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Mirror at the edge of the universe: Reflections on an accelerated boundary
correspondence with de Sitter cosmology

Michael R. R. Good,1,2,* Abay Zhakenuly ,1,† and Eric V. Linder 2,3,‡

1Physics Department, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
2Energetic Cosmos Laboratory, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
3Berkeley Center for Cosmological Physics & Berkeley Lab, University of California,

Berkeley, 94720 California, USA

An accelerated boundary correspondence (ABC) is solved for the de Sitter moving mirror cosmology. 
The beta Bogoliubov coefficients reveal the particle spectrum is a Planck distribution with temperature 
inversely proportional to horizon radius. The quantum stress tensor indicates a constant emission of energy 
flux consistent with eternal equilibrium, while the total energy carried by the particles remains finite. The 
curved spacetime transformation to flat spacetime with an accelerated boundary is illustrated, and also 
shown for anti-de Sitter (AdS) spacetime.

I. INTRODUCTION

Einstein used a moving mirror in his seminal 1905 work
to derive the relativistic Doppler effect. Schrödinger, in
1939, determined that our expanding universe results in
particle creation [1]. A beautiful union of these seemingly
disparate ideas occurred in the 1970s when it was calcu-
lated that an accelerating mirror [2] could also produce its
own radiation, in close analog [3] to black hole particle
creation [4].
Understanding the thermodynamics and quantum par-

ticle production of de Sitter space [5–7] is well motivated
both mathematically, since it is the maximally symmetric
solution of Einstein’s equations with a positive cosmologi-
cal constant, and physically, since during the early universe,
t≲ 10−32 s, inflation is approximately de Sitter [8] and
with current cosmic acceleration the cosmos may be headed
for a future de Sitter state.
The static coordinate metric of de Sitter is given by

ds2 ¼ −
�
1 −

r2

L2

�
dt2 þ

�
1 −

r2

L2

�−1
dr2 þ r2dΩ; ð1Þ

with dΩ≡ dθ2 þ sin2θdϕ2. We transform de Sitter space,
with its horizon at r ¼ L, to the analogous moving mirror
model [9,10] trajectory, with the accelerating boundary
playing the role of the origin of coordinates, to study
quantum particle production, i.e., the dynamical Casimir
effect (see e.g., recent experimental proposals [11,12]).

Moving mirrors have proved themselves very useful in
different contexts, in particular as (1þ 1)-dimensional toy
models because they are much simpler than the realistic
(3þ 1)-dimensional systems they imitate and therefore
may admit exact and relatively simple analytical solutions,
which often provide some insight into the real effects. We
utilize this advantage of the moving mirror model to
investigate thermal particle production for a particular
trajectory that is associated with de Sitter spacetime.
In Sec. II we derive the relation between the de Sitter

metric and the de Sitter moving mirror through mapping in
(1þ 1)-dimensional accelerated coordinates and matching
in (3þ 1)-dimensional curved spacetime null sphere
expansion. Section III computes the quantum particle
spectrum and compares it to the late-time Schwarzschild
mirror solution (the eternal black hole spectrum of the
Carlitz-Willey mirror). We extend the mapping to anti-de
Sitter (AdS) space in Sec. IV.

II. FROM DE SITTER METRIC TO
ACCELERATION

Our aim is to explicitly solve for the spectrum of the
thermal moving mirror in flat spacetime which is most
closely related to the curved spacetime of de Sitter. In
explicit form, the beta Bogobliubov coefficients for particle
production of a massless scalar field in the static coordinate
metric of de Sitter spacetime, to our best knowledge, have
not previously been derived.
The spherically symmetric, static metric

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ ð2Þ
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corresponds to the inside static metric of the de Sitter
expansion system for fðrÞ≡ fL with

fL ¼ 1 −
r2

L2
: ð3Þ

While it looks similar to a black hole spacetime, here the
observer lives in the inside, 0 < r < L, with a cosmological
horizon at r ¼ L. The temperature seen by an inertial
observer in de Sitter spacetime is

T ¼ 1

2πL
; ð4Þ

(see Appendix A for a derivation which does not solve for
the beta coefficients directly). We set G ¼ ℏ ¼ c ¼ 1.

