor of 
U (a); this region is a very small fraction (of order 1/ L) of the full interval. Eigenmodes of 
these operators will have to be nearly constant in the "shoot up" region near the endpoints, 
where U(a) ~ 00. However, as in the case of the bosonic modes, this slight modification 
of the eigenmodes will only affect the values of the determinants at higher orders in 1/ L. 

4 The bosonic action and the necessity of massive 
fields 

We want now to study the bosonic action, keeping only quadratic terms in the 8 transverse 
variables (Z,T, X3, .:-;):We start from the partition function 

where we integrate over the 10 variables X M, and insert a factor v'G in order to have a 
measure which is invariant with respect to changes of the coordinates entering the AdS5 x 
S5' We also want to choose a gauge where a, T are identified with XI, X2. The measure 
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factor in (23) can then be exponentiated in the form 

(24) 

Here h is the measure associated" with the world sheet variables, so v'ii = ciU2 / R2, and 
A is a ultraviolet cutoff. This form of the exponentiation is reparametrization" invariant. 
Because of the absence of a 1/21ra' factor in the exponentiated version of va, this factor 
will only contribute to terms of order ci in the effective action. We shall not consider this 
order, and we therefore ignore the va contribution in the following. 

Now, if we expand the action, keeping only second order terms, we get 

s ~ (1/21r) ! d2a {U2 / R2 + (1/2) [(Ui/ R2) ((Oi Z? + (oiT)2 + (Oi X 3)2) + R2(OiyM)2]} , 
(25) 

where the y's refer to the 5-sphere, and where we took Xl, X2 to be longitudinal. Of course, 
it is important to keep all second order terms. To this end, we need to notice that the U2 

in the first term is given as a function of Z, T. Exactly at the horizon Z = T = 0, and 
Z2 + T2 therefore represent the small, second order deviations of the radial variable from 
its value at the horizon, 

U ~ UT + (Ufo/ R4)(Z2 + T2). (26) 

Inserting in eq. (25), we find to 2nd order in the fluctuations 

s ~ (1/21r)! d2a(Ui/R2 + (Ui/2R2)[(OiZ)2 + (oiT)2 + (4ui/R4)(Z2 +T2)"] 

+(Ui/2R2)(OiX 3)2) + (R2/2)(OiyM?), - (27) 

which shows that the fields Z, T have mass terms with coefficients 4Uj. / R4 = 4b2. Thus two 
bosonic degrees of freedom, originally associated with the U, t coordinates, have become 
massive, and it is not hard to see why such a "potential" term must exist: The boundary 
of the worldsheet lies at U = 00, yet the preferred position of the string, as L -+ 00, lies 
at the black hole horizon Z = T = o. The first term in the integral gives the leading 
contribution (U'f,/21r R2)y L, corresponding to a 3D string tension 

Uj. R2b2 
73 = 21rR2 = ~ (28) 

derived in refs. [2,4,5]. 
The Gaussian integral over Z, T can be performed, e.g. by use of analytic regularization 

[13] (lnx = ox/3 /oj3 for j3 -+ 0). Since Y -+ 00, the sum over the "time-eigenvalues" can 
be replaced by an integral, which can be performed to give 

00 

tr In( - V'2 + 4b2
) = -(y/-J4;)(%j3)(r(j3 - 1/2)/r(j3)) 'L)(n1r / L)2 + (4b2))-/3+l/2 (29) 

n=l 
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with j3 --+ o. The sum over n can be carried out and the limit j3 --+ 0 can be performed to 
give [13] 

YL ' [ 2 001 j tr In( _V2 + 4b2) = --;-b2( ~1 + In(4b2/J.£2)) - Yb 1 + ;: ~ ;;K1(4nbL) . (30) 

Here p, is an ultraviolet cutoff, which occurs in the heat kernel method, which gives cutoff 
dependent terms proportional to p,2 and b2 In p,2. The p,2 terms are present for all fields, 
and if we add the fermions they cancel completely. The logarithmic terms only occur for 
the massive fields (see e.g. [13]), and they combine with the b2ln( 4b2 ) term to give the 
result exhibited in (30). 

Using the asymptotic expansion of the Bessel function valid for large L, we get 

tr In(-V2 +4b2) ~ - YL b2(_1 +In(4b2/p,2)) - Yb [1 + ~e-4bL + ... j. 
~ 2~bL 

(31) 

This can be compared to the massless case, 

tr In( _V2) = -~Y/12L. (32) 

It can be shown that this result follows by rewriting the sum over Bessel functions in eq. 
(31), by use of the following relation 

00 

L K1 (nz)/n = ~2 /6z + (1/4)Cz + (1/8)z In(z/(4~)2) - z/16 + ~ /4 
n=1 

+ ~ 'f (Jl + 4[2~2/Z2 - 2l~/z - Z/4l~) , 
1=1 

(33) 

where C is Euler's constant, and taking the limit b --+ o. The first term on the right 
hand side gives the desired result for b --+ 0 if we take z = 4bL. For bL large, the above 
expression is not useful, and the asymptotic expansion Df the Bessel functions should then 
be used. 

We have stressed, in the previous section, that curvature in Ad85 x 85 tends to zero in 
the R --+ 00 limit, and string fluctuations in the neighborhood of the horizon are essentially 
fluctuations in a flat-space metric. That being the case, how can we find a mass term in eq. 
(31) of O(b2 ), which is finite in the R --+ 00 limit? At first sight, this seems a violation of 
the principle of equivalence. To understand what is going on, we first note that the metric 
coefficients in eq. (14) are all of order R2 near the horizon. The integration in (27) runs 
from -L/2 to +L/2, but in fact the proper time along the horizon is of order RL. If we 
make a trivial change of variables, simply rescaling all coordinates (and parameters a, r) 
by a factor of R so metric coefficients are all O( 1) near the horizon, then the contribution 
to the action from the region along the horizon is approximately 

8 ~ 
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Here the mass term evidently tends to zero as R -7 00, as one would expect from the 
equivalence principle. But this decrease is precisely compensated by the growth of the 
worldsheet along the horizon (as seen in the limits of integration) as R increases. The 
end result of a ga,:!ssian integration is, of course, id~ntical to eq. (31); one finds a finite, 
R-independent mass term in the trace log. 

For the bosonic part we thus have two massive and six massless degrees of freedom. 
The contribution from the bosonic part of the string to the potential is thus 

R2 b
2 

( 2 4b
2 

) 7r Potential from bosons = -- 1 - R2 In -2 L - -L· 
27r e~ 4 

(35) 

We see that bosonic contributions are responsible for a logarithmic correction to the lowest 
cirder result for the string tension (28), i.e. 

7J = R2 b
2 (1 _ ~ In 4b

2
). . 

27r R2 e~2 
(36) 

As g~MN -7 0, the curvature of AdS space tends to zero. If the contributions from the 
fermions and ghosts can really be obtained in the flat space limit near the horizon, as 
argued in the last section, then their inclusion leads to a Luscher term +rr /12L, which is 
the opposite sign to what has been observed in lattice calculations. However, the fermions 
in the full AdS background really need to be investigated further, before this can be 
considered as a safe conclusion. 

5 The potential in four dimensions 

Let us consider the relevant metric [4] near the horizon U ~ UT , 

ds2 R 3/ 2 dU2 3u,1/2 
-, ~ ~ U U + RJ;2 (U - UT )dt2 = dr2 + r2d02 = dX2 + dy2, (37) 
a 3UT - T 

with X = r cos 0, Y = r sin 0 (X, Y thus correspond to the coordinates previously denoted 
by T, Z in the three dimensional case). Here we left out the four-sphere as well as the four 
x-coordinates, since these are not important for the following. Instead of finding the full 
Kruskal coordinates, we only look at the local ones near the horizon, 

(38) 

so 

(39) 

Thus 
ds2 9UT 2 2 2 
a' .~ 4R3 r dt + dr . (40) 
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We have 
(41) 

Because of periodicity of the angle, Le. identification of () -+ () + 211", corresponding to 
t -+ t + liT (Le. T = bI1l"), one therefore needs 

9U . 3U1/ 2 

(}2 _ T 2 . T. T 
- 4R3 t ,I.e. = 2g

s
V7fN· (42) 

Using (39) we then have 
3U1/

2 
. 

U = UT + 4R;/2 (X2 + y2). (43) 

We can now proceed as in the 3-d case. The expanded action is 

(44) 

Using 

U3
/
2 ui/2 9UT 2 2 

R3/2 ~ R3/2 + 8R3 (X + y ), (45) 

this leads to an X, Y (former Z, T) -dependent integrand 

(46) 

with mass parameter 

(47) 

We can now compute the contribution to the potential using the results in ref [13], and 
adding the leading terms (ignoring terms which are exponentially small), we get the string 
tension in four dimensions by use of analytic regularization (lnx = oxf3 loj3 for j3 -+ 0) 

14 = ~;~MNT2 [1 + 29::N (I-In 4,,~;2)] 
87f 2 NT2 [_ 27 I 47f2T2] 
27 gYM 1 2g?MN n eJ.l2 . 

(48) 

Here J.l is the arbitrary scale introduced in the last section. 
We end this section by remarking again that the effective flatness of AdS space, in the 

strong-coupling limit, suggests that the fermi and ghost degrees of freedom contribu~e to 
the Liischer term as in flat space. If this is so, then we again have the following net result 
for the Liischer term 

(49) 
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in the quark-antiquark potential. This should be compared to what has been used in fits 
to the lattice Monte Carlo data, namely 

(d - 2}rr 
24L 

7r 

12L' 
(50) 

Thus the magnitude is the same, but the signs are opposite. Since numerical determination 
of the coefficient of the Luscher term in QC D 4 is not yet very precise, further Monte Carlo 
investigation would be welcome. 