A. Relating 3 + 1 spacetime and 1 + 1 mirror

In [13] Davies exploited the conformal invariance of the
(1þ 1)-dimensional massless wave equation and globally
identified the origin of coordinates with a rapidly receding
mirror, recognizing the same behavior for the center of
coordinates of a (3þ 1)-dimensional spherically symmetric
star which acts mathematically as a Dirichlet boundary
accelerating away from outside observers as the star
collapses to a black hole. The boundary “moves” as a
consequence of theMinkowski-to-Rindler coordinate trans-
formation. See Fulling-Wilson [14] which relates the coor-
dinate procedure to the moving mirror model in Rindler
coordinates.
On the other hand, there is a different physical system in

[3,15–17] where there is a joining between two spacetimes
to model black hole collapse. In that model there is a
suturing of a curved region to a flat region along some
curve. The mathematics is very similar and the matching
procedure in these works is purposefully applied to model a
collapsing shell of matter forming a black hole. In seminal
work [10], Fulling and Davies also considered a black hole,
but only of the eternal Kruskal variety with no incoming
matter.
In this paper, we find and confirm the form of the moving

mirror by treating the de Sitter scenario in both systems
(mapping and matching). As an accelerated frame mapping,
akin toDavies [13], done in full generality for any conformal
mapping by Sanchez [18,19], there is a Minkowski-to-
de Sitter transformation, uðUÞ (that will function as the
moving mirror), between inertial Minkowski coordinates
ðU;VÞ and accelerated de Sitter coordinates ðu; vÞ.
In the matching interpretation, the uðUÞ is the matching

condition of the (3þ 1)-dimensional curved spacetime
system like the calculations in [3,15–17] that model
dynamic collapse. In order to find the uðUÞ condition that
gives the relevant mirror trajectory of interest, the radial
coordinate matching, r ¼ r�, is done over a light ray
v ¼ v0. Once the matching uðUÞ is found, the de Sitter

moving mirror is read off as the identical function, but
expressed in flat Minkowski spacetime as the retarded
time function fðvÞ with advanced time as the independent
variable.
With the de Sitter moving mirror, fðvÞ, in hand, the

focus of this paper will turn from the (3þ 1)-dimensional
curved spacetime system [or the (1þ 1)-dimensional
accelerated coordinate system] and exactly solve the
(1þ 1)-dimensional massless scalar single moving mirror
model in flat spacetime using Minkowski coordinates only.
The connection to de Sitter space comes from solving for
the mirror fðvÞ from the uðUÞ in the analogous (1þ 1)-
dimensional accelerated coordinate mapping (Sec. II B)
or the (3þ 1)-dimensional curved spacetime matching
(Sec. II C). In the matching situation, the de Sitter metric
is utilized rather than a black hole metric. In the mapping
situation, the de Sitter coordinates are utilized rather than
Rindler coordinates.

B. Mapping

Consider mapping from Minkowski coordinates, ðU;VÞ
to a “de Sitter” accelerated coordinate system, ðu; vÞ. We
express the conformally flat spacetimes in (1þ 1) dimen-
sions as ds2 ¼ −dU dV, and ds2 ¼ −fL du dv, respec-
tively. To find uðUÞ we integrate,

du
dU

¼ 1

fL
; ð5Þ

and obtain

uðUÞ ¼ 2L tanh−1
U − v
2L

; ð6Þ

where we have substituted for r using 2r ¼ V −U and set
VðvÞ ¼ v. To reduce to a moving mirror system of Fulling-
Davies [9] the conformal factor must be a function of u
alone, explicitly confirmed in Davies-Fulling-Unruh [3].
We therefore set v ¼ 0 so

uðUÞ ¼ 2Ltanh−1
U
2L

; ð7Þ

which will have an analog in the following matching
interpretation section where the matching is done over
the null ray v ¼ v0, with the light sphere location set to
zero, v0 ¼ 0. The general mapping of Sanchez [18,19]
allows one to identify the appropriate moving mirror
trajectory, fðvÞ from the mapping function uðUÞ of Eq. (7).

C. Matching

Now we qualitatively develop a dynamic-type model
where one can envision the origin of the flat Minkowski
spacetime as moving relative to the de Sitter curved
spacetime observer. Matching to a flat region is done in



mathematical analogy to black hole collapse where the
inside is flat. However, in this de Sitter case, it is the
exterior that is flat because the observer resides inside
de Sitter space. The crucial equation of interest is the
correct matching condition uðUÞ, gleaned from the de Sitter
tortoise coordinate. For a double null coordinate system
ðu; vÞ, with u ¼ t − r� and v ¼ tþ r�, the appropriate
tortoise coordinate [6] is

r� ¼
Z

f−1L dr ¼ L
2
ln

����Lþ r
L − r

���� ¼ Ltanh−1
r
L
; ð8Þ

and one has the (3þ 1)-dimensional metric for the geom-
etry describing the inside region 0 < r < L,

ds2 ¼ −fL du dvþ r2dΩ: ð9Þ

We call ðu; vÞ the interior coordinates. For a double null
coordinate system ðU;VÞ with U ¼ T − r and V ¼ T þ r,
we have

ds2 ¼ −dU dV þ r2dΩ: ð10Þ

We call ðU;VÞ the exterior coordinates. We aim to find the
matching condition (see e.g., [3,15–17]), which will be the
“trajectory” of r ¼ 0, expressed in terms of the interior
function uðUÞ with exterior coordinate U. In the infinite
past the spacetime is flat and there is no difference between
the exterior and interior coordinates, allowing us to choose
VðvÞ ¼ v, as we did in the previous mapping subsection.
Following [16], the mathematical procedure of setting
r ¼ r� over v ¼ v0 results in an implicit relationship over
the gauge invariant coordinate radius,

r�
�
r ¼ v0 −U

2

�
¼ v0 − u

2
; ð11Þ

which defines the area of a two-sphere at constant radius
and time. Explicitly, using Eq. (8) we set

Ltanh−1
v0 − U
2L

¼ v0 − u
2

; ð12Þ

and rearrange, solving for uðUÞ:

uðUÞ ¼ v0 − 2Ltanh−1
v0 −U
2L

: ð13Þ

The matching of r ¼ r� happens along a light sphere, v0.
Since we are simply after the radial trajectory of the origin,
uðUÞ, which will function as the moving mirror, fðvÞ, there
is no pressing need for a shell of matter on the null surface
v ¼ v0 as in black hole collapse. Here v0 � 2L≡ vH
because u → �∞ at U ¼ vH, and we obtain two horizons.
Without loss of generality we can set v0 ¼ 0, which centers
the system and simplifies the form of uðUÞ. The two

horizons are at vH ¼ �2L. The matching condition sim-
plifies to

uðUÞ ¼ 2Ltanh−1
U
2L

; ð14Þ

which is the same as the mapping Eq. (7). It is at this point
that our problem has effectively become (1þ 1) dimen-
sional. Further calculations along this line of inquiry give
us only qualitative information about (3þ 1)-dimensional
physics. However, quantitatively we can investigate the
(1þ 1)-dimensional single moving mirror problem and
look for analogous physics. For example, since de Sitter
spacetime is thermal, we expect that the correct mirror
choice will also be thermal. Interestingly, as a moving
mirror, Eq. (14) is exactly all that is needed for under-
standing how the field modes become modified, resulting
in particle creation in the simplified flat spacetime context
of the moving mirror model. That is, Eq. (14) gives the
boundary condition that defines the mode behavior.
In the curved spacetime system, the quantum field must

be zero at r ¼ 0, ensuring regularity of the modes, such that
the origin acts like a moving mirror in the ðU;VÞ
coordinates. Since there is no field behind r < 0, the form
of field modes can be determined, such that a U ↔ v
identification is made for the Doppler-shifted right movers
of the moving mirror model. We are now ready to analyze
the analog mirror trajectory, fðvÞ from uðUÞ, as a known
function of advanced time v.