Perhaps the shift of sign in (49) can be understood from the result for the bosonic 
string found by Alvarez [14], according to which the potential is given by 

(51) 

Originally this result was derived for large d, but later the result was extended to any d [15]. 
Eq. (51) leads to (50) in the large L limit. The square root singularity below L = Lc is 
connected to the tachyon. The negative sign in the Luscher term (50) is therefore in a 
sense a reflection of the fact that the bosonic string has a tachyon. Perhaps the positive 
sign in eq. (49) is then a reflection that there is no tachyon in the (QCD) string considered 
here. 

6 Massive fields and extrinsic curvature 

One of the most interesting questions in non-perturbative gauge theory, which the AdS/CFT 
correspondence may eventually address, concerns the form of the effective D=4 string the
ory describing the QCD string. In this connection, we would like to make a remark that may 
be relevant for the understanding of the existence of massive fields versus reparametrization 
invariance. 

When the I-loop contributions of two massive and two massless worldsheet modes are 
combined, one finds a result which is strongly reminiscent of string models with extrinsic 
curvature [16]. The extrinsic curvature K!b (=the second fundamental form) is given by 

(52) 

where X(a, r) is is the position vector for some surface, Ni are the normals, and Da is the 
covariant derivative with respect to the induced metric gab = BaX 8bX. There are many 
expressions for the extrinsic curvature. Here we need in particular 

(53) 

Thus the extrinsic curvature is of fourth order in the derivatives. 
It was noticed in ref. [13] that a perturbative expansion of the string with extrinsic 

curvature leads to tr In's coming from massive fields. This can be seen by use of the 
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relation 

trln -/-Lo -\I ) + - -\I (
1 ( 2 AT ( 2)2) 

, 2 271r 

AT 
-trln-

271r' 
(54) 

where /-Lo = 81r ATT2 /27 is the string tension to leading order, and AT is the 't Hooft 
coupling gfMN. The left hand side of this equation combines the Gaussian integrations 
over four world sheet fields: The first term on the left hand side can be taken from two 
of the massless string fields, whereas the second term comes from the two massive fields. 
The combined tr In on the right hand side can be considered as coming from the effective 
action! 

(55) 

where we added the leading term /-Lo YT. However, this effective action can in turn be 
considered [13] as the perturbative version of 

Seff = I d2
a [/-LOyg + 2A,,: ygKta K!b] , (56) 

where (55) arises from (56) by a perturbative expansion of the metric and the determinant 
by use of 

(57) 

keeping only terms of order X 2 • The X's here are 2 dimensional and transverse. In (56) 
there are four X's, two of which are longitudinal, so we are looking at a four-dimensional 
theory of extrinsic curvature, and an effective string of positive rigidity. 2 

For a superstring in flat space the bosonic tr In's exactly cancel the fermionic ones. In 
our case, we have argued that the fermions still live in an effectively flat space. Hence the 
total result of the Gaussian integrations is 

The last term on the right hand side has the i~terpretation in terms of extrinsic curvature 
discussed above, and can be formulated as in eq. (56). The first term on the right hand 
side of (58) can be considered as the contribution from fermions, 

(59) 

Here '¢(a, T) and x(a, T) are two-dimensional Majorana spinors which are also four dimen
sional vectors, and SF should be added to Seff in eq. (56). Also, the boundary conditions 
on '¢ and X are that they should be of the Ramond type. 

IThe last term in (54) can be absorbed in the constant JL, which is anyhow arbitrary: JL2 -t 277rJL2 / AT· 
2In contrast, vortex tubes found in abelian Higgs models appear to have negative rigidity, and may be 

unstable at the quantum level [17]. 
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Thus, at least for QCD4 , we can view the trace log contributions as arising from an 
effective four dimensional string theory, which has both extrinsic curvature and worldsheet 
fermions. It is of interest that in the "effective" picture one does not see all the extra 
dimensions. Of course, these may show up in higher' orders of l/g~MN. 

7 Conclusions 

We have found that two of the bosonic modes of the Maldacena-Witten worldsheet are 
massive. These mass terms are relevant for the existence of a Luscher term in the heavy 
quark potential, since they tend to spoil the bose-fermi cancellation, and they may also be 
related to extrinsic curvature terms in the effective QCD string. Concerning the Luscher 
term, our very tentative conclusion is that such a term appears, and in four dimensions 
it has the same magnitude, but opposite sign of the one used in fits to lattice Monte 
Carlo data. The basis for this result is the discussion in Section 3, according to which 
the eigenvalues of worldsheet Laplacians are essentially like those in flat space, and we 
also expect flat space contributions from the fermions and ghosts. There may, however, be 
surprises which would show up when the full boson-fermion action in the black hole AdS 
background becomes known. 
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