D. Mirror

In the standard moving mirror formalism [20] we study
the massless scalar field in (1þ 1)-dimensional Minkowski
spacetime (following e.g., [21]). From Eq. (14) the de Sitter
analog moving mirror trajectory is

fðvÞ ¼ 2

κ
tanh−1

κv
2
; ð15Þ

which is now a perfectly reflecting boundary in flat
spacetime rather than the origin as a function of coordinates
in curved de Sitter spacetime. Introduction of κ ≡ L−1 is
done to signal that we are now working in the moving
mirror model with a background of flat spacetime, where κ
is the acceleration parameter of the trajectory.
The horizons are vH ¼ �2=κ, and so κv spans

−2 < κv < þ2. The rapidity, in advanced time, −2ηðvÞ ¼
ln f0ðvÞ, is

ηðvÞ ¼ 1

2
ln

�
1 −

κ2v2

4

�
: ð16Þ

The rapidity asymptotes at κv ¼ �2, i.e., the mirror
approaches the speed of light at the horizons, u → �∞.
The trajectory in spacetime coordinates is plotted as a



spacetime plot in Fig. 1. A conformal diagram of the
accelerated boundary is given in Fig. 2. (Note that x,
defined by u ¼ t − x, is the space coordinate in the mirror
flat spacetime and is not restricted as r > 0; we choose
t ¼ 0, x ¼ 0 as the “present.” In some sense this is
moot: the mirror is eternally thermal as we show so it
does not matter if we restrict its trajectory to some range
in space.)
The proper acceleration α ¼ eηðvÞη0ðvÞ is

αðvÞ ¼ −
1

2

κ2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − κ2v2

p ; ð17Þ

where prime denotes derivative with respect to the
argument. Note the acceleration is zero at v ¼ 0, but
approaches �∞ near the horizons. The acceleration also
takes on a simple form in terms of proper time, as discussed
in Appendix B 1.
The double divergence in the advanced time acceleration

Eq. (17) is arguably the main trait characterizing the
de Sitter trajectory. As a result, the de Sitter mirror
possesses a double asymptotic null horizon in contrast to
the single horizons of the Schwarzschild mirror [22–24]
and the recently calculated trajectory of the extreme
Reissner-Nordström mirror [25]. Even the Reissner-
Nordström mirror [26] (whose black hole has two
horizons) has only one outer horizon relevant for its
time-dependent particle production calculation. We will
find the double horizons play an important role in the
particle spectrum.

III. FLUX, SPECTRUM, AND PARTICLES

For the de Sitter mirror, we find that the energy flux is
constant, eternally. The radiated energy flux as computed
from the quantum stress tensor is the Schwarzian derivative
of Eq. (15) [27],

FðvÞ ¼ 1

24π
ffðvÞ; vgf0ðvÞ−2; ð18Þ

where the Schwarzian brackets are defined as

ffðvÞ; vg≡ f000

f0
−
3

2

�
f00

f0

�
2

; ð19Þ

which yields

F ¼ κ2

48π
: ð20Þ

This result is indicative of thermal equilibrium and we next
present the derivation of the accompanying Planck
distribution.
The particle spectrum is given by the beta Bogoliubov

coefficient, which can be found via [27]

βωω0 ¼−
1

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vþH

v−H

dve−iω
0v−iωfðvÞðωf0ðvÞ−ω0Þ; ð21Þ

where ω and ω0 are the frequencies of the outgoing and
ingoing modes respectively. The result of the integration is

FIG. 1. Trajectories, Eq. (15), in a spacetime plot. The mirror is
the thick black line. The horizons are at κvH ¼ �2 (blue and red
dotted lines) and the v ¼ 0 line is shown by the gray dotted line,
where retarded time is u ¼ t − x, and v ¼ tþ x is advanced time.

FIG. 2. The class of trajectories Eq. (15) in a Penrose conformal
diagram. The colors correspond to different κ ¼ 1, 2, 3, 4: black,
red, blue, green, respectively. The trajectories extend all the way
out to the null future and past surfaces.



βωω0 ¼ 2
ffiffiffiffiffiffiffiffi
ωω0p

κ2 sinh πω=κ
e−2iω

0=κMð1þ iω=κ; 2; 4iω0=κÞ; ð22Þ

where M ≔ 1F1 the confluent hypergeometric function,
i.e., the Kummer function of the first kind. The same
betas [28,29] have been derived in the context of spacetime
diamonds [30].
To obtain the particle spectrum, we complex conjugate,

Nωω0 ≡ jβdSωω0 j2; ð23Þ

giving the particle count per mode squared, plotted in
Fig. 3. The spectrum Nω is then

Nω ¼
Z

∞

0

Nωω0dω0; ð24Þ

plotted in Fig. 4, illustrating graphically a thermal Planck
particle number spectrum. Multiplying by the energy
and phase space factors gives the usual Planck blackbody
energy spectrum.
Thermal behavior can also be seen analytically by

the expectation value of the particle number, N ω, via
continuum normalization modes,

N ω ≡
Z þ∞

0

dω0βωω0β�ω2ω
0 ¼ δðω − ω2Þ

e2πω=κ − 1
: ð25Þ

We have used the textbook notation of [17], where the late-
times Hawking case is done. As shown there, the delta

function divergence (see also e.g., [32]) can be removed
easily by using finite normalization wave packet modes [4].
The de Sitter calculation is not as straightforward as
the Schwarzschild black hole and is therefore outlined in
Appendix C.
Surprisingly, despite infinite acceleration and constant

energy flux, Eq. (20), for all times u, the two horizons in v
appear to conspire to render the total emitted energy,

E ¼
Z

∞

0

dωωNω ¼ finite; ð26Þ

finite. The closed form result for E is challenging analyti-
cally, but straightforward numerically. Computing Eq. (26)
for κ ¼ 1 gives E ≈ 5. Equation (26) is the energy carried
by the particles and contrasts with the energy of radiation,

E ¼
Z

∞

−∞
duFðuÞ ¼ infinite; ð27Þ

resulting from the quantum stress tensor measured at Iþ
R .

A similar finite energy to Eq. (26) is obtained using a finite-
lifetime mirror in [28]. Following Eq. (23), we plot Eωω0 ¼
ωNωω0 in Fig. 5.

IV. FROM DE SITTER TO ANTI-DE SITTER

Reference [33] showed that constant thermal flux had a
simple condition when written in terms of proper time (see
Appendix B 1) and identified three forms for the moving
mirror acceleration satisfying this. The first solution is the
Carlitz-Willey mirror and the second is the de Sitter mirror,
the focus of this article. The third solution gives the mirror
corresponding to anti-de Sitter (AdS) spacetime. This
eternally gives off negative energy flux, F ¼ −κ2=ð48πÞ.
For AdS fL ¼ 1þ r2=L2, which can be thought of as

L2 ¼ 1=Λ being negative. AdS space does not have a
horizon, but does have an edge at the origin r ¼ 0 with the

FIG. 3. The mode spectra Nωω0 ≡ jβωω0 j2, setting ω0 ¼ 1 for
illustration. The blue curve is the de Sitter case from Eqs. (22) and
(23), while the red curve is the late time Schwarzschild result (or
equivalent Carlitz-Willey mirror [31]) of Eq. (C16). A larger
prefactor on the beta elevates the de Sitter spectra, offsetting the
dips in frequency that are zeros in the mode spectrum due to
Kummer’s function, indicative of complete spectral absorption
lines in the measure jβωω0 j2. The zeros occur at ω ¼ 0.57, 2.74,
6.14, ad inf. The destructive interference, like in the double-slit
experiment, could be between the double horizons, as field modes
do not propagate freely asymptotically, i.e., eiωv has a boundary
at v ¼ �vH .

FIG. 4. The particle count spectra Nω ¼ R
Nωω0dω0. Blue and

red curves are the same, showing that both de Sitter and late-time
Schwarzschild solutions have thermal spectra at temperature
κ=2π. Here we have chosen κ ¼ 1=4 for illustration.



same regularity requirement as the de Sitter accelerated
boundary correspondence (ABC). Taking the de Sitter κ
imaginary turns tanh into tan, so

fðvÞ ¼ 2

κ�
tan−1

κ�v
2

: ð28Þ

This trajectory is the ABC of the AdS spacetime. The
nonzero beta coefficients are given, by symmetry, through
βdSωω0 ¼ −βAdSω0ω . While many mirrors incite episodes of
negative energy flux (and indeed unitarity requires it for
asymptotically static mirrors [34]), here the total energy is
negative. Since the relationships between particles and
energy in quantum field theory are far from resolved, this
trajectory provides a good illustration of the pressing issues
raised in association with negative energy radiation carried
by nontrivial particle production processes.

V. CONCLUSIONS

We have solved for the particle spectrum associated with
de Sitter cosmology for the de Sitter moving mirror. This is
the second of the eternal thermal mirrors (with the first
being the Carlitz-Willey solution for Schwarzschild space-
time, and the third, also presented here, corresponding to
anti-de Sitter cosmology).
The beta Bogoliubov coefficients can be written in terms

of special functions, and give rise to a particle spectrum
with a Planck distribution with temperature inversely
proportional to the horizon scale (or proportional to the
square root of the cosmological constant).
The solution has some interesting properties: isolated

zeros in the particle count per mode squared despite a
thermal particle count spectrum, which may be related
to destructive interference between the double horizons,
and finite total energy emission derived via quantum

summing, and numerically verified, which contrasts with
the infinite energy via an eternally thermal quantum stress
tensor.
Despite the ambiguities in the convergence of the total

energy emission and interpretation of the zeros in jβωω0 j2,
and though this calculation has been done for a simple
(1þ 1)-dimensional model, we believe the results increase
one’s understanding of the particle production of de Sitter
cosmology identified with this moving mirror. As the
completion of the trio of eternal thermal mirrors, the results
show the connections and differences with the Carlitz-
Willey solution for Schwarzschild spacetime.
The accelerated boundary correspondence (ABC) is

demonstrated to be a useful tool, enabling us to use the
derived de Sitter moving mirror solution to confirm that the
distribution of particles produced from a massless scalar
quantum field is the thermal Planck spectrum, with temper-
ature related to the horizon scale, or alternately mirror
acceleration.
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APPENDIX A: EUCLIDEAN METHOD

Gibbons-Hawking [5] showed that thermal radiation
emanates from the de Sitter horizon, similar to the radiation
emanating from the Schwarzschild black hole horizon [4]
and to the radiation seen by an accelerated observer in the
Unruh effect [15]. Dimensional analysis of the system
immediately gives T ∼ 1=L, while the proportionality
factor of 2π can be obtained via Wick rotation. The static
patch has a Euclidean continuation by taking tE ¼ it,
resulting in

ds2 ¼ þfLdt2E þ f−1L dr2 þ r2dΩ: ðA1Þ

The periodicity of Euclidean time, with period β ¼ 2πL
implies a temperature T ¼ ð2πLÞ−1. Essentially, de Sitter
space can be viewed as a finite cavity surrounding the
observer, with the horizon as its boundary [7].

FIG. 5. The total energy carried by the particles, Eq. (26),
emitted by the de Sittermirror is finite. The integrandEωω0 exhibits
dips in energy as seen in Nωω0 from Fig. 3. There is no infrared
divergence, as the limit of Eωω0 when ω → 0 is sin2ð2ω0Þ=ðπ2ω0Þ.



APPENDIX B: PROPER, RETARDED AND
ADVANCED TIME DYNAMICS

1. Proper time

The second of the constant thermal flux solutions in [33]
had the proper acceleration written in proper time as

αðτÞ ¼ −
κ

2
tan

κτ

2
: ðB1Þ

The rapidity being its integral, α ¼ dη=dτ,

ηðτÞ ¼ ln cos
κτ

2
: ðB2Þ

The celerity (proper velocity) is w ¼ sinh η,

wðτÞ ¼ − cscðκτÞsin3 κτ
2
: ðB3Þ

The Lorentz factor γ ¼ cosh η is

γðτÞ ¼ 1

4
ðcosðκτÞ þ 3Þ sec

κτ

2
: ðB4Þ

Conversion can be done between u ↔ τ, via eη ¼ dτ=du
integration,

tanh
κu
4

¼ tan
κτ

4
: ðB5Þ

While tan ranges from −∞ toþ∞ and tanh ranges −1 to 1,
the periodicity of the system is manifest, when κτ ¼ −π or
argument nπ=2 odd integer values thereof. This is also
apparent in the zero denominator of

tanh
κu
4

¼ 1þ sinðκτ=2Þ − cosðκτ=2Þ
1þ sinðκτ=2Þ þ cosðκτ=2Þ ; ðB6Þ

at the same locations. The trajectory is checked via
w ¼ dx=dτ,

xðτÞ ¼ 1

κ
sin

κτ

2
þ 1

κ
ln

�
2

tan κτ
4
þ 1

− 1

�
; ðB7Þ

or in delayed time u via Eq. (B6),

xðuÞ ¼ 1

κ
tanh

κu
2
−
u
2
; ðB8Þ

which gives the inverse of fðvÞ ¼ p−1ðuÞ, Eq. (15), or just
simply Eq. (B11),

v ¼ pðuÞ ¼ 2

κ
tanh

κu
2
: ðB9Þ

An advantage of proper time is that the derivation of
constant energy flux is particularly simple:

FðτÞ ¼ −
1

12π
η00ðτÞe2ηðτÞ ¼ κ2

48π
; ðB10Þ

agreeing with Eq. (20).

2. Retarded time

In delayed or retarded time u, the flux is −24πFðuÞ ¼
fpðuÞ; ug, where pðuÞ is Eq. (B11), giving Eq. (20),
F ¼ κ2=ð48πÞ. The trajectory in light cone coordinates
as a function of retarded time u ¼ t − x is fðvÞ ¼ p−1ðuÞ,

pðuÞ ¼ 2

κ
tanh

κu
2
: ðB11Þ

The rapidity,

ηðuÞ ¼ ln sech
κu
2
; ðB12Þ

can be used to find the acceleration via

αðuÞ ¼ e−ηðuÞη0ðuÞ; ðB13Þ

which gives

αðuÞ ¼ −
κ

2
sinh

κu
2
: ðB14Þ

Retarded time u is convenient because it is the time of the
observer at Iþ

R but the integration for the beta coefficients is
not tractable. The beta coefficients are however, tractable
using advanced time v.

3. Advanced time

In advanced time v ¼ tþ x the flux is in the form of
Eq. (18) which results in Eq. (20). The proper acceleration
is obtained through the conversion from τ to v. Starting
with

dv
dτ

¼ dðtþ xÞ
dτ

¼ cosh ηþ sinh η ðB15Þ

and using once again α ¼ dη=dτ, so η becomes

η ¼ ln cos
κτ

2
; ðB16Þ

after integration we find

v ¼ 2

κ
sin

κτ

2
: ðB17Þ

Expressing τ and inserting it into Eq. (B1) we get the proper
acceleration in terms of advanced time,



αðvÞ ¼ −
1

2

κ2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − κ2v2

p ; ðB18Þ

precisely Eq. (17). Thus the second eternal thermal flux
solution of [33] is indeed equivalent to the de Sitter case.

APPENDIX C: EXPLICIT CALCULATION OF
THE PLANCK SPECTRA FOR DE SITTER’S

MOVING MIRROR

Thermal behavior is seen by the expectation value:

N ω ≡
Z þ∞

0

dω0βωω0β�ω2ω
0 ¼ δðω − ω2Þ

e2πω=κ − 1
: ðC1Þ

We derive this starting with the beta coefficients. After an
integration by parts, we have

βωω0 ¼ 2ω0

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z þ2=κ

−2=κ
dv1V

−iω=κ
1 e−iω

0v1 ; ðC2Þ

and its complex conjugate counterpart,

β�ω2ω
0 ¼ 2ω0

4π
ffiffiffiffiffiffiffiffiffiffi
ω2ω

0p
Z þ2=κ

−2=κ
dv2V

iω2=κ
2 eiω

0v2 ; ðC3Þ

where Vi ≡ ð1þ κvi=2Þ=ð1 − κvi=2Þ. The spectrum N ω

scales as

N ω∼
Z

dω0
Z

dv1

Z
dv2V

−iω=κ
1 Viω2=κ

2 ω0e−iω0ðv1−v2Þ; ðC4Þ

where the proportionality factor is 1=ð4π2 ffiffiffiffiffiffiffiffiffi
ωω2

p Þ. The ω0

integration is done via the introduction of a real ϵ > 0
regulator,

Z
∞

0

dω0ω0e−iω0Z ¼ −
1

ðZ − iϵÞ2 ; ðC5Þ

giving

N ω ¼ −1
4π2

ffiffiffiffiffiffiffiffiffi
ωω2

p
Z

dv1

Z
dv2

V−iω=κ
1 Viω2=κ

2

ðv1 − v2 − iϵÞ2 : ðC6Þ

A substitution via variables vi ¼ ð2=κÞ tanh 2Si results in

N ω ¼ −1
4π2

ffiffiffiffiffiffiffiffiffi
ωω2

p
Z

dS1

Z
dS2

4e−4iðωS1−ω2S2Þ=κ

sinh2ð2ðS1 − S2ÞÞ
; ðC7Þ

to leading order in small ϵ. A second substitution simplifies
via Qp;m ≡ S1 � S2 to

N ω¼
−1

2π2
ffiffiffiffiffiffiffiffiffi
ωω2

p
Z

dQpe−2iωmQp=κ

Z
dQm

e−2iωpQm=κ

sinh2ð2Qm−iϵÞ;

ðC8Þ

whereωp;m ≡ ω� ω2, and a new ϵ has been introduced, and
a Jacobian of 1=2. The first integral is the Dirac delta, so

N ω ¼ 2πðκ=2ÞδðωmÞ
2π2

ffiffiffiffiffiffiffiffiffi
ωω2

p
Z

dQm
−e−2iωpQm=κ

sinh2ð2Qm − iϵÞ : ðC9Þ

We can drop the subscript now, Qm ≔ Q. For the next
integral, we will use the identity

1

sinh2ðπxÞ ¼
Xþ∞

k¼−∞

1

ðπxþ iπkÞ2 ; ðC10Þ

and now ωp ¼ 2ω, to write

−e−2iωpQ=κ

sinh2ð2Q − iϵÞ ¼
Xþ∞

k¼−∞

−e−4iωQ=κ

ð2Q − iϵþ iπkÞ2 : ðC11Þ

First integrating,

Xþ∞

k¼−∞

Z þ∞

−∞
dQ

−e−4iωQ=κ

ð2Q − iϵþ iπkÞ2 ¼
2πω

κ

Xþ∞

k¼1

e−2πkω=κ;

ðC12Þ
so that

N ω ¼ δðωmÞ
Xþ∞

k¼1

e−2πkω=κ; ðC13Þ

we then sum, giving the final result:

N ω ¼ δðω − ω2Þ
e2πω=κ − 1

: ðC14Þ

We can compare to the Schwarzschild mirror [35], which
has beta coefficient squared

NS
ωω0 ≔ jβSωω0 j2 ¼ ω0

2πκðe2πω=κ − 1Þðω0 þ ωÞ2 ; ðC15Þ

with κ ¼ 1=ð4MÞ. In the high frequency regime, where the
modes are extremely redshifted, ω0 ≫ ω, one has the per
mode squared spectrum Nωω0 ≔ jβωω0 j2 (not Nω) as

NS
ωω0 ¼ 1

2πκω0
1

eω=Ts − 1
; ðC16Þ

where the Schwarzschild temperature is Ts ¼ κ=ð2πÞ. The
de Sitter result is eternally thermal, while the collapse to
the Schwarzschild black hole is only late-time thermal. The
Schwarzschild result for N S

ω proceeds [17] to the penulti-
mate result

N S
ω ¼ κ

2πω

����Γ
�
1þ i

ω

κ

�����
2

e−πω=κδðωmÞ; ðC17Þ

which reduces to N S
ω ¼ δðωmÞðe2πω=κ − 1Þ−1, identical in

form to Eq. (C14).
